基于多尺度结构自相似性的单幅图像超分辨率算法
多尺度结构白相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种多尺度图像结构自相似性广泛存在于遥感图像中.本文提出了一种基于多尺度结构自相似性的单幅图像超分辨率fSuper resolution,SR)算法,该算法结合了压缩感知框架与图像结构自相似性,利用非局部方法和基于图像金字塔的K-SVD字典学习方法,将蕴含在相同尺度和不同尺度相似图像块中的附加信息在压缩感知的框架下加入到重构图像中.本文算法的优势在于,它仅借助于单幅低分辨率图像自身所蕴含的信息,实现了空间分辨率的提升.实验表明,与CSSS算法和ASDSAR算法相比,本文算法更有效地提升了遥感图像的空间分辨率....
Saved in:
Published in | 自动化学报 Vol. 40; no. 4; pp. 594 - 603 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
清华大学电子工程系 北京 100084%北京航空航天大学机械工程与自动化学院 北京 100083
2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 1874-1029 |
DOI | 10.3724/SP.J.1004.2014.00594 |
Cover
Abstract | 多尺度结构白相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种多尺度图像结构自相似性广泛存在于遥感图像中.本文提出了一种基于多尺度结构自相似性的单幅图像超分辨率fSuper resolution,SR)算法,该算法结合了压缩感知框架与图像结构自相似性,利用非局部方法和基于图像金字塔的K-SVD字典学习方法,将蕴含在相同尺度和不同尺度相似图像块中的附加信息在压缩感知的框架下加入到重构图像中.本文算法的优势在于,它仅借助于单幅低分辨率图像自身所蕴含的信息,实现了空间分辨率的提升.实验表明,与CSSS算法和ASDSAR算法相比,本文算法更有效地提升了遥感图像的空间分辨率. |
---|---|
AbstractList | 多尺度结构白相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种多尺度图像结构自相似性广泛存在于遥感图像中.本文提出了一种基于多尺度结构自相似性的单幅图像超分辨率fSuper resolution,SR)算法,该算法结合了压缩感知框架与图像结构自相似性,利用非局部方法和基于图像金字塔的K-SVD字典学习方法,将蕴含在相同尺度和不同尺度相似图像块中的附加信息在压缩感知的框架下加入到重构图像中.本文算法的优势在于,它仅借助于单幅低分辨率图像自身所蕴含的信息,实现了空间分辨率的提升.实验表明,与CSSS算法和ASDSAR算法相比,本文算法更有效地提升了遥感图像的空间分辨率. 多尺度结构自相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种多尺度图像结构自相似性广泛存在于遥感图像中。本文提出了一种基于多尺度结构自相似性的单幅图像超分辨率(Super resolution, SR)算法,该算法结合了压缩感知框架与图像结构自相似性,利用非局部方法和基于图像金字塔的K-SVD字典学习方法,将蕴含在相同尺度和不同尺度相似图像块中的附加信息在压缩感知的框架下加入到重构图像中。本文算法的优势在于,它仅借助于单幅低分辨率图像自身所蕴含的信息,实现了空间分辨率的提升。实验表明,与CSSS 算法和ASDSAR 算法相比,本文算法更有效地提升了遥感图像的空间分辨率。 |
Abstract_FL | Multi-scale structural self-similarity refers to those similar structures either within the same scale or across different scales coming from the same image, which widely occur in remote sensing images. In this paper, we propose a single image super resolution (SR) method based on multi-scale structural self-similarity, which combines compressive sensing framework and structural self-similarity. In our method, the nonlocal and the pyramid-based K-SVD methods are used to add the extra information hidden in multi-scale structural self-similarity into the reconstructed image in the compressive sensing framework. The advantage of our method is that it only uses a single low-resolution image to promote spatial resolution by fully exploiting the extra information hidden in the image itself. Experimental results demonstrate that our method can improve spatial resolution more effectively compared with the CSSS and the ASDSAR methods. |
Author | 潘宗序 禹晶 胡少兴 孙卫东 |
AuthorAffiliation | 清华大学电子工程系,北京100084 北京航空航天大学机械工程与自动化学院,北京100083 |
AuthorAffiliation_xml | – name: 清华大学电子工程系 北京 100084%北京航空航天大学机械工程与自动化学院 北京 100083 |
Author_FL | YU Jing HU Shao-Xing SUN Wei-Dong PAN Zong-Xu |
Author_FL_xml | – sequence: 1 fullname: PAN Zong-Xu – sequence: 2 fullname: YU Jing – sequence: 3 fullname: HU Shao-Xing – sequence: 4 fullname: SUN Wei-Dong |
Author_xml | – sequence: 1 fullname: 潘宗序 禹晶 胡少兴 孙卫东 |
BookMark | eNotz0tLAlEcBfBLGGTmN2jTpt1M__ueuyzpiVCQe5mnGjWWEpWrIM022SIkUKhNVLSIIIiaxE_jdfwYGbY6mx_ncGZRIiyHPkLzGEwqCVva3TG3TAzATAKYmQBcsSmUxJZkBgaiEigJhDODYS5mULpaLTmAJZOKUEiiFf0QDaKWfuzo90hHT_HP7fC-Pmq-xt2vQa83PH-OO3V93dbfDd3t64ub0WdDX12O-i9xqxm_3Q0_2nNoOrD3q376P1Mot7aay2wY2e31zcxy1nC5pAYn2MZgAWG-5AFXjpBCcMW5sIWgIqCeY7nK851AECk8xyEW9QNXeJZr-cq3aQotTmpP7DCww0J-r3xcCceD-ZpXPHX-zgMDoGO4MIFusRwWjkpjelgpHdiVszxTBDMhJf0Fr6Fxyg |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3724/SP.J.1004.2014.00594 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Single Image Super Resolution Based on Multi-scale Structural Self-similarity |
DocumentTitle_FL | Single Image Super Resolution Based on Multi-scale Structural Self-similarity |
EISSN | 1874-1029 |
EndPage | 603 |
ExternalDocumentID | zdhxb201404003 49214677 |
GrantInformation_xml | – fundername: 国家自然科学基金; 国家科技支撑计划项目; 北京市教育委员会科技计划重点项目(KZ201310028035)资助@@@@Supported by National Natural Science Foundation of China; National Science and Technology Pillar Program of China; Key Project of the Science and Technology Development Program of Beijing Education Com-mittee of China funderid: (61171117); (2012BAH31 B01); (61171117); (2012BAH31B01); (KZ201310028035) |
GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 457 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 92L AAIKJ AALRI AAQFI AAXUO ACGFS ADEZE ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CQIGP CS3 CUBFJ CW9 EBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI ABWVN ACRPL ADNMO PSX |
ID | FETCH-LOGICAL-c573-521a108024e75f59b676659556a6636f3db8c9debf6276dbb283efc6d8c8e9ea3 |
ISSN | 0254-4156 |
IngestDate | Thu May 29 04:10:30 EDT 2025 Wed Feb 14 10:37:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | structural self-similarity nonlocal multi-scale 结构自相似性 压缩感知 非局部方法 Super resolution (SR) 超分辨率 多尺度 compressive sensing |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c573-521a108024e75f59b676659556a6636f3db8c9debf6276dbb283efc6d8c8e9ea3 |
Notes | PAN Zong-Xu, YU Jing, HU Shao-Xing, SUN Wei-Dong (1. Department of Electronic Engineering, Tsinghua University, Beijing 100084 2. School of Mechanical Engineering and Au- tomation, Beijing University of Aeronautics and Astronautics, Beijing 100083) 11-2109/TP Multi-scale structural self-similarity refers to those similar structures either within the same scale or across different scales coming h'om the same image, which widely occur in remote sensing images. In this paper, we propose a single image super resolution (SR) method based on multi-scale structural self-similarity, which combines compressive sensing framework and structural self-similarity. In our method, the nonlocal and the pyramid-based K-SVD methods are used to add the extra information hidden in multi-scale structural self-similarity into the reconstructed image in the compressive sensing framework. The advantage of our method is that it only uses a single low-resolution image to promote spatial resolution by fully exploiting the extra informatio |
PageCount | 10 |
ParticipantIDs | wanfang_journals_zdhxb201404003 chongqing_primary_49214677 |
PublicationCentury | 2000 |
PublicationDate | 2014 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – year: 2014 text: 2014 |
PublicationDecade | 2010 |
PublicationTitle | 自动化学报 |
PublicationTitleAlternate | Acta Automatica Sinica |
PublicationTitle_FL | Acta Automatica Sinica |
PublicationYear | 2014 |
Publisher | 清华大学电子工程系 北京 100084%北京航空航天大学机械工程与自动化学院 北京 100083 |
Publisher_xml | – name: 清华大学电子工程系 北京 100084%北京航空航天大学机械工程与自动化学院 北京 100083 |
SSID | ssib017479230 ssib001102911 ssib006576350 ssib051375349 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 |
Score | 2.0427458 |
Snippet | 多尺度结构白相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种多尺度图像结构自相似性广泛存在于遥感图像中.本文提出了一种基于多尺度结构自相似性的单幅图像超分辨率fSuper... 多尺度结构自相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种多尺度图像结构自相似性广泛存在于遥感图像中。本文提出了一种基于多尺度结构自相似性的单幅图像超分辨率(Super resolution,... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 594 |
SubjectTerms | 压缩感知 多尺度 结构自相似性 超分辨率 非局部方法 |
Title | 基于多尺度结构自相似性的单幅图像超分辨率算法 |
URI | http://lib.cqvip.com/qk/90250X/201404/49214677.html https://d.wanfangdata.com.cn/periodical/zdhxb201404003 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsInJRQ_iExNfOdinsHF3p5_Hns2sIah4iJLbMr0zk5w2PhKQnAQT48V4kCAkoBdR8SCCILqGfE0mm6t_YFVPZzNiEBWWpqcf1VVds91VNV3VhFyx1sZxTaiKSAJ0yVGiomONh_05-kHGdd1Gg_6Nm2LyNpua4TMDAz9Kp5YWF-x4e-lQv5L_4SqUAV_RS_YfONsHCgWQB_5CChyG9K94TCNOdZOGhkYMUxVhiWFUG8yEVVfFMTWCRpKGIdUBjQTVEVWMRooqSY3BKh3SUDk4DfxBG1WlRroq4xpzqiao5g6gpsplsJcbVAVUNRFgKHyVAuDClUTUKIQD6CkH0ERUSxwiDGhx-eW-fFxCCSAY1xEyDaqFI23CESJcFd9_WRwkQM219bAd0ao55oYTiDBSrQG9MTdGQE3Nz5F2GUA6ZGN-EGhYkGtCNyWK6kbZPlJ4pPoFFJTfCiqoxV5XLPBKMth6vJXF7wBFwCj_prPScs6LC5i9ZCBcNIbfNp1A1hl-9r41PoVnTtBQV8OQ7P3Ov4TzZhqvUpfyCBmqS1njg2ToWnj9jjmQYRG70qLLNayrJRlNcIwhePAs8Ut46dM1PAfBgU4IGieGiOw_44UBomQD4LUANFbUwQvxhWM4J2eY9JNX-JsikVcPIxFjkszNd2bvgaTlHN86WdyZLclo0yfIca9cjZrin3KSDCzNnSLHSiE3T5Mwf93d6a7lbzbyT928-7b3_cXuq-W91Q-9za87W1u7j971NpbzZ-v5t5V8czt__Hzvy0r-9Mne9vve2mrv48vdz-tnyHQzmm5MVvw9IpU2l0EFBNQYT9LWWSp5xrUVUmAUTS5iELdFFiRWtXWS2kzUpUisBYk7zdoiUW2V6jQOzpLBznwnPUdGZRJUkypLOdMZ0zyzwiYZbHqxEoqllg-Tkf5ktO4W4WJa-xwfJpf97LT8GvKgtZTMPbR1F-MKtteRP3U_T45iw8L8d4EMLtxfTC-CQLxgL_lX6Ce9V4zT |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%A4%9A%E5%B0%BA%E5%BA%A6%E7%BB%93%E6%9E%84%E8%87%AA%E7%9B%B8%E4%BC%BC%E6%80%A7%E7%9A%84%E5%8D%95%E5%B9%85%E5%9B%BE%E5%83%8F%E8%B6%85%E5%88%86%E8%BE%A8%E7%8E%87%E7%AE%97%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E6%BD%98%E5%AE%97%E5%BA%8F+%E7%A6%B9%E6%99%B6+%E8%83%A1%E5%B0%91%E5%85%B4+%E5%AD%99%E5%8D%AB%E4%B8%9C&rft.date=2014&rft.issn=0254-4156&rft.eissn=1874-1029&rft.volume=40&rft.issue=4&rft.spage=594&rft.epage=603&rft_id=info:doi/10.3724%2FSP.J.1004.2014.00594&rft.externalDocID=49214677 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |