Missing Data in Clinical Research: A Tutorial on Multiple Imputation

Missing data is a common occurrence in clinical research. Missing data occurs when the value of the variables of interest are not measured or recorded for all subjects in the sample. Common approaches to addressing the presence of missing data include complete-case analyses, where subjects with miss...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of cardiology Vol. 37; no. 9; pp. 1322 - 1331
Main Authors Austin, Peter C., White, Ian R., Lee, Douglas S., van Buuren, Stef
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.09.2021
Pulsus Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Missing data is a common occurrence in clinical research. Missing data occurs when the value of the variables of interest are not measured or recorded for all subjects in the sample. Common approaches to addressing the presence of missing data include complete-case analyses, where subjects with missing data are excluded, and mean-value imputation, where missing values are replaced with the mean value of that variable in those subjects for whom it is not missing. However, in many settings, these approaches can lead to biased estimates of statistics (eg, of regression coefficients) and/or confidence intervals that are artificially narrow. Multiple imputation (MI) is a popular approach for addressing the presence of missing data. With MI, multiple plausible values of a given variable are imputed or filled in for each subject who has missing data for that variable. This results in the creation of multiple completed data sets. Identical statistical analyses are conducted in each of these complete data sets and the results are pooled across complete data sets. We provide an introduction to MI and discuss issues in its implementation, including developing the imputation model, how many imputed data sets to create, and addressing derived variables. We illustrate the application of MI through an analysis of data on patients hospitalised with heart failure. We focus on developing a model to estimate the probability of 1-year mortality in the presence of missing data. Statistical software code for conducting MI in R, SAS, and Stata are provided. Les données manquantes sont un phénomène courant dans le domaine de la recherche clinique, qui survient lorsque les résultats pour des variables d'intérêt ne sont pas mesurés ou consignés pour tous les sujets d'un échantillon. Les approches courantes adoptées pour pallier les données manquantes comprennent les analyses de cas complètes, dans lesquelles tous les sujets pour lesquels des données sont manquantes sont exclus de l'analyse, et l'imputation par la moyenne, dans laquelle les valeurs manquantes sont remplacées par la valeur moyenne rapportée pour cette variable chez les sujets chez lesquels ces résultats ont été recueillis. Toutefois, dans de nombreux contextes, ces approches peuvent donner lieu à des estimations biaisées des statistiques (p. ex. des coefficients de régression) ou à des intervalles de confiance artificiellement étroits. L'imputation multiple est une approche populaire pour remédier aux données manquantes. Selon cette méthode, des valeurs plausibles multiples pour une variable donnée sont attribuées ou imputées pour chacun des sujets pour lesquels les résultats pour ladite variable sont manquants. Il en résulte la création de multiples groupes de données complètes. Des analyses statistiques identiques sont effectuées à partir de chacun de ces groupes de données complètes, et les résultats sont regroupés pour les différents groupes de données complètes. Cet article offre une introduction à l'imputation multiple, et aborde les difficultés liées à son utilisation, notamment l’élaboration du modèle d'imputation, le nombre de groupes de données imputables à créer, et les variables dérivées qui doivent être considérées. L'application de l'imputation multiple sera illustrée au moyen d'une analyse des données pour des patients hospitalisés atteints d'insuffisance cardiaque. Le modèle suggéré aura pour objectif d'estimer la probabilité de mortalité à 1 an en présence de données manquantes. Les codes pour les logiciels statistiques utilisés pour l'imputation multiple (R, SAS et Stata) sont fournis.
AbstractList Missing data is a common occurrence in clinical research. Missing data occurs when the value of the variables of interest are not measured or recorded for all subjects in the sample. Common approaches to addressing the presence of missing data include complete-case analyses, where subjects with missing data are excluded, and mean-value imputation, where missing values are replaced with the mean value of that variable in those subjects for whom it is not missing. However, in many settings, these approaches can lead to biased estimates of statistics (eg, of regression coefficients) and/or confidence intervals that are artificially narrow. Multiple imputation (MI) is a popular approach for addressing the presence of missing data. With MI, multiple plausible values of a given variable are imputed or filled in for each subject who has missing data for that variable. This results in the creation of multiple completed data sets. Identical statistical analyses are conducted in each of these complete data sets and the results are pooled across complete data sets. We provide an introduction to MI and discuss issues in its implementation, including developing the imputation model, how many imputed data sets to create, and addressing derived variables. We illustrate the application of MI through an analysis of data on patients hospitalised with heart failure. We focus on developing a model to estimate the probability of 1-year mortality in the presence of missing data. Statistical software code for conducting MI in R, SAS, and Stata are provided. Les données manquantes sont un phénomène courant dans le domaine de la recherche clinique, qui survient lorsque les résultats pour des variables d'intérêt ne sont pas mesurés ou consignés pour tous les sujets d'un échantillon. Les approches courantes adoptées pour pallier les données manquantes comprennent les analyses de cas complètes, dans lesquelles tous les sujets pour lesquels des données sont manquantes sont exclus de l'analyse, et l'imputation par la moyenne, dans laquelle les valeurs manquantes sont remplacées par la valeur moyenne rapportée pour cette variable chez les sujets chez lesquels ces résultats ont été recueillis. Toutefois, dans de nombreux contextes, ces approches peuvent donner lieu à des estimations biaisées des statistiques (p. ex. des coefficients de régression) ou à des intervalles de confiance artificiellement étroits. L'imputation multiple est une approche populaire pour remédier aux données manquantes. Selon cette méthode, des valeurs plausibles multiples pour une variable donnée sont attribuées ou imputées pour chacun des sujets pour lesquels les résultats pour ladite variable sont manquants. Il en résulte la création de multiples groupes de données complètes. Des analyses statistiques identiques sont effectuées à partir de chacun de ces groupes de données complètes, et les résultats sont regroupés pour les différents groupes de données complètes. Cet article offre une introduction à l'imputation multiple, et aborde les difficultés liées à son utilisation, notamment l’élaboration du modèle d'imputation, le nombre de groupes de données imputables à créer, et les variables dérivées qui doivent être considérées. L'application de l'imputation multiple sera illustrée au moyen d'une analyse des données pour des patients hospitalisés atteints d'insuffisance cardiaque. Le modèle suggéré aura pour objectif d'estimer la probabilité de mortalité à 1 an en présence de données manquantes. Les codes pour les logiciels statistiques utilisés pour l'imputation multiple (R, SAS et Stata) sont fournis.
Missing data is a common occurrence in clinical research. Missing data occurs when the value of the variables of interest are not measured or recorded for all subjects in the sample. Common approaches to addressing the presence of missing data include complete-case analyses, where subjects with missing data are excluded, and mean-value imputation, where missing values are replaced with the mean value of that variable in those subjects for whom it is not missing. However, in many settings, these approaches can lead to biased estimates of statistics (eg, of regression coefficients) and/or confidence intervals that are artificially narrow. Multiple imputation (MI) is a popular approach for addressing the presence of missing data. With MI, multiple plausible values of a given variable are imputed or filled in for each subject who has missing data for that variable. This results in the creation of multiple completed data sets. Identical statistical analyses are conducted in each of these complete data sets and the results are pooled across complete data sets. We provide an introduction to MI and discuss issues in its implementation, including developing the imputation model, how many imputed data sets to create, and addressing derived variables. We illustrate the application of MI through an analysis of data on patients hospitalised with heart failure. We focus on developing a model to estimate the probability of 1-year mortality in the presence of missing data. Statistical software code for conducting MI in R, SAS, and Stata are provided.Missing data is a common occurrence in clinical research. Missing data occurs when the value of the variables of interest are not measured or recorded for all subjects in the sample. Common approaches to addressing the presence of missing data include complete-case analyses, where subjects with missing data are excluded, and mean-value imputation, where missing values are replaced with the mean value of that variable in those subjects for whom it is not missing. However, in many settings, these approaches can lead to biased estimates of statistics (eg, of regression coefficients) and/or confidence intervals that are artificially narrow. Multiple imputation (MI) is a popular approach for addressing the presence of missing data. With MI, multiple plausible values of a given variable are imputed or filled in for each subject who has missing data for that variable. This results in the creation of multiple completed data sets. Identical statistical analyses are conducted in each of these complete data sets and the results are pooled across complete data sets. We provide an introduction to MI and discuss issues in its implementation, including developing the imputation model, how many imputed data sets to create, and addressing derived variables. We illustrate the application of MI through an analysis of data on patients hospitalised with heart failure. We focus on developing a model to estimate the probability of 1-year mortality in the presence of missing data. Statistical software code for conducting MI in R, SAS, and Stata are provided.
Missing data is a common occurrence in clinical research. Missing data occurs when the value of the variables of interest are not measured or recorded for all subjects in the sample. Common approaches to addressing the presence of missing data include complete-case analyses, where subjects with missing data are excluded, and mean-value imputation, where missing values are replaced with the mean value of that variable in those subjects for whom it is not missing. However, in many settings, these approaches can lead to biased estimates of statistics (eg, of regression coefficients) and/or confidence intervals that are artificially narrow. Multiple imputation (MI) is a popular approach for addressing the presence of missing data. With MI, multiple plausible values of a given variable are imputed or filled in for each subject who has missing data for that variable. This results in the creation of multiple completed data sets. Identical statistical analyses are conducted in each of these complete data sets and the results are pooled across complete data sets. We provide an introduction to MI and discuss issues in its implementation, including developing the imputation model, how many imputed data sets to create, and addressing derived variables. We illustrate the application of MI through an analysis of data on patients hospitalised with heart failure. We focus on developing a model to estimate the probability of 1-year mortality in the presence of missing data. Statistical software code for conducting MI in R, SAS, and Stata are provided.
Author van Buuren, Stef
Austin, Peter C.
White, Ian R.
Lee, Douglas S.
Author_xml – sequence: 1
  givenname: Peter C.
  surname: Austin
  fullname: Austin, Peter C.
  email: peter.austin@ices.on.ca
  organization: Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
– sequence: 2
  givenname: Ian R.
  surname: White
  fullname: White, Ian R.
  organization: Medical Research Council Clinical Trials Unit, University College London, London, United Kingdom
– sequence: 3
  givenname: Douglas S.
  surname: Lee
  fullname: Lee, Douglas S.
  organization: Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
– sequence: 4
  givenname: Stef
  surname: van Buuren
  fullname: van Buuren, Stef
  organization: University of Utrecht, Utrecht, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33276049$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1LHDEUhkOx1NX2D_SizGVvZptkZvIhpSBrWwVFKBZ6F2LmjJ7tbLJNMoL_vll2K9YLvQqcvM_5eN8DsueDB0LeMzpnlIlPy7lbOjvnlJcCm1NGX5EZ00zUkspuj8yo4qrmiv_aJwcpLSltmZTiDdlvGi4FbfWMnFxgSuhvqhObbYW-Wozo0dmx-gEJbHS3R9VxdTXlELEUg68upjHjeoTqbLWess0Y_FvyerBjgne795D8_Pb1anFan19-P1scn9eukzzXWg4d11INtlHatZ1mSlwPtGysm1b0nXCy0dwyaYsEhOrLFU1P7dA3bcesaw7Jl23f9XS9gt6Bz9GOZh1xZeO9CRbN_z8eb81NuDOq1VpoVRp83DWI4c8EKZsVJgfjaD2EKRneCimYUkIW6YfHsx6G_LOuCPhW4GJIKcLwIGHUbPIxS7PJx2zyMYyZkk-B1BPI4dbDsi-Oz6OftygUh-8QokkOwTvoMYLLpg_4PH70BHe7pH_D_UvwX7QvvdQ
CitedBy_id crossref_primary_10_1016_j_radonc_2023_109639
crossref_primary_10_1111_apt_17649
crossref_primary_10_1111_jocn_17476
crossref_primary_10_1016_j_ijotn_2023_101077
crossref_primary_10_1111_cns_14762
crossref_primary_10_3389_fmed_2024_1443056
crossref_primary_10_1186_s12871_024_02756_7
crossref_primary_10_1038_s41598_025_85596_w
crossref_primary_10_1093_bib_bbab489
crossref_primary_10_15829_1560_4071_2024_6075
crossref_primary_10_1007_s00262_024_03816_0
crossref_primary_10_1371_journal_pmed_1004335
crossref_primary_10_1016_j_cgh_2024_03_049
crossref_primary_10_1007_s40520_024_02740_8
crossref_primary_10_1371_journal_pone_0304423
crossref_primary_10_1097_WNP_0000000000001003
crossref_primary_10_1007_s42044_023_00154_9
crossref_primary_10_1111_nicc_13287
crossref_primary_10_1186_s40359_022_01003_3
crossref_primary_10_1016_j_intonc_2024_11_003
crossref_primary_10_1186_s12882_024_03818_1
crossref_primary_10_1007_s00464_024_10942_4
crossref_primary_10_4025_actasciagron_v46i1_66185
crossref_primary_10_1139_apnm_2023_0206
crossref_primary_10_1016_j_dajour_2023_100341
crossref_primary_10_3390_jcm13071883
crossref_primary_10_1186_s12933_023_01864_x
crossref_primary_10_3389_fcvm_2022_893764
crossref_primary_10_1038_s41598_025_87219_w
crossref_primary_10_1097_JS9_0000000000000993
crossref_primary_10_1016_j_socscimed_2024_116699
crossref_primary_10_1245_s10434_023_14345_y
crossref_primary_10_3390_nu16132030
crossref_primary_10_1016_j_ijheh_2022_114058
crossref_primary_10_1089_jwh_2023_0179
crossref_primary_10_1186_s12879_024_10179_5
crossref_primary_10_1016_j_ajog_2022_10_043
crossref_primary_10_1186_s12872_025_04518_w
crossref_primary_10_3389_fmolb_2024_1429372
crossref_primary_10_1016_j_appet_2024_107834
crossref_primary_10_1038_s41380_023_02383_7
crossref_primary_10_1177_20552076231171482
crossref_primary_10_1016_j_socscimed_2023_116397
crossref_primary_10_1093_heapol_czae091
crossref_primary_10_1007_s13384_024_00755_8
crossref_primary_10_3390_w14040610
crossref_primary_10_1111_ipd_13230
crossref_primary_10_3390_jcdd10100432
crossref_primary_10_1002_jac5_70025
crossref_primary_10_1093_ageing_afad224
crossref_primary_10_3389_fmed_2024_1413541
crossref_primary_10_1007_s00134_022_06926_4
crossref_primary_10_1002_pbc_30636
crossref_primary_10_1016_j_cmpb_2024_108561
crossref_primary_10_1016_j_envint_2024_108734
crossref_primary_10_1177_00914150221084644
crossref_primary_10_1177_01640275241290279
crossref_primary_10_1186_s12916_024_03693_5
crossref_primary_10_1186_s12874_024_02392_2
crossref_primary_10_1016_j_socscimed_2023_116362
crossref_primary_10_1111_1471_0528_17633
crossref_primary_10_3389_fpubh_2024_1450167
crossref_primary_10_3390_ijerph20166582
crossref_primary_10_3390_curroncol30070478
crossref_primary_10_3389_fneur_2023_1271391
crossref_primary_10_3390_info13120575
crossref_primary_10_1007_s40200_023_01330_1
crossref_primary_10_2147_COPD_S402717
crossref_primary_10_3390_diagnostics12102299
crossref_primary_10_1007_s00431_024_05925_5
crossref_primary_10_1016_j_jclinepi_2022_12_011
crossref_primary_10_1371_journal_pone_0316238
crossref_primary_10_1026_1616_3443_a000778
crossref_primary_10_1542_peds_2023_063101
crossref_primary_10_1007_s00521_022_07224_2
crossref_primary_10_1016_j_advengsoft_2024_103856
crossref_primary_10_2147_DMSO_S521525
crossref_primary_10_1016_j_ahjo_2022_100196
crossref_primary_10_1371_journal_pone_0291575
crossref_primary_10_1186_s12871_024_02845_7
crossref_primary_10_1186_s12874_023_02004_5
crossref_primary_10_1007_s12035_025_04716_9
crossref_primary_10_1186_s13063_024_08558_z
crossref_primary_10_1097_EJA_0000000000002109
crossref_primary_10_1371_journal_pone_0317210
crossref_primary_10_1038_s41591_022_02023_7
crossref_primary_10_1016_j_enbuild_2022_111845
crossref_primary_10_1007_s11121_025_01781_3
crossref_primary_10_1016_j_tjnut_2023_06_013
crossref_primary_10_1038_s41598_025_91012_0
crossref_primary_10_1038_s41598_024_58090_y
crossref_primary_10_1016_j_softx_2025_102130
crossref_primary_10_1093_eurjcn_zvae067
crossref_primary_10_1002_brb3_3301
crossref_primary_10_1016_j_scitotenv_2024_175395
crossref_primary_10_1177_1086296X221116866
crossref_primary_10_1016_j_sleh_2023_06_005
crossref_primary_10_1542_hpeds_2024_008020
crossref_primary_10_1016_j_injury_2023_111296
crossref_primary_10_1136_bmjopen_2021_059830
crossref_primary_10_2147_JHC_S452628
crossref_primary_10_1007_s00228_023_03495_3
crossref_primary_10_1186_s12886_024_03730_0
crossref_primary_10_1007_s10815_022_02634_6
crossref_primary_10_1111_jocn_17518
crossref_primary_10_1371_journal_pone_0289111
crossref_primary_10_1016_j_cmpb_2023_107547
crossref_primary_10_1177_09622802231198795
crossref_primary_10_1016_j_xops_2024_100592
crossref_primary_10_1253_circrep_CR_23_0049
crossref_primary_10_1080_14719037_2024_2303609
crossref_primary_10_1111_jgs_18704
crossref_primary_10_1016_j_iccn_2024_103749
crossref_primary_10_1038_s41366_024_01702_4
crossref_primary_10_3389_fimmu_2022_828219
crossref_primary_10_7759_cureus_46175
crossref_primary_10_1111_odi_14747
crossref_primary_10_1002_nse2_70005
crossref_primary_10_1155_2021_1285167
crossref_primary_10_3389_fnagi_2023_1119194
crossref_primary_10_1080_07481187_2024_2414935
crossref_primary_10_1111_acem_14756
crossref_primary_10_1016_j_ajogmf_2023_101062
crossref_primary_10_1186_s13063_022_06264_2
crossref_primary_10_1177_23800844241228277
crossref_primary_10_1016_S1474_4422_23_00205_3
crossref_primary_10_1111_jvim_16395
crossref_primary_10_3390_su16177532
crossref_primary_10_1161_JAHA_123_034641
crossref_primary_10_1177_20552076241257456
crossref_primary_10_1016_j_mhp_2022_200243
crossref_primary_10_1016_j_nutres_2023_07_004
crossref_primary_10_1016_j_lanepe_2025_101233
crossref_primary_10_1186_s42162_024_00353_z
crossref_primary_10_1186_s12877_023_04483_z
crossref_primary_10_1186_s12891_024_07292_6
crossref_primary_10_1016_j_jtcvs_2023_02_008
crossref_primary_10_1016_j_annepidem_2023_11_008
crossref_primary_10_1093_jnci_djad210
crossref_primary_10_1097_NMD_0000000000001604
crossref_primary_10_3389_fcvm_2022_964894
crossref_primary_10_1186_s41512_024_00168_2
crossref_primary_10_1016_j_ajcnut_2024_03_004
crossref_primary_10_3389_fneur_2024_1502153
crossref_primary_10_1007_s12630_024_02860_9
crossref_primary_10_1001_jamanetworkopen_2023_31988
crossref_primary_10_1016_j_jad_2022_01_030
crossref_primary_10_1186_s12911_023_02264_7
crossref_primary_10_1016_j_iccn_2024_103841
crossref_primary_10_1097_SHK_0000000000002312
crossref_primary_10_1108_JEAS_07_2023_0201
crossref_primary_10_2147_COPD_S373114
crossref_primary_10_3389_fpsyt_2023_1233981
crossref_primary_10_1186_s13063_025_08734_9
crossref_primary_10_1186_s12887_024_05201_3
crossref_primary_10_3389_fneur_2024_1336121
crossref_primary_10_1186_s12879_023_08053_x
crossref_primary_10_1200_JCO_23_02313
crossref_primary_10_1016_j_jff_2024_106451
crossref_primary_10_1136_tsaco_2023_001280
crossref_primary_10_15829_1728_8800_2024_3996
crossref_primary_10_1002_VIW_20240059
crossref_primary_10_1016_j_cmpb_2023_107347
crossref_primary_10_1097_CM9_0000000000002966
crossref_primary_10_1111_crj_70042
crossref_primary_10_3389_fmed_2024_1396459
crossref_primary_10_1161_STROKEAHA_124_049038
crossref_primary_10_1016_j_josat_2024_209561
crossref_primary_10_1111_famp_13002
crossref_primary_10_1002_alz_13468
crossref_primary_10_1016_j_eclinm_2024_102736
crossref_primary_10_3390_math11194070
crossref_primary_10_3390_nu15030608
crossref_primary_10_1097_CCE_0000000000001012
crossref_primary_10_1515_jisys_2023_0318
crossref_primary_10_1038_s41598_024_81919_5
crossref_primary_10_1016_j_pedneo_2023_03_011
crossref_primary_10_1111_aas_13934
crossref_primary_10_1016_j_puhe_2024_12_020
crossref_primary_10_1053_j_jvca_2022_11_038
crossref_primary_10_3390_nu16091360
crossref_primary_10_1016_j_archger_2024_105533
crossref_primary_10_1002_ejp_2033
crossref_primary_10_1080_09602011_2024_2414864
crossref_primary_10_1002_alz_14207
crossref_primary_10_1016_j_heliyon_2023_e14648
crossref_primary_10_1016_j_obpill_2025_100169
crossref_primary_10_1016_j_eclinm_2024_102722
crossref_primary_10_1002_acr_25409
crossref_primary_10_1016_j_jtcvs_2022_09_034
crossref_primary_10_1136_jnis_2024_022326
crossref_primary_10_1093_rheumatology_keae599
crossref_primary_10_1016_j_cose_2023_103201
crossref_primary_10_1016_j_cdnut_2023_102065
crossref_primary_10_1016_j_psychres_2025_116352
crossref_primary_10_1155_2024_1741878
crossref_primary_10_1016_j_ypmed_2023_107533
crossref_primary_10_17802_2306_1278_2024_13_1_54_66
crossref_primary_10_1186_s12887_023_04372_9
crossref_primary_10_1089_cyber_2022_0020
crossref_primary_10_1016_j_fertnstert_2022_01_013
crossref_primary_10_1053_j_ajkd_2024_04_012
crossref_primary_10_1080_02702711_2024_2432882
crossref_primary_10_1093_aje_kwad139
crossref_primary_10_1253_circj_CJ_23_0567
crossref_primary_10_1186_s13148_022_01284_w
crossref_primary_10_1136_bmjopen_2023_074855
crossref_primary_10_1186_s12874_021_01261_6
crossref_primary_10_3389_fendo_2023_1281203
crossref_primary_10_1007_s41742_025_00765_z
crossref_primary_10_1186_s12889_022_14678_5
crossref_primary_10_3389_fimmu_2022_1076121
crossref_primary_10_1007_s00415_024_12774_7
crossref_primary_10_1016_j_ajog_2025_02_002
crossref_primary_10_1016_j_ijoa_2024_104259
crossref_primary_10_1038_s41598_024_75480_4
crossref_primary_10_1177_17488958221140550
crossref_primary_10_3390_ijerph192316319
crossref_primary_10_1016_j_jneb_2024_07_011
crossref_primary_10_1016_j_jece_2024_114196
crossref_primary_10_1177_0272989X251326069
crossref_primary_10_1245_s10434_024_15310_z
crossref_primary_10_1093_her_cyad032
crossref_primary_10_1097_pq9_0000000000000714
crossref_primary_10_5334_joc_409
crossref_primary_10_1001_jamanetworkopen_2024_29691
crossref_primary_10_1002_cnr2_2046
crossref_primary_10_1038_s41598_025_86213_6
crossref_primary_10_3389_fcvm_2022_966217
crossref_primary_10_3389_fcvm_2022_1051570
crossref_primary_10_1016_j_eatbeh_2022_101655
crossref_primary_10_3390_cells13161351
crossref_primary_10_4274_jpr_galenos_2023_12144
crossref_primary_10_3233_JIFS_236197
crossref_primary_10_1001_jamanetworkopen_2024_42319
crossref_primary_10_1177_10547738241273164
crossref_primary_10_1016_j_heliyon_2023_e16068
crossref_primary_10_29220_CSAM_2023_30_1_001
crossref_primary_10_1186_s12890_024_03022_9
crossref_primary_10_1007_s00521_024_10646_9
crossref_primary_10_1007_s00228_023_03531_2
crossref_primary_10_1016_j_ajem_2024_07_040
crossref_primary_10_3389_fpsyg_2024_1296498
crossref_primary_10_1007_s41999_024_01006_w
crossref_primary_10_1136_bmjopen_2022_066189
crossref_primary_10_1136_bmjopen_2024_086231
crossref_primary_10_1016_j_envint_2024_109123
crossref_primary_10_1007_s10067_024_06933_4
crossref_primary_10_1186_s12916_024_03829_7
crossref_primary_10_1016_j_jpain_2023_06_009
crossref_primary_10_3390_bioengineering12020200
crossref_primary_10_3390_diagnostics13020264
crossref_primary_10_1186_s12883_022_02756_5
crossref_primary_10_1080_1059924X_2024_2385612
crossref_primary_10_1097_MD_0000000000040896
crossref_primary_10_1044_2022_JSLHR_21_00668
crossref_primary_10_1186_s12888_024_05520_w
crossref_primary_10_1016_j_jtha_2023_01_004
crossref_primary_10_1136_bmjopen_2024_089639
crossref_primary_10_1097_EE9_0000000000000356
crossref_primary_10_1016_j_nutres_2025_01_003
crossref_primary_10_1097_PR9_0000000000001004
crossref_primary_10_1536_ihj_22_317
crossref_primary_10_1016_j_healun_2024_10_023
crossref_primary_10_1038_s41588_024_01793_9
crossref_primary_10_2139_ssrn_3985872
crossref_primary_10_1186_s12889_024_20977_w
crossref_primary_10_1371_journal_pone_0311320
crossref_primary_10_1108_BPMJ_02_2024_0116
crossref_primary_10_3389_fmed_2022_853989
crossref_primary_10_1001_jama_2023_2536
crossref_primary_10_1002_cpp_2806
crossref_primary_10_3389_fonc_2021_787198
crossref_primary_10_1097_TA_0000000000004303
crossref_primary_10_1016_j_wneu_2021_10_090
crossref_primary_10_1136_bmjopen_2024_089562
crossref_primary_10_1038_s41746_023_00770_6
crossref_primary_10_3389_fonc_2023_1199868
crossref_primary_10_1038_s41598_025_93417_3
crossref_primary_10_1111_jebm_12632
crossref_primary_10_3390_jcm13051456
crossref_primary_10_1016_j_pmn_2024_04_014
crossref_primary_10_1161_STROKEAHA_123_042525
crossref_primary_10_1038_s41533_024_00394_7
crossref_primary_10_1038_s41598_024_73649_5
crossref_primary_10_3233_JIFS_231537
crossref_primary_10_1097_MD_0000000000030727
crossref_primary_10_1161_JAHA_124_038376
crossref_primary_10_1186_s12872_024_04184_4
crossref_primary_10_61506_01_00088
crossref_primary_10_3389_fphar_2022_874948
crossref_primary_10_1002_ijgo_15296
crossref_primary_10_1136_tsaco_2022_000988
crossref_primary_10_1001_jamanetworkopen_2023_38540
crossref_primary_10_1164_rccm_202206_1092OC
crossref_primary_10_1093_eurjpc_zwad380
crossref_primary_10_4081_monaldi_2024_2848
crossref_primary_10_3389_fsufs_2022_878013
crossref_primary_10_1186_s13063_023_07864_2
crossref_primary_10_1016_j_pmedr_2023_102161
crossref_primary_10_1001_jamasurg_2024_0495
crossref_primary_10_1016_j_fertnstert_2022_10_026
crossref_primary_10_1016_j_amjsurg_2024_115912
crossref_primary_10_1016_j_chstcc_2024_100100
crossref_primary_10_1007_s11136_021_03037_3
crossref_primary_10_1016_j_ijlcj_2024_100720
crossref_primary_10_3389_fnut_2024_1424972
crossref_primary_10_1016_j_hlpt_2024_100893
crossref_primary_10_2147_COPD_S427433
crossref_primary_10_1016_j_wneu_2023_04_008
crossref_primary_10_2337_db22_0696
crossref_primary_10_1016_j_xjon_2024_08_020
crossref_primary_10_1038_s41576_024_00731_z
crossref_primary_10_1016_j_diabet_2022_101415
crossref_primary_10_1093_ejcts_ezae251
crossref_primary_10_1093_gerona_glab382
crossref_primary_10_3390_su16051951
crossref_primary_10_1016_j_numecd_2023_10_003
crossref_primary_10_1177_23969873251319924
crossref_primary_10_3390_healthcare11243104
crossref_primary_10_1016_j_cjco_2023_08_005
crossref_primary_10_1007_s12672_024_01139_1
crossref_primary_10_1016_j_ypmed_2024_108090
crossref_primary_10_1002_prca_202100053
crossref_primary_10_3389_fcvm_2023_1242845
crossref_primary_10_1371_journal_pone_0295032
crossref_primary_10_1016_j_arcmed_2023_102881
crossref_primary_10_1093_bib_bbae364
crossref_primary_10_1016_j_apr_2024_102063
crossref_primary_10_1093_pnasnexus_pgad242
crossref_primary_10_1007_s12671_024_02439_x
crossref_primary_10_3389_frabi_2024_1380380
crossref_primary_10_1111_lang_12640
crossref_primary_10_1016_j_surg_2024_109014
crossref_primary_10_3390_nu15051230
crossref_primary_10_1136_bmjph_2024_001289
crossref_primary_10_1016_j_annepidem_2023_06_003
crossref_primary_10_1016_j_csda_2024_107994
crossref_primary_10_1016_j_ecolind_2024_111851
crossref_primary_10_1177_01430343241310164
crossref_primary_10_1186_s12872_024_04450_5
crossref_primary_10_1097_HC9_0000000000000196
crossref_primary_10_1177_10775595241313134
crossref_primary_10_1007_s00415_024_12570_3
crossref_primary_10_1001_jamanetworkopen_2024_43353
crossref_primary_10_1016_j_csbj_2025_01_015
crossref_primary_10_1080_10810730_2023_2181891
crossref_primary_10_1136_bmjopen_2023_077421
crossref_primary_10_1186_s12933_025_02654_3
crossref_primary_10_3390_diagnostics14151660
crossref_primary_10_1111_apt_18327
crossref_primary_10_1016_j_resuscitation_2022_11_026
crossref_primary_10_2196_48112
crossref_primary_10_1016_j_jhep_2024_08_013
crossref_primary_10_1080_10826084_2024_2434674
crossref_primary_10_12677_ACM_2024_142626
crossref_primary_10_1016_j_jad_2024_09_049
crossref_primary_10_1111_2041_210X_14494
crossref_primary_10_1093_ofid_ofac042
crossref_primary_10_1136_bmjophth_2023_001493
crossref_primary_10_1016_j_heliyon_2025_e43050
crossref_primary_10_1080_09540091_2024_2325496
crossref_primary_10_1007_s10072_022_06423_y
crossref_primary_10_1016_j_energy_2024_134000
crossref_primary_10_1016_j_leukres_2022_106980
crossref_primary_10_1371_journal_pone_0263897
crossref_primary_10_14512_gaia_33_3_5
crossref_primary_10_1016_j_jjcc_2025_01_010
crossref_primary_10_1371_journal_pone_0319555
crossref_primary_10_1136_bmjment_2023_300701
crossref_primary_10_1016_j_cjco_2025_01_002
crossref_primary_10_1016_j_xjtc_2023_10_028
crossref_primary_10_1097_GME_0000000000002314
crossref_primary_10_1186_s12937_024_01048_7
crossref_primary_10_1111_jsr_13820
crossref_primary_10_1038_s41598_024_83443_y
crossref_primary_10_1136_rmdopen_2024_004844
crossref_primary_10_1002_mco2_713
crossref_primary_10_1111_apt_18348
crossref_primary_10_1007_s00380_024_02405_6
crossref_primary_10_1172_JCI171058
crossref_primary_10_1016_j_schres_2024_03_026
crossref_primary_10_1002_ohn_729
crossref_primary_10_1016_j_isci_2025_111782
crossref_primary_10_1007_s10668_024_05226_9
crossref_primary_10_1007_s11222_025_10597_8
crossref_primary_10_1186_s12876_025_03771_9
crossref_primary_10_1016_j_fertnstert_2024_08_310
crossref_primary_10_2196_52536
crossref_primary_10_1002_ehf2_14812
crossref_primary_10_1007_s00127_024_02693_3
crossref_primary_10_1016_j_clnesp_2025_01_050
crossref_primary_10_1016_j_ijlp_2024_101971
crossref_primary_10_3390_diagnostics15060791
crossref_primary_10_1186_s12879_025_10476_7
crossref_primary_10_1136_bmjopen_2021_058494
crossref_primary_10_1007_s40520_025_02956_2
crossref_primary_10_1016_j_jad_2025_03_066
crossref_primary_10_2196_38590
crossref_primary_10_1016_j_cjca_2023_09_006
crossref_primary_10_1055_s_0045_1804924
crossref_primary_10_7759_cureus_65572
crossref_primary_10_1016_j_cie_2024_110405
crossref_primary_10_1186_s12874_022_01782_8
crossref_primary_10_1093_eurheartj_ehad508
crossref_primary_10_1080_14767058_2024_2379910
crossref_primary_10_1371_journal_pone_0310769
crossref_primary_10_3389_fpubh_2023_1161808
crossref_primary_10_1007_s10802_024_01192_y
crossref_primary_10_1136_bmjopen_2023_079404
crossref_primary_10_1177_20552076241231560
crossref_primary_10_1055_s_0042_1756649
crossref_primary_10_1212_WNL_0000000000209810
crossref_primary_10_1007_s00392_023_02258_5
crossref_primary_10_1016_j_annepidem_2025_02_013
crossref_primary_10_1016_j_jclinepi_2022_08_016
crossref_primary_10_1093_hropen_hoad041
crossref_primary_10_1016_j_ijforecast_2024_06_003
crossref_primary_10_32604_cmc_2024_055906
crossref_primary_10_1016_j_exger_2024_112518
crossref_primary_10_3390_jcm12031010
crossref_primary_10_1136_bmjopen_2024_088970
crossref_primary_10_1002_phar_4631
crossref_primary_10_1007_s11162_023_09729_8
crossref_primary_10_1097_MD_0000000000038265
crossref_primary_10_1016_j_procs_2024_09_170
crossref_primary_10_1016_j_eplepsyres_2024_107397
crossref_primary_10_1002_suco_202301135
crossref_primary_10_1001_jamanetworkopen_2023_36307
crossref_primary_10_1136_bmjopen_2022_067469
crossref_primary_10_1002_cpp_2975
crossref_primary_10_1007_s44230_023_00017_3
crossref_primary_10_1371_journal_pone_0314902
crossref_primary_10_1111_echo_15588
crossref_primary_10_1097_SLA_0000000000006056
crossref_primary_10_1016_j_ejon_2024_102679
crossref_primary_10_1109_JSTARS_2023_3292351
crossref_primary_10_1038_s41598_024_73717_w
crossref_primary_10_1016_j_jad_2024_01_021
crossref_primary_10_1093_noajnl_vdae132
crossref_primary_10_1186_s13075_024_03428_0
crossref_primary_10_1093_jpepsy_jsac089
Cites_doi 10.1503/cmaj.110977
10.1177/0049124113502943
10.1002/sim.1981
10.1136/bmj.b2393
10.1002/sim.4067
10.1186/1471-2288-12-46
10.1001/jama.2009.1731
10.1111/j.1467-9531.2007.00180.x
10.1001/jama.290.19.2581
10.1002/sim.3618
10.1177/0962280216683570
10.1177/0962280206074463
10.1214/18-STS646
10.1037/1082-989X.7.2.147
10.1161/CIRCULATIONAHA.118.035509
10.1177/096228029900800102
10.1186/1471-2288-14-75
10.1177/0049124117747303
10.1111/j.1467-9531.2009.01215.x
10.1016/S0735-1097(01)01109-3
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
2020 The Authors 2020
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2020 The Authors 2020
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cjca.2020.11.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1916-7075
EndPage 1331
ExternalDocumentID PMC8499698
33276049
10_1016_j_cjca_2020_11_010
S0828282X20311119
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: CIHR
  grantid: CTP79847
– fundername: Medical Research Council
  grantid: MC_UU_12023/21
– fundername: CIHR
  grantid: MOP 86508
– fundername: CIHR
  grantid: CRT43823
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1P~
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
8P~
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABLJU
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFO
ACIEU
ACJTP
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXBA
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
E3Z
EBS
EFJIC
EFKBS
EJD
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HX~
HYE
HZ~
J1W
KOM
M41
MO0
O-L
O9-
OAUVE
OA~
OK1
OL0
P-8
P-9
P2P
PC.
Q38
ROL
RPM
SDF
SEL
SES
SJN
SNG
SPCBC
SSH
SSZ
T5K
TR2
Z5R
~G-
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AISVY
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
NAHTW
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c572t-97f52978fa389c459186bf01919346d56c7392a17a8fae68d0753d0afd3451ac3
IEDL.DBID .~1
ISSN 0828-282X
1916-7075
IngestDate Thu Aug 21 13:59:34 EDT 2025
Fri Jul 11 15:10:23 EDT 2025
Mon Jul 21 05:34:47 EDT 2025
Tue Jul 01 03:46:18 EDT 2025
Thu Apr 24 23:01:24 EDT 2025
Fri Feb 23 02:43:13 EST 2024
Tue Aug 26 16:55:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-97f52978fa389c459186bf01919346d56c7392a17a8fae68d0753d0afd3451ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0828282X20311119
PMID 33276049
PQID 2467618867
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8499698
proquest_miscellaneous_2467618867
pubmed_primary_33276049
crossref_primary_10_1016_j_cjca_2020_11_010
crossref_citationtrail_10_1016_j_cjca_2020_11_010
elsevier_sciencedirect_doi_10_1016_j_cjca_2020_11_010
elsevier_clinicalkey_doi_10_1016_j_cjca_2020_11_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Canadian journal of cardiology
PublicationTitleAlternate Can J Cardiol
PublicationYear 2021
Publisher Elsevier Inc
Pulsus Group
Publisher_xml – name: Elsevier Inc
– name: Pulsus Group
References van Buuren (bib12) 2007; 16
Carpenter, Kenward (bib3) 2013
Lee, Austin, Rouleau (bib22) 2003; 290
Longford (bib26) 2008
Sterne, White, Carlin (bib5) 2009; 338
White, Thompson (bib8) 2005; 24
Sullivan, White, Salter, Ryan, Lee (bib6) 2018; 27
Tu, Donovan, Lee (bib21) 2009; 302
Morris, White, Royston (bib14) 2014; 14
Akl, Shawwa, Kahale (bib25) 2015; 5
Little, Rubin (bib2) 2002
Schafer, Graham (bib4) 2002; 7
von Hippell (bib15) 2020; 49
van Buuren (bib10) 2018
van Buuren (bib27) 2011
von Hippell (bib20) 2007; 37
White, Royston, Wood (bib11) 2011; 30
Schafer (bib7) 1999; 8
von Hippell (bib17) 2009; 39
van Buuren, Groothuis-Oudshoorn (bib13) 2011; 45
Vink, van Buuren (bib19) 2013; 42
Molenberghs, Verbeke (bib28) 2013
Rubin (bib1) 1987
White, Royston (bib16) 2009; 28
Richman M, Trafalis T, Adrianto I. Multiple imputation through machine learning algorithms. Paper presented at: American Meteorological Society 87th Annual Meeting. January 13-18, 2007; San Antonio, TX.
Seaman, Bartlett, White (bib18) 2012; 12
Lee, Lee, Schull (bib24) 2019; 139
Audigier, White, Jolani (bib29) 2018; 33
Groenwold, White, Donders (bib9) 2012; 184
Tu, Austin, Walld (bib23) 2001; 37
Akl (10.1016/j.cjca.2020.11.010_bib25) 2015; 5
van Buuren (10.1016/j.cjca.2020.11.010_bib13) 2011; 45
Tu (10.1016/j.cjca.2020.11.010_bib21) 2009; 302
Sterne (10.1016/j.cjca.2020.11.010_bib5) 2009; 338
Sullivan (10.1016/j.cjca.2020.11.010_bib6) 2018; 27
Carpenter (10.1016/j.cjca.2020.11.010_bib3) 2013
White (10.1016/j.cjca.2020.11.010_bib11) 2011; 30
White (10.1016/j.cjca.2020.11.010_bib16) 2009; 28
Lee (10.1016/j.cjca.2020.11.010_bib22) 2003; 290
van Buuren (10.1016/j.cjca.2020.11.010_bib27) 2011
Rubin (10.1016/j.cjca.2020.11.010_bib1) 1987
Schafer (10.1016/j.cjca.2020.11.010_bib4) 2002; 7
Tu (10.1016/j.cjca.2020.11.010_bib23) 2001; 37
Morris (10.1016/j.cjca.2020.11.010_bib14) 2014; 14
Longford (10.1016/j.cjca.2020.11.010_bib26) 2008
Lee (10.1016/j.cjca.2020.11.010_bib24) 2019; 139
10.1016/j.cjca.2020.11.010_bib30
van Buuren (10.1016/j.cjca.2020.11.010_bib10) 2018
Seaman (10.1016/j.cjca.2020.11.010_bib18) 2012; 12
von Hippell (10.1016/j.cjca.2020.11.010_bib15) 2020; 49
von Hippell (10.1016/j.cjca.2020.11.010_bib20) 2007; 37
Molenberghs (10.1016/j.cjca.2020.11.010_bib28) 2013
White (10.1016/j.cjca.2020.11.010_bib8) 2005; 24
Schafer (10.1016/j.cjca.2020.11.010_bib7) 1999; 8
van Buuren (10.1016/j.cjca.2020.11.010_bib12) 2007; 16
Little (10.1016/j.cjca.2020.11.010_bib2) 2002
Vink (10.1016/j.cjca.2020.11.010_bib19) 2013; 42
von Hippell (10.1016/j.cjca.2020.11.010_bib17) 2009; 39
Groenwold (10.1016/j.cjca.2020.11.010_bib9) 2012; 184
Audigier (10.1016/j.cjca.2020.11.010_bib29) 2018; 33
References_xml – volume: 28
  start-page: 1982
  year: 2009
  end-page: 1998
  ident: bib16
  article-title: Imputing missing covariate values for the Cox model
  publication-title: Stat Med
– volume: 33
  start-page: 160
  year: 2018
  end-page: 183
  ident: bib29
  article-title: Multiple imputation for multilevel data with continuous and binary variables
  publication-title: Stat Sci
– volume: 14
  start-page: 75
  year: 2014
  ident: bib14
  article-title: Tuning multiple imputation by predictive mean matching and local residual draws
  publication-title: BMC Med Res Methodol
– volume: 8
  start-page: 3
  year: 1999
  end-page: 15
  ident: bib7
  article-title: Multiple imputation: a primer
  publication-title: Stat Methods Med Res
– year: 2018
  ident: bib10
  article-title: Flexible Imputation of Missing Data
– year: 2002
  ident: bib2
  article-title: Statistical Analysis with Missing Data
– start-page: 377
  year: 2008
  end-page: 399
  ident: bib26
  article-title: Missing data
  publication-title: Handbook of Multilevel Analysis
– volume: 139
  start-page: 1146
  year: 2019
  end-page: 1156
  ident: bib24
  article-title: Prospective validation of the emergency heart failure mortality risk grade for acute heart failure
  publication-title: Circulation
– volume: 16
  start-page: 219
  year: 2007
  end-page: 242
  ident: bib12
  article-title: Multiple imputation of discrete and continuous data by fully conditional specification
  publication-title: Stat Methods Med Res
– year: 1987
  ident: bib1
  article-title: Multiple Imputation for Nonresponse in Surveys
– volume: 37
  start-page: 992
  year: 2001
  end-page: 997
  ident: bib23
  article-title: Development and validation of the Ontario acute myocardial infarction mortality prediction rules
  publication-title: J Am Coll Cardiol
– volume: 338
  start-page: b2393
  year: 2009
  ident: bib5
  article-title: Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls
  publication-title: BMJ
– volume: 27
  start-page: 2610
  year: 2018
  end-page: 2626
  ident: bib6
  article-title: Should multiple imputation be the method of choice for handling missing data in randomized trials?
  publication-title: Stat Methods Med Res
– volume: 24
  start-page: 993
  year: 2005
  end-page: 1007
  ident: bib8
  article-title: Adjusting for partially missing baseline measurements in randomized trials
  publication-title: Stat Med
– volume: 184
  start-page: 1265
  year: 2012
  end-page: 1269
  ident: bib9
  article-title: Missing covariate data in clinical research: when and when not to use the missing-indicator method for analysis
  publication-title: CMAJ
– volume: 7
  start-page: 147
  year: 2002
  end-page: 177
  ident: bib4
  article-title: Missing data: our view of the state of the art
  publication-title: Psychol Methods
– volume: 45
  year: 2011
  ident: bib13
  article-title: mice: multivariate imputation by chained equations in R
  publication-title: J Stat Softw
– start-page: 403
  year: 2013
  end-page: 424
  ident: bib28
  article-title: Missing data
  publication-title: The SAGE Handbook of Multilevel Modeling
– volume: 302
  start-page: 2330
  year: 2009
  end-page: 2337
  ident: bib21
  article-title: Effectiveness of public report cards for improving the quality of cardiac care: the EFFECT study: a randomized trial
  publication-title: JAMA
– volume: 290
  start-page: 2581
  year: 2003
  end-page: 2587
  ident: bib22
  article-title: Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model
  publication-title: JAMA
– volume: 5
  year: 2015
  ident: bib25
  article-title: Reporting missing participant data in randomised trials: systematic survey of the methodological literature and a proposed guide
  publication-title: BMJ Open
– volume: 12
  start-page: 46
  year: 2012
  ident: bib18
  article-title: Multiple imputation of missing covariates with nonlinear effects and interactions: an evaluation of statistical methods
  publication-title: BMC Med Res Methodol
– volume: 39
  start-page: 265
  year: 2009
  end-page: 291
  ident: bib17
  article-title: How to impute interactions, squares, and other transformed variables
  publication-title: Sociol Methodol
– volume: 30
  start-page: 377
  year: 2011
  end-page: 399
  ident: bib11
  article-title: Multiple imputation using chained equations: issues and guidance for practice
  publication-title: Stat Med
– year: 2013
  ident: bib3
  article-title: Multiple Imputation and Its Application
– volume: 42
  start-page: 598
  year: 2013
  end-page: 607
  ident: bib19
  article-title: Multiple imputation of squared terms
  publication-title: Sociol Methods Res
– volume: 37
  start-page: 83
  year: 2007
  end-page: 117
  ident: bib20
  article-title: Regression with missing Ys: an improved strategy for analyzing multiply imputed data
  publication-title: Sociol Methodol
– reference: Richman M, Trafalis T, Adrianto I. Multiple imputation through machine learning algorithms. Paper presented at: American Meteorological Society 87th Annual Meeting. January 13-18, 2007; San Antonio, TX.
– volume: 49
  start-page: 699
  year: 2020
  end-page: 718
  ident: bib15
  article-title: How many imputations do you need? A two-stage calculation using a quadratic rule
  publication-title: Sociol Methods Res
– start-page: 173
  year: 2011
  end-page: 196
  ident: bib27
  article-title: Multiple imputation of multilevel data
  publication-title: Handbook of Advanced Multilevel Analysis
– volume: 5
  year: 2015
  ident: 10.1016/j.cjca.2020.11.010_bib25
  article-title: Reporting missing participant data in randomised trials: systematic survey of the methodological literature and a proposed guide
  publication-title: BMJ Open
– start-page: 403
  year: 2013
  ident: 10.1016/j.cjca.2020.11.010_bib28
  article-title: Missing data
– volume: 184
  start-page: 1265
  year: 2012
  ident: 10.1016/j.cjca.2020.11.010_bib9
  article-title: Missing covariate data in clinical research: when and when not to use the missing-indicator method for analysis
  publication-title: CMAJ
  doi: 10.1503/cmaj.110977
– volume: 45
  issue: 3
  year: 2011
  ident: 10.1016/j.cjca.2020.11.010_bib13
  article-title: mice: multivariate imputation by chained equations in R
  publication-title: J Stat Softw
– volume: 42
  start-page: 598
  year: 2013
  ident: 10.1016/j.cjca.2020.11.010_bib19
  article-title: Multiple imputation of squared terms
  publication-title: Sociol Methods Res
  doi: 10.1177/0049124113502943
– volume: 24
  start-page: 993
  year: 2005
  ident: 10.1016/j.cjca.2020.11.010_bib8
  article-title: Adjusting for partially missing baseline measurements in randomized trials
  publication-title: Stat Med
  doi: 10.1002/sim.1981
– ident: 10.1016/j.cjca.2020.11.010_bib30
– volume: 338
  start-page: b2393
  year: 2009
  ident: 10.1016/j.cjca.2020.11.010_bib5
  article-title: Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls
  publication-title: BMJ
  doi: 10.1136/bmj.b2393
– volume: 30
  start-page: 377
  year: 2011
  ident: 10.1016/j.cjca.2020.11.010_bib11
  article-title: Multiple imputation using chained equations: issues and guidance for practice
  publication-title: Stat Med
  doi: 10.1002/sim.4067
– volume: 12
  start-page: 46
  year: 2012
  ident: 10.1016/j.cjca.2020.11.010_bib18
  article-title: Multiple imputation of missing covariates with nonlinear effects and interactions: an evaluation of statistical methods
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-12-46
– volume: 302
  start-page: 2330
  year: 2009
  ident: 10.1016/j.cjca.2020.11.010_bib21
  article-title: Effectiveness of public report cards for improving the quality of cardiac care: the EFFECT study: a randomized trial
  publication-title: JAMA
  doi: 10.1001/jama.2009.1731
– volume: 37
  start-page: 83
  year: 2007
  ident: 10.1016/j.cjca.2020.11.010_bib20
  article-title: Regression with missing Ys: an improved strategy for analyzing multiply imputed data
  publication-title: Sociol Methodol
  doi: 10.1111/j.1467-9531.2007.00180.x
– year: 2013
  ident: 10.1016/j.cjca.2020.11.010_bib3
– volume: 290
  start-page: 2581
  year: 2003
  ident: 10.1016/j.cjca.2020.11.010_bib22
  article-title: Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model
  publication-title: JAMA
  doi: 10.1001/jama.290.19.2581
– year: 1987
  ident: 10.1016/j.cjca.2020.11.010_bib1
– volume: 28
  start-page: 1982
  year: 2009
  ident: 10.1016/j.cjca.2020.11.010_bib16
  article-title: Imputing missing covariate values for the Cox model
  publication-title: Stat Med
  doi: 10.1002/sim.3618
– year: 2018
  ident: 10.1016/j.cjca.2020.11.010_bib10
– volume: 27
  start-page: 2610
  year: 2018
  ident: 10.1016/j.cjca.2020.11.010_bib6
  article-title: Should multiple imputation be the method of choice for handling missing data in randomized trials?
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280216683570
– volume: 16
  start-page: 219
  year: 2007
  ident: 10.1016/j.cjca.2020.11.010_bib12
  article-title: Multiple imputation of discrete and continuous data by fully conditional specification
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280206074463
– start-page: 377
  year: 2008
  ident: 10.1016/j.cjca.2020.11.010_bib26
  article-title: Missing data
– year: 2002
  ident: 10.1016/j.cjca.2020.11.010_bib2
– volume: 33
  start-page: 160
  year: 2018
  ident: 10.1016/j.cjca.2020.11.010_bib29
  article-title: Multiple imputation for multilevel data with continuous and binary variables
  publication-title: Stat Sci
  doi: 10.1214/18-STS646
– volume: 7
  start-page: 147
  year: 2002
  ident: 10.1016/j.cjca.2020.11.010_bib4
  article-title: Missing data: our view of the state of the art
  publication-title: Psychol Methods
  doi: 10.1037/1082-989X.7.2.147
– volume: 139
  start-page: 1146
  year: 2019
  ident: 10.1016/j.cjca.2020.11.010_bib24
  article-title: Prospective validation of the emergency heart failure mortality risk grade for acute heart failure
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.035509
– start-page: 173
  year: 2011
  ident: 10.1016/j.cjca.2020.11.010_bib27
  article-title: Multiple imputation of multilevel data
– volume: 8
  start-page: 3
  year: 1999
  ident: 10.1016/j.cjca.2020.11.010_bib7
  article-title: Multiple imputation: a primer
  publication-title: Stat Methods Med Res
  doi: 10.1177/096228029900800102
– volume: 14
  start-page: 75
  year: 2014
  ident: 10.1016/j.cjca.2020.11.010_bib14
  article-title: Tuning multiple imputation by predictive mean matching and local residual draws
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-14-75
– volume: 49
  start-page: 699
  year: 2020
  ident: 10.1016/j.cjca.2020.11.010_bib15
  article-title: How many imputations do you need? A two-stage calculation using a quadratic rule
  publication-title: Sociol Methods Res
  doi: 10.1177/0049124117747303
– volume: 39
  start-page: 265
  year: 2009
  ident: 10.1016/j.cjca.2020.11.010_bib17
  article-title: How to impute interactions, squares, and other transformed variables
  publication-title: Sociol Methodol
  doi: 10.1111/j.1467-9531.2009.01215.x
– volume: 37
  start-page: 992
  year: 2001
  ident: 10.1016/j.cjca.2020.11.010_bib23
  article-title: Development and validation of the Ontario acute myocardial infarction mortality prediction rules
  publication-title: J Am Coll Cardiol
  doi: 10.1016/S0735-1097(01)01109-3
SSID ssj0041776
Score 2.69341
SecondaryResourceType review_article
Snippet Missing data is a common occurrence in clinical research. Missing data occurs when the value of the variables of interest are not measured or recorded for all...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1322
SubjectTerms Clinical Trials as Topic
Data Interpretation, Statistical
Humans
Research Design
Review
Title Missing Data in Clinical Research: A Tutorial on Multiple Imputation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0828282X20311119
https://dx.doi.org/10.1016/j.cjca.2020.11.010
https://www.ncbi.nlm.nih.gov/pubmed/33276049
https://www.proquest.com/docview/2467618867
https://pubmed.ncbi.nlm.nih.gov/PMC8499698
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9EQXwRv51fRPBN6tYmTVLfhh9synxRYW8hzTrckE50e_Vv965Ni1NRsH1r7yBc7pP87gJwIi0PuZMyyLi2AVpiFCROJ4HMwnRIMZyn1Dvcu5OdR3HTj_sLcFH1whCs0vv-0qcX3tp_aXppNl9Go-Y9DV_Dtx-hXuJDTXxCKNLys_ca5iFCVVwwR8QBUfvGmRLj5caOZg9F5DnOWtRF-3Nw-p58fsVQfgpK12uw6rNJ1i4XvA4LWb4Byz1_Xr4Jlz2UKwYndmmnlo1y5seAPrMKcXfO2uyB5higHrJJznoeYMi6dNtDsW1b8Hh99XDRCfy9CYGLVTQNEjWMI6wOhxazESfiJNSSBJ9gsibkIJZOYVZkQ2WRJJN6gGkDH7TscMBFHFrHt2Exn-TZLjCrnFapUzZrcYFFeKJTtPBYS64Emr9uQFgJzDg_VJzutng2FXpsbEjIhoSM1YZBITfgtOZ5KUdq_ErNq30wVbMoujeDHv9XrrjmmlOnP_mOq602aGd0eGLzbDJ7MxHqsQy1lqoBO-XW16vnPFISS60GqDmlqAlohvf8n3z0VMzy1lhxykTv_XO9-7ASEcimAL0dwOL0dZYdYpY0TY8KMziCpXb3tnP3AYETDr4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gHoR367PCN6k7rZpk9Sb-GB91Isr7C2k2S7uIl3R9epvd6ZNi6uiYHtrJxDmlRnyzQzAoTDc51YIL-PKeGiJgRdbFXsi89M-neE8pdrh5E60H8LrbtSdgrOqFoZglc73lz698NbuS9Nxs_k8GDTvqfkavt0A9RKfeBpmQzRfGmNw_F7jPEJfFhPmiNojclc5U4K87NBS86GAXMdxi8pofz6dvkefX0GUn06lyyVYdOEkOy13vAxTWb4Cc4m7MF-F8wQZi6cTOzdjwwY5c31An1gFuTthp6xDjQxQEdkoZ4lDGLIrGvdQyG0NHi4vOmdtzw1O8Gwkg7EXy34UYHrYNxiO2DCKfSWI8zFGa6HoRcJKDIuMLw2SZEL1MG7gvZbp93gY-cbydZjJR3m2CcxIq2RqpclaPMQsPFYpmnikBJch2r9qgF8xTFvXVZyGWzzpCj421MRkTUzGdEMjkxtwVK95Lntq_ErNKznoqloU_ZtGl__rqqheNaFPf647qESt0dDo9sTk2ejtVQeoyMJXSsgGbJSir3fPeSAF5loNkBNKURNQE-_JP_ngsWjmrTDlFLHa-ud-92G-3Ulu9e3V3c02LASEuCkQcDswM355y3YxZBqne4VJfACQTxBM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Missing+Data+in+Clinical+Research%3A+A+Tutorial+on+Multiple+Imputation&rft.jtitle=Canadian+journal+of+cardiology&rft.au=Austin%2C+Peter+C.&rft.au=White%2C+Ian+R.&rft.au=Lee%2C+Douglas+S.&rft.au=van+Buuren%2C+Stef&rft.date=2021-09-01&rft.pub=Pulsus+Group&rft.issn=0828-282X&rft.eissn=1916-7075&rft.volume=37&rft.issue=9&rft.spage=1322&rft.epage=1331&rft_id=info:doi/10.1016%2Fj.cjca.2020.11.010&rft_id=info%3Apmid%2F33276049&rft.externalDocID=PMC8499698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0828-282X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0828-282X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0828-282X&client=summon