基于多尺度结构自相似性的单幅图像超分辨率算法

多尺度结构白相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种多尺度图像结构自相似性广泛存在于遥感图像中.本文提出了一种基于多尺度结构自相似性的单幅图像超分辨率fSuper resolution,SR)算法,该算法结合了压缩感知框架与图像结构自相似性,利用非局部方法和基于图像金字塔的K-SVD字典学习方法,将蕴含在相同尺度和不同尺度相似图像块中的附加信息在压缩感知的框架下加入到重构图像中.本文算法的优势在于,它仅借助于单幅低分辨率图像自身所蕴含的信息,实现了空间分辨率的提升.实验表明,与CSSS算法和ASDSAR算法相比,本文算法更有效地提升了遥感图像的空间分辨率....

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 40; no. 4; pp. 594 - 603
Main Author 潘宗序 禹晶 胡少兴 孙卫东
Format Journal Article
LanguageChinese
Published 清华大学电子工程系 北京 100084%北京航空航天大学机械工程与自动化学院 北京 100083 2014
Subjects
Online AccessGet full text
ISSN0254-4156
1874-1029
DOI10.3724/SP.J.1004.2014.00594

Cover

Abstract 多尺度结构白相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种多尺度图像结构自相似性广泛存在于遥感图像中.本文提出了一种基于多尺度结构自相似性的单幅图像超分辨率fSuper resolution,SR)算法,该算法结合了压缩感知框架与图像结构自相似性,利用非局部方法和基于图像金字塔的K-SVD字典学习方法,将蕴含在相同尺度和不同尺度相似图像块中的附加信息在压缩感知的框架下加入到重构图像中.本文算法的优势在于,它仅借助于单幅低分辨率图像自身所蕴含的信息,实现了空间分辨率的提升.实验表明,与CSSS算法和ASDSAR算法相比,本文算法更有效地提升了遥感图像的空间分辨率.
AbstractList 多尺度结构白相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种多尺度图像结构自相似性广泛存在于遥感图像中.本文提出了一种基于多尺度结构自相似性的单幅图像超分辨率fSuper resolution,SR)算法,该算法结合了压缩感知框架与图像结构自相似性,利用非局部方法和基于图像金字塔的K-SVD字典学习方法,将蕴含在相同尺度和不同尺度相似图像块中的附加信息在压缩感知的框架下加入到重构图像中.本文算法的优势在于,它仅借助于单幅低分辨率图像自身所蕴含的信息,实现了空间分辨率的提升.实验表明,与CSSS算法和ASDSAR算法相比,本文算法更有效地提升了遥感图像的空间分辨率.
多尺度结构自相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种多尺度图像结构自相似性广泛存在于遥感图像中。本文提出了一种基于多尺度结构自相似性的单幅图像超分辨率(Super resolution, SR)算法,该算法结合了压缩感知框架与图像结构自相似性,利用非局部方法和基于图像金字塔的K-SVD字典学习方法,将蕴含在相同尺度和不同尺度相似图像块中的附加信息在压缩感知的框架下加入到重构图像中。本文算法的优势在于,它仅借助于单幅低分辨率图像自身所蕴含的信息,实现了空间分辨率的提升。实验表明,与CSSS 算法和ASDSAR 算法相比,本文算法更有效地提升了遥感图像的空间分辨率。
Abstract_FL Multi-scale structural self-similarity refers to those similar structures either within the same scale or across different scales coming from the same image, which widely occur in remote sensing images. In this paper, we propose a single image super resolution (SR) method based on multi-scale structural self-similarity, which combines compressive sensing framework and structural self-similarity. In our method, the nonlocal and the pyramid-based K-SVD methods are used to add the extra information hidden in multi-scale structural self-similarity into the reconstructed image in the compressive sensing framework. The advantage of our method is that it only uses a single low-resolution image to promote spatial resolution by fully exploiting the extra information hidden in the image itself. Experimental results demonstrate that our method can improve spatial resolution more effectively compared with the CSSS and the ASDSAR methods.
Author 潘宗序 禹晶 胡少兴 孙卫东
AuthorAffiliation 清华大学电子工程系,北京100084 北京航空航天大学机械工程与自动化学院,北京100083
AuthorAffiliation_xml – name: 清华大学电子工程系 北京 100084%北京航空航天大学机械工程与自动化学院 北京 100083
Author_FL YU Jing
HU Shao-Xing
SUN Wei-Dong
PAN Zong-Xu
Author_FL_xml – sequence: 1
  fullname: PAN Zong-Xu
– sequence: 2
  fullname: YU Jing
– sequence: 3
  fullname: HU Shao-Xing
– sequence: 4
  fullname: SUN Wei-Dong
Author_xml – sequence: 1
  fullname: 潘宗序 禹晶 胡少兴 孙卫东
BookMark eNotz0tLAlEcBfBLGGTmN2jTpt1M__ueuyzpiVCQe5mnGjWWEpWrIM022SIkUKhNVLSIIIiaxE_jdfwYGbY6mx_ncGZRIiyHPkLzGEwqCVva3TG3TAzATAKYmQBcsSmUxJZkBgaiEigJhDODYS5mULpaLTmAJZOKUEiiFf0QDaKWfuzo90hHT_HP7fC-Pmq-xt2vQa83PH-OO3V93dbfDd3t64ub0WdDX12O-i9xqxm_3Q0_2nNoOrD3q376P1Mot7aay2wY2e31zcxy1nC5pAYn2MZgAWG-5AFXjpBCcMW5sIWgIqCeY7nK851AECk8xyEW9QNXeJZr-cq3aQotTmpP7DCww0J-r3xcCceD-ZpXPHX-zgMDoGO4MIFusRwWjkpjelgpHdiVszxTBDMhJf0Fr6Fxyg
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3724/SP.J.1004.2014.00594
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Single Image Super Resolution Based on Multi-scale Structural Self-similarity
DocumentTitle_FL Single Image Super Resolution Based on Multi-scale Structural Self-similarity
EISSN 1874-1029
EndPage 603
ExternalDocumentID zdhxb201404003
49214677
GrantInformation_xml – fundername: 国家自然科学基金; 国家科技支撑计划项目; 北京市教育委员会科技计划重点项目(KZ201310028035)资助@@@@Supported by National Natural Science Foundation of China; National Science and Technology Pillar Program of China; Key Project of the Science and Technology Development Program of Beijing Education Com-mittee of China
  funderid: (61171117); (2012BAH31 B01); (61171117); (2012BAH31B01); (KZ201310028035)
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
92L
AAIKJ
AALRI
AAQFI
AAXUO
ACGFS
ADEZE
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CQIGP
CS3
CUBFJ
CW9
EBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
ABWVN
ACRPL
ADNMO
PSX
ID FETCH-LOGICAL-c573-521a108024e75f59b676659556a6636f3db8c9debf6276dbb283efc6d8c8e9ea3
ISSN 0254-4156
IngestDate Thu May 29 04:10:30 EDT 2025
Wed Feb 14 10:37:12 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords structural self-similarity
nonlocal
multi-scale
结构自相似性
压缩感知
非局部方法
Super resolution (SR)
超分辨率
多尺度
compressive sensing
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c573-521a108024e75f59b676659556a6636f3db8c9debf6276dbb283efc6d8c8e9ea3
Notes PAN Zong-Xu, YU Jing, HU Shao-Xing, SUN Wei-Dong (1. Department of Electronic Engineering, Tsinghua University, Beijing 100084 2. School of Mechanical Engineering and Au- tomation, Beijing University of Aeronautics and Astronautics, Beijing 100083)
11-2109/TP
Multi-scale structural self-similarity refers to those similar structures either within the same scale or across different scales coming h'om the same image, which widely occur in remote sensing images. In this paper, we propose a single image super resolution (SR) method based on multi-scale structural self-similarity, which combines compressive sensing framework and structural self-similarity. In our method, the nonlocal and the pyramid-based K-SVD methods are used to add the extra information hidden in multi-scale structural self-similarity into the reconstructed image in the compressive sensing framework. The advantage of our method is that it only uses a single low-resolution image to promote spatial resolution by fully exploiting the extra informatio
PageCount 10
ParticipantIDs wanfang_journals_zdhxb201404003
chongqing_primary_49214677
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle 自动化学报
PublicationTitleAlternate Acta Automatica Sinica
PublicationTitle_FL Acta Automatica Sinica
PublicationYear 2014
Publisher 清华大学电子工程系 北京 100084%北京航空航天大学机械工程与自动化学院 北京 100083
Publisher_xml – name: 清华大学电子工程系 北京 100084%北京航空航天大学机械工程与自动化学院 北京 100083
SSID ssib017479230
ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.0427458
Snippet 多尺度结构白相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种多尺度图像结构自相似性广泛存在于遥感图像中.本文提出了一种基于多尺度结构自相似性的单幅图像超分辨率fSuper...
多尺度结构自相似性是指同一幅图像中存在相同尺度或不同尺度的相似结构,这种多尺度图像结构自相似性广泛存在于遥感图像中。本文提出了一种基于多尺度结构自相似性的单幅图像超分辨率(Super resolution,...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 594
SubjectTerms 压缩感知
多尺度
结构自相似性
超分辨率
非局部方法
Title 基于多尺度结构自相似性的单幅图像超分辨率算法
URI http://lib.cqvip.com/qk/90250X/201404/49214677.html
https://d.wanfangdata.com.cn/periodical/zdhxb201404003
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsInJRQ_iExNfOdinsHF3p5_Hns2sIah4iJLbMr0zk5w2PhKQnAQT48V4kCAkoBdR8SCCILqGfE0mm6t_YFVPZzNiEBWWpqcf1VVds91VNV3VhFyx1sZxTaiKSAJ0yVGiomONh_05-kHGdd1Gg_6Nm2LyNpua4TMDAz9Kp5YWF-x4e-lQv5L_4SqUAV_RS_YfONsHCgWQB_5CChyG9K94TCNOdZOGhkYMUxVhiWFUG8yEVVfFMTWCRpKGIdUBjQTVEVWMRooqSY3BKh3SUDk4DfxBG1WlRroq4xpzqiao5g6gpsplsJcbVAVUNRFgKHyVAuDClUTUKIQD6CkH0ERUSxwiDGhx-eW-fFxCCSAY1xEyDaqFI23CESJcFd9_WRwkQM219bAd0ao55oYTiDBSrQG9MTdGQE3Nz5F2GUA6ZGN-EGhYkGtCNyWK6kbZPlJ4pPoFFJTfCiqoxV5XLPBKMth6vJXF7wBFwCj_prPScs6LC5i9ZCBcNIbfNp1A1hl-9r41PoVnTtBQV8OQ7P3Ov4TzZhqvUpfyCBmqS1njg2ToWnj9jjmQYRG70qLLNayrJRlNcIwhePAs8Ut46dM1PAfBgU4IGieGiOw_44UBomQD4LUANFbUwQvxhWM4J2eY9JNX-JsikVcPIxFjkszNd2bvgaTlHN86WdyZLclo0yfIca9cjZrin3KSDCzNnSLHSiE3T5Mwf93d6a7lbzbyT928-7b3_cXuq-W91Q-9za87W1u7j971NpbzZ-v5t5V8czt__Hzvy0r-9Mne9vve2mrv48vdz-tnyHQzmm5MVvw9IpU2l0EFBNQYT9LWWSp5xrUVUmAUTS5iELdFFiRWtXWS2kzUpUisBYk7zdoiUW2V6jQOzpLBznwnPUdGZRJUkypLOdMZ0zyzwiYZbHqxEoqllg-Tkf5ktO4W4WJa-xwfJpf97LT8GvKgtZTMPbR1F-MKtteRP3U_T45iw8L8d4EMLtxfTC-CQLxgL_lX6Ce9V4zT
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%A4%9A%E5%B0%BA%E5%BA%A6%E7%BB%93%E6%9E%84%E8%87%AA%E7%9B%B8%E4%BC%BC%E6%80%A7%E7%9A%84%E5%8D%95%E5%B9%85%E5%9B%BE%E5%83%8F%E8%B6%85%E5%88%86%E8%BE%A8%E7%8E%87%E7%AE%97%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E6%BD%98%E5%AE%97%E5%BA%8F+%E7%A6%B9%E6%99%B6+%E8%83%A1%E5%B0%91%E5%85%B4+%E5%AD%99%E5%8D%AB%E4%B8%9C&rft.date=2014&rft.issn=0254-4156&rft.eissn=1874-1029&rft.volume=40&rft.issue=4&rft.spage=594&rft.epage=603&rft_id=info:doi/10.3724%2FSP.J.1004.2014.00594&rft.externalDocID=49214677
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90250X%2F90250X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg