TroA of Streptococcus suis Is Required for Manganese Acquisition and Full Virulence
Streptococcus suis causes infections in pigs and occasionally in humans, resulting in manifestations as meningitis, sepsis, arthritis, and septic shock. For survival within the host, S. suis requires numerous nutrients including trace metals. Little is known about the specific proteins involved in m...
Saved in:
Published in | Journal of Bacteriology Vol. 193; no. 19; pp. 5073 - 5080 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.10.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9193 1098-5530 1098-5530 1067-8832 |
DOI | 10.1128/JB.05305-11 |
Cover
Loading…
Abstract | Streptococcus suis causes infections in pigs and occasionally in humans, resulting in manifestations as meningitis, sepsis, arthritis, and septic shock. For survival within the host, S. suis requires numerous nutrients including trace metals. Little is known about the specific proteins involved in metal scavenging in S. suis. In this study we evaluated the role of the putative high-affinity metal binding lipoprotein TroA in metal acquisition and virulence. A mutant strain deficient in the expression of TroA (ΔtroA mutant) was constructed. Growth of the ΔtroA mutant in Todd-Hewitt broth was similar to wild-type growth; however, growth of the ΔtroA mutant in cation-deprived Todd-Hewitt broth and in porcine serum was strongly reduced compared to growth of wild-type bacteria. Supplementing the medium with extra manganese but not with magnesium, zinc, copper, nickel, or iron restored growth to wild-type levels, indicating that TroA is specifically required for growth in environments low in manganese. The ΔtroA mutant also showed increased susceptibility to H2O2, suggesting that TroA is involved in counteracting oxidative stress. Furthermore, the expression of the troA gene was subject to environmental regulation at the transcript level. In a murine S. suis infection model, the ΔtroA mutant displayed a nonvirulent phenotype. These data indicate that S. suis TroA is involved in manganese acquisition and is required for full virulence in mice. |
---|---|
AbstractList | Article Usage Stats
Services
JB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
JB
About
JB
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JB
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0021-9193
Online ISSN:
1098-5530
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JB
.asm.org, visit:
JB
Streptococcus suis causes infections in pigs and occasionally in humans, resulting in manifestations as meningitis, sepsis, arthritis, and septic shock. For survival within the host, S. suis requires numerous nutrients including trace metals. Little is known about the specific proteins involved in metal scavenging in S. suis . In this study we evaluated the role of the putative high-affinity metal binding lipoprotein TroA in metal acquisition and virulence. A mutant strain deficient in the expression of TroA (Δ troA mutant) was constructed. Growth of the Δ troA mutant in Todd-Hewitt broth was similar to wild-type growth; however, growth of the Δ troA mutant in cation-deprived Todd-Hewitt broth and in porcine serum was strongly reduced compared to growth of wild-type bacteria. Supplementing the medium with extra manganese but not with magnesium, zinc, copper, nickel, or iron restored growth to wild-type levels, indicating that TroA is specifically required for growth in environments low in manganese. The Δ troA mutant also showed increased susceptibility to H 2 O 2 , suggesting that TroA is involved in counteracting oxidative stress. Furthermore, the expression of the troA gene was subject to environmental regulation at the transcript level. In a murine S. suis infection model, the Δ troA mutant displayed a nonvirulent phenotype. These data indicate that S. suis TroA is involved in manganese acquisition and is required for full virulence in mice. Streptococcus suis causes infections in pigs and occasionally in humans, resulting in manifestations as meningitis, sepsis, arthritis, and septic shock. For survival within the host, S. suis requires numerous nutrients including trace metals. Little is known about the specific proteins involved in metal scavenging in S. suis. In this study we evaluated the role of the putative high-affinity metal binding lipoprotein TroA in metal acquisition and virulence. A mutant strain deficient in the expression of TroA (ΔtroA mutant) was constructed. Growth of the ΔtroA mutant in Todd-Hewitt broth was similar to wild-type growth; however, growth of the ΔtroA mutant in cation-deprived Todd-Hewitt broth and in porcine serum was strongly reduced compared to growth of wild-type bacteria. Supplementing the medium with extra manganese but not with magnesium, zinc, copper, nickel, or iron restored growth to wild-type levels, indicating that TroA is specifically required for growth in environments low in manganese. The ΔtroA mutant also showed increased susceptibility to H2O2, suggesting that TroA is involved in counteracting oxidative stress. Furthermore, the expression of the troA gene was subject to environmental regulation at the transcript level. In a murine S. suis infection model, the ΔtroA mutant displayed a nonvirulent phenotype. These data indicate that S. suis TroA is involved in manganese acquisition and is required for full virulence in mice. Streptococcus suis causes infections in pigs and occasionally in humans, resulting in manifestations as meningitis, sepsis, arthritis, and septic shock. For survival within the host, S. suis requires numerous nutrients including trace metals. Little is known about the specific proteins involved in metal scavenging in S. suis. In this study we evaluated the role of the putative high-affinity metal binding lipoprotein TroA in metal acquisition and virulence. A mutant strain deficient in the expression of TroA (...troA mutant) was constructed. Growth of the ...troA mutant in Todd-Hewitt broth was similar to wild-type growth; however, growth of the ...troA mutant in cation-deprived Todd-Hewitt broth and in porcine serum was strongly reduced compared to growth of wild-type bacteria. Supplementing the medium with extra manganese but not with magnesium, zinc, copper, nickel, or iron restored growth to wild-type levels, indicating that TroA is specifically required for growth in environments low in manganese. The ...troA mutant also showed increased susceptibility to ..., suggesting that TroA is involved in counteracting oxidative stress. Furthermore, the expression of the troA gene was subject to environmental regulation at the transcript level. In a murine S. suis infection model, the ...troA mutant displayed a nonvirulent phenotype. These data indicate that S. suis TroA is involved in manganese acquisition and is required for full virulence in mice. (ProQuest: ... denotes formulae/symbols omitted.) Streptococcus suis causes infections in pigs and occasionally in humans, resulting in manifestations as meningitis, sepsis, arthritis, and septic shock. For survival within the host, S. suis requires numerous nutrients including trace metals. Little is known about the specific proteins involved in metal scavenging in S. suis. In this study we evaluated the role of the putative high-affinity metal binding lipoprotein TroA in metal acquisition and virulence. A mutant strain deficient in the expression of TroA (ΔtroA mutant) was constructed. Growth of the ΔtroA mutant in Todd-Hewitt broth was similar to wild-type growth; however, growth of the ΔtroA mutant in cation-deprived Todd-Hewitt broth and in porcine serum was strongly reduced compared to growth of wild-type bacteria. Supplementing the medium with extra manganese but not with magnesium, zinc, copper, nickel, or iron restored growth to wild-type levels, indicating that TroA is specifically required for growth in environments low in manganese. The ΔtroA mutant also showed increased susceptibility to H2O2, suggesting that TroA is involved in counteracting oxidative stress. Furthermore, the expression of the troA gene was subject to environmental regulation at the transcript level. In a murine S. suis infection model, the ΔtroA mutant displayed a nonvirulent phenotype. These data indicate that S. suis TroA is involved in manganese acquisition and is required for full virulence in mice.Streptococcus suis causes infections in pigs and occasionally in humans, resulting in manifestations as meningitis, sepsis, arthritis, and septic shock. For survival within the host, S. suis requires numerous nutrients including trace metals. Little is known about the specific proteins involved in metal scavenging in S. suis. In this study we evaluated the role of the putative high-affinity metal binding lipoprotein TroA in metal acquisition and virulence. A mutant strain deficient in the expression of TroA (ΔtroA mutant) was constructed. Growth of the ΔtroA mutant in Todd-Hewitt broth was similar to wild-type growth; however, growth of the ΔtroA mutant in cation-deprived Todd-Hewitt broth and in porcine serum was strongly reduced compared to growth of wild-type bacteria. Supplementing the medium with extra manganese but not with magnesium, zinc, copper, nickel, or iron restored growth to wild-type levels, indicating that TroA is specifically required for growth in environments low in manganese. The ΔtroA mutant also showed increased susceptibility to H2O2, suggesting that TroA is involved in counteracting oxidative stress. Furthermore, the expression of the troA gene was subject to environmental regulation at the transcript level. In a murine S. suis infection model, the ΔtroA mutant displayed a nonvirulent phenotype. These data indicate that S. suis TroA is involved in manganese acquisition and is required for full virulence in mice. Streptococcus suis causes infections in pigs and occasionally in humans resulting in 23 manifestations as meningitis, sepsis, arthritis and septic shock. For survival within the 24 host, S. suis requires numerous nutrients including trace metals. Little is known about 25 the specific proteins involved in metal scavenging in S. suis. In this study we evaluated 26 the role of the putative high affinity metal binding lipoprotein TroA in metal acquisition 27 and virulence. A mutant strain deficient in the expression of TroA (¿troA mutant) was 28 constructed. Growth of the ¿troA mutant in Todd-Hewitt broth was similar to wild type 29 growth, however growth of the ¿troA mutant in cation-deprived Todd-Hewitt broth and 30 in porcine serum was strongly reduced compared to growth of wild type bacteria. 31 Supplementing the media with extra manganese but not with magnesium, zinc, copper, 32 nickel or iron restored growth to wild type levels, indicating that TroA is specifically 33 required for growth in environments low in manganese. The ¿troA mutant also showed 34 increased susceptibility to H2O2, suggesting TroA is involved in counteracting oxidative 35 stress. Furthermore, the expression of the troA gene was subject to environmental 36 regulation at the transcript level. In a murine S. suis infection model the ¿troA mutant 37 displayed a non-virulent phenotype. These data indicate that S. suis TroA is involved in 38 manganese acquisition and required for full virulence in mice. Streptococcus suis causes infections in pigs and occasionally in humans, resulting in manifestations as meningitis, sepsis, arthritis, and septic shock. For survival within the host, S. suis requires numerous nutrients including trace metals. Little is known about the specific proteins involved in metal scavenging in S. suis. In this study we evaluated the role of the putative high-affinity metal binding lipoprotein TroA in metal acquisition and virulence. A mutant strain deficient in the expression of TroA (∆troA mutant) was constructed. Growth of the ∆troA mutant in Todd-Hewitt broth was similar to wild-type growth; however, growth of the ∆troA mutant in cation-deprived Todd-Hewitt broth and in porcine serum was strongly reduced compared to growth of wild-type bacteria. Supplementing the medium with extra manganese but not with magnesium, zinc, copper, nickel, or iron restored growth to wild-type levels, indicating that TroA is specifically required for growth in environments low in manganese. The ∆troA mutant also showed increased susceptibility to H2O2, suggesting that TroA is involved in counteracting oxidative stress. Furthermore, the expression of the troA gene was subject to environmental regulation at the transcript level. In a murine S. suis infection model, the ∆troA mutant displayed a nonvirulent phenotype. These data indicate that S. suis TroA is involved in manganese acquisition and is required for full virulence in mice. |
Author | Schreur, Paul J. Wichgers Rebel, Johanna M. J van Putten, Jos P. M Smits, Mari A Smith, Hilde E |
Author_xml | – sequence: 1 fullname: Schreur, Paul J. Wichgers – sequence: 2 fullname: Rebel, Johanna M. J – sequence: 3 fullname: Smits, Mari A – sequence: 4 fullname: van Putten, Jos P. M – sequence: 5 fullname: Smith, Hilde E |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24559110$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21784944$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ktFv0zAQxiM0xLrBE-8QISGQUIYvtuOYB6RuYrBpCIkWXi3HcVpXrt3ZCRX_Pc5aKpgED7Z19u_O58_fSXbkvNNZ9hTQGUBZv70-P0MUI1oAPMgmgHhd0BQfZROESig4cHycncS4QggIoeWj7LgEVhNOyCSbzYOf5r7LZ33Qm94rr9QQ8ziYmF_F_Ku-HUzQbd75kH-WbiGdjjqfqrQdTW-8y6Vr88vB2vy7CYPVTunH2cNO2qif7NfTbH75YX7xqbj58vHqYnpTKMrKvuAtKMAaUd62Tak6hHGLa1YRSkAywnRXQlsrBV1HKs4J4lypCuGKYdZ0gE-zd7uyW7nQzrg0CSeDMlF4aYQ1TZDhp9gOQTg7LpuhiYLAqFVKfr9LTptr3Srt-iCt2ASzHpPGAn-fOLMUC_9DYKgZIePtr_YFgr8ddOzF2kSlrU0K-SGKmiOEgTCeyNf_JaFiNS1rhnFCX9xDV34ILomY6pFEVahK0LM_Wz_0_PtTE_ByD8iopO2CdKMoB45QygFQ4t7sOBV8jEF3BwSQGK0lrs_FnbVSlGi4RyvTy9ECSR9j_5Gzf8_SLJbbZCQh41qsGpE8mYagiI2Pfr6DOumFXITU6rdZiYCiu5G0_gWVdeRn |
CODEN | JOBAAY |
CitedBy_id | crossref_primary_10_1128_JB_00051_18 crossref_primary_10_3389_fimmu_2017_00869 crossref_primary_10_1016_j_micpath_2017_06_022 crossref_primary_10_3389_fmicb_2018_02639 crossref_primary_10_1007_s00709_011_0360_8 crossref_primary_10_1080_21505594_2020_1764173 crossref_primary_10_1016_j_micpath_2016_07_009 crossref_primary_10_1021_ja407147d crossref_primary_10_1128_aem_00086_22 crossref_primary_10_1016_j_biopha_2017_06_102 crossref_primary_10_1128_AEM_02962_14 crossref_primary_10_1074_jbc_M115_645853 crossref_primary_10_1128_iai_00117_24 crossref_primary_10_1099_mgen_0_000992 crossref_primary_10_1186_s13567_021_00981_3 crossref_primary_10_1016_j_vetmic_2022_109518 crossref_primary_10_1016_j_vetmic_2022_109418 crossref_primary_10_1111_mmi_12126 crossref_primary_10_3390_microorganisms10081501 crossref_primary_10_1111_mmi_13034 crossref_primary_10_3390_pathogens9050387 crossref_primary_10_1128_spectrum_04337_22 crossref_primary_10_1128_mSphere_00336_18 crossref_primary_10_1007_s10534_015_9826_z crossref_primary_10_1111_1462_2920_14014 crossref_primary_10_1074_jbc_M117_804799 crossref_primary_10_1016_j_jprot_2021_104408 crossref_primary_10_1128_AEM_00299_16 crossref_primary_10_1371_journal_ppat_1007102 crossref_primary_10_2217_fmb_11_149 crossref_primary_10_1080_22221751_2019_1660233 crossref_primary_10_3390_ijms241914959 crossref_primary_10_1371_journal_pone_0050987 crossref_primary_10_1021_cb500792b crossref_primary_10_1128_AEM_01375_21 crossref_primary_10_1128_IAI_00642_18 crossref_primary_10_1093_femsre_fuab028 crossref_primary_10_1371_journal_pone_0036281 crossref_primary_10_1021_ja3096416 crossref_primary_10_1016_S2095_3119_17_61768_4 crossref_primary_10_1186_s12864_018_5423_1 crossref_primary_10_1007_s10534_015_9850_z crossref_primary_10_3389_fvets_2021_742345 |
Cites_doi | 10.1371/journal.pone.0019510 10.1016/j.micpath.2010.10.001 10.1128/iai.64.12.5255-5262.1996 10.1128/IAI.70.3.1635-1639.2002 10.1021/bi900980g 10.1111/j.1574-6968.2009.01574.x 10.1023/A:1013818719932 10.1128/CVI.00371-08 10.1128/IAI.00682-10 10.1007/s00775-011-0781-z 10.1093/clinids/10.1.131 10.1016/j.vetmic.2007.10.028 10.1111/j.1742-4658.2005.04945.x 10.1128/JB.01148-06 10.1006/plas.2001.1532 10.1371/journal.pone.0000315 10.1128/iai.61.4.1232-1238.1993 10.1007/BF00538699 10.1099/00221287-148-5-1483 10.1371/journal.pone.0006072 10.1128/IAI.00176-10 10.1128/IAI.71.9.4842-4849.2003 10.1007/s11033-010-0219-7 10.1016/j.bcp.2006.05.017 10.1021/bi900552c 10.1016/S0378-1135(00)00188-7 10.1016/j.bbagen.2008.07.002 10.1073/pnas.0506758102 10.1007/BF01963457 10.1007/s10482-008-9291-6 10.1080/10408410600822942 10.1128/IAI.74.2.1171-1180.2006 10.1093/infdis/159.3.595 10.1093/bioinformatics/btg430 10.1016/j.vetmic.2005.12.013 10.1128/IAI.00987-07 10.1128/JB.00064-10 10.1186/1471-2180-10-42 10.1016/S0966-842X(98)01220-7 10.1128/CVI.00263-10 10.1186/1471-2164-11-556 10.1002/pmic.200800007 10.1016/S0168-6445(03)00055-X 10.1016/S0969-2126(98)00153-1 10.1002/biof.5520200203 10.1139/w99-114 10.1016/j.vetmic.2009.12.037 10.1186/1471-2164-10-54 10.1099/00221287-141-1-181 10.1016/j.vetmic.2005.10.035 10.1016/j.cbpa.2009.11.008 10.1186/1471-2334-11-6 10.1371/journal.pone.0022299 10.3201/eid1206.051194 10.1126/science.1152449 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright American Society for Microbiology Oct 2011 Copyright © 2011, American Society for Microbiology. All Rights Reserved. 2011 American Society for Microbiology Wageningen University & Research |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright American Society for Microbiology Oct 2011 – notice: Copyright © 2011, American Society for Microbiology. All Rights Reserved. 2011 American Society for Microbiology – notice: Wageningen University & Research |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM QVL |
DOI | 10.1128/JB.05305-11 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE CrossRef MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5530 1067-8832 |
EndPage | 5080 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_415305 PMC3187441 2472442811 21784944 24559110 10_1128_JB_05305_11 jb_193_19_5073 US201500150041 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 186 18M 1VV 29J 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 79B 85S 8WZ 9M8 A6W ABPPZ ABPTK ABTAH ACGFO ACGOD ACNCT ACPRK ADBBV AENEX AEQTP AFDAS AFFDN AFFNX AFMIJ AFRAH AGCDD AI. AIDAL AJUXI ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CJ0 CS3 DIK DU5 E3Z EBS EJD F20 F5P FBQ FRP GX1 HYE HZ~ IH2 KQ8 L7B MVM NHB O9- OHT OK1 P-S P2P PQQKQ QZG RHF RHI RNS RPM RSF RXW TAE TR2 UCJ UHB UKR UPT VH1 VQA W8F WH7 WHG WOQ X7M XFK Y6R YQT YR2 YZZ ZA5 ZCA ZCG ZGI ZXP ZY4 ~02 ~KM AAGFI AAYXX ADXHL AGVNZ CITATION H13 P-O IQODW CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM - 02 08R 0R 1AW 55 ABFLS ABUFD ACCKP ADACO ADBIT BXI DZ GJ HZ KM LI0 O0- PQEST QVL TAF UQL X XHC |
ID | FETCH-LOGICAL-c572t-9d1c13e059ddb2cf033d38764541a747ef21d8cc1ff46994099cc6036737bf13 |
ISSN | 0021-9193 1098-5530 |
IngestDate | Tue Jan 05 18:06:20 EST 2021 Thu Aug 21 14:12:18 EDT 2025 Fri Jul 11 01:09:27 EDT 2025 Thu Jul 10 22:17:04 EDT 2025 Mon Jun 30 08:29:09 EDT 2025 Mon Jul 21 06:04:40 EDT 2025 Mon Jul 21 09:16:16 EDT 2025 Tue Jul 01 03:26:13 EDT 2025 Thu Apr 24 22:52:34 EDT 2025 Wed May 18 15:26:48 EDT 2016 Wed Dec 27 19:21:40 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | Streptococcaceae Virulence Streptococcus suis Bacteria Micrococcales Heavy metal Manganese |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c572t-9d1c13e059ddb2cf033d38764541a747ef21d8cc1ff46994099cc6036737bf13 |
Notes | http://dx.doi.org/10.1128/JB.05305-11 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F415305 |
PMID | 21784944 |
PQID | 894852606 |
PQPubID | 40724 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1678528733 pascalfrancis_primary_24559110 highwire_asm_jb_193_19_5073 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3187441 proquest_journals_894852606 pubmed_primary_21784944 fao_agris_US201500150041 crossref_primary_10_1128_JB_05305_11 wageningen_narcis_oai_library_wur_nl_wurpubs_415305 proquest_miscellaneous_890031479 crossref_citationtrail_10_1128_JB_05305_11 |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 2011-10-01 |
PublicationDateYYYYMMDD | 2011-10-01 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of Bacteriology |
PublicationTitleAlternate | J Bacteriol |
PublicationYear | 2011 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | Beineke A. (e_1_3_2_8_2) 2008; 128 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 Aranda J. (e_1_3_2_5_2) 2010; 144 e_1_3_2_24_2 e_1_3_2_47_2 Ward P. N. (e_1_3_2_46_2) 2009; 10 Nepomuceno M. F. (e_1_3_2_29_2) 2002; 34 Clamp M. (e_1_3_2_14_2) 2004; 20 Li R. (e_1_3_2_26_2) 2010; 11 Hoa N. T. (e_1_3_2_18_2) 2011; 11 Sun X. (e_1_3_2_40_2) 2009; 48 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_7_2 Niven D. F. (e_1_3_2_30_2) 1999; 45 Sambrook J. (e_1_3_2_35_2) 1989 Perez-Martinez G. (e_1_3_2_34_2) 1992; 234 Stoll K. E. (e_1_3_2_39_2) 2009; 48 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_3_2 Wisselink H. J. (e_1_3_2_49_2) 2000; 74 Miller K. B. (e_1_3_2_28_2) 2004; 20 Peetermans W. E. (e_1_3_2_33_2) 1989; 159 Wisselink H. J. (e_1_3_2_50_2) 2006; 113 Holden M. T. (e_1_3_2_19_2) 2009; 4 e_1_3_2_27_2 Zhang Q. (e_1_3_2_56_2) 2011; 38 Silva L. M. (e_1_3_2_36_2) 2006; 115 Bonifait L. (e_1_3_2_10_2) 2010; 10 Zhang A. (e_1_3_2_55_2) 2008; 8 e_1_3_2_21_2 Bungener W. (e_1_3_2_12_2) 1989; 8 e_1_3_2_23_2 Tai S. S. (e_1_3_2_41_2) 2006; 32 Takamatsu D. (e_1_3_2_42_2) 2001; 46 e_1_3_2_44_2 Zhang A. (e_1_3_2_54_2) 2009; 295 Haikarainen T. (e_1_3_2_17_2) 2011; 16 Gebhardt C. (e_1_3_2_16_2) 2006; 72 e_1_3_2_6_2 Smith H. E. (e_1_3_2_38_2) 1995; 141 e_1_3_2_32_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_2_2 Yu H. (e_1_3_2_53_2) 2006; 12 Corbin B. D. (e_1_3_2_15_2) 2008; 319 Wichgers Schreur P. J. (e_1_3_2_48_2) 2011; 6 Bray B. A. (e_1_3_2_11_2) 2009; 95 Lawrence M. C. (e_1_3_2_25_2) 1998; 6 Wu T. (e_1_3_2_51_2) 2011; 51 Zheng B. (e_1_3_2_57_2) 2011; 6 10696482 - Can J Microbiol. 1999 Dec;45(12):1027-32 18068316 - Vet Microbiol. 2008 Apr 30;128(3-4):423-30 19109449 - Clin Vaccine Immunol. 2009 Feb;16(2):200-8 21487937 - J Biol Inorg Chem. 2011 Jun;16(5):799-807 20601473 - J Bacteriol. 2010 Sep;192(17):4489-97 11988523 - Microbiology. 2002 May;148(Pt 5):1483-91 14960472 - Bioinformatics. 2004 Feb 12;20(3):426-7 9582927 - Trends Microbiol. 1998 Mar;6(3):85-7; discussion 87-8 19795834 - Biochemistry. 2009 Nov 3;48(43):10308-20 11591139 - Plasmid. 2001 Sep;46(2):140-8 16893751 - Crit Rev Microbiol. 2006;32(3):139-53 19175920 - BMC Genomics. 2009;10:54 11860179 - J Bioenerg Biomembr. 2002 Feb;34(1):41-7 20146817 - BMC Microbiol. 2010;10:42 12933824 - Infect Immun. 2003 Sep;71(9):4842-9 2497004 - Eur J Clin Microbiol Infect Dis. 1989 Apr;8(4):306-8 10808092 - Vet Microbiol. 2000 Jun 1;74(3):237-48 16428766 - Infect Immun. 2006 Feb;74(2):1171-80 18675317 - Biochim Biophys Acta. 2009 Jul;1790(7):600-5 21047997 - Clin Vaccine Immunol. 2011 Jan;18(1):75-81 16846592 - Biochem Pharmacol. 2006 Nov 30;72(11):1622-31 18212084 - Infect Immun. 2008 Apr;76(4):1590-8 1406586 - Mol Gen Genet. 1992 Sep;234(3):401-11 15322332 - Biofactors. 2004;20(2):85-96 17375201 - PLoS One. 2007;2(3):e315 11854257 - Infect Immun. 2002 Mar;70(3):1635-9 20937098 - BMC Genomics. 2010;11:556 20563651 - Mol Biol Rep. 2011 Feb;38(2):1209-17 20479086 - Infect Immun. 2010 Jul;78(7):3258-71 20015678 - Curr Opin Chem Biol. 2010 Apr;14(2):218-24 18686301 - Proteomics. 2008 Sep;8(17):3506-15 19603075 - PLoS One. 2009;4(7):e6072 12829269 - FEMS Microbiol Rev. 2003 Jun;27(2-3):215-37 21208459 - BMC Infect Dis. 2011;11:6 7894710 - Microbiology. 1995 Jan;141 ( Pt 1):181-8 17041037 - J Bacteriol. 2007 Jan;189(1):38-51 19463017 - Biochemistry. 2009 Jul 7;48(26):6184-90 8454325 - Infect Immun. 1993 Apr;61(4):1232-8 20133089 - Vet Microbiol. 2010 Jul 29;144(1-2):246-9 16387456 - Vet Microbiol. 2006 Mar 10;113(1-2):73-82 19473247 - FEMS Microbiol Lett. 2009 Jun;295(1):17-22 16218944 - FEBS J. 2005 Oct;272(20):5101-9 21611125 - PLoS One. 2011;6(5):e19510 8945574 - Infect Immun. 1996 Dec;64(12):5255-62 2915176 - J Infect Dis. 1989 Mar;159(3):595-6 9862808 - Structure. 1998 Dec 15;6(12):1553-61 21093574 - Microb Pathog. 2011 Jul-Aug;51(1-2):69-76 3353625 - Rev Infect Dis. 1988 Jan-Feb;10(1):131-7 16431041 - Vet Microbiol. 2006 Jun 15;115(1-3):117-27 16172379 - Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13950-5 21811583 - PLoS One. 2011;6(7):e22299 16707046 - Emerg Infect Dis. 2006 Jun;12(6):914-20 20974828 - Infect Immun. 2011 Feb;79(2):548-61 18982279 - Antonie Van Leeuwenhoek. 2009 Jan;95(1):101-9 18276893 - Science. 2008 Feb 15;319(5865):962-5 |
References_xml | – volume: 6 start-page: e19510 year: 2011 ident: e_1_3_2_57_2 article-title: Insight into the Interaction of Metal Ions with TroA from Streptococcus suis publication-title: PLoS One doi: 10.1371/journal.pone.0019510 – volume: 51 start-page: 69 year: 2011 ident: e_1_3_2_51_2 article-title: Trigger factor of Streptococcus suis is involved in stress tolerance and virulence publication-title: Microb. Pathog. doi: 10.1016/j.micpath.2010.10.001 – ident: e_1_3_2_9_2 doi: 10.1128/iai.64.12.5255-5262.1996 – ident: e_1_3_2_44_2 doi: 10.1128/IAI.70.3.1635-1639.2002 – volume: 48 start-page: 10308 year: 2009 ident: e_1_3_2_39_2 article-title: Characterization and structure of the manganese-responsive transcriptional regulator ScaR publication-title: Biochemistry doi: 10.1021/bi900980g – volume: 295 start-page: 17 year: 2009 ident: e_1_3_2_54_2 article-title: Identification of three novel in vivo-induced expressed antigens during infection with Streptococcus suis serotype 2 publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2009.01574.x – volume: 34 start-page: 41 year: 2002 ident: e_1_3_2_29_2 article-title: Opposite effects of Mn(III) and Fe(III) forms of meso-tetrakis(4-N-methyl pyridiniumyl) porphyrins on isolated rat liver mitochondria publication-title: J. Bioenerg. Biomembr. doi: 10.1023/A:1013818719932 – ident: e_1_3_2_7_2 doi: 10.1128/CVI.00371-08 – ident: e_1_3_2_23_2 doi: 10.1128/IAI.00682-10 – volume: 16 start-page: 799 year: 2011 ident: e_1_3_2_17_2 article-title: Magnetic properties and structural characterization of iron oxide nanoparticles formed by Streptococcus suis Dpr and four mutants publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-011-0781-z – ident: e_1_3_2_6_2 doi: 10.1093/clinids/10.1.131 – volume: 128 start-page: 423 year: 2008 ident: e_1_3_2_8_2 article-title: Comparative evaluation of virulence and pathology of Streptococcus suis serotypes 2 and 9 in experimentally infected growers publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2007.10.028 – ident: e_1_3_2_2_2 doi: 10.1111/j.1742-4658.2005.04945.x – ident: e_1_3_2_24_2 doi: 10.1128/JB.01148-06 – volume: 46 start-page: 140 year: 2001 ident: e_1_3_2_42_2 article-title: Thermosensitive suicide vectors for gene replacement in Streptococcus suis publication-title: Plasmid doi: 10.1006/plas.2001.1532 – ident: e_1_3_2_13_2 doi: 10.1371/journal.pone.0000315 – ident: e_1_3_2_20_2 doi: 10.1128/iai.61.4.1232-1238.1993 – volume: 234 start-page: 401 year: 1992 ident: e_1_3_2_34_2 article-title: Protein export elements from Lactococcus lactis publication-title: Mol. Gen. Genet. doi: 10.1007/BF00538699 – ident: e_1_3_2_27_2 doi: 10.1099/00221287-148-5-1483 – volume: 4 start-page: e6072 year: 2009 ident: e_1_3_2_19_2 article-title: Rapid evolution of virulence and drug resistance in the emerging zoonotic pathogen Streptococcus suis publication-title: PLoS One doi: 10.1371/journal.pone.0006072 – ident: e_1_3_2_45_2 doi: 10.1128/IAI.00176-10 – ident: e_1_3_2_37_2 doi: 10.1128/IAI.71.9.4842-4849.2003 – volume: 38 start-page: 1209 year: 2011 ident: e_1_3_2_56_2 article-title: Enhanced protection against nasopharyngeal carriage of Streptococcus pneumoniae elicited by oral multiantigen DNA vaccines delivered in attenuated Salmonella typhimurium publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-010-0219-7 – volume: 72 start-page: 1622 year: 2006 ident: e_1_3_2_16_2 article-title: S100A8 and S100A9 in inflammation and cancer publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2006.05.017 – volume: 48 start-page: 6184 year: 2009 ident: e_1_3_2_40_2 article-title: Crystal structure and metal binding properties of the lipoprotein MtsA, responsible for iron transport in Streptococcus pyogenes publication-title: Biochemistry doi: 10.1021/bi900552c – volume: 74 start-page: 237 year: 2000 ident: e_1_3_2_49_2 article-title: Distribution of capsular types and production of muramidase-released protein (MRP) and extracellular factor (EF) of Streptococcus suis strains isolated from diseased pigs in seven European countries publication-title: Vet. Microbiol. doi: 10.1016/S0378-1135(00)00188-7 – ident: e_1_3_2_47_2 doi: 10.1016/j.bbagen.2008.07.002 – ident: e_1_3_2_43_2 doi: 10.1073/pnas.0506758102 – volume-title: Molecular cloning: a laboratory manual year: 1989 ident: e_1_3_2_35_2 – volume: 8 start-page: 306 year: 1989 ident: e_1_3_2_12_2 article-title: Fatal Streptococcus suis septicemia in an abattoir worker publication-title: Eur. J. Clin. Microbiol. Infect. Dis. doi: 10.1007/BF01963457 – volume: 95 start-page: 101 year: 2009 ident: e_1_3_2_11_2 article-title: Expression of the MtsA lipoprotein of Streptococcus agalactiae A909 is regulated by manganese and iron publication-title: Antonie Van Leeuwenhoek doi: 10.1007/s10482-008-9291-6 – volume: 32 start-page: 139 year: 2006 ident: e_1_3_2_41_2 article-title: Streptococcus pneumoniae protein vaccine candidates: properties, activities and animal studies publication-title: Crit. Rev. Microbiol. doi: 10.1080/10408410600822942 – ident: e_1_3_2_21_2 doi: 10.1128/IAI.74.2.1171-1180.2006 – volume: 159 start-page: 595 year: 1989 ident: e_1_3_2_33_2 article-title: Bacterial endocarditis caused by Streptococcus suis type 2 publication-title: J. Infect. Dis. doi: 10.1093/infdis/159.3.595 – volume: 20 start-page: 426 year: 2004 ident: e_1_3_2_14_2 article-title: The Jalview Java alignment editor publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg430 – volume: 115 start-page: 117 year: 2006 ident: e_1_3_2_36_2 article-title: Virulence-associated gene profiling of Streptococcus suis isolates by PCR publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2005.12.013 – ident: e_1_3_2_4_2 doi: 10.1128/IAI.00987-07 – ident: e_1_3_2_31_2 doi: 10.1128/JB.00064-10 – volume: 10 start-page: 42 year: 2010 ident: e_1_3_2_10_2 article-title: The cell envelope subtilisin-like proteinase is a virulence determinant for Streptococcus suis publication-title: BMC Microbiol. doi: 10.1186/1471-2180-10-42 – ident: e_1_3_2_32_2 doi: 10.1016/S0966-842X(98)01220-7 – ident: e_1_3_2_52_2 doi: 10.1128/CVI.00263-10 – volume: 11 start-page: 556 year: 2010 ident: e_1_3_2_26_2 article-title: Response of swine spleen to Streptococcus suis infection revealed by transcription analysis publication-title: BMC Genomics doi: 10.1186/1471-2164-11-556 – volume: 8 start-page: 3506 year: 2008 ident: e_1_3_2_55_2 article-title: Identification of immunogenic cell wall-associated proteins of Streptococcus suis serotype 2 publication-title: Proteomics doi: 10.1002/pmic.200800007 – ident: e_1_3_2_3_2 doi: 10.1016/S0168-6445(03)00055-X – volume: 6 start-page: 1553 year: 1998 ident: e_1_3_2_25_2 article-title: The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein publication-title: Structure doi: 10.1016/S0969-2126(98)00153-1 – volume: 20 start-page: 85 year: 2004 ident: e_1_3_2_28_2 article-title: Manganese alters mitochondrial integrity in the hearts of swine marginally deficient in magnesium publication-title: Biofactors doi: 10.1002/biof.5520200203 – volume: 45 start-page: 1027 year: 1999 ident: e_1_3_2_30_2 article-title: Effects of iron and manganese availability on growth and production of superoxide dismutase by Streptococcus suis publication-title: Can. J. Microbiol. doi: 10.1139/w99-114 – volume: 144 start-page: 246 year: 2010 ident: e_1_3_2_5_2 article-title: The cation-uptake regulators AdcR and Fur are necessary for full virulence of Streptococcus suis publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2009.12.037 – volume: 10 start-page: 54 year: 2009 ident: e_1_3_2_46_2 article-title: Evidence for niche adaptation in the genome of the bovine pathogen Streptococcus uberis publication-title: BMC Genomics doi: 10.1186/1471-2164-10-54 – volume: 141 start-page: 181 year: 1995 ident: e_1_3_2_38_2 article-title: High-efficiency transformation and gene inactivation in Streptococcus suis type 2 publication-title: Microbiology doi: 10.1099/00221287-141-1-181 – volume: 113 start-page: 73 year: 2006 ident: e_1_3_2_50_2 article-title: Quantitative susceptibility of Streptococcus suis strains isolated from diseased pigs in seven European countries to antimicrobial agents licensed in veterinary medicine publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2005.10.035 – ident: e_1_3_2_22_2 doi: 10.1016/j.cbpa.2009.11.008 – volume: 11 start-page: 6 year: 2011 ident: e_1_3_2_18_2 article-title: The antimicrobial resistance patterns and associated determinants in Streptococcus suis isolated from humans in southern Vietnam, 1997–2008 publication-title: BMC Infect. Dis. doi: 10.1186/1471-2334-11-6 – volume: 6 start-page: e22299 year: 2011 ident: e_1_3_2_48_2 article-title: Lgt processing is an essential Step in Streptococcus suis lipoprotein mediated innate immune activation publication-title: PLoS One doi: 10.1371/journal.pone.0022299 – volume: 12 start-page: 914 year: 2006 ident: e_1_3_2_53_2 article-title: Human Streptococcus suis outbreak, Sichuan, China publication-title: Emerg. Infect. Dis. doi: 10.3201/eid1206.051194 – volume: 319 start-page: 962 year: 2008 ident: e_1_3_2_15_2 article-title: Metal chelation and inhibition of bacterial growth in tissue abscesses publication-title: Science doi: 10.1126/science.1152449 – reference: 16172379 - Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13950-5 – reference: 20601473 - J Bacteriol. 2010 Sep;192(17):4489-97 – reference: 11860179 - J Bioenerg Biomembr. 2002 Feb;34(1):41-7 – reference: 21811583 - PLoS One. 2011;6(7):e22299 – reference: 19175920 - BMC Genomics. 2009;10:54 – reference: 16428766 - Infect Immun. 2006 Feb;74(2):1171-80 – reference: 16707046 - Emerg Infect Dis. 2006 Jun;12(6):914-20 – reference: 18068316 - Vet Microbiol. 2008 Apr 30;128(3-4):423-30 – reference: 19463017 - Biochemistry. 2009 Jul 7;48(26):6184-90 – reference: 11591139 - Plasmid. 2001 Sep;46(2):140-8 – reference: 14960472 - Bioinformatics. 2004 Feb 12;20(3):426-7 – reference: 20974828 - Infect Immun. 2011 Feb;79(2):548-61 – reference: 16893751 - Crit Rev Microbiol. 2006;32(3):139-53 – reference: 21047997 - Clin Vaccine Immunol. 2011 Jan;18(1):75-81 – reference: 16846592 - Biochem Pharmacol. 2006 Nov 30;72(11):1622-31 – reference: 2497004 - Eur J Clin Microbiol Infect Dis. 1989 Apr;8(4):306-8 – reference: 3353625 - Rev Infect Dis. 1988 Jan-Feb;10(1):131-7 – reference: 18276893 - Science. 2008 Feb 15;319(5865):962-5 – reference: 9862808 - Structure. 1998 Dec 15;6(12):1553-61 – reference: 8454325 - Infect Immun. 1993 Apr;61(4):1232-8 – reference: 8945574 - Infect Immun. 1996 Dec;64(12):5255-62 – reference: 18982279 - Antonie Van Leeuwenhoek. 2009 Jan;95(1):101-9 – reference: 18675317 - Biochim Biophys Acta. 2009 Jul;1790(7):600-5 – reference: 12933824 - Infect Immun. 2003 Sep;71(9):4842-9 – reference: 21487937 - J Biol Inorg Chem. 2011 Jun;16(5):799-807 – reference: 10808092 - Vet Microbiol. 2000 Jun 1;74(3):237-48 – reference: 21208459 - BMC Infect Dis. 2011;11:6 – reference: 15322332 - Biofactors. 2004;20(2):85-96 – reference: 20563651 - Mol Biol Rep. 2011 Feb;38(2):1209-17 – reference: 19473247 - FEMS Microbiol Lett. 2009 Jun;295(1):17-22 – reference: 11854257 - Infect Immun. 2002 Mar;70(3):1635-9 – reference: 16387456 - Vet Microbiol. 2006 Mar 10;113(1-2):73-82 – reference: 19109449 - Clin Vaccine Immunol. 2009 Feb;16(2):200-8 – reference: 19795834 - Biochemistry. 2009 Nov 3;48(43):10308-20 – reference: 11988523 - Microbiology. 2002 May;148(Pt 5):1483-91 – reference: 12829269 - FEMS Microbiol Rev. 2003 Jun;27(2-3):215-37 – reference: 20015678 - Curr Opin Chem Biol. 2010 Apr;14(2):218-24 – reference: 2915176 - J Infect Dis. 1989 Mar;159(3):595-6 – reference: 18212084 - Infect Immun. 2008 Apr;76(4):1590-8 – reference: 16218944 - FEBS J. 2005 Oct;272(20):5101-9 – reference: 21093574 - Microb Pathog. 2011 Jul-Aug;51(1-2):69-76 – reference: 9582927 - Trends Microbiol. 1998 Mar;6(3):85-7; discussion 87-8 – reference: 1406586 - Mol Gen Genet. 1992 Sep;234(3):401-11 – reference: 20479086 - Infect Immun. 2010 Jul;78(7):3258-71 – reference: 10696482 - Can J Microbiol. 1999 Dec;45(12):1027-32 – reference: 20146817 - BMC Microbiol. 2010;10:42 – reference: 17041037 - J Bacteriol. 2007 Jan;189(1):38-51 – reference: 20937098 - BMC Genomics. 2010;11:556 – reference: 17375201 - PLoS One. 2007;2(3):e315 – reference: 20133089 - Vet Microbiol. 2010 Jul 29;144(1-2):246-9 – reference: 18686301 - Proteomics. 2008 Sep;8(17):3506-15 – reference: 16431041 - Vet Microbiol. 2006 Jun 15;115(1-3):117-27 – reference: 19603075 - PLoS One. 2009;4(7):e6072 – reference: 7894710 - Microbiology. 1995 Jan;141 ( Pt 1):181-8 – reference: 21611125 - PLoS One. 2011;6(5):e19510 |
SSID | ssj0014452 |
Score | 2.2688243 |
Snippet | Streptococcus suis causes infections in pigs and occasionally in humans, resulting in manifestations as meningitis, sepsis, arthritis, and septic shock. For... Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley... Streptococcus suis causes infections in pigs and occasionally in humans, resulting in manifestations as meningitis, sepsis, arthritis, and septic shock. For... Streptococcus suis causes infections in pigs and occasionally in humans resulting in 23 manifestations as meningitis, sepsis, arthritis and septic shock. For... |
SourceID | wageningen pubmedcentral proquest pubmed pascalfrancis crossref highwire fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5073 |
SubjectTerms | 7 european countries Animals arthritis bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Biological and medical sciences blood serum copper crystal-structure diseased pigs Environmental regulations Enzymes and Proteins Female Fundamental and applied biological sciences. Psychology Gene expression genes Gram-positive bacteria hydrogen peroxide Hydrogen Peroxide - pharmacology infection iron lipoproteins Magnesium Manganese Manganese - metabolism Manganese compounds meningitis Mice Microbiology Miscellaneous Mutants Mutation Nickel nutrients Oxidative stress Oxidative Stress - drug effects Oxidative Stress - genetics phenotype pneumococcal surface-antigen pneumoniae protein Proteins septic shock serotype-2 Streptococcal Infections - genetics Streptococcal Infections - microbiology Streptococcus suis Streptococcus suis - genetics Streptococcus suis - metabolism Streptococcus suis - pathogenicity swine Trace metals vaccine virulence Virulence - genetics Virulence - physiology zinc |
Title | TroA of Streptococcus suis Is Required for Manganese Acquisition and Full Virulence |
URI | http://jb.asm.org/content/193/19/5073.abstract https://www.ncbi.nlm.nih.gov/pubmed/21784944 https://www.proquest.com/docview/894852606 https://www.proquest.com/docview/1678528733 https://www.proquest.com/docview/890031479 https://pubmed.ncbi.nlm.nih.gov/PMC3187441 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F415305 |
Volume | 193 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGENJeEPeVwWSkPVF1LImby2OHNm3VNia1Q3uzHCfpikaKmkYT_CJ-Jt9JnJvoEPDQtI2dWM75cnzO8bkwtgc1NgpUFA-EH4cDofHOBW7kDPwwwvKkXM8RFDt8fuGeXInx9fB6Y-Nny2spX4X7-sfauJL_oSrOga4UJfsPlK1vihP4DfriCArj-Hc0Xi5GRdQJ5aZcLcDbdJ71s3ye9U8p_oO8fCFQkifhuUpniqpN9kcap0tPrWLngJTQ_uf5Mi_Cj-4RVsMyqXPHBj_RwEG-rPwL-2OwGH0zi5v9IaLdrXH4VWmqyOe_bdLJTLTQvLGoUjjVJRXPTs3-RP_SGGyj2tZaObmtWtEAxKZaDqjn8ybBVJsxk6eIVRZL3I9LXkypTqmqUYdZmy4GlUGL90KyddYvCjYFOowP98FwKO-q1ax91X7_xSd5fHV2JqdH19Nua7HU28KDGGT7FET-0IZCYlV2IbNfJcTQ5KUvp2EiQTHyh9a4HdnnQaIWrazU5JSrMryXSVlQZZ3G87vj7tYdZp4WYXgtsWj6hD02EOGjEpxP2UacPmOPygqn35-zCUGULxLegSgniPLTjFcQ5aAZryHKWxDlgCgniPIaoi_Y9Pho-vFkYOp4DPTQs1eDILK05cQQ5KMotHVy4DiRg1VYDIWloM7GiW1FvtZWkgg3CASUFq1diFae44WJ5bxkm-kijbcZhzjlxr6nIqG0EBQ3DYEa_ePIh2ruxj32vnrAUpsc91Rq5VYWuq7ty_GhLKiBfz22V3f-VqZ2Wd9tG5SSaoZFV15NbDIRFh-Bpp2KfFJlX-WXUIL2-EjCYo_tdihaD2ILqPEQu3F5RWJpuEomfUrXZLsHbo-9q1vB8mkfDzRY5Jm0IGAObd9zMAS_p49POxSW8IIee1Viphne8nwRCNFjXgdNdQfKON9tSec3ReZ5hyp40rydBncypaJnWXGVsTzLu3wp01v6wn0yCSUBz_L1H6e7w7YaFvKGba6WefwW8v4q3C1etV8rfgAu |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TroA+of+Streptococcus+suis+Is+Required+for+Manganese+Acquisition+and+Full+Virulence&rft.jtitle=Journal+of+bacteriology&rft.au=Schreur%2C+Paul+J+Wichgers&rft.au=Rebel%2C+Johanna+M+J&rft.au=Smits%2C+Mari+A&rft.au=van+Putten%2C+Jos+P+M&rft.date=2011-10-01&rft.pub=American+Society+for+Microbiology&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=193&rft.issue=19&rft.spage=5073&rft_id=info:doi/10.1128%2FJB.05305-11&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2472442811 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon |