Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence
Fully resolved simulations of particles suspended in a sustained turbulent flow field are presented. To solve the Navier–Stokes equations a lattice-Boltzmann scheme was used. A spectral forcing scheme is applied to maintain turbulent conditions at a Taylor microscale Reynolds number of 61. The simul...
Saved in:
Published in | Journal of fluid mechanics Vol. 519; pp. 233 - 271 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
25.11.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fully resolved simulations of particles suspended in a sustained turbulent flow field are presented. To solve the Navier–Stokes equations a lattice-Boltzmann scheme was used. A spectral forcing scheme is applied to maintain turbulent conditions at a Taylor microscale Reynolds number of 61. The simulations contained between 2 and 10 vol % particles with a solid to fluid density ratio between 1.15 and 1.73. A lubrication force is used to account for subgrid hydrodynamic interaction between approaching particles. Results are presented on the influence of the particle phase on the turbulence spectrum and on particle collisions. Energy spectra of the simulations show that the particles generate fluid motion at length scales of the order of the particle size. This results in a strong increase in the rate of energy dissipation at these length scales and a decrease of kinetic energy at larger length scales. Collisions due to uncorrelated particle motion are observed (primary collisions), and collision frequencies are in agreement with theory on inertial particle collisions. In addition to this, a large number of collisions at high frequencies is encountered. These secondary collisions are due to the correlated motion of particles resulting from short-range hydrodynamic interactions and spatial correlation of the turbulent velocity field at short distances. This view is supported by the distribution of relative particle velocities, the particle velocity correlation functions and the particle radial distribution function. |
---|---|
AbstractList | Fully resolved simulations of particles suspended in a sustained turbulent flow field are presented. To solve the Navier-Stokes equations a lattice-Boltzmann scheme was used. A spectral forcing scheme is applied to maintain turbulent conditions at a Taylor microscale Reynolds number of 61. The simulations contained between 2 and 10 vol % particles with a solid to fluid density ratio between 1.15 and 1.73. A lubrication force is used to account for subgrid hydrodynamic interaction between approaching particles. Results are presented on the influence of the particle phase on the turbulence spectrum and on particle collisions. Energy spectra of the simulations show that the particles generate fluid motion at length scales of the order of the particle size. This results in a strong increase in the rate of energy dissipation at these length scales and a decrease of kinetic energy at larger length scales. Collisions due to uncorrelated particle motion are observed (primary collisions), and collision frequencies are in agreement with theory on inertial particle collisions. In addition to this, a large number of collisions at high frequencies is encountered. These secondary collisions are due to the correlated motion of particles resulting from short-range hydrodynamic interactions and spatial correlation of the turbulent velocity field at short distances. This view is supported by the distribution of relative particle velocities, the particle velocity correlation functions and the particle radial distribution function. Fully resolved simulations of particles suspended in a sustained turbulent flow field are presented. To solve the Navier-Stokes equations a lattice-Boltzmann scheme was used. A spectral forcing scheme is applied to maintain turbulent conditions at a Taylor microscale Reynolds number of 61. The simulations contained between 2 and 10 vol % particles with a solid to fluid density ratio between 1.15 and 1.73. A lubrication force is used to account for subgrid hydrodynamic interaction between approaching particles. Results are presented on the influence of the particle phase on the turbulence spectrum and on particle collisions. Energy spectra of the simulations show that the particles generate fluid motion at length scales of the order of the particle size. This results in a strong increase in the rate of energy dissipation at these length scales and a decrease of kinetic energy at larger length scales. Collisions due to uncorrelated particle motion are observed (primary collisions), and collision frequencies are in agreement with theory on inertial particle collisions. In addition to this, a large number of collisions at high frequencies is encountered. These secondary collisions are due to the correlated motion of particles resulting from short-range hydrodynamic interactions and spatial correlation of the turbulent velocity field at short distances. This view is supported by the distribution of relative particle velocities, the particle velocity correlation functions and the particle radial distribution function. [PUBLICATION ABSTRACT] |
Author | PORTELA, LUIS M. VAN DEN AKKER, HARRY E. A. DERKSEN, JOS J. CATE, ANDREAS TEN |
Author_xml | – sequence: 1 givenname: ANDREAS TEN surname: CATE fullname: CATE, ANDREAS TEN organization: Kramers Laboratorium voor Fysische Technologie, Delft University of Technology Prins Bernhardlaan 6, 2628 BW Delft, The Netherlands – sequence: 2 givenname: JOS J. surname: DERKSEN fullname: DERKSEN, JOS J. organization: Kramers Laboratorium voor Fysische Technologie, Delft University of Technology Prins Bernhardlaan 6, 2628 BW Delft, The Netherlands – sequence: 3 givenname: LUIS M. surname: PORTELA fullname: PORTELA, LUIS M. organization: Kramers Laboratorium voor Fysische Technologie, Delft University of Technology Prins Bernhardlaan 6, 2628 BW Delft, The Netherlands – sequence: 4 givenname: HARRY E. A. surname: VAN DEN AKKER fullname: VAN DEN AKKER, HARRY E. A. organization: Kramers Laboratorium voor Fysische Technologie, Delft University of Technology Prins Bernhardlaan 6, 2628 BW Delft, The Netherlands |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16292930$$DView record in Pascal Francis |
BookMark | eNp1kE1rFjEUhYNU8G31B7gbBN2N5muSmaUUWy0FEasLXYTMzZ2amknGZKbYf-8M74sFi6u7OM85PNxjchRTREKeM_qaUabffKaUc8Y4pZJSJrh6RHZMqq7WSjZHZLfF9ZY_Icel3GwM7fSOfD9bQrirMpYUbtFVxY9LsLNPsVRpqCCF4J2P19WYYnK-TJgLVmX6gWul8rEaUoa150uac5o8VPOS-yVgBHxKHg82FHx2uCfky9m7q9P39eXH8w-nby9raDSfaxTQgAbNUWmle-gcs-Aoh74BxmXf9K1snRTgBk5d37YKWgCGvZQchODihLza7045_VqwzGb0BTAEGzEtxfCOC9k2dAVf_APepCXH1c1wRttOa7WtsT0EOZWScTBT9qPNd4ZRs_3aPPj12nl5GLYFbBiyjeDLfVGtCp3YBOo958uMv__mNv80SgvdGHX-yVx0F_pKf9Pm68qLg4sd--zdNd4b_9_mD8wvn4g |
CODEN | JFLSA7 |
CitedBy_id | crossref_primary_10_1016_j_ijmultiphaseflow_2016_07_003 crossref_primary_10_1016_j_physd_2010_11_009 crossref_primary_10_1017_jfm_2015_146 crossref_primary_10_1007_s10494_010_9298_8 crossref_primary_10_1063_1_3678336 crossref_primary_10_1016_j_ijmultiphaseflow_2019_103205 crossref_primary_10_1103_PhysRevLett_132_054005 crossref_primary_10_1016_j_jcp_2008_11_034 crossref_primary_10_1063_1_4922241 crossref_primary_10_1016_j_ijmultiphaseflow_2015_07_004 crossref_primary_10_1016_j_ces_2019_03_004 crossref_primary_10_1017_jfm_2011_125 crossref_primary_10_1103_PhysRevFluids_2_014606 crossref_primary_10_1103_PhysRevFluids_9_044304 crossref_primary_10_31857_S0040364423060169 crossref_primary_10_1017_jfm_2022_179 crossref_primary_10_1016_j_ijmultiphaseflow_2013_09_004 crossref_primary_10_1007_s10494_018_9933_3 crossref_primary_10_1017_jfm_2016_228 crossref_primary_10_1017_S0022112007007793 crossref_primary_10_1063_5_0169327 crossref_primary_10_1017_jfm_2018_117 crossref_primary_10_1017_jfm_2023_152 crossref_primary_10_1016_j_camwa_2013_04_001 crossref_primary_10_1063_1_3200946 crossref_primary_10_1088_1742_6596_318_5_052012 crossref_primary_10_1016_j_ijmultiphaseflow_2009_02_013 crossref_primary_10_1016_j_ijmultiphaseflow_2018_02_012 crossref_primary_10_1016_j_ijmultiphaseflow_2013_10_010 crossref_primary_10_1017_jfm_2017_148 crossref_primary_10_1017_jfm_2011_533 crossref_primary_10_1016_j_ijmultiphaseflow_2009_02_012 crossref_primary_10_1146_annurev_fluid_010313_141344 crossref_primary_10_1007_s10494_016_9765_y crossref_primary_10_1016_j_powtec_2018_07_101 crossref_primary_10_1016_j_camwa_2015_08_027 crossref_primary_10_1115_1_4045861 crossref_primary_10_1016_j_compfluid_2024_106263 crossref_primary_10_1205_cherd06161 crossref_primary_10_1103_PhysRevE_101_053305 crossref_primary_10_1016_j_jcp_2017_11_040 crossref_primary_10_1115_1_4051503 crossref_primary_10_1103_PhysRevE_93_013112 crossref_primary_10_1007_s11831_018_9277_0 crossref_primary_10_1007_s10494_023_00497_0 crossref_primary_10_1007_s10236_013_0646_9 crossref_primary_10_1080_10407782_2013_807690 crossref_primary_10_1007_s10494_015_9698_x crossref_primary_10_1016_j_ijmultiphaseflow_2011_05_010 crossref_primary_10_1103_PhysRevLett_103_194501 crossref_primary_10_1016_j_cherd_2021_02_017 crossref_primary_10_1017_S0022112010006403 crossref_primary_10_1017_jfm_2012_89 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104653 crossref_primary_10_1007_s00348_005_0072_y crossref_primary_10_1021_es0523340 crossref_primary_10_1016_j_ijmultiphaseflow_2006_08_007 crossref_primary_10_1017_S0022112009994022 crossref_primary_10_1016_j_camwa_2011_06_028 crossref_primary_10_1017_jfm_2019_933 crossref_primary_10_1016_j_cej_2014_06_067 crossref_primary_10_1515_revce_2022_0068 crossref_primary_10_1016_j_jcp_2014_02_038 crossref_primary_10_1017_jfm_2019_654 crossref_primary_10_1017_jfm_2022_399 crossref_primary_10_1103_PhysRevE_95_013301 crossref_primary_10_1017_jfm_2012_503 crossref_primary_10_1080_19942060_2015_1092268 crossref_primary_10_1002_aic_13889 crossref_primary_10_1080_14685248_2022_2096223 crossref_primary_10_1016_j_jcp_2006_11_016 crossref_primary_10_1017_jfm_2012_343 crossref_primary_10_1016_j_ces_2010_05_033 crossref_primary_10_1016_S1001_6058_10_60083_2 crossref_primary_10_1016_j_compfluid_2015_07_008 crossref_primary_10_1063_5_0147638 crossref_primary_10_1021_acs_cgd_5b00094 crossref_primary_10_1016_j_camwa_2023_06_031 crossref_primary_10_1017_jfm_2015_258 crossref_primary_10_1103_PhysRevE_87_063013 crossref_primary_10_1134_S0018151X23060159 crossref_primary_10_1017_jfm_2020_457 crossref_primary_10_1088_0004_637X_792_1_69 crossref_primary_10_1002_cjce_21629 crossref_primary_10_1017_jfm_2018_442 crossref_primary_10_1205_cherd06025 crossref_primary_10_1016_j_camwa_2013_03_023 crossref_primary_10_1016_j_jcp_2022_110942 crossref_primary_10_1063_1_2756579 crossref_primary_10_1103_PhysRevE_92_053012 crossref_primary_10_1115_1_4031691 crossref_primary_10_1115_1_4031692 crossref_primary_10_1016_j_compfluid_2021_105115 crossref_primary_10_1017_jfm_2018_715 crossref_primary_10_1017_jfm_2016_826 crossref_primary_10_1017_jfm_2021_457 crossref_primary_10_1017_S0022112007008567 crossref_primary_10_1017_jfm_2024_421 crossref_primary_10_1016_j_compfluid_2018_10_016 crossref_primary_10_1063_1_2204982 crossref_primary_10_1140_epje_i2018_11638_3 crossref_primary_10_1016_j_icheatmasstransfer_2016_08_014 crossref_primary_10_1016_j_jcp_2012_01_009 crossref_primary_10_1063_1_2912459 crossref_primary_10_1016_j_camwa_2023_11_016 crossref_primary_10_1017_S0022112010000923 crossref_primary_10_1007_s00707_013_0923_1 crossref_primary_10_1063_5_0020995 crossref_primary_10_1126_sciadv_aba0461 crossref_primary_10_1017_jfm_2020_1140 crossref_primary_10_1017_S0022112010000765 crossref_primary_10_1007_s00707_018_2268_2 crossref_primary_10_1007_s10494_006_9051_5 crossref_primary_10_1017_S0022112008002309 crossref_primary_10_1140_epje_i2018_11724_6 crossref_primary_10_1002_aic_16451 crossref_primary_10_1016_j_compfluid_2018_09_018 crossref_primary_10_1016_j_compfluid_2005_12_001 crossref_primary_10_1016_j_compfluid_2019_104251 crossref_primary_10_1007_s10483_018_2254_9 crossref_primary_10_1080_14685248_2015_1050105 crossref_primary_10_1007_s00162_010_0219_1 crossref_primary_10_1016_j_jcp_2019_109223 crossref_primary_10_1016_j_jcp_2016_05_035 crossref_primary_10_1017_jfm_2019_509 crossref_primary_10_1088_1367_2630_15_2_025031 crossref_primary_10_1002_aic_12761 crossref_primary_10_1017_jfm_2016_550 crossref_primary_10_1016_j_ijmultiphaseflow_2011_12_001 crossref_primary_10_1146_annurev_fluid_010908_165210 crossref_primary_10_1017_jfm_2022_787 crossref_primary_10_3390_app10249095 crossref_primary_10_1016_j_cherd_2014_06_027 crossref_primary_10_1063_1_5002528 crossref_primary_10_1016_j_ecss_2016_06_003 crossref_primary_10_1063_1_4901889 crossref_primary_10_1017_jfm_2017_171 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104094 crossref_primary_10_1016_j_jnnfm_2012_07_006 crossref_primary_10_1080_14685248_2017_1363393 crossref_primary_10_1063_1_4936274 crossref_primary_10_1115_1_4005681 crossref_primary_10_1146_annurev_fluid_010908_165243 crossref_primary_10_1017_jfm_2023_317 crossref_primary_10_1103_PhysRevE_89_013006 crossref_primary_10_1017_jfm_2018_895 crossref_primary_10_1017_S0022112007007094 crossref_primary_10_1016_j_ijmultiphaseflow_2017_11_012 crossref_primary_10_1063_1_4817382 crossref_primary_10_1063_1_4997731 crossref_primary_10_1016_j_jcp_2013_08_023 crossref_primary_10_1016_j_scitotenv_2018_06_101 crossref_primary_10_1016_j_ijmultiphaseflow_2012_05_007 crossref_primary_10_1103_PhysRevE_103_013303 crossref_primary_10_1016_j_jcp_2020_109713 crossref_primary_10_1016_j_apm_2015_09_111 crossref_primary_10_1017_flo_2023_20 crossref_primary_10_1063_5_0075914 crossref_primary_10_1017_jfm_2023_206 crossref_primary_10_1146_annurev_fluid_030121_021103 crossref_primary_10_1016_j_ijmultiphaseflow_2009_11_001 crossref_primary_10_1039_b915749m crossref_primary_10_1103_PhysRevE_96_033102 crossref_primary_10_1063_1_5002663 crossref_primary_10_1016_j_jcp_2016_11_043 crossref_primary_10_1021_ie1006382 crossref_primary_10_1016_j_jcp_2016_09_031 |
ContentType | Journal Article |
Copyright | 2004 Cambridge University Press 2005 INIST-CNRS |
Copyright_xml | – notice: 2004 Cambridge University Press – notice: 2005 INIST-CNRS |
DBID | BSCLL IQODW AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PQEST PQQKQ PQUKI PTHSS Q9U S0W 7SE JG9 |
DOI | 10.1017/S0022112004001326 |
DatabaseName | Istex Pascal-Francis CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (Proquest) (PQ_SDU_P3) Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection Corrosion Abstracts Materials Research Database |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student Technology Collection Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) Materials Research Database Corrosion Abstracts |
DatabaseTitleList | Materials Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1469-7645 |
EndPage | 271 |
ExternalDocumentID | 1399132051 10_1017_S0022112004001326 16292930 ark_67375_6GQ_J9J7T7Z7_V |
Genre | Feature |
GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 29K 3V. 4.4 5GY 5VS 6TJ 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 8WZ A6W AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKAW ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTAH ABTCQ ABUWG ABZCX ABZUI ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC COF CS3 D-I DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ H~9 I.6 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LHUNA LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 VOH WFFJZ WH7 WQ3 WXU WXY WYP ZE2 ZY4 ZYDXJ ~02 ABVZP ABXAU BSCLL -1F -2P -2V -~6 -~N 08R 6~7 9M5 AANRG ABBJB ABDMP ABFSI ABTRL ABVFV ACETC ACKIV ADOVH AEBPU AENCP AGLWM AI. ALEEW BESQT BMAJL CCUQV CDIZJ DC4 G8K I.7 I.9 IOO IQODW KAFGG KC5 NMFBF VH1 ZJOSE ZMEZD ~V1 AAYXX CITATION 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PQEST PQUKI Q9U 7SE JG9 |
ID | FETCH-LOGICAL-c572t-e3c5c7c72e6767bc9d1acd02cb5c124b5b848d43cdf20db886c8cc1eb442c3323 |
IEDL.DBID | 8FG |
ISSN | 0022-1120 |
IngestDate | Fri Oct 25 03:44:31 EDT 2024 Sat Oct 26 04:01:47 EDT 2024 Thu Sep 26 15:47:04 EDT 2024 Sun Oct 29 17:08:31 EDT 2023 Wed Oct 30 09:51:45 EDT 2024 Wed Mar 13 05:57:39 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Boltzmann equation Turbulent flow Two-phase flow Particle interactions Energy spectra Digital simulation Lattice model Isotropic turbulence Particle suspension Particle collision Turbulence structure |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c572t-e3c5c7c72e6767bc9d1acd02cb5c124b5b848d43cdf20db886c8cc1eb442c3323 |
Notes | istex:AD14552CAFD6D503794A6ED72BEC91428FD5C276 ark:/67375/6GQ-J9J7T7Z7-V PII:S0022112004001326 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://repository.tudelft.nl/islandora/object/uuid%3Aef7c260e-c9d2-4c9e-9e89-59610289def7/datastream/OBJ/download |
PQID | 210897762 |
PQPubID | 34769 |
PageCount | 39 |
ParticipantIDs | proquest_miscellaneous_29234850 proquest_journals_210897762 crossref_primary_10_1017_S0022112004001326 pascalfrancis_primary_16292930 istex_primary_ark_67375_6GQ_J9J7T7Z7_V cambridge_journals_10_1017_S0022112004001326 |
PublicationCentury | 2000 |
PublicationDate | 2004-11-25 |
PublicationDateYYYYMMDD | 2004-11-25 |
PublicationDate_xml | – month: 11 year: 2004 text: 2004-11-25 day: 25 |
PublicationDecade | 2000 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2004 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
SSID | ssj0013097 |
Score | 2.3071358 |
Snippet | Fully resolved simulations of particles suspended in a sustained turbulent flow field are presented. To solve the Navier–Stokes equations a lattice-Boltzmann... Fully resolved simulations of particles suspended in a sustained turbulent flow field are presented. To solve the Navier-Stokes equations a lattice-Boltzmann... |
SourceID | proquest crossref pascalfrancis istex cambridge |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 233 |
SubjectTerms | Energy dissipation Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Isotropic turbulence; homogeneous turbulence Kinetic energy Multiphase and particle-laden flows Nonhomogeneous flows Physics Turbulent flow Turbulent flows, convection, and heat transfer |
Title | Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence |
URI | https://www.cambridge.org/core/product/identifier/S0022112004001326/type/journal_article https://api.istex.fr/ark:/67375/6GQ-J9J7T7Z7-V/fulltext.pdf https://www.proquest.com/docview/210897762 https://search.proquest.com/docview/29234850 |
Volume | 519 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fi9QwEB70FkEf_LEq1tM1D-KDWGyTpkmfROX2jgUPlTs59KE00xSK2q6bXdH_3knb7boc3GualDYzyXyTmXwD8JxHCrXGKMywrMIki0RoCn9jmaABWQwTY3c08OE0PTlPFhfyYsjNcUNa5XZP7DbqskV_Rv6aXBNNWCXlb5a_Ql80ygdXhwoa12ESc6W876Xnx7sgQpSpLVk4wYoxqNkxRlOjb_M6TA7ZHrXCnoma-Nn-41MmC0ezVvXlLi7t3J05mt-F2wOOZG97wd-Da7aZwp0BU7Jhxbop3PqPcHAKN7qET3T34Zv3Pf8ycrbbH79phKt_DoW8HGsr5tWj9maN0Y-3Ze35xJ1lzpMQWMfqhhHYRRpXu3a9apc1MrJdZtNdYXoA5_Ojs_cn4VBoIUSp-Dq0AiUqVNx6-jaDWRkXWEYcjUSy_0YanegyESROHpVG6xQ1YmxNknAUgouHcNC0jX0ETJAHVhhrZSGrpEyTzOgqio0SBfklIi0CeDXOcz4sF5f3qWYqvySWAF5uRZEve_qNqzq_6IQ19ixW333empJ5evwpX2QLdaa-qvxLALM9ae5enXKCiyIK4HAr3t1HjhoYwLPxKS1GH2EpGttuqAvB5UTL6PGV4w_hZk8XGYdcPoGD9WpjnxK0WZtZp8AzmLw7Ov34-R8XZvVY |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED7BJgQ88KOAKIPND4gHRLTEjmPnCSFEV8o2CalDEzxE8cWRIiApdYvgv-ecpCnVpL06dpT4zr7vfOfvAF7yUKHWGAYpFmUQp6EITO5vLBM0IIthImyPBs7Ok-lFPLuUl31ujuvTKjd7YrtRFw36M_Jjck00YZWEv138CnzRKB9c7Sto3IT9WJCp9hfFJyfbIEKYqg1ZOMGKIajZMkZTo2_zOkwO2Q61wo6J2vez_cenTOaOZq3syl1c2blbczR5APd6HMnedYJ_CDdsPYL7PaZk_Yp1I7j7H-HgCG61CZ_oHsE373v-ZeRsNz9-0whX_ewLeTnWlMyrR-XNGqMfb4rK84k7y5wnIbCOVTUjsIs0rnLNatksKmRku8y6vcL0GC4mH-bvp0FfaCFAqfgqsAIlKlTcevo2g2kR5ViEHI1Esv9GGh3rIhYkTh4WRusENWJkTRxzFIKLJ7BXN7V9CkyQB5Yba2Uuy7hI4tToMoyMEjn5JSLJx_BmmOesXy4u61LNVHZFLGN4vRFFtujoN67r_KoV1tAzX373eWtKZsnJ52yWztRcfVXZlzEc7khz--qEE1wU4RgONuLdfuSggWM4Gp7SYvQRlry2zZq6EFyOtQyfXTv-CG5P52en2enH808HcKejjowCLp_D3mq5ti8I5qzMYavM_wDsnPag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+resolved+simulations+of+colliding+monodisperse+spheres+in+forced+isotropic+turbulence&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Cate%2C+Andreas+Ten&rft.au=Derksen%2C+Jos+J&rft.au=Portela%2C+Luis+M&rft.au=Van+den+Akker%2C+Harry+E+A&rft.date=2004-11-25&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=519&rft.spage=233&rft.epage=271&rft_id=info:doi/10.1017%2FS0022112004001326&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |