Achilles tendon stress is more sensitive to subject-specific geometry than subject-specific material properties: A finite element analysis
This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric load...
Saved in:
Published in | Journal of biomechanics Vol. 56; pp. 26 - 31 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
03.05.2017
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25–35years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62±13mm, 3617±984mm3 and 58±11mm2 respectively. The measured tendon strain at 70% MVIC was 5.9±1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties. |
---|---|
AbstractList | This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25-35years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62±13mm, 3617±984mm
and 58±11mm
respectively. The measured tendon strain at 70% MVIC was 5.9±1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties. Abstract This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25–35 years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62 ± 13 mm, 3617 ± 984 mm3 and 58 ± 11 mm2 respectively. The measured tendon strain at 70% MVIC was 5.9 ± 1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties. This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25–35years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62±13mm, 3617±984mm3 and 58±11mm2 respectively. The measured tendon strain at 70% MVIC was 5.9±1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties. This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25-35years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62±13mm, 3617±984mm3and 58±11mm2respectively. The measured tendon strain at 70% MVIC was 5.9±1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties. This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25-35years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62±13mm, 3617±984mm3 and 58±11mm2 respectively. The measured tendon strain at 70% MVIC was 5.9±1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties.This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25-35years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62±13mm, 3617±984mm3 and 58±11mm2 respectively. The measured tendon strain at 70% MVIC was 5.9±1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties. |
Author | Barrett, Rod S. Shim, Vickie B. Newsham-West, Richard Hansen, Wencke Obst, Steven Lloyd, David G. |
Author_xml | – sequence: 1 givenname: Wencke surname: Hansen fullname: Hansen, Wencke email: Wenx.Hansen@griffithuni.edu.au organization: Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia – sequence: 2 givenname: Vickie B. surname: Shim fullname: Shim, Vickie B. email: v.shim@auckland.ac.nz organization: Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia – sequence: 3 givenname: Steven surname: Obst fullname: Obst, Steven organization: Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia – sequence: 4 givenname: David G. surname: Lloyd fullname: Lloyd, David G. organization: School of Allied Health Sciences, Griffith University, Gold Coast Campus, Australia – sequence: 5 givenname: Richard surname: Newsham-West fullname: Newsham-West, Richard organization: Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia – sequence: 6 givenname: Rod S. surname: Barrett fullname: Barrett, Rod S. organization: Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28359571$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks2KFDEUhQsZcXpGX2EIuHFTZX6qKhURsRn8gwEXKrgL6dQtO2Uq1eamB_oVfGrT9jRCC46rLO53Tg733IviLMwBiuKK0YpR1j4fq3Hl5gnsuuKUyYryigr2oFiwToqSi46eFQtKOSsVV_S8uEAcKaWylupRcc470ahGskXxc2nXzntAkiD0cyCYIiASh2SaIxCEgC65WyBpJrhdjWBTiRuwbnCWfIMcIcUdSWsT_h5PJkF0xpNNnDcQkwN8QZZkcMElIOBhgpCICcbv0OHj4uFgPMKTu_ey-PL2zefr9-XNx3cfrpc3pW0kT6UU9cBZq6TlshbKCKNWwnRGNQY4px0bho4xam0z9E3f12roatGKwdTtYFXPxWXx7OCbU_3YAiY9ObTgvQkwb1GzrhNMqoY2GX16go7zNua8vympZNuwOlNXd9R2NUGvN9FNJu70ccsZeHkAbJwRIwzaumSSm0OKxnnNqN6Xqkd9LFXvS9WU61xqlrcn8uMP9wpfH4SQ13nrIGq0DoKF3sVclO5nd7_FqxML63N91vjvsAP8sw6NWaA_7U9uf3FMCsoE__pvg_9J8AvalOvg |
CitedBy_id | crossref_primary_10_3389_fspor_2020_00070 crossref_primary_10_1007_s10237_020_01367_8 crossref_primary_10_1016_j_apm_2022_08_014 crossref_primary_10_1136_bjsports_2018_099020 crossref_primary_10_3390_s20143847 crossref_primary_10_3389_fbioe_2020_00878 crossref_primary_10_3389_fnbot_2019_00097 crossref_primary_10_3390_biomechanics3040047 crossref_primary_10_1080_14763141_2021_1959947 crossref_primary_10_3390_app15063047 crossref_primary_10_1016_j_actbio_2021_02_041 crossref_primary_10_1111_sms_13925 crossref_primary_10_3389_fncom_2017_00096 crossref_primary_10_1007_s00167_021_06580_1 crossref_primary_10_1016_j_jbiomech_2023_111583 crossref_primary_10_1016_j_aanat_2024_152271 crossref_primary_10_1016_j_jbiomech_2017_11_014 crossref_primary_10_1038_s41598_018_31587_z crossref_primary_10_1177_1071100717742372 crossref_primary_10_1080_10255842_2021_1975683 crossref_primary_10_1007_s00167_019_05608_x crossref_primary_10_1177_09544119221085795 crossref_primary_10_3389_fbioe_2024_1445364 crossref_primary_10_1016_j_medengphy_2020_01_010 crossref_primary_10_3389_fbioe_2022_914137 crossref_primary_10_7554_eLife_63204 crossref_primary_10_1002_jor_25836 crossref_primary_10_1016_j_jbiomech_2018_10_027 crossref_primary_10_1002_jor_25408 crossref_primary_10_1111_sms_14728 crossref_primary_10_1242_jeb_159764 crossref_primary_10_14814_phy2_14544 crossref_primary_10_1038_s41598_024_84202_9 crossref_primary_10_1016_j_jsams_2023_04_001 crossref_primary_10_1016_j_ultrasmedbio_2019_07_679 crossref_primary_10_3390_ma15248906 crossref_primary_10_1002_jeo2_70036 crossref_primary_10_1109_TNSRE_2023_3296280 crossref_primary_10_1016_j_actbio_2021_03_072 |
Cites_doi | 10.1016/j.ultrasmedbio.2013.08.009 10.1111/sms.12742 10.1016/j.jbiomech.2014.05.008 10.1152/japplphysiol.00384.2005 10.1152/japplphysiol.00596.2003 10.3109/02841851003627809 10.1016/S0301-5629(02)00735-4 10.1007/s00330-016-4409-0 10.1115/1.3152414 10.1152/japplphysiol.01249.2013 10.1016/0045-7825(96)01035-3 10.1016/S0268-0033(00)00089-9 10.1016/j.jbiomech.2016.02.057 10.1016/j.ultrasmedbio.2006.02.1427 10.1016/j.jbiomech.2014.10.001 10.1016/j.jbiomech.2009.03.005 10.1034/k.1600-0838.2002.120102.x 10.1590/S1413-35552008000500005 10.1007/BF00238560 10.1007/s10237-003-0036-1 10.1016/0021-9290(90)90038-5 10.1152/japplphysiol.00259.2009 10.1016/S0021-9290(02)00240-3 10.1016/S1361-8415(99)80004-8 10.1007/s40279-014-0200-z 10.1159/000083731 10.1016/j.clinbiomech.2011.02.011 10.1177/0141076809701004 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2017.02.031 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 31 |
ExternalDocumentID | 28359571 10_1016_j_jbiomech_2017_02_031 S002192901730132X 1_s2_0_S002192901730132X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- .GJ 29J 3V. 53G AACTN AAQQT AAQXK ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFCTW AFFDN AFJKZ AFKWA AGHFR AI. AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT PKN R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP YCJ ZGI AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGQPQ AGRNS AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c572t-734f21697c27439a3a9b3a8a95ae22081ff8110cc5fd5dd49f84363fa46fc9d23 |
IEDL.DBID | .~1 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Jul 11 11:13:01 EDT 2025 Wed Aug 13 07:02:11 EDT 2025 Wed Feb 19 02:43:30 EST 2025 Thu Apr 24 23:05:01 EDT 2025 Tue Jul 01 00:44:08 EDT 2025 Fri Feb 23 02:20:32 EST 2024 Tue Feb 25 20:12:59 EST 2025 Tue Aug 26 17:10:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Finite element modelling Morphology Achilles tendon Subject specificity Stress Strain Material properties |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c572t-734f21697c27439a3a9b3a8a95ae22081ff8110cc5fd5dd49f84363fa46fc9d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28359571 |
PQID | 1887976514 |
PQPubID | 1226346 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1883179505 proquest_journals_1887976514 pubmed_primary_28359571 crossref_citationtrail_10_1016_j_jbiomech_2017_02_031 crossref_primary_10_1016_j_jbiomech_2017_02_031 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2017_02_031 elsevier_clinicalkeyesjournals_1_s2_0_S002192901730132X elsevier_clinicalkey_doi_10_1016_j_jbiomech_2017_02_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-03 |
PublicationDateYYYYMMDD | 2017-05-03 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Magnusson (b0075) 2002; 12 Claessen, de Vos, Reijman, Meuffels (b0015) 2014; 44 Treece, Prager, Gee, Berman (b0115) 1999; 3 Peixinho (b9010) 2008; 12 Hsu, Prager, Gee, Treece (b0045) 2006; 32 Muraoka, Muramatsu, Fukunaga, Kanehisa (b0080) 2004; 178 Weiss, Maker, Govindjee (b0120) 1996; 135 DeWall, Slane, Lee, Thelen (b9005) 2014; 47 Komi (b0050) 1990; 23 Treece, Gee, Prager, Cash, Berman (b0110) 2003; 29 Pierre-Jerome, Moncayo, Terk (b0100) 2010; 51 Bogaerts, Desmet, Slagmolen, Peers (b9000) 2016; 49 Kongsgaard, Aagaard, Kjaer, Magnusson (b0055) 2005; 99 Fernandez, Mithraratne, Thrupp, Tawhai, Hunter (b0025) 2004; 2 Obst, Renault, Newsham-West, Barrett (b0095) 2014; 116 Wren, Yerby, Beaupré, Carter (b9030) 2001; 16 Nuri, L., Obst, S.J., Newsham-West, R., Barrett, R.S., 2016. Regional three-dimensional deformation of human Achilles tendon during conditioning. Scandinavian J. Med. Sci. Sports (in press). Obst, Newsham-West, Barrett (b0090) 2014; 40 Finni, Hodgson, Lai, Edgerton, Sinha (b0030) 2003; 95 Maffulli, Sharma, Luscombe (b0065) 2004; 97 Kongsgaard, Nielsen, Hegnsvad, Aagaard, Magnusson (b0060) 2011; 26 Arya, Kulig (b0005) 2010; 108 Barber, Barrett, Lichtwark (b0010) 2009; 42 Horgan (b0040) 1989; 42 Shim, Fernandez, Gamage, Regnery, Smith, Gardiner, Lloyd, Besier (b0105) 2014; 47 Maganaris, Paul (b0070) 2002; 35 Fukashiro, Rob, Ichinose, Kawakami, Fukunaga (b0035) 1995; 71 Cowin, Doty (b0020) 2007 Slane, L.C., Martin, J., DeWall, R., Thelen, D., Lee, K., 2016. Quantitative ultrasound mapping of regional variations in shear wave speeds of the aging Achilles tendon. Eur. Radiol. Fukashiro (10.1016/j.jbiomech.2017.02.031_b0035) 1995; 71 Treece (10.1016/j.jbiomech.2017.02.031_b0110) 2003; 29 Pierre-Jerome (10.1016/j.jbiomech.2017.02.031_b0100) 2010; 51 10.1016/j.jbiomech.2017.02.031_b9025 Cowin (10.1016/j.jbiomech.2017.02.031_b0020) 2007 Kongsgaard (10.1016/j.jbiomech.2017.02.031_b0060) 2011; 26 Obst (10.1016/j.jbiomech.2017.02.031_b0090) 2014; 40 Hsu (10.1016/j.jbiomech.2017.02.031_b0045) 2006; 32 Barber (10.1016/j.jbiomech.2017.02.031_b0010) 2009; 42 Magnusson (10.1016/j.jbiomech.2017.02.031_b0075) 2002; 12 Weiss (10.1016/j.jbiomech.2017.02.031_b0120) 1996; 135 Maffulli (10.1016/j.jbiomech.2017.02.031_b0065) 2004; 97 Shim (10.1016/j.jbiomech.2017.02.031_b0105) 2014; 47 Treece (10.1016/j.jbiomech.2017.02.031_b0115) 1999; 3 Horgan (10.1016/j.jbiomech.2017.02.031_b0040) 1989; 42 Kongsgaard (10.1016/j.jbiomech.2017.02.031_b0055) 2005; 99 Claessen (10.1016/j.jbiomech.2017.02.031_b0015) 2014; 44 10.1016/j.jbiomech.2017.02.031_b0085 Wren (10.1016/j.jbiomech.2017.02.031_b9030) 2001; 16 DeWall (10.1016/j.jbiomech.2017.02.031_b9005) 2014; 47 Fernandez (10.1016/j.jbiomech.2017.02.031_b0025) 2004; 2 Bogaerts (10.1016/j.jbiomech.2017.02.031_b9000) 2016; 49 Finni (10.1016/j.jbiomech.2017.02.031_b0030) 2003; 95 Muraoka (10.1016/j.jbiomech.2017.02.031_b0080) 2004; 178 Maganaris (10.1016/j.jbiomech.2017.02.031_b0070) 2002; 35 Komi (10.1016/j.jbiomech.2017.02.031_b0050) 1990; 23 Obst (10.1016/j.jbiomech.2017.02.031_b0095) 2014; 116 Arya (10.1016/j.jbiomech.2017.02.031_b0005) 2010; 108 Peixinho (10.1016/j.jbiomech.2017.02.031_b9010) 2008; 12 |
References_xml | – volume: 116 start-page: 376 year: 2014 end-page: 384 ident: b0095 article-title: Three-dimensional deformation and transverse rotation of the human free Achilles tendon in vivo during isometric plantarflexion contraction publication-title: J. Appl. Physiol. – volume: 3 start-page: 141 year: 1999 end-page: 173 ident: b0115 article-title: Fast surface and volume estimation from non-parallel cross-sections, for freehand three-dimensional ultrasound publication-title: Med. Image Anal. – volume: 97 start-page: 472 year: 2004 end-page: 476 ident: b0065 article-title: Achilles tendinopathy: aetiology and management publication-title: J. R. Soc. Med. – volume: 44 start-page: 1241 year: 2014 end-page: 1259 ident: b0015 article-title: Predictors of primary Achilles tendon ruptures publication-title: Sports Med. – volume: 12 start-page: 1 year: 2002 end-page: 2 ident: b0075 article-title: Ultrasonography, exploration of human muscle-tendon function publication-title: Scand. J. Med. Sci. Sports – volume: 42 start-page: 1313 year: 2009 end-page: 1319 ident: b0010 article-title: Validation of a freehand 3D ultrasound system for morphological measures of the medial gastrocnemius muscle publication-title: J. Biomech. – volume: 2 start-page: 139 year: 2004 end-page: 155 ident: b0025 article-title: Anatomically based geometric modelling of the musculo-skeletal system and other organs publication-title: Biomech. Model. Mechanobiol. – year: 2007 ident: b0020 article-title: Tissue Mechanics – volume: 71 start-page: 555 year: 1995 end-page: 557 ident: b0035 article-title: Ultrasonography gives directly but noninvasively elastic characteristic of human tendon in vivo publication-title: Eur. J. Appl. Physiol. – volume: 108 start-page: 670 year: 2010 end-page: 675 ident: b0005 article-title: Tendinopathy alters mechanical and material properties of the Achilles tendon publication-title: J. Appl. Physiol. – reference: Slane, L.C., Martin, J., DeWall, R., Thelen, D., Lee, K., 2016. Quantitative ultrasound mapping of regional variations in shear wave speeds of the aging Achilles tendon. Eur. Radiol. – volume: 51 start-page: 438 year: 2010 end-page: 454 ident: b0100 article-title: MRI of the Achilles tendon: a comprehensive review of the anatomy, biomechanics, and imaging of overuse tendinopathies publication-title: Acta Radiol. – volume: 42 start-page: 295 year: 1989 end-page: 303 ident: b0040 article-title: Recent developments concerning Saint-Venant’s principle: an update publication-title: Appl. Mech. Rev. – volume: 135 start-page: 107 year: 1996 end-page: 128 ident: b0120 article-title: Finite element implementation of incompressible, transversely isotropic hyperelasticity publication-title: Comput. Meth. Appl. Mech. Eng. – reference: Nuri, L., Obst, S.J., Newsham-West, R., Barrett, R.S., 2016. Regional three-dimensional deformation of human Achilles tendon during conditioning. Scandinavian J. Med. Sci. Sports (in press). – volume: 12 start-page: 366 year: 2008 end-page: 372 ident: b9010 article-title: Strain and Slackness of Achilles tendon during passive joint mobilization via imaging ultrasonography publication-title: Braz. J. Phys. Ther. – volume: 99 start-page: 1965 year: 2005 end-page: 1971 ident: b0055 article-title: Structural Achilles tendon properties in athletes subjected to different exercise modes and in Achilles tendon rupture patients publication-title: J. Appl. Physiol. – volume: 49 start-page: 1411 year: 2016 end-page: 1419 ident: b9000 article-title: Strain mapping in the Achilles tendon - A systematic review publication-title: J. Biomech. – volume: 32 start-page: 823 year: 2006 end-page: 835 ident: b0045 article-title: Rapid, easy and reliable calibration for freehand 3D ultrasound publication-title: Ultrasound Med. Biol. – volume: 178 start-page: 197 year: 2004 end-page: 203 ident: b0080 article-title: Geometric and elastic properties of in vivo human Achilles tendon in young adults publication-title: Cells Tissues Organs – volume: 23 start-page: 2327 year: 1990 end-page: 2534 ident: b0050 article-title: Relevance of in vivo force measurements to human biomechanics publication-title: J. Biomech. – volume: 40 start-page: 62 year: 2014 end-page: 70 ident: b0090 article-title: In vivo measurement of human achilles tendon morphology using freehand 3-D ultrasound publication-title: Ultrasound Med. Biol. – volume: 35 start-page: 1639 year: 2002 end-page: 1646 ident: b0070 article-title: Tensile properties of the in vivo human gastrocnemius tendon publication-title: J. Biomech. – volume: 47 start-page: 3598 year: 2014 end-page: 3604 ident: b0105 article-title: Subject-specific finite element analysis to characterize the influence of geometry and material properties in Achilles tendon rupture publication-title: J. Biomech. – volume: 47 start-page: 2685 year: 2014 end-page: 2692 ident: b9005 article-title: Spatial variations in Achilles tendon shear wave speed publication-title: J. Biomech. – volume: 29 start-page: 529 year: 2003 end-page: 546 ident: b0110 article-title: High-definition freehand 3-D ultrasound publication-title: Ultrasound Med. Biol. – volume: 16 start-page: 245 year: 2001 end-page: 251 ident: b9030 article-title: Mechanical properties of the human Achilles tendon publication-title: Clin. Biomech. – volume: 26 start-page: 772 year: 2011 end-page: 777 ident: b0060 article-title: Mechanical properties of the human Achilles tendon, in vivo publication-title: Clin. Biomech. – volume: 95 start-page: 2128 year: 2003 end-page: 2133 ident: b0030 article-title: Mapping of movement in the isometrically contracting human soleus muscle reveals details of its structural and functional complexity publication-title: J. Appl. Physiol. – volume: 40 start-page: 62 year: 2014 ident: 10.1016/j.jbiomech.2017.02.031_b0090 article-title: In vivo measurement of human achilles tendon morphology using freehand 3-D ultrasound publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2013.08.009 – ident: 10.1016/j.jbiomech.2017.02.031_b0085 doi: 10.1111/sms.12742 – volume: 47 start-page: 2685 year: 2014 ident: 10.1016/j.jbiomech.2017.02.031_b9005 article-title: Spatial variations in Achilles tendon shear wave speed publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.05.008 – volume: 99 start-page: 1965 year: 2005 ident: 10.1016/j.jbiomech.2017.02.031_b0055 article-title: Structural Achilles tendon properties in athletes subjected to different exercise modes and in Achilles tendon rupture patients publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00384.2005 – volume: 95 start-page: 2128 year: 2003 ident: 10.1016/j.jbiomech.2017.02.031_b0030 article-title: Mapping of movement in the isometrically contracting human soleus muscle reveals details of its structural and functional complexity publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00596.2003 – volume: 51 start-page: 438 year: 2010 ident: 10.1016/j.jbiomech.2017.02.031_b0100 article-title: MRI of the Achilles tendon: a comprehensive review of the anatomy, biomechanics, and imaging of overuse tendinopathies publication-title: Acta Radiol. doi: 10.3109/02841851003627809 – volume: 29 start-page: 529 year: 2003 ident: 10.1016/j.jbiomech.2017.02.031_b0110 article-title: High-definition freehand 3-D ultrasound publication-title: Ultrasound Med. Biol. doi: 10.1016/S0301-5629(02)00735-4 – ident: 10.1016/j.jbiomech.2017.02.031_b9025 doi: 10.1007/s00330-016-4409-0 – volume: 42 start-page: 295 year: 1989 ident: 10.1016/j.jbiomech.2017.02.031_b0040 article-title: Recent developments concerning Saint-Venant’s principle: an update publication-title: Appl. Mech. Rev. doi: 10.1115/1.3152414 – volume: 116 start-page: 376 year: 2014 ident: 10.1016/j.jbiomech.2017.02.031_b0095 article-title: Three-dimensional deformation and transverse rotation of the human free Achilles tendon in vivo during isometric plantarflexion contraction publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01249.2013 – year: 2007 ident: 10.1016/j.jbiomech.2017.02.031_b0020 – volume: 135 start-page: 107 year: 1996 ident: 10.1016/j.jbiomech.2017.02.031_b0120 article-title: Finite element implementation of incompressible, transversely isotropic hyperelasticity publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/0045-7825(96)01035-3 – volume: 16 start-page: 245 year: 2001 ident: 10.1016/j.jbiomech.2017.02.031_b9030 article-title: Mechanical properties of the human Achilles tendon publication-title: Clin. Biomech. doi: 10.1016/S0268-0033(00)00089-9 – volume: 49 start-page: 1411 year: 2016 ident: 10.1016/j.jbiomech.2017.02.031_b9000 article-title: Strain mapping in the Achilles tendon - A systematic review publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.02.057 – volume: 32 start-page: 823 year: 2006 ident: 10.1016/j.jbiomech.2017.02.031_b0045 article-title: Rapid, easy and reliable calibration for freehand 3D ultrasound publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2006.02.1427 – volume: 47 start-page: 3598 year: 2014 ident: 10.1016/j.jbiomech.2017.02.031_b0105 article-title: Subject-specific finite element analysis to characterize the influence of geometry and material properties in Achilles tendon rupture publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.10.001 – volume: 42 start-page: 1313 year: 2009 ident: 10.1016/j.jbiomech.2017.02.031_b0010 article-title: Validation of a freehand 3D ultrasound system for morphological measures of the medial gastrocnemius muscle publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.03.005 – volume: 12 start-page: 1 year: 2002 ident: 10.1016/j.jbiomech.2017.02.031_b0075 article-title: Ultrasonography, exploration of human muscle-tendon function publication-title: Scand. J. Med. Sci. Sports doi: 10.1034/k.1600-0838.2002.120102.x – volume: 12 start-page: 366 year: 2008 ident: 10.1016/j.jbiomech.2017.02.031_b9010 article-title: Strain and Slackness of Achilles tendon during passive joint mobilization via imaging ultrasonography publication-title: Braz. J. Phys. Ther. doi: 10.1590/S1413-35552008000500005 – volume: 71 start-page: 555 year: 1995 ident: 10.1016/j.jbiomech.2017.02.031_b0035 article-title: Ultrasonography gives directly but noninvasively elastic characteristic of human tendon in vivo publication-title: Eur. J. Appl. Physiol. doi: 10.1007/BF00238560 – volume: 2 start-page: 139 year: 2004 ident: 10.1016/j.jbiomech.2017.02.031_b0025 article-title: Anatomically based geometric modelling of the musculo-skeletal system and other organs publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-003-0036-1 – volume: 23 start-page: 2327 year: 1990 ident: 10.1016/j.jbiomech.2017.02.031_b0050 article-title: Relevance of in vivo force measurements to human biomechanics publication-title: J. Biomech. doi: 10.1016/0021-9290(90)90038-5 – volume: 108 start-page: 670 year: 2010 ident: 10.1016/j.jbiomech.2017.02.031_b0005 article-title: Tendinopathy alters mechanical and material properties of the Achilles tendon publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00259.2009 – volume: 35 start-page: 1639 year: 2002 ident: 10.1016/j.jbiomech.2017.02.031_b0070 article-title: Tensile properties of the in vivo human gastrocnemius tendon publication-title: J. Biomech. doi: 10.1016/S0021-9290(02)00240-3 – volume: 3 start-page: 141 year: 1999 ident: 10.1016/j.jbiomech.2017.02.031_b0115 article-title: Fast surface and volume estimation from non-parallel cross-sections, for freehand three-dimensional ultrasound publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(99)80004-8 – volume: 44 start-page: 1241 year: 2014 ident: 10.1016/j.jbiomech.2017.02.031_b0015 article-title: Predictors of primary Achilles tendon ruptures publication-title: Sports Med. doi: 10.1007/s40279-014-0200-z – volume: 178 start-page: 197 year: 2004 ident: 10.1016/j.jbiomech.2017.02.031_b0080 article-title: Geometric and elastic properties of in vivo human Achilles tendon in young adults publication-title: Cells Tissues Organs doi: 10.1159/000083731 – volume: 26 start-page: 772 year: 2011 ident: 10.1016/j.jbiomech.2017.02.031_b0060 article-title: Mechanical properties of the human Achilles tendon, in vivo publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2011.02.011 – volume: 97 start-page: 472 year: 2004 ident: 10.1016/j.jbiomech.2017.02.031_b0065 article-title: Achilles tendinopathy: aetiology and management publication-title: J. R. Soc. Med. doi: 10.1177/0141076809701004 |
SSID | ssj0007479 |
Score | 2.4140353 |
Snippet | This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate... Abstract This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 26 |
SubjectTerms | Accuracy Achilles tendon Achilles Tendon - diagnostic imaging Achilles Tendon - physiology Adult Anatomy Ankle Brightness Calcaneus Clinical trials Data processing Exploration Feedback Female Finite Element Analysis Finite element method Finite element modelling Geometry Humans Influence Insertion Isometric Contraction - physiology Magnetic resonance imaging Male Mapping Material properties Mathematical models Mechanical properties Morphology Motor task performance Muscle contraction NMR Nuclear magnetic resonance Physical Medicine and Rehabilitation Rupture Strain Stress Stress distribution Stress, Mechanical Subject specificity Surgery Tendons Three dimensional analysis Ultrasonic imaging Ultrasonography Ultrasound Visual perception |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSAgOCLY8AgUZCXEzjZ04cbigFaKqkMqJSnuzHMdGXbXJsske-hf6qzvjOKESKiDO8eQ145nP8yTknRS5cqWSrE69ZTmYMFY5VTBlUt-ABWtUGOdz8q04Ps2_ruQqOtz6mFY56cSgqJvOoo_8kMNuANMJ9v3T5ifDqVEYXY0jNO6Se9i6DKW6XM0HLuwNH1M8OAMYkN6oEF5_WIf69hCQ4GXo25nx24zTbeAzGKGjx-RRRI90ObL7Cbnj2gXZX7Zwcr64pO9pyOcMjvIFeXij1eCC3D-JQfR9crXECu5z11P0f3ctHetF6FlPMeuW9pjTjlqQDh3tdzV6ahhWZGJWEf3h4HuG7SVFn_vvlwEAB5mmG_Tyb7Fd60e6pP4MsS11Y7I6NbEVylNyevTl--djFkcyMCtLMbAyy73gRVVagScZk5mqzowylTROCIAX3isAFNZK38imySuv8qzIvMkLb6tGZM_IXtu17gWhSjnBa2e8MjLPnVQKSOtUeqVqqZxNiJx4oW3sV45jM871lJi21hMPNfJQp0IDDxNyONNtxo4df6UoJ1brqR4VNKgGo_J_lK6PiqDXXPewUmNMnKMIctSomVglpJopI9YZMcw_PfVgkkf960Hz_kjI2_ky6AoMAJnWdbuwBuBiBaA3Ic9HOZ5_Efbdq2TJX_755q_IA3yTkPKZHZC9YbtzrwGWDfWbsPeuAeGHOBA priority: 102 providerName: ProQuest |
Title | Achilles tendon stress is more sensitive to subject-specific geometry than subject-specific material properties: A finite element analysis |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S002192901730132X https://www.clinicalkey.es/playcontent/1-s2.0-S002192901730132X https://dx.doi.org/10.1016/j.jbiomech.2017.02.031 https://www.ncbi.nlm.nih.gov/pubmed/28359571 https://www.proquest.com/docview/1887976514 https://www.proquest.com/docview/1883179505 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISF4QNDxERiTkRBvWRvHrh3ewrSpgFYhxKS-WU5iT61GWjXpw172B-yv5s5xuqFpAsFLoyY-5eMud7-cf3cm5L1gXFmpRFyMXBlzCGFxZtU4VmbkKohglfLL-ZxOx5Mz_mUmZjvkqK-FQVpl8P2dT_feOuwZhqc5XM3nWOMLbxtOA6KRpmyGFexcopUfXt3QPAAuB5pHEuPoW1XCi8OFr3H3kxKJ9L070-S-AHUfAPWB6OQpeRIQJM27i3xGdmw9IHt5DV_PPy_pB-o5nT5ZPiCPb7UbHJCHp2EifY9c51jFfWEbijnwZU27mhE6bygyb2mDvHb0hLRd0mZTYLYmxqpMZBbRcwv3064vKebd7x4GEOztmq4w07_Glq0faU7dHPEttR1hnZrQDuU5OTs5_nE0icOyDHEpJGtjmXLHknEmS4ZfMyY1WZEaZTJhLGMAMZxTACrKUrhKVBXPnOLpOHWGj12ZVSx9QXbrZW1fEaqUZUlhjVNGcG6FUiBajIRTqhDKlhERvS50GXqW49IZF7onpy10r0ONOtQjpkGHERlu5VZd144_Sshe1bqvSQUvqiGw_JukbYIzaHSiGxip7xhsRLKt5G82_1dn3e_tUd-cCCIGwEvAwBF5tz0M_gIngUxtlxs_BiBjBsA3Ii87O94-Iuy9lwmZvP6PC3tDHuE_zwlN98luu97Yt4Db2uLAv5jwK2fygDzIP3-dTGH76Xj67fsvg21GiQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VReJxQJBCSSmwSMDN1F577TUSQhFQpbTpqZVyW9b2LmpUnDR2hPIX-DH8RmbWDyqhAkLq2Z7Yzry-nSfAC8EjaRIpvMy3uRehC_NSI2NPat8W6MEK6db5TI7j8Wn0aSqmG_Cj64WhssrOJjpDXcxzipHvBagN6DrRv79bXHi0NYqyq90KjUYsDs36Gx7ZqrcHH5C_Lznf_3jyfuy1WwW8XCS89pIwsjyI0yTnBMZ1qNMs1FKnQhvO0UNaK9En5rmwhSiKKLUyCuPQ6ii2eVrQoAM0-TfQ8fp02Eum_QGPZtG3JSWBh7DDv9SRPHs9c_30LgESJG5OaBhc5QyvArvO6e3fg7stWmWjRrzuw4YpB7A1KvGk_nXNXjFXP-oC8wO4c2m04QBuTtqk_RZ8H1HH-LmpGMXb5yVr-lPYWcWoypdVVENPVpfVc1atMooMedQBSlVM7IvB76mXa0Yx_t8vI-B2OsQWlFVY0njYN2zE7BlhaWaa4nim29ErD-D0Wpj1EDbLeWkeAZPS8CAz2kotosgIKZE084WVMhPS5EMQHS9U3s5HpzUd56orhJupjoeKeKh8rpCHQ9jr6RbNhJC_UiQdq1XX_4oWW6ET-z9KU7WGp1KBqvBORTn4gEQwIAse8ukQ0p6yxVYNZvqnp-528qh-PajXxyE87y-jbaKEky7NfOXuQXiaIsgewnYjx_1fRHP-UpEEO3_-8Wdwa3wyOVJHB8eHj-E2vZUrNw13YbNerswThIR19tTpIYPP1634PwElt3Rv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB1VqVTBA4KUS0qBRQLeTOy1N14jIRRoo5bSqEJUytuytndRo9YJcSKUX-CT-Dpm1hcqoQJC6rM9sZ25nZ0rwDPBI2liKbzUt5kXoQvzEiMHntS-zdGD5dKt8zkeDw5Oo_cTMdmAH00vDJVVNjbRGep8llGMvB-gNqDrRP_et3VZxMne6M38q0cbpCjT2qzTqETkyKy_4fGtfH24h7x-zvlo_9O7A6_eMOBlIuZLLw4jy4NBEmecgLkOdZKGWupEaMM5ektrJfrHLBM2F3keJVZG4SC0OhrYLMlp6AGa_82YTkUd2Hy7Pz752PoBBOp1gUngIQjxL_UnT19OXXe9S4cEsZsaGgZXucaroK9zgaPbcKvGrmxYCdsd2DBFF7aHBZ7bL9bsBXPVpC5M34WblwYddmHruE7hb8P3IfWPn5uSUfR9VrCqW4WdlYxqfllJFfVkg9lyxspVSnEij_pBqaaJfTH4PcvFmlHE__fLCL-dRrE55RgWNCz2FRsye0bImpmqVJ7pehDLXTi9Fnbdg04xK8wDYFIaHqRGW6lFFBkhJZKmvrBSpkKarAei4YXK6mnptLTjXDVlcVPV8FARD5XPFfKwB_2Wbl7NC_krRdywWjXdsGi_Fbq0_6M0ZW2GShWoEu9UlJEPSAQDsuchn_QgaSlrpFUhqH966m4jj-rXg1rt7MHT9jJaKko_6cLMVu4eBKsJQu4e3K_kuP2LaOpfIuJg588__gS2UOnVh8Px0UO4QS_lak_DXegsFyvzCPHhMn1cKyKDz9et-z8B1Al6Cg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achilles+tendon+stress+is+more+sensitive+to+subject-specific+geometry+than+subject-specific+material+properties%3A+A+finite+element+analysis&rft.jtitle=Journal+of+biomechanics&rft.au=Hansen%2C+Wencke&rft.au=Shim%2C+Vickie+B.&rft.au=Obst%2C+Steven&rft.au=Lloyd%2C+David+G.&rft.date=2017-05-03&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=56&rft.spage=26&rft.epage=31&rft_id=info:doi/10.1016%2Fj.jbiomech.2017.02.031&rft.externalDocID=S002192901730132X |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929017X00067%2Fcov150h.gif |