Missing Data in Clinical Research: A Tutorial on Multiple Imputation
Missing data is a common occurrence in clinical research. Missing data occurs when the value of the variables of interest are not measured or recorded for all subjects in the sample. Common approaches to addressing the presence of missing data include complete-case analyses, where subjects with miss...
Saved in:
Published in | Canadian journal of cardiology Vol. 37; no. 9; pp. 1322 - 1331 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
01.09.2021
Pulsus Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Missing data is a common occurrence in clinical research. Missing data occurs when the value of the variables of interest are not measured or recorded for all subjects in the sample. Common approaches to addressing the presence of missing data include complete-case analyses, where subjects with missing data are excluded, and mean-value imputation, where missing values are replaced with the mean value of that variable in those subjects for whom it is not missing. However, in many settings, these approaches can lead to biased estimates of statistics (eg, of regression coefficients) and/or confidence intervals that are artificially narrow. Multiple imputation (MI) is a popular approach for addressing the presence of missing data. With MI, multiple plausible values of a given variable are imputed or filled in for each subject who has missing data for that variable. This results in the creation of multiple completed data sets. Identical statistical analyses are conducted in each of these complete data sets and the results are pooled across complete data sets. We provide an introduction to MI and discuss issues in its implementation, including developing the imputation model, how many imputed data sets to create, and addressing derived variables. We illustrate the application of MI through an analysis of data on patients hospitalised with heart failure. We focus on developing a model to estimate the probability of 1-year mortality in the presence of missing data. Statistical software code for conducting MI in R, SAS, and Stata are provided.
Les données manquantes sont un phénomène courant dans le domaine de la recherche clinique, qui survient lorsque les résultats pour des variables d'intérêt ne sont pas mesurés ou consignés pour tous les sujets d'un échantillon. Les approches courantes adoptées pour pallier les données manquantes comprennent les analyses de cas complètes, dans lesquelles tous les sujets pour lesquels des données sont manquantes sont exclus de l'analyse, et l'imputation par la moyenne, dans laquelle les valeurs manquantes sont remplacées par la valeur moyenne rapportée pour cette variable chez les sujets chez lesquels ces résultats ont été recueillis. Toutefois, dans de nombreux contextes, ces approches peuvent donner lieu à des estimations biaisées des statistiques (p. ex. des coefficients de régression) ou à des intervalles de confiance artificiellement étroits. L'imputation multiple est une approche populaire pour remédier aux données manquantes. Selon cette méthode, des valeurs plausibles multiples pour une variable donnée sont attribuées ou imputées pour chacun des sujets pour lesquels les résultats pour ladite variable sont manquants. Il en résulte la création de multiples groupes de données complètes. Des analyses statistiques identiques sont effectuées à partir de chacun de ces groupes de données complètes, et les résultats sont regroupés pour les différents groupes de données complètes. Cet article offre une introduction à l'imputation multiple, et aborde les difficultés liées à son utilisation, notamment l’élaboration du modèle d'imputation, le nombre de groupes de données imputables à créer, et les variables dérivées qui doivent être considérées. L'application de l'imputation multiple sera illustrée au moyen d'une analyse des données pour des patients hospitalisés atteints d'insuffisance cardiaque. Le modèle suggéré aura pour objectif d'estimer la probabilité de mortalité à 1 an en présence de données manquantes. Les codes pour les logiciels statistiques utilisés pour l'imputation multiple (R, SAS et Stata) sont fournis. |
---|---|
AbstractList | Missing data is a common occurrence in clinical research. Missing data occurs when the value of the variables of interest are not measured or recorded for all subjects in the sample. Common approaches to addressing the presence of missing data include complete-case analyses, where subjects with missing data are excluded, and mean-value imputation, where missing values are replaced with the mean value of that variable in those subjects for whom it is not missing. However, in many settings, these approaches can lead to biased estimates of statistics (eg, of regression coefficients) and/or confidence intervals that are artificially narrow. Multiple imputation (MI) is a popular approach for addressing the presence of missing data. With MI, multiple plausible values of a given variable are imputed or filled in for each subject who has missing data for that variable. This results in the creation of multiple completed data sets. Identical statistical analyses are conducted in each of these complete data sets and the results are pooled across complete data sets. We provide an introduction to MI and discuss issues in its implementation, including developing the imputation model, how many imputed data sets to create, and addressing derived variables. We illustrate the application of MI through an analysis of data on patients hospitalised with heart failure. We focus on developing a model to estimate the probability of 1-year mortality in the presence of missing data. Statistical software code for conducting MI in R, SAS, and Stata are provided.
Les données manquantes sont un phénomène courant dans le domaine de la recherche clinique, qui survient lorsque les résultats pour des variables d'intérêt ne sont pas mesurés ou consignés pour tous les sujets d'un échantillon. Les approches courantes adoptées pour pallier les données manquantes comprennent les analyses de cas complètes, dans lesquelles tous les sujets pour lesquels des données sont manquantes sont exclus de l'analyse, et l'imputation par la moyenne, dans laquelle les valeurs manquantes sont remplacées par la valeur moyenne rapportée pour cette variable chez les sujets chez lesquels ces résultats ont été recueillis. Toutefois, dans de nombreux contextes, ces approches peuvent donner lieu à des estimations biaisées des statistiques (p. ex. des coefficients de régression) ou à des intervalles de confiance artificiellement étroits. L'imputation multiple est une approche populaire pour remédier aux données manquantes. Selon cette méthode, des valeurs plausibles multiples pour une variable donnée sont attribuées ou imputées pour chacun des sujets pour lesquels les résultats pour ladite variable sont manquants. Il en résulte la création de multiples groupes de données complètes. Des analyses statistiques identiques sont effectuées à partir de chacun de ces groupes de données complètes, et les résultats sont regroupés pour les différents groupes de données complètes. Cet article offre une introduction à l'imputation multiple, et aborde les difficultés liées à son utilisation, notamment l’élaboration du modèle d'imputation, le nombre de groupes de données imputables à créer, et les variables dérivées qui doivent être considérées. L'application de l'imputation multiple sera illustrée au moyen d'une analyse des données pour des patients hospitalisés atteints d'insuffisance cardiaque. Le modèle suggéré aura pour objectif d'estimer la probabilité de mortalité à 1 an en présence de données manquantes. Les codes pour les logiciels statistiques utilisés pour l'imputation multiple (R, SAS et Stata) sont fournis. Missing data is a common occurrence in clinical research. Missing data occurs when the value of the variables of interest are not measured or recorded for all subjects in the sample. Common approaches to addressing the presence of missing data include complete-case analyses, where subjects with missing data are excluded, and mean-value imputation, where missing values are replaced with the mean value of that variable in those subjects for whom it is not missing. However, in many settings, these approaches can lead to biased estimates of statistics (eg, of regression coefficients) and/or confidence intervals that are artificially narrow. Multiple imputation (MI) is a popular approach for addressing the presence of missing data. With MI, multiple plausible values of a given variable are imputed or filled in for each subject who has missing data for that variable. This results in the creation of multiple completed data sets. Identical statistical analyses are conducted in each of these complete data sets and the results are pooled across complete data sets. We provide an introduction to MI and discuss issues in its implementation, including developing the imputation model, how many imputed data sets to create, and addressing derived variables. We illustrate the application of MI through an analysis of data on patients hospitalised with heart failure. We focus on developing a model to estimate the probability of 1-year mortality in the presence of missing data. Statistical software code for conducting MI in R, SAS, and Stata are provided.Missing data is a common occurrence in clinical research. Missing data occurs when the value of the variables of interest are not measured or recorded for all subjects in the sample. Common approaches to addressing the presence of missing data include complete-case analyses, where subjects with missing data are excluded, and mean-value imputation, where missing values are replaced with the mean value of that variable in those subjects for whom it is not missing. However, in many settings, these approaches can lead to biased estimates of statistics (eg, of regression coefficients) and/or confidence intervals that are artificially narrow. Multiple imputation (MI) is a popular approach for addressing the presence of missing data. With MI, multiple plausible values of a given variable are imputed or filled in for each subject who has missing data for that variable. This results in the creation of multiple completed data sets. Identical statistical analyses are conducted in each of these complete data sets and the results are pooled across complete data sets. We provide an introduction to MI and discuss issues in its implementation, including developing the imputation model, how many imputed data sets to create, and addressing derived variables. We illustrate the application of MI through an analysis of data on patients hospitalised with heart failure. We focus on developing a model to estimate the probability of 1-year mortality in the presence of missing data. Statistical software code for conducting MI in R, SAS, and Stata are provided. Missing data is a common occurrence in clinical research. Missing data occurs when the value of the variables of interest are not measured or recorded for all subjects in the sample. Common approaches to addressing the presence of missing data include complete-case analyses, where subjects with missing data are excluded, and mean-value imputation, where missing values are replaced with the mean value of that variable in those subjects for whom it is not missing. However, in many settings, these approaches can lead to biased estimates of statistics (eg, of regression coefficients) and/or confidence intervals that are artificially narrow. Multiple imputation (MI) is a popular approach for addressing the presence of missing data. With MI, multiple plausible values of a given variable are imputed or filled in for each subject who has missing data for that variable. This results in the creation of multiple completed data sets. Identical statistical analyses are conducted in each of these complete data sets and the results are pooled across complete data sets. We provide an introduction to MI and discuss issues in its implementation, including developing the imputation model, how many imputed data sets to create, and addressing derived variables. We illustrate the application of MI through an analysis of data on patients hospitalised with heart failure. We focus on developing a model to estimate the probability of 1-year mortality in the presence of missing data. Statistical software code for conducting MI in R, SAS, and Stata are provided. |
Author | van Buuren, Stef Austin, Peter C. White, Ian R. Lee, Douglas S. |
Author_xml | – sequence: 1 givenname: Peter C. surname: Austin fullname: Austin, Peter C. email: peter.austin@ices.on.ca organization: Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada – sequence: 2 givenname: Ian R. surname: White fullname: White, Ian R. organization: Medical Research Council Clinical Trials Unit, University College London, London, United Kingdom – sequence: 3 givenname: Douglas S. surname: Lee fullname: Lee, Douglas S. organization: Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada – sequence: 4 givenname: Stef surname: van Buuren fullname: van Buuren, Stef organization: University of Utrecht, Utrecht, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33276049$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1LHDEUhkOx1NX2D_SizGVvZptkZvIhpSBrWwVFKBZ6F2LmjJ7tbLJNMoL_vll2K9YLvQqcvM_5eN8DsueDB0LeMzpnlIlPy7lbOjvnlJcCm1NGX5EZ00zUkspuj8yo4qrmiv_aJwcpLSltmZTiDdlvGi4FbfWMnFxgSuhvqhObbYW-Wozo0dmx-gEJbHS3R9VxdTXlELEUg68upjHjeoTqbLWess0Y_FvyerBjgne795D8_Pb1anFan19-P1scn9eukzzXWg4d11INtlHatZ1mSlwPtGysm1b0nXCy0dwyaYsEhOrLFU1P7dA3bcesaw7Jl23f9XS9gt6Bz9GOZh1xZeO9CRbN_z8eb81NuDOq1VpoVRp83DWI4c8EKZsVJgfjaD2EKRneCimYUkIW6YfHsx6G_LOuCPhW4GJIKcLwIGHUbPIxS7PJx2zyMYyZkk-B1BPI4dbDsi-Oz6OftygUh-8QokkOwTvoMYLLpg_4PH70BHe7pH_D_UvwX7QvvdQ |
CitedBy_id | crossref_primary_10_1016_j_radonc_2023_109639 crossref_primary_10_1111_apt_17649 crossref_primary_10_1111_jocn_17476 crossref_primary_10_1016_j_ijotn_2023_101077 crossref_primary_10_1111_cns_14762 crossref_primary_10_3389_fmed_2024_1443056 crossref_primary_10_1186_s12871_024_02756_7 crossref_primary_10_1038_s41598_025_85596_w crossref_primary_10_1093_bib_bbab489 crossref_primary_10_15829_1560_4071_2024_6075 crossref_primary_10_1007_s00262_024_03816_0 crossref_primary_10_1371_journal_pmed_1004335 crossref_primary_10_1016_j_cgh_2024_03_049 crossref_primary_10_1007_s40520_024_02740_8 crossref_primary_10_1371_journal_pone_0304423 crossref_primary_10_1097_WNP_0000000000001003 crossref_primary_10_1007_s42044_023_00154_9 crossref_primary_10_1111_nicc_13287 crossref_primary_10_1186_s40359_022_01003_3 crossref_primary_10_1016_j_intonc_2024_11_003 crossref_primary_10_1186_s12882_024_03818_1 crossref_primary_10_1007_s00464_024_10942_4 crossref_primary_10_4025_actasciagron_v46i1_66185 crossref_primary_10_1139_apnm_2023_0206 crossref_primary_10_1016_j_dajour_2023_100341 crossref_primary_10_3390_jcm13071883 crossref_primary_10_1186_s12933_023_01864_x crossref_primary_10_3389_fcvm_2022_893764 crossref_primary_10_1038_s41598_025_87219_w crossref_primary_10_1097_JS9_0000000000000993 crossref_primary_10_1016_j_socscimed_2024_116699 crossref_primary_10_1245_s10434_023_14345_y crossref_primary_10_3390_nu16132030 crossref_primary_10_1016_j_ijheh_2022_114058 crossref_primary_10_1089_jwh_2023_0179 crossref_primary_10_1186_s12879_024_10179_5 crossref_primary_10_1016_j_ajog_2022_10_043 crossref_primary_10_1186_s12872_025_04518_w crossref_primary_10_3389_fmolb_2024_1429372 crossref_primary_10_1016_j_appet_2024_107834 crossref_primary_10_1038_s41380_023_02383_7 crossref_primary_10_1177_20552076231171482 crossref_primary_10_1016_j_socscimed_2023_116397 crossref_primary_10_1093_heapol_czae091 crossref_primary_10_1007_s13384_024_00755_8 crossref_primary_10_3390_w14040610 crossref_primary_10_1111_ipd_13230 crossref_primary_10_3390_jcdd10100432 crossref_primary_10_1002_jac5_70025 crossref_primary_10_1093_ageing_afad224 crossref_primary_10_3389_fmed_2024_1413541 crossref_primary_10_1007_s00134_022_06926_4 crossref_primary_10_1002_pbc_30636 crossref_primary_10_1016_j_cmpb_2024_108561 crossref_primary_10_1016_j_envint_2024_108734 crossref_primary_10_1177_00914150221084644 crossref_primary_10_1177_01640275241290279 crossref_primary_10_1186_s12916_024_03693_5 crossref_primary_10_1186_s12874_024_02392_2 crossref_primary_10_1016_j_socscimed_2023_116362 crossref_primary_10_1111_1471_0528_17633 crossref_primary_10_3389_fpubh_2024_1450167 crossref_primary_10_3390_ijerph20166582 crossref_primary_10_3390_curroncol30070478 crossref_primary_10_3389_fneur_2023_1271391 crossref_primary_10_3390_info13120575 crossref_primary_10_1007_s40200_023_01330_1 crossref_primary_10_2147_COPD_S402717 crossref_primary_10_3390_diagnostics12102299 crossref_primary_10_1007_s00431_024_05925_5 crossref_primary_10_1016_j_jclinepi_2022_12_011 crossref_primary_10_1371_journal_pone_0316238 crossref_primary_10_1026_1616_3443_a000778 crossref_primary_10_1542_peds_2023_063101 crossref_primary_10_1007_s00521_022_07224_2 crossref_primary_10_1016_j_advengsoft_2024_103856 crossref_primary_10_2147_DMSO_S521525 crossref_primary_10_1016_j_ahjo_2022_100196 crossref_primary_10_1371_journal_pone_0291575 crossref_primary_10_1186_s12871_024_02845_7 crossref_primary_10_1186_s12874_023_02004_5 crossref_primary_10_1007_s12035_025_04716_9 crossref_primary_10_1186_s13063_024_08558_z crossref_primary_10_1097_EJA_0000000000002109 crossref_primary_10_1371_journal_pone_0317210 crossref_primary_10_1038_s41591_022_02023_7 crossref_primary_10_1016_j_enbuild_2022_111845 crossref_primary_10_1007_s11121_025_01781_3 crossref_primary_10_1016_j_tjnut_2023_06_013 crossref_primary_10_1038_s41598_025_91012_0 crossref_primary_10_1038_s41598_024_58090_y crossref_primary_10_1016_j_softx_2025_102130 crossref_primary_10_1093_eurjcn_zvae067 crossref_primary_10_1002_brb3_3301 crossref_primary_10_1016_j_scitotenv_2024_175395 crossref_primary_10_1177_1086296X221116866 crossref_primary_10_1016_j_sleh_2023_06_005 crossref_primary_10_1542_hpeds_2024_008020 crossref_primary_10_1016_j_injury_2023_111296 crossref_primary_10_1136_bmjopen_2021_059830 crossref_primary_10_2147_JHC_S452628 crossref_primary_10_1007_s00228_023_03495_3 crossref_primary_10_1186_s12886_024_03730_0 crossref_primary_10_1007_s10815_022_02634_6 crossref_primary_10_1111_jocn_17518 crossref_primary_10_1371_journal_pone_0289111 crossref_primary_10_1016_j_cmpb_2023_107547 crossref_primary_10_1177_09622802231198795 crossref_primary_10_1016_j_xops_2024_100592 crossref_primary_10_1253_circrep_CR_23_0049 crossref_primary_10_1080_14719037_2024_2303609 crossref_primary_10_1111_jgs_18704 crossref_primary_10_1016_j_iccn_2024_103749 crossref_primary_10_1038_s41366_024_01702_4 crossref_primary_10_3389_fimmu_2022_828219 crossref_primary_10_7759_cureus_46175 crossref_primary_10_1111_odi_14747 crossref_primary_10_1002_nse2_70005 crossref_primary_10_1155_2021_1285167 crossref_primary_10_3389_fnagi_2023_1119194 crossref_primary_10_1080_07481187_2024_2414935 crossref_primary_10_1111_acem_14756 crossref_primary_10_1016_j_ajogmf_2023_101062 crossref_primary_10_1186_s13063_022_06264_2 crossref_primary_10_1177_23800844241228277 crossref_primary_10_1016_S1474_4422_23_00205_3 crossref_primary_10_1111_jvim_16395 crossref_primary_10_3390_su16177532 crossref_primary_10_1161_JAHA_123_034641 crossref_primary_10_1177_20552076241257456 crossref_primary_10_1016_j_mhp_2022_200243 crossref_primary_10_1016_j_nutres_2023_07_004 crossref_primary_10_1016_j_lanepe_2025_101233 crossref_primary_10_1186_s42162_024_00353_z crossref_primary_10_1186_s12877_023_04483_z crossref_primary_10_1186_s12891_024_07292_6 crossref_primary_10_1016_j_jtcvs_2023_02_008 crossref_primary_10_1016_j_annepidem_2023_11_008 crossref_primary_10_1093_jnci_djad210 crossref_primary_10_1097_NMD_0000000000001604 crossref_primary_10_3389_fcvm_2022_964894 crossref_primary_10_1186_s41512_024_00168_2 crossref_primary_10_1016_j_ajcnut_2024_03_004 crossref_primary_10_3389_fneur_2024_1502153 crossref_primary_10_1007_s12630_024_02860_9 crossref_primary_10_1001_jamanetworkopen_2023_31988 crossref_primary_10_1016_j_jad_2022_01_030 crossref_primary_10_1186_s12911_023_02264_7 crossref_primary_10_1016_j_iccn_2024_103841 crossref_primary_10_1097_SHK_0000000000002312 crossref_primary_10_1108_JEAS_07_2023_0201 crossref_primary_10_2147_COPD_S373114 crossref_primary_10_3389_fpsyt_2023_1233981 crossref_primary_10_1186_s13063_025_08734_9 crossref_primary_10_1186_s12887_024_05201_3 crossref_primary_10_3389_fneur_2024_1336121 crossref_primary_10_1186_s12879_023_08053_x crossref_primary_10_1200_JCO_23_02313 crossref_primary_10_1016_j_jff_2024_106451 crossref_primary_10_1136_tsaco_2023_001280 crossref_primary_10_15829_1728_8800_2024_3996 crossref_primary_10_1002_VIW_20240059 crossref_primary_10_1016_j_cmpb_2023_107347 crossref_primary_10_1097_CM9_0000000000002966 crossref_primary_10_1111_crj_70042 crossref_primary_10_3389_fmed_2024_1396459 crossref_primary_10_1161_STROKEAHA_124_049038 crossref_primary_10_1016_j_josat_2024_209561 crossref_primary_10_1111_famp_13002 crossref_primary_10_1002_alz_13468 crossref_primary_10_1016_j_eclinm_2024_102736 crossref_primary_10_3390_math11194070 crossref_primary_10_3390_nu15030608 crossref_primary_10_1097_CCE_0000000000001012 crossref_primary_10_1515_jisys_2023_0318 crossref_primary_10_1038_s41598_024_81919_5 crossref_primary_10_1016_j_pedneo_2023_03_011 crossref_primary_10_1111_aas_13934 crossref_primary_10_1016_j_puhe_2024_12_020 crossref_primary_10_1053_j_jvca_2022_11_038 crossref_primary_10_3390_nu16091360 crossref_primary_10_1016_j_archger_2024_105533 crossref_primary_10_1002_ejp_2033 crossref_primary_10_1080_09602011_2024_2414864 crossref_primary_10_1002_alz_14207 crossref_primary_10_1016_j_heliyon_2023_e14648 crossref_primary_10_1016_j_obpill_2025_100169 crossref_primary_10_1016_j_eclinm_2024_102722 crossref_primary_10_1002_acr_25409 crossref_primary_10_1016_j_jtcvs_2022_09_034 crossref_primary_10_1136_jnis_2024_022326 crossref_primary_10_1093_rheumatology_keae599 crossref_primary_10_1016_j_cose_2023_103201 crossref_primary_10_1016_j_cdnut_2023_102065 crossref_primary_10_1016_j_psychres_2025_116352 crossref_primary_10_1155_2024_1741878 crossref_primary_10_1016_j_ypmed_2023_107533 crossref_primary_10_17802_2306_1278_2024_13_1_54_66 crossref_primary_10_1186_s12887_023_04372_9 crossref_primary_10_1089_cyber_2022_0020 crossref_primary_10_1016_j_fertnstert_2022_01_013 crossref_primary_10_1053_j_ajkd_2024_04_012 crossref_primary_10_1080_02702711_2024_2432882 crossref_primary_10_1093_aje_kwad139 crossref_primary_10_1253_circj_CJ_23_0567 crossref_primary_10_1186_s13148_022_01284_w crossref_primary_10_1136_bmjopen_2023_074855 crossref_primary_10_1186_s12874_021_01261_6 crossref_primary_10_3389_fendo_2023_1281203 crossref_primary_10_1007_s41742_025_00765_z crossref_primary_10_1186_s12889_022_14678_5 crossref_primary_10_3389_fimmu_2022_1076121 crossref_primary_10_1007_s00415_024_12774_7 crossref_primary_10_1016_j_ajog_2025_02_002 crossref_primary_10_1016_j_ijoa_2024_104259 crossref_primary_10_1038_s41598_024_75480_4 crossref_primary_10_1177_17488958221140550 crossref_primary_10_3390_ijerph192316319 crossref_primary_10_1016_j_jneb_2024_07_011 crossref_primary_10_1016_j_jece_2024_114196 crossref_primary_10_1177_0272989X251326069 crossref_primary_10_1245_s10434_024_15310_z crossref_primary_10_1093_her_cyad032 crossref_primary_10_1097_pq9_0000000000000714 crossref_primary_10_5334_joc_409 crossref_primary_10_1001_jamanetworkopen_2024_29691 crossref_primary_10_1002_cnr2_2046 crossref_primary_10_1038_s41598_025_86213_6 crossref_primary_10_3389_fcvm_2022_966217 crossref_primary_10_3389_fcvm_2022_1051570 crossref_primary_10_1016_j_eatbeh_2022_101655 crossref_primary_10_3390_cells13161351 crossref_primary_10_4274_jpr_galenos_2023_12144 crossref_primary_10_3233_JIFS_236197 crossref_primary_10_1001_jamanetworkopen_2024_42319 crossref_primary_10_1177_10547738241273164 crossref_primary_10_1016_j_heliyon_2023_e16068 crossref_primary_10_29220_CSAM_2023_30_1_001 crossref_primary_10_1186_s12890_024_03022_9 crossref_primary_10_1007_s00521_024_10646_9 crossref_primary_10_1007_s00228_023_03531_2 crossref_primary_10_1016_j_ajem_2024_07_040 crossref_primary_10_3389_fpsyg_2024_1296498 crossref_primary_10_1007_s41999_024_01006_w crossref_primary_10_1136_bmjopen_2022_066189 crossref_primary_10_1136_bmjopen_2024_086231 crossref_primary_10_1016_j_envint_2024_109123 crossref_primary_10_1007_s10067_024_06933_4 crossref_primary_10_1186_s12916_024_03829_7 crossref_primary_10_1016_j_jpain_2023_06_009 crossref_primary_10_3390_bioengineering12020200 crossref_primary_10_3390_diagnostics13020264 crossref_primary_10_1186_s12883_022_02756_5 crossref_primary_10_1080_1059924X_2024_2385612 crossref_primary_10_1097_MD_0000000000040896 crossref_primary_10_1044_2022_JSLHR_21_00668 crossref_primary_10_1186_s12888_024_05520_w crossref_primary_10_1016_j_jtha_2023_01_004 crossref_primary_10_1136_bmjopen_2024_089639 crossref_primary_10_1097_EE9_0000000000000356 crossref_primary_10_1016_j_nutres_2025_01_003 crossref_primary_10_1097_PR9_0000000000001004 crossref_primary_10_1536_ihj_22_317 crossref_primary_10_1016_j_healun_2024_10_023 crossref_primary_10_1038_s41588_024_01793_9 crossref_primary_10_2139_ssrn_3985872 crossref_primary_10_1186_s12889_024_20977_w crossref_primary_10_1371_journal_pone_0311320 crossref_primary_10_1108_BPMJ_02_2024_0116 crossref_primary_10_3389_fmed_2022_853989 crossref_primary_10_1001_jama_2023_2536 crossref_primary_10_1002_cpp_2806 crossref_primary_10_3389_fonc_2021_787198 crossref_primary_10_1097_TA_0000000000004303 crossref_primary_10_1016_j_wneu_2021_10_090 crossref_primary_10_1136_bmjopen_2024_089562 crossref_primary_10_1038_s41746_023_00770_6 crossref_primary_10_3389_fonc_2023_1199868 crossref_primary_10_1038_s41598_025_93417_3 crossref_primary_10_1111_jebm_12632 crossref_primary_10_3390_jcm13051456 crossref_primary_10_1016_j_pmn_2024_04_014 crossref_primary_10_1161_STROKEAHA_123_042525 crossref_primary_10_1038_s41533_024_00394_7 crossref_primary_10_1038_s41598_024_73649_5 crossref_primary_10_3233_JIFS_231537 crossref_primary_10_1097_MD_0000000000030727 crossref_primary_10_1161_JAHA_124_038376 crossref_primary_10_1186_s12872_024_04184_4 crossref_primary_10_61506_01_00088 crossref_primary_10_3389_fphar_2022_874948 crossref_primary_10_1002_ijgo_15296 crossref_primary_10_1136_tsaco_2022_000988 crossref_primary_10_1001_jamanetworkopen_2023_38540 crossref_primary_10_1164_rccm_202206_1092OC crossref_primary_10_1093_eurjpc_zwad380 crossref_primary_10_4081_monaldi_2024_2848 crossref_primary_10_3389_fsufs_2022_878013 crossref_primary_10_1186_s13063_023_07864_2 crossref_primary_10_1016_j_pmedr_2023_102161 crossref_primary_10_1001_jamasurg_2024_0495 crossref_primary_10_1016_j_fertnstert_2022_10_026 crossref_primary_10_1016_j_amjsurg_2024_115912 crossref_primary_10_1016_j_chstcc_2024_100100 crossref_primary_10_1007_s11136_021_03037_3 crossref_primary_10_1016_j_ijlcj_2024_100720 crossref_primary_10_3389_fnut_2024_1424972 crossref_primary_10_1016_j_hlpt_2024_100893 crossref_primary_10_2147_COPD_S427433 crossref_primary_10_1016_j_wneu_2023_04_008 crossref_primary_10_2337_db22_0696 crossref_primary_10_1016_j_xjon_2024_08_020 crossref_primary_10_1038_s41576_024_00731_z crossref_primary_10_1016_j_diabet_2022_101415 crossref_primary_10_1093_ejcts_ezae251 crossref_primary_10_1093_gerona_glab382 crossref_primary_10_3390_su16051951 crossref_primary_10_1016_j_numecd_2023_10_003 crossref_primary_10_1177_23969873251319924 crossref_primary_10_3390_healthcare11243104 crossref_primary_10_1016_j_cjco_2023_08_005 crossref_primary_10_1007_s12672_024_01139_1 crossref_primary_10_1016_j_ypmed_2024_108090 crossref_primary_10_1002_prca_202100053 crossref_primary_10_3389_fcvm_2023_1242845 crossref_primary_10_1371_journal_pone_0295032 crossref_primary_10_1016_j_arcmed_2023_102881 crossref_primary_10_1093_bib_bbae364 crossref_primary_10_1016_j_apr_2024_102063 crossref_primary_10_1093_pnasnexus_pgad242 crossref_primary_10_1007_s12671_024_02439_x crossref_primary_10_3389_frabi_2024_1380380 crossref_primary_10_1111_lang_12640 crossref_primary_10_1016_j_surg_2024_109014 crossref_primary_10_3390_nu15051230 crossref_primary_10_1136_bmjph_2024_001289 crossref_primary_10_1016_j_annepidem_2023_06_003 crossref_primary_10_1016_j_csda_2024_107994 crossref_primary_10_1016_j_ecolind_2024_111851 crossref_primary_10_1177_01430343241310164 crossref_primary_10_1186_s12872_024_04450_5 crossref_primary_10_1097_HC9_0000000000000196 crossref_primary_10_1177_10775595241313134 crossref_primary_10_1007_s00415_024_12570_3 crossref_primary_10_1001_jamanetworkopen_2024_43353 crossref_primary_10_1016_j_csbj_2025_01_015 crossref_primary_10_1080_10810730_2023_2181891 crossref_primary_10_1136_bmjopen_2023_077421 crossref_primary_10_1186_s12933_025_02654_3 crossref_primary_10_3390_diagnostics14151660 crossref_primary_10_1111_apt_18327 crossref_primary_10_1016_j_resuscitation_2022_11_026 crossref_primary_10_2196_48112 crossref_primary_10_1016_j_jhep_2024_08_013 crossref_primary_10_1080_10826084_2024_2434674 crossref_primary_10_12677_ACM_2024_142626 crossref_primary_10_1016_j_jad_2024_09_049 crossref_primary_10_1111_2041_210X_14494 crossref_primary_10_1093_ofid_ofac042 crossref_primary_10_1136_bmjophth_2023_001493 crossref_primary_10_1016_j_heliyon_2025_e43050 crossref_primary_10_1080_09540091_2024_2325496 crossref_primary_10_1007_s10072_022_06423_y crossref_primary_10_1016_j_energy_2024_134000 crossref_primary_10_1016_j_leukres_2022_106980 crossref_primary_10_1371_journal_pone_0263897 crossref_primary_10_14512_gaia_33_3_5 crossref_primary_10_1016_j_jjcc_2025_01_010 crossref_primary_10_1371_journal_pone_0319555 crossref_primary_10_1136_bmjment_2023_300701 crossref_primary_10_1016_j_cjco_2025_01_002 crossref_primary_10_1016_j_xjtc_2023_10_028 crossref_primary_10_1097_GME_0000000000002314 crossref_primary_10_1186_s12937_024_01048_7 crossref_primary_10_1111_jsr_13820 crossref_primary_10_1038_s41598_024_83443_y crossref_primary_10_1136_rmdopen_2024_004844 crossref_primary_10_1002_mco2_713 crossref_primary_10_1111_apt_18348 crossref_primary_10_1007_s00380_024_02405_6 crossref_primary_10_1172_JCI171058 crossref_primary_10_1016_j_schres_2024_03_026 crossref_primary_10_1002_ohn_729 crossref_primary_10_1016_j_isci_2025_111782 crossref_primary_10_1007_s10668_024_05226_9 crossref_primary_10_1007_s11222_025_10597_8 crossref_primary_10_1186_s12876_025_03771_9 crossref_primary_10_1016_j_fertnstert_2024_08_310 crossref_primary_10_2196_52536 crossref_primary_10_1002_ehf2_14812 crossref_primary_10_1007_s00127_024_02693_3 crossref_primary_10_1016_j_clnesp_2025_01_050 crossref_primary_10_1016_j_ijlp_2024_101971 crossref_primary_10_3390_diagnostics15060791 crossref_primary_10_1186_s12879_025_10476_7 crossref_primary_10_1136_bmjopen_2021_058494 crossref_primary_10_1007_s40520_025_02956_2 crossref_primary_10_1016_j_jad_2025_03_066 crossref_primary_10_2196_38590 crossref_primary_10_1016_j_cjca_2023_09_006 crossref_primary_10_1055_s_0045_1804924 crossref_primary_10_7759_cureus_65572 crossref_primary_10_1016_j_cie_2024_110405 crossref_primary_10_1186_s12874_022_01782_8 crossref_primary_10_1093_eurheartj_ehad508 crossref_primary_10_1080_14767058_2024_2379910 crossref_primary_10_1371_journal_pone_0310769 crossref_primary_10_3389_fpubh_2023_1161808 crossref_primary_10_1007_s10802_024_01192_y crossref_primary_10_1136_bmjopen_2023_079404 crossref_primary_10_1177_20552076241231560 crossref_primary_10_1055_s_0042_1756649 crossref_primary_10_1212_WNL_0000000000209810 crossref_primary_10_1007_s00392_023_02258_5 crossref_primary_10_1016_j_annepidem_2025_02_013 crossref_primary_10_1016_j_jclinepi_2022_08_016 crossref_primary_10_1093_hropen_hoad041 crossref_primary_10_1016_j_ijforecast_2024_06_003 crossref_primary_10_32604_cmc_2024_055906 crossref_primary_10_1016_j_exger_2024_112518 crossref_primary_10_3390_jcm12031010 crossref_primary_10_1136_bmjopen_2024_088970 crossref_primary_10_1002_phar_4631 crossref_primary_10_1007_s11162_023_09729_8 crossref_primary_10_1097_MD_0000000000038265 crossref_primary_10_1016_j_procs_2024_09_170 crossref_primary_10_1016_j_eplepsyres_2024_107397 crossref_primary_10_1002_suco_202301135 crossref_primary_10_1001_jamanetworkopen_2023_36307 crossref_primary_10_1136_bmjopen_2022_067469 crossref_primary_10_1002_cpp_2975 crossref_primary_10_1007_s44230_023_00017_3 crossref_primary_10_1371_journal_pone_0314902 crossref_primary_10_1111_echo_15588 crossref_primary_10_1097_SLA_0000000000006056 crossref_primary_10_1016_j_ejon_2024_102679 crossref_primary_10_1109_JSTARS_2023_3292351 crossref_primary_10_1038_s41598_024_73717_w crossref_primary_10_1016_j_jad_2024_01_021 crossref_primary_10_1093_noajnl_vdae132 crossref_primary_10_1186_s13075_024_03428_0 crossref_primary_10_1093_jpepsy_jsac089 |
Cites_doi | 10.1503/cmaj.110977 10.1177/0049124113502943 10.1002/sim.1981 10.1136/bmj.b2393 10.1002/sim.4067 10.1186/1471-2288-12-46 10.1001/jama.2009.1731 10.1111/j.1467-9531.2007.00180.x 10.1001/jama.290.19.2581 10.1002/sim.3618 10.1177/0962280216683570 10.1177/0962280206074463 10.1214/18-STS646 10.1037/1082-989X.7.2.147 10.1161/CIRCULATIONAHA.118.035509 10.1177/096228029900800102 10.1186/1471-2288-14-75 10.1177/0049124117747303 10.1111/j.1467-9531.2009.01215.x 10.1016/S0735-1097(01)01109-3 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. 2020 The Authors 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2020 The Authors 2020 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cjca.2020.11.010 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1916-7075 |
EndPage | 1331 |
ExternalDocumentID | PMC8499698 33276049 10_1016_j_cjca_2020_11_010 S0828282X20311119 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: CIHR grantid: CTP79847 – fundername: Medical Research Council grantid: MC_UU_12023/21 – fundername: CIHR grantid: MOP 86508 – fundername: CIHR grantid: CRT43823 |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1P~ 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 8P~ AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABLJU ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFO ACIEU ACJTP ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXBA AFXIZ AGCQF AGHFR AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV E3Z EBS EFJIC EFKBS EJD F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HX~ HYE HZ~ J1W KOM M41 MO0 O-L O9- OAUVE OA~ OK1 OL0 P-8 P-9 P2P PC. Q38 ROL RPM SDF SEL SES SJN SNG SPCBC SSH SSZ T5K TR2 Z5R ~G- 6I. AACTN AAFTH AAIAV ABLVK ABYKQ AFCTW AFKWA AISVY AJBFU AJOXV AMFUW EFLBG LCYCR NAHTW AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c572t-97f52978fa389c459186bf01919346d56c7392a17a8fae68d0753d0afd3451ac3 |
IEDL.DBID | .~1 |
ISSN | 0828-282X 1916-7075 |
IngestDate | Thu Aug 21 13:59:34 EDT 2025 Fri Jul 11 15:10:23 EDT 2025 Mon Jul 21 05:34:47 EDT 2025 Tue Jul 01 03:46:18 EDT 2025 Thu Apr 24 23:01:24 EDT 2025 Fri Feb 23 02:43:13 EST 2024 Tue Aug 26 16:55:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c572t-97f52978fa389c459186bf01919346d56c7392a17a8fae68d0753d0afd3451ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0828282X20311119 |
PMID | 33276049 |
PQID | 2467618867 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8499698 proquest_miscellaneous_2467618867 pubmed_primary_33276049 crossref_primary_10_1016_j_cjca_2020_11_010 crossref_citationtrail_10_1016_j_cjca_2020_11_010 elsevier_sciencedirect_doi_10_1016_j_cjca_2020_11_010 elsevier_clinicalkey_doi_10_1016_j_cjca_2020_11_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 20210901 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Canadian journal of cardiology |
PublicationTitleAlternate | Can J Cardiol |
PublicationYear | 2021 |
Publisher | Elsevier Inc Pulsus Group |
Publisher_xml | – name: Elsevier Inc – name: Pulsus Group |
References | van Buuren (bib12) 2007; 16 Carpenter, Kenward (bib3) 2013 Lee, Austin, Rouleau (bib22) 2003; 290 Longford (bib26) 2008 Sterne, White, Carlin (bib5) 2009; 338 White, Thompson (bib8) 2005; 24 Sullivan, White, Salter, Ryan, Lee (bib6) 2018; 27 Tu, Donovan, Lee (bib21) 2009; 302 Morris, White, Royston (bib14) 2014; 14 Akl, Shawwa, Kahale (bib25) 2015; 5 Little, Rubin (bib2) 2002 Schafer, Graham (bib4) 2002; 7 von Hippell (bib15) 2020; 49 van Buuren (bib10) 2018 van Buuren (bib27) 2011 von Hippell (bib20) 2007; 37 White, Royston, Wood (bib11) 2011; 30 Schafer (bib7) 1999; 8 von Hippell (bib17) 2009; 39 van Buuren, Groothuis-Oudshoorn (bib13) 2011; 45 Vink, van Buuren (bib19) 2013; 42 Molenberghs, Verbeke (bib28) 2013 Rubin (bib1) 1987 White, Royston (bib16) 2009; 28 Richman M, Trafalis T, Adrianto I. Multiple imputation through machine learning algorithms. Paper presented at: American Meteorological Society 87th Annual Meeting. January 13-18, 2007; San Antonio, TX. Seaman, Bartlett, White (bib18) 2012; 12 Lee, Lee, Schull (bib24) 2019; 139 Audigier, White, Jolani (bib29) 2018; 33 Groenwold, White, Donders (bib9) 2012; 184 Tu, Austin, Walld (bib23) 2001; 37 Akl (10.1016/j.cjca.2020.11.010_bib25) 2015; 5 van Buuren (10.1016/j.cjca.2020.11.010_bib13) 2011; 45 Tu (10.1016/j.cjca.2020.11.010_bib21) 2009; 302 Sterne (10.1016/j.cjca.2020.11.010_bib5) 2009; 338 Sullivan (10.1016/j.cjca.2020.11.010_bib6) 2018; 27 Carpenter (10.1016/j.cjca.2020.11.010_bib3) 2013 White (10.1016/j.cjca.2020.11.010_bib11) 2011; 30 White (10.1016/j.cjca.2020.11.010_bib16) 2009; 28 Lee (10.1016/j.cjca.2020.11.010_bib22) 2003; 290 van Buuren (10.1016/j.cjca.2020.11.010_bib27) 2011 Rubin (10.1016/j.cjca.2020.11.010_bib1) 1987 Schafer (10.1016/j.cjca.2020.11.010_bib4) 2002; 7 Tu (10.1016/j.cjca.2020.11.010_bib23) 2001; 37 Morris (10.1016/j.cjca.2020.11.010_bib14) 2014; 14 Longford (10.1016/j.cjca.2020.11.010_bib26) 2008 Lee (10.1016/j.cjca.2020.11.010_bib24) 2019; 139 10.1016/j.cjca.2020.11.010_bib30 van Buuren (10.1016/j.cjca.2020.11.010_bib10) 2018 Seaman (10.1016/j.cjca.2020.11.010_bib18) 2012; 12 von Hippell (10.1016/j.cjca.2020.11.010_bib15) 2020; 49 von Hippell (10.1016/j.cjca.2020.11.010_bib20) 2007; 37 Molenberghs (10.1016/j.cjca.2020.11.010_bib28) 2013 White (10.1016/j.cjca.2020.11.010_bib8) 2005; 24 Schafer (10.1016/j.cjca.2020.11.010_bib7) 1999; 8 van Buuren (10.1016/j.cjca.2020.11.010_bib12) 2007; 16 Little (10.1016/j.cjca.2020.11.010_bib2) 2002 Vink (10.1016/j.cjca.2020.11.010_bib19) 2013; 42 von Hippell (10.1016/j.cjca.2020.11.010_bib17) 2009; 39 Groenwold (10.1016/j.cjca.2020.11.010_bib9) 2012; 184 Audigier (10.1016/j.cjca.2020.11.010_bib29) 2018; 33 |
References_xml | – volume: 28 start-page: 1982 year: 2009 end-page: 1998 ident: bib16 article-title: Imputing missing covariate values for the Cox model publication-title: Stat Med – volume: 33 start-page: 160 year: 2018 end-page: 183 ident: bib29 article-title: Multiple imputation for multilevel data with continuous and binary variables publication-title: Stat Sci – volume: 14 start-page: 75 year: 2014 ident: bib14 article-title: Tuning multiple imputation by predictive mean matching and local residual draws publication-title: BMC Med Res Methodol – volume: 8 start-page: 3 year: 1999 end-page: 15 ident: bib7 article-title: Multiple imputation: a primer publication-title: Stat Methods Med Res – year: 2018 ident: bib10 article-title: Flexible Imputation of Missing Data – year: 2002 ident: bib2 article-title: Statistical Analysis with Missing Data – start-page: 377 year: 2008 end-page: 399 ident: bib26 article-title: Missing data publication-title: Handbook of Multilevel Analysis – volume: 139 start-page: 1146 year: 2019 end-page: 1156 ident: bib24 article-title: Prospective validation of the emergency heart failure mortality risk grade for acute heart failure publication-title: Circulation – volume: 16 start-page: 219 year: 2007 end-page: 242 ident: bib12 article-title: Multiple imputation of discrete and continuous data by fully conditional specification publication-title: Stat Methods Med Res – year: 1987 ident: bib1 article-title: Multiple Imputation for Nonresponse in Surveys – volume: 37 start-page: 992 year: 2001 end-page: 997 ident: bib23 article-title: Development and validation of the Ontario acute myocardial infarction mortality prediction rules publication-title: J Am Coll Cardiol – volume: 338 start-page: b2393 year: 2009 ident: bib5 article-title: Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls publication-title: BMJ – volume: 27 start-page: 2610 year: 2018 end-page: 2626 ident: bib6 article-title: Should multiple imputation be the method of choice for handling missing data in randomized trials? publication-title: Stat Methods Med Res – volume: 24 start-page: 993 year: 2005 end-page: 1007 ident: bib8 article-title: Adjusting for partially missing baseline measurements in randomized trials publication-title: Stat Med – volume: 184 start-page: 1265 year: 2012 end-page: 1269 ident: bib9 article-title: Missing covariate data in clinical research: when and when not to use the missing-indicator method for analysis publication-title: CMAJ – volume: 7 start-page: 147 year: 2002 end-page: 177 ident: bib4 article-title: Missing data: our view of the state of the art publication-title: Psychol Methods – volume: 45 year: 2011 ident: bib13 article-title: mice: multivariate imputation by chained equations in R publication-title: J Stat Softw – start-page: 403 year: 2013 end-page: 424 ident: bib28 article-title: Missing data publication-title: The SAGE Handbook of Multilevel Modeling – volume: 302 start-page: 2330 year: 2009 end-page: 2337 ident: bib21 article-title: Effectiveness of public report cards for improving the quality of cardiac care: the EFFECT study: a randomized trial publication-title: JAMA – volume: 290 start-page: 2581 year: 2003 end-page: 2587 ident: bib22 article-title: Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model publication-title: JAMA – volume: 5 year: 2015 ident: bib25 article-title: Reporting missing participant data in randomised trials: systematic survey of the methodological literature and a proposed guide publication-title: BMJ Open – volume: 12 start-page: 46 year: 2012 ident: bib18 article-title: Multiple imputation of missing covariates with nonlinear effects and interactions: an evaluation of statistical methods publication-title: BMC Med Res Methodol – volume: 39 start-page: 265 year: 2009 end-page: 291 ident: bib17 article-title: How to impute interactions, squares, and other transformed variables publication-title: Sociol Methodol – volume: 30 start-page: 377 year: 2011 end-page: 399 ident: bib11 article-title: Multiple imputation using chained equations: issues and guidance for practice publication-title: Stat Med – year: 2013 ident: bib3 article-title: Multiple Imputation and Its Application – volume: 42 start-page: 598 year: 2013 end-page: 607 ident: bib19 article-title: Multiple imputation of squared terms publication-title: Sociol Methods Res – volume: 37 start-page: 83 year: 2007 end-page: 117 ident: bib20 article-title: Regression with missing Ys: an improved strategy for analyzing multiply imputed data publication-title: Sociol Methodol – reference: Richman M, Trafalis T, Adrianto I. Multiple imputation through machine learning algorithms. Paper presented at: American Meteorological Society 87th Annual Meeting. January 13-18, 2007; San Antonio, TX. – volume: 49 start-page: 699 year: 2020 end-page: 718 ident: bib15 article-title: How many imputations do you need? A two-stage calculation using a quadratic rule publication-title: Sociol Methods Res – start-page: 173 year: 2011 end-page: 196 ident: bib27 article-title: Multiple imputation of multilevel data publication-title: Handbook of Advanced Multilevel Analysis – volume: 5 year: 2015 ident: 10.1016/j.cjca.2020.11.010_bib25 article-title: Reporting missing participant data in randomised trials: systematic survey of the methodological literature and a proposed guide publication-title: BMJ Open – start-page: 403 year: 2013 ident: 10.1016/j.cjca.2020.11.010_bib28 article-title: Missing data – volume: 184 start-page: 1265 year: 2012 ident: 10.1016/j.cjca.2020.11.010_bib9 article-title: Missing covariate data in clinical research: when and when not to use the missing-indicator method for analysis publication-title: CMAJ doi: 10.1503/cmaj.110977 – volume: 45 issue: 3 year: 2011 ident: 10.1016/j.cjca.2020.11.010_bib13 article-title: mice: multivariate imputation by chained equations in R publication-title: J Stat Softw – volume: 42 start-page: 598 year: 2013 ident: 10.1016/j.cjca.2020.11.010_bib19 article-title: Multiple imputation of squared terms publication-title: Sociol Methods Res doi: 10.1177/0049124113502943 – volume: 24 start-page: 993 year: 2005 ident: 10.1016/j.cjca.2020.11.010_bib8 article-title: Adjusting for partially missing baseline measurements in randomized trials publication-title: Stat Med doi: 10.1002/sim.1981 – ident: 10.1016/j.cjca.2020.11.010_bib30 – volume: 338 start-page: b2393 year: 2009 ident: 10.1016/j.cjca.2020.11.010_bib5 article-title: Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls publication-title: BMJ doi: 10.1136/bmj.b2393 – volume: 30 start-page: 377 year: 2011 ident: 10.1016/j.cjca.2020.11.010_bib11 article-title: Multiple imputation using chained equations: issues and guidance for practice publication-title: Stat Med doi: 10.1002/sim.4067 – volume: 12 start-page: 46 year: 2012 ident: 10.1016/j.cjca.2020.11.010_bib18 article-title: Multiple imputation of missing covariates with nonlinear effects and interactions: an evaluation of statistical methods publication-title: BMC Med Res Methodol doi: 10.1186/1471-2288-12-46 – volume: 302 start-page: 2330 year: 2009 ident: 10.1016/j.cjca.2020.11.010_bib21 article-title: Effectiveness of public report cards for improving the quality of cardiac care: the EFFECT study: a randomized trial publication-title: JAMA doi: 10.1001/jama.2009.1731 – volume: 37 start-page: 83 year: 2007 ident: 10.1016/j.cjca.2020.11.010_bib20 article-title: Regression with missing Ys: an improved strategy for analyzing multiply imputed data publication-title: Sociol Methodol doi: 10.1111/j.1467-9531.2007.00180.x – year: 2013 ident: 10.1016/j.cjca.2020.11.010_bib3 – volume: 290 start-page: 2581 year: 2003 ident: 10.1016/j.cjca.2020.11.010_bib22 article-title: Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model publication-title: JAMA doi: 10.1001/jama.290.19.2581 – year: 1987 ident: 10.1016/j.cjca.2020.11.010_bib1 – volume: 28 start-page: 1982 year: 2009 ident: 10.1016/j.cjca.2020.11.010_bib16 article-title: Imputing missing covariate values for the Cox model publication-title: Stat Med doi: 10.1002/sim.3618 – year: 2018 ident: 10.1016/j.cjca.2020.11.010_bib10 – volume: 27 start-page: 2610 year: 2018 ident: 10.1016/j.cjca.2020.11.010_bib6 article-title: Should multiple imputation be the method of choice for handling missing data in randomized trials? publication-title: Stat Methods Med Res doi: 10.1177/0962280216683570 – volume: 16 start-page: 219 year: 2007 ident: 10.1016/j.cjca.2020.11.010_bib12 article-title: Multiple imputation of discrete and continuous data by fully conditional specification publication-title: Stat Methods Med Res doi: 10.1177/0962280206074463 – start-page: 377 year: 2008 ident: 10.1016/j.cjca.2020.11.010_bib26 article-title: Missing data – year: 2002 ident: 10.1016/j.cjca.2020.11.010_bib2 – volume: 33 start-page: 160 year: 2018 ident: 10.1016/j.cjca.2020.11.010_bib29 article-title: Multiple imputation for multilevel data with continuous and binary variables publication-title: Stat Sci doi: 10.1214/18-STS646 – volume: 7 start-page: 147 year: 2002 ident: 10.1016/j.cjca.2020.11.010_bib4 article-title: Missing data: our view of the state of the art publication-title: Psychol Methods doi: 10.1037/1082-989X.7.2.147 – volume: 139 start-page: 1146 year: 2019 ident: 10.1016/j.cjca.2020.11.010_bib24 article-title: Prospective validation of the emergency heart failure mortality risk grade for acute heart failure publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.035509 – start-page: 173 year: 2011 ident: 10.1016/j.cjca.2020.11.010_bib27 article-title: Multiple imputation of multilevel data – volume: 8 start-page: 3 year: 1999 ident: 10.1016/j.cjca.2020.11.010_bib7 article-title: Multiple imputation: a primer publication-title: Stat Methods Med Res doi: 10.1177/096228029900800102 – volume: 14 start-page: 75 year: 2014 ident: 10.1016/j.cjca.2020.11.010_bib14 article-title: Tuning multiple imputation by predictive mean matching and local residual draws publication-title: BMC Med Res Methodol doi: 10.1186/1471-2288-14-75 – volume: 49 start-page: 699 year: 2020 ident: 10.1016/j.cjca.2020.11.010_bib15 article-title: How many imputations do you need? A two-stage calculation using a quadratic rule publication-title: Sociol Methods Res doi: 10.1177/0049124117747303 – volume: 39 start-page: 265 year: 2009 ident: 10.1016/j.cjca.2020.11.010_bib17 article-title: How to impute interactions, squares, and other transformed variables publication-title: Sociol Methodol doi: 10.1111/j.1467-9531.2009.01215.x – volume: 37 start-page: 992 year: 2001 ident: 10.1016/j.cjca.2020.11.010_bib23 article-title: Development and validation of the Ontario acute myocardial infarction mortality prediction rules publication-title: J Am Coll Cardiol doi: 10.1016/S0735-1097(01)01109-3 |
SSID | ssj0041776 |
Score | 2.69341 |
SecondaryResourceType | review_article |
Snippet | Missing data is a common occurrence in clinical research. Missing data occurs when the value of the variables of interest are not measured or recorded for all... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1322 |
SubjectTerms | Clinical Trials as Topic Data Interpretation, Statistical Humans Research Design Review |
Title | Missing Data in Clinical Research: A Tutorial on Multiple Imputation |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0828282X20311119 https://dx.doi.org/10.1016/j.cjca.2020.11.010 https://www.ncbi.nlm.nih.gov/pubmed/33276049 https://www.proquest.com/docview/2467618867 https://pubmed.ncbi.nlm.nih.gov/PMC8499698 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9EQXwRv51fRPBN6tYmTVLfhh9synxRYW8hzTrckE50e_Vv965Ni1NRsH1r7yBc7pP87gJwIi0PuZMyyLi2AVpiFCROJ4HMwnRIMZyn1Dvcu5OdR3HTj_sLcFH1whCs0vv-0qcX3tp_aXppNl9Go-Y9DV_Dtx-hXuJDTXxCKNLys_ca5iFCVVwwR8QBUfvGmRLj5caOZg9F5DnOWtRF-3Nw-p58fsVQfgpK12uw6rNJ1i4XvA4LWb4Byz1_Xr4Jlz2UKwYndmmnlo1y5seAPrMKcXfO2uyB5higHrJJznoeYMi6dNtDsW1b8Hh99XDRCfy9CYGLVTQNEjWMI6wOhxazESfiJNSSBJ9gsibkIJZOYVZkQ2WRJJN6gGkDH7TscMBFHFrHt2Exn-TZLjCrnFapUzZrcYFFeKJTtPBYS64Emr9uQFgJzDg_VJzutng2FXpsbEjIhoSM1YZBITfgtOZ5KUdq_ErNq30wVbMoujeDHv9XrrjmmlOnP_mOq602aGd0eGLzbDJ7MxHqsQy1lqoBO-XW16vnPFISS60GqDmlqAlohvf8n3z0VMzy1lhxykTv_XO9-7ASEcimAL0dwOL0dZYdYpY0TY8KMziCpXb3tnP3AYETDr4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gHoR367PCN6k7rZpk9Sb-GB91Isr7C2k2S7uIl3R9epvd6ZNi6uiYHtrJxDmlRnyzQzAoTDc51YIL-PKeGiJgRdbFXsi89M-neE8pdrh5E60H8LrbtSdgrOqFoZglc73lz698NbuS9Nxs_k8GDTvqfkavt0A9RKfeBpmQzRfGmNw_F7jPEJfFhPmiNojclc5U4K87NBS86GAXMdxi8pofz6dvkefX0GUn06lyyVYdOEkOy13vAxTWb4Cc4m7MF-F8wQZi6cTOzdjwwY5c31An1gFuTthp6xDjQxQEdkoZ4lDGLIrGvdQyG0NHi4vOmdtzw1O8Gwkg7EXy34UYHrYNxiO2DCKfSWI8zFGa6HoRcJKDIuMLw2SZEL1MG7gvZbp93gY-cbydZjJR3m2CcxIq2RqpclaPMQsPFYpmnikBJch2r9qgF8xTFvXVZyGWzzpCj421MRkTUzGdEMjkxtwVK95Lntq_ErNKznoqloU_ZtGl__rqqheNaFPf647qESt0dDo9sTk2ejtVQeoyMJXSsgGbJSir3fPeSAF5loNkBNKURNQE-_JP_ngsWjmrTDlFLHa-ud-92G-3Ulu9e3V3c02LASEuCkQcDswM355y3YxZBqne4VJfACQTxBM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Missing+Data+in+Clinical+Research%3A+A+Tutorial+on+Multiple+Imputation&rft.jtitle=Canadian+journal+of+cardiology&rft.au=Austin%2C+Peter+C.&rft.au=White%2C+Ian+R.&rft.au=Lee%2C+Douglas+S.&rft.au=van+Buuren%2C+Stef&rft.date=2021-09-01&rft.pub=Pulsus+Group&rft.issn=0828-282X&rft.eissn=1916-7075&rft.volume=37&rft.issue=9&rft.spage=1322&rft.epage=1331&rft_id=info:doi/10.1016%2Fj.cjca.2020.11.010&rft_id=info%3Apmid%2F33276049&rft.externalDocID=PMC8499698 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0828-282X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0828-282X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0828-282X&client=summon |