Two-dimensional spatial tuning for saccades in human parieto-frontal cortex

Saccades in the frontoparallel plane are targeted at two-dimensional (2D) locations, defined by direction and amplitude. Macaque neurophysiology has shown that these dimensions are jointly represented in single intraparietal sulcus (IPS) and frontal eye fields (FEF) neurons, constituting multiple ma...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 87; pp. 476 - 489
Main Authors Leoné, Frank T.M., Toni, Ivan, Medendorp, W. Pieter
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.02.2014
Elsevier
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2013.09.067

Cover

Loading…
More Information
Summary:Saccades in the frontoparallel plane are targeted at two-dimensional (2D) locations, defined by direction and amplitude. Macaque neurophysiology has shown that these dimensions are jointly represented in single intraparietal sulcus (IPS) and frontal eye fields (FEF) neurons, constituting multiple maps of 2D saccade space. Human fMRI has shown that the direction of the saccade is topographically represented across large neuronal groups. However, it is unknown whether both direction and amplitude are separable dimensions at the voxel level and whether these tuning variables are organized in large-scale topographic maps. We used fMRI to address these issues in subjects performing an instructed-delay saccade task to 18 locations (6 directions, 3 amplitudes). Singular value decomposition was applied to the corresponding response field of each voxel, providing an index of the separability into direction and amplitude tuning. Our findings show that saccade location tuning is composed of separable direction and amplitude components within voxels across the parieto-frontal network. In both IPS and FEF there were amplitude gradients and reversals of direction tuning across voxels, with a medio-lateral gradient of decreasing saccade amplitude along the IPS. These findings reveal the 2D cortical organization of saccade space within and across voxels and hold great potential for the study of other sensorimotor systems. [Display omitted] •Does the cortex represent saccade direction and amplitude as independent dimensions?•Applied SVD to 2D tuning curves of fMRI voxels to test independence of dimensions•Saccade direction and amplitude are independent across the cortical saccade network.•Both dimensions show topography, uninfluenced by the other dimension.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1053-8119
1095-9572
1095-9572
DOI:10.1016/j.neuroimage.2013.09.067