Achilles tendon stress is more sensitive to subject-specific geometry than subject-specific material properties: A finite element analysis

This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric load...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 56; pp. 26 - 31
Main Authors Hansen, Wencke, Shim, Vickie B., Obst, Steven, Lloyd, David G., Newsham-West, Richard, Barrett, Rod S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 03.05.2017
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25–35years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62±13mm, 3617±984mm3 and 58±11mm2 respectively. The measured tendon strain at 70% MVIC was 5.9±1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties.
AbstractList This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25-35years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62±13mm, 3617±984mm and 58±11mm respectively. The measured tendon strain at 70% MVIC was 5.9±1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties.
Abstract This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25–35 years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62 ± 13 mm, 3617 ± 984 mm3 and 58 ± 11 mm2 respectively. The measured tendon strain at 70% MVIC was 5.9 ± 1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties.
This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25–35years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62±13mm, 3617±984mm3 and 58±11mm2 respectively. The measured tendon strain at 70% MVIC was 5.9±1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties.
This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25-35years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62±13mm, 3617±984mm3and 58±11mm2respectively. The measured tendon strain at 70% MVIC was 5.9±1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties.
This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25-35years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62±13mm, 3617±984mm3 and 58±11mm2 respectively. The measured tendon strain at 70% MVIC was 5.9±1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties.This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25-35years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62±13mm, 3617±984mm3 and 58±11mm2 respectively. The measured tendon strain at 70% MVIC was 5.9±1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties.
Author Barrett, Rod S.
Shim, Vickie B.
Newsham-West, Richard
Hansen, Wencke
Obst, Steven
Lloyd, David G.
Author_xml – sequence: 1
  givenname: Wencke
  surname: Hansen
  fullname: Hansen, Wencke
  email: Wenx.Hansen@griffithuni.edu.au
  organization: Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia
– sequence: 2
  givenname: Vickie B.
  surname: Shim
  fullname: Shim, Vickie B.
  email: v.shim@auckland.ac.nz
  organization: Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia
– sequence: 3
  givenname: Steven
  surname: Obst
  fullname: Obst, Steven
  organization: Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia
– sequence: 4
  givenname: David G.
  surname: Lloyd
  fullname: Lloyd, David G.
  organization: School of Allied Health Sciences, Griffith University, Gold Coast Campus, Australia
– sequence: 5
  givenname: Richard
  surname: Newsham-West
  fullname: Newsham-West, Richard
  organization: Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia
– sequence: 6
  givenname: Rod S.
  surname: Barrett
  fullname: Barrett, Rod S.
  organization: Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28359571$$D View this record in MEDLINE/PubMed
BookMark eNqNks2KFDEUhQsZcXpGX2EIuHFTZX6qKhURsRn8gwEXKrgL6dQtO2Uq1eamB_oVfGrT9jRCC46rLO53Tg733IviLMwBiuKK0YpR1j4fq3Hl5gnsuuKUyYryigr2oFiwToqSi46eFQtKOSsVV_S8uEAcKaWylupRcc470ahGskXxc2nXzntAkiD0cyCYIiASh2SaIxCEgC65WyBpJrhdjWBTiRuwbnCWfIMcIcUdSWsT_h5PJkF0xpNNnDcQkwN8QZZkcMElIOBhgpCICcbv0OHj4uFgPMKTu_ey-PL2zefr9-XNx3cfrpc3pW0kT6UU9cBZq6TlshbKCKNWwnRGNQY4px0bho4xam0z9E3f12roatGKwdTtYFXPxWXx7OCbU_3YAiY9ObTgvQkwb1GzrhNMqoY2GX16go7zNua8vympZNuwOlNXd9R2NUGvN9FNJu70ccsZeHkAbJwRIwzaumSSm0OKxnnNqN6Xqkd9LFXvS9WU61xqlrcn8uMP9wpfH4SQ13nrIGq0DoKF3sVclO5nd7_FqxML63N91vjvsAP8sw6NWaA_7U9uf3FMCsoE__pvg_9J8AvalOvg
CitedBy_id crossref_primary_10_3389_fspor_2020_00070
crossref_primary_10_1007_s10237_020_01367_8
crossref_primary_10_1016_j_apm_2022_08_014
crossref_primary_10_1136_bjsports_2018_099020
crossref_primary_10_3390_s20143847
crossref_primary_10_3389_fbioe_2020_00878
crossref_primary_10_3389_fnbot_2019_00097
crossref_primary_10_3390_biomechanics3040047
crossref_primary_10_1080_14763141_2021_1959947
crossref_primary_10_3390_app15063047
crossref_primary_10_1016_j_actbio_2021_02_041
crossref_primary_10_1111_sms_13925
crossref_primary_10_3389_fncom_2017_00096
crossref_primary_10_1007_s00167_021_06580_1
crossref_primary_10_1016_j_jbiomech_2023_111583
crossref_primary_10_1016_j_aanat_2024_152271
crossref_primary_10_1016_j_jbiomech_2017_11_014
crossref_primary_10_1038_s41598_018_31587_z
crossref_primary_10_1177_1071100717742372
crossref_primary_10_1080_10255842_2021_1975683
crossref_primary_10_1007_s00167_019_05608_x
crossref_primary_10_1177_09544119221085795
crossref_primary_10_3389_fbioe_2024_1445364
crossref_primary_10_1016_j_medengphy_2020_01_010
crossref_primary_10_3389_fbioe_2022_914137
crossref_primary_10_7554_eLife_63204
crossref_primary_10_1002_jor_25836
crossref_primary_10_1016_j_jbiomech_2018_10_027
crossref_primary_10_1002_jor_25408
crossref_primary_10_1111_sms_14728
crossref_primary_10_1242_jeb_159764
crossref_primary_10_14814_phy2_14544
crossref_primary_10_1038_s41598_024_84202_9
crossref_primary_10_1016_j_jsams_2023_04_001
crossref_primary_10_1016_j_ultrasmedbio_2019_07_679
crossref_primary_10_3390_ma15248906
crossref_primary_10_1002_jeo2_70036
crossref_primary_10_1109_TNSRE_2023_3296280
crossref_primary_10_1016_j_actbio_2021_03_072
Cites_doi 10.1016/j.ultrasmedbio.2013.08.009
10.1111/sms.12742
10.1016/j.jbiomech.2014.05.008
10.1152/japplphysiol.00384.2005
10.1152/japplphysiol.00596.2003
10.3109/02841851003627809
10.1016/S0301-5629(02)00735-4
10.1007/s00330-016-4409-0
10.1115/1.3152414
10.1152/japplphysiol.01249.2013
10.1016/0045-7825(96)01035-3
10.1016/S0268-0033(00)00089-9
10.1016/j.jbiomech.2016.02.057
10.1016/j.ultrasmedbio.2006.02.1427
10.1016/j.jbiomech.2014.10.001
10.1016/j.jbiomech.2009.03.005
10.1034/k.1600-0838.2002.120102.x
10.1590/S1413-35552008000500005
10.1007/BF00238560
10.1007/s10237-003-0036-1
10.1016/0021-9290(90)90038-5
10.1152/japplphysiol.00259.2009
10.1016/S0021-9290(02)00240-3
10.1016/S1361-8415(99)80004-8
10.1007/s40279-014-0200-z
10.1159/000083731
10.1016/j.clinbiomech.2011.02.011
10.1177/0141076809701004
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2017.02.031
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE



Research Library Prep
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 31
ExternalDocumentID 28359571
10_1016_j_jbiomech_2017_02_031
S002192901730132X
1_s2_0_S002192901730132X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
.GJ
29J
3V.
53G
AACTN
AAQQT
AAQXK
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFCTW
AFFDN
AFJKZ
AFKWA
AGHFR
AI.
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EBD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
PKN
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
YCJ
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGQPQ
AGRNS
AIGII
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c572t-734f21697c27439a3a9b3a8a95ae22081ff8110cc5fd5dd49f84363fa46fc9d23
IEDL.DBID .~1
ISSN 0021-9290
1873-2380
IngestDate Fri Jul 11 11:13:01 EDT 2025
Wed Aug 13 07:02:11 EDT 2025
Wed Feb 19 02:43:30 EST 2025
Thu Apr 24 23:05:01 EDT 2025
Tue Jul 01 00:44:08 EDT 2025
Fri Feb 23 02:20:32 EST 2024
Tue Feb 25 20:12:59 EST 2025
Tue Aug 26 17:10:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Finite element modelling
Morphology
Achilles tendon
Subject specificity
Stress
Strain
Material properties
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-734f21697c27439a3a9b3a8a95ae22081ff8110cc5fd5dd49f84363fa46fc9d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28359571
PQID 1887976514
PQPubID 1226346
PageCount 6
ParticipantIDs proquest_miscellaneous_1883179505
proquest_journals_1887976514
pubmed_primary_28359571
crossref_citationtrail_10_1016_j_jbiomech_2017_02_031
crossref_primary_10_1016_j_jbiomech_2017_02_031
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2017_02_031
elsevier_clinicalkeyesjournals_1_s2_0_S002192901730132X
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2017_02_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-03
PublicationDateYYYYMMDD 2017-05-03
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Magnusson (b0075) 2002; 12
Claessen, de Vos, Reijman, Meuffels (b0015) 2014; 44
Treece, Prager, Gee, Berman (b0115) 1999; 3
Peixinho (b9010) 2008; 12
Hsu, Prager, Gee, Treece (b0045) 2006; 32
Muraoka, Muramatsu, Fukunaga, Kanehisa (b0080) 2004; 178
Weiss, Maker, Govindjee (b0120) 1996; 135
DeWall, Slane, Lee, Thelen (b9005) 2014; 47
Komi (b0050) 1990; 23
Treece, Gee, Prager, Cash, Berman (b0110) 2003; 29
Pierre-Jerome, Moncayo, Terk (b0100) 2010; 51
Bogaerts, Desmet, Slagmolen, Peers (b9000) 2016; 49
Kongsgaard, Aagaard, Kjaer, Magnusson (b0055) 2005; 99
Fernandez, Mithraratne, Thrupp, Tawhai, Hunter (b0025) 2004; 2
Obst, Renault, Newsham-West, Barrett (b0095) 2014; 116
Wren, Yerby, Beaupré, Carter (b9030) 2001; 16
Nuri, L., Obst, S.J., Newsham-West, R., Barrett, R.S., 2016. Regional three-dimensional deformation of human Achilles tendon during conditioning. Scandinavian J. Med. Sci. Sports (in press).
Obst, Newsham-West, Barrett (b0090) 2014; 40
Finni, Hodgson, Lai, Edgerton, Sinha (b0030) 2003; 95
Maffulli, Sharma, Luscombe (b0065) 2004; 97
Kongsgaard, Nielsen, Hegnsvad, Aagaard, Magnusson (b0060) 2011; 26
Arya, Kulig (b0005) 2010; 108
Barber, Barrett, Lichtwark (b0010) 2009; 42
Horgan (b0040) 1989; 42
Shim, Fernandez, Gamage, Regnery, Smith, Gardiner, Lloyd, Besier (b0105) 2014; 47
Maganaris, Paul (b0070) 2002; 35
Fukashiro, Rob, Ichinose, Kawakami, Fukunaga (b0035) 1995; 71
Cowin, Doty (b0020) 2007
Slane, L.C., Martin, J., DeWall, R., Thelen, D., Lee, K., 2016. Quantitative ultrasound mapping of regional variations in shear wave speeds of the aging Achilles tendon. Eur. Radiol.
Fukashiro (10.1016/j.jbiomech.2017.02.031_b0035) 1995; 71
Treece (10.1016/j.jbiomech.2017.02.031_b0110) 2003; 29
Pierre-Jerome (10.1016/j.jbiomech.2017.02.031_b0100) 2010; 51
10.1016/j.jbiomech.2017.02.031_b9025
Cowin (10.1016/j.jbiomech.2017.02.031_b0020) 2007
Kongsgaard (10.1016/j.jbiomech.2017.02.031_b0060) 2011; 26
Obst (10.1016/j.jbiomech.2017.02.031_b0090) 2014; 40
Hsu (10.1016/j.jbiomech.2017.02.031_b0045) 2006; 32
Barber (10.1016/j.jbiomech.2017.02.031_b0010) 2009; 42
Magnusson (10.1016/j.jbiomech.2017.02.031_b0075) 2002; 12
Weiss (10.1016/j.jbiomech.2017.02.031_b0120) 1996; 135
Maffulli (10.1016/j.jbiomech.2017.02.031_b0065) 2004; 97
Shim (10.1016/j.jbiomech.2017.02.031_b0105) 2014; 47
Treece (10.1016/j.jbiomech.2017.02.031_b0115) 1999; 3
Horgan (10.1016/j.jbiomech.2017.02.031_b0040) 1989; 42
Kongsgaard (10.1016/j.jbiomech.2017.02.031_b0055) 2005; 99
Claessen (10.1016/j.jbiomech.2017.02.031_b0015) 2014; 44
10.1016/j.jbiomech.2017.02.031_b0085
Wren (10.1016/j.jbiomech.2017.02.031_b9030) 2001; 16
DeWall (10.1016/j.jbiomech.2017.02.031_b9005) 2014; 47
Fernandez (10.1016/j.jbiomech.2017.02.031_b0025) 2004; 2
Bogaerts (10.1016/j.jbiomech.2017.02.031_b9000) 2016; 49
Finni (10.1016/j.jbiomech.2017.02.031_b0030) 2003; 95
Muraoka (10.1016/j.jbiomech.2017.02.031_b0080) 2004; 178
Maganaris (10.1016/j.jbiomech.2017.02.031_b0070) 2002; 35
Komi (10.1016/j.jbiomech.2017.02.031_b0050) 1990; 23
Obst (10.1016/j.jbiomech.2017.02.031_b0095) 2014; 116
Arya (10.1016/j.jbiomech.2017.02.031_b0005) 2010; 108
Peixinho (10.1016/j.jbiomech.2017.02.031_b9010) 2008; 12
References_xml – volume: 116
  start-page: 376
  year: 2014
  end-page: 384
  ident: b0095
  article-title: Three-dimensional deformation and transverse rotation of the human free Achilles tendon in vivo during isometric plantarflexion contraction
  publication-title: J. Appl. Physiol.
– volume: 3
  start-page: 141
  year: 1999
  end-page: 173
  ident: b0115
  article-title: Fast surface and volume estimation from non-parallel cross-sections, for freehand three-dimensional ultrasound
  publication-title: Med. Image Anal.
– volume: 97
  start-page: 472
  year: 2004
  end-page: 476
  ident: b0065
  article-title: Achilles tendinopathy: aetiology and management
  publication-title: J. R. Soc. Med.
– volume: 44
  start-page: 1241
  year: 2014
  end-page: 1259
  ident: b0015
  article-title: Predictors of primary Achilles tendon ruptures
  publication-title: Sports Med.
– volume: 12
  start-page: 1
  year: 2002
  end-page: 2
  ident: b0075
  article-title: Ultrasonography, exploration of human muscle-tendon function
  publication-title: Scand. J. Med. Sci. Sports
– volume: 42
  start-page: 1313
  year: 2009
  end-page: 1319
  ident: b0010
  article-title: Validation of a freehand 3D ultrasound system for morphological measures of the medial gastrocnemius muscle
  publication-title: J. Biomech.
– volume: 2
  start-page: 139
  year: 2004
  end-page: 155
  ident: b0025
  article-title: Anatomically based geometric modelling of the musculo-skeletal system and other organs
  publication-title: Biomech. Model. Mechanobiol.
– year: 2007
  ident: b0020
  article-title: Tissue Mechanics
– volume: 71
  start-page: 555
  year: 1995
  end-page: 557
  ident: b0035
  article-title: Ultrasonography gives directly but noninvasively elastic characteristic of human tendon in vivo
  publication-title: Eur. J. Appl. Physiol.
– volume: 108
  start-page: 670
  year: 2010
  end-page: 675
  ident: b0005
  article-title: Tendinopathy alters mechanical and material properties of the Achilles tendon
  publication-title: J. Appl. Physiol.
– reference: Slane, L.C., Martin, J., DeWall, R., Thelen, D., Lee, K., 2016. Quantitative ultrasound mapping of regional variations in shear wave speeds of the aging Achilles tendon. Eur. Radiol.
– volume: 51
  start-page: 438
  year: 2010
  end-page: 454
  ident: b0100
  article-title: MRI of the Achilles tendon: a comprehensive review of the anatomy, biomechanics, and imaging of overuse tendinopathies
  publication-title: Acta Radiol.
– volume: 42
  start-page: 295
  year: 1989
  end-page: 303
  ident: b0040
  article-title: Recent developments concerning Saint-Venant’s principle: an update
  publication-title: Appl. Mech. Rev.
– volume: 135
  start-page: 107
  year: 1996
  end-page: 128
  ident: b0120
  article-title: Finite element implementation of incompressible, transversely isotropic hyperelasticity
  publication-title: Comput. Meth. Appl. Mech. Eng.
– reference: Nuri, L., Obst, S.J., Newsham-West, R., Barrett, R.S., 2016. Regional three-dimensional deformation of human Achilles tendon during conditioning. Scandinavian J. Med. Sci. Sports (in press).
– volume: 12
  start-page: 366
  year: 2008
  end-page: 372
  ident: b9010
  article-title: Strain and Slackness of Achilles tendon during passive joint mobilization via imaging ultrasonography
  publication-title: Braz. J. Phys. Ther.
– volume: 99
  start-page: 1965
  year: 2005
  end-page: 1971
  ident: b0055
  article-title: Structural Achilles tendon properties in athletes subjected to different exercise modes and in Achilles tendon rupture patients
  publication-title: J. Appl. Physiol.
– volume: 49
  start-page: 1411
  year: 2016
  end-page: 1419
  ident: b9000
  article-title: Strain mapping in the Achilles tendon - A systematic review
  publication-title: J. Biomech.
– volume: 32
  start-page: 823
  year: 2006
  end-page: 835
  ident: b0045
  article-title: Rapid, easy and reliable calibration for freehand 3D ultrasound
  publication-title: Ultrasound Med. Biol.
– volume: 178
  start-page: 197
  year: 2004
  end-page: 203
  ident: b0080
  article-title: Geometric and elastic properties of in vivo human Achilles tendon in young adults
  publication-title: Cells Tissues Organs
– volume: 23
  start-page: 2327
  year: 1990
  end-page: 2534
  ident: b0050
  article-title: Relevance of in vivo force measurements to human biomechanics
  publication-title: J. Biomech.
– volume: 40
  start-page: 62
  year: 2014
  end-page: 70
  ident: b0090
  article-title: In vivo measurement of human achilles tendon morphology using freehand 3-D ultrasound
  publication-title: Ultrasound Med. Biol.
– volume: 35
  start-page: 1639
  year: 2002
  end-page: 1646
  ident: b0070
  article-title: Tensile properties of the in vivo human gastrocnemius tendon
  publication-title: J. Biomech.
– volume: 47
  start-page: 3598
  year: 2014
  end-page: 3604
  ident: b0105
  article-title: Subject-specific finite element analysis to characterize the influence of geometry and material properties in Achilles tendon rupture
  publication-title: J. Biomech.
– volume: 47
  start-page: 2685
  year: 2014
  end-page: 2692
  ident: b9005
  article-title: Spatial variations in Achilles tendon shear wave speed
  publication-title: J. Biomech.
– volume: 29
  start-page: 529
  year: 2003
  end-page: 546
  ident: b0110
  article-title: High-definition freehand 3-D ultrasound
  publication-title: Ultrasound Med. Biol.
– volume: 16
  start-page: 245
  year: 2001
  end-page: 251
  ident: b9030
  article-title: Mechanical properties of the human Achilles tendon
  publication-title: Clin. Biomech.
– volume: 26
  start-page: 772
  year: 2011
  end-page: 777
  ident: b0060
  article-title: Mechanical properties of the human Achilles tendon, in vivo
  publication-title: Clin. Biomech.
– volume: 95
  start-page: 2128
  year: 2003
  end-page: 2133
  ident: b0030
  article-title: Mapping of movement in the isometrically contracting human soleus muscle reveals details of its structural and functional complexity
  publication-title: J. Appl. Physiol.
– volume: 40
  start-page: 62
  year: 2014
  ident: 10.1016/j.jbiomech.2017.02.031_b0090
  article-title: In vivo measurement of human achilles tendon morphology using freehand 3-D ultrasound
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2013.08.009
– ident: 10.1016/j.jbiomech.2017.02.031_b0085
  doi: 10.1111/sms.12742
– volume: 47
  start-page: 2685
  year: 2014
  ident: 10.1016/j.jbiomech.2017.02.031_b9005
  article-title: Spatial variations in Achilles tendon shear wave speed
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.05.008
– volume: 99
  start-page: 1965
  year: 2005
  ident: 10.1016/j.jbiomech.2017.02.031_b0055
  article-title: Structural Achilles tendon properties in athletes subjected to different exercise modes and in Achilles tendon rupture patients
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00384.2005
– volume: 95
  start-page: 2128
  year: 2003
  ident: 10.1016/j.jbiomech.2017.02.031_b0030
  article-title: Mapping of movement in the isometrically contracting human soleus muscle reveals details of its structural and functional complexity
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00596.2003
– volume: 51
  start-page: 438
  year: 2010
  ident: 10.1016/j.jbiomech.2017.02.031_b0100
  article-title: MRI of the Achilles tendon: a comprehensive review of the anatomy, biomechanics, and imaging of overuse tendinopathies
  publication-title: Acta Radiol.
  doi: 10.3109/02841851003627809
– volume: 29
  start-page: 529
  year: 2003
  ident: 10.1016/j.jbiomech.2017.02.031_b0110
  article-title: High-definition freehand 3-D ultrasound
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/S0301-5629(02)00735-4
– ident: 10.1016/j.jbiomech.2017.02.031_b9025
  doi: 10.1007/s00330-016-4409-0
– volume: 42
  start-page: 295
  year: 1989
  ident: 10.1016/j.jbiomech.2017.02.031_b0040
  article-title: Recent developments concerning Saint-Venant’s principle: an update
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.3152414
– volume: 116
  start-page: 376
  year: 2014
  ident: 10.1016/j.jbiomech.2017.02.031_b0095
  article-title: Three-dimensional deformation and transverse rotation of the human free Achilles tendon in vivo during isometric plantarflexion contraction
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01249.2013
– year: 2007
  ident: 10.1016/j.jbiomech.2017.02.031_b0020
– volume: 135
  start-page: 107
  year: 1996
  ident: 10.1016/j.jbiomech.2017.02.031_b0120
  article-title: Finite element implementation of incompressible, transversely isotropic hyperelasticity
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/0045-7825(96)01035-3
– volume: 16
  start-page: 245
  year: 2001
  ident: 10.1016/j.jbiomech.2017.02.031_b9030
  article-title: Mechanical properties of the human Achilles tendon
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(00)00089-9
– volume: 49
  start-page: 1411
  year: 2016
  ident: 10.1016/j.jbiomech.2017.02.031_b9000
  article-title: Strain mapping in the Achilles tendon - A systematic review
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.02.057
– volume: 32
  start-page: 823
  year: 2006
  ident: 10.1016/j.jbiomech.2017.02.031_b0045
  article-title: Rapid, easy and reliable calibration for freehand 3D ultrasound
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2006.02.1427
– volume: 47
  start-page: 3598
  year: 2014
  ident: 10.1016/j.jbiomech.2017.02.031_b0105
  article-title: Subject-specific finite element analysis to characterize the influence of geometry and material properties in Achilles tendon rupture
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.10.001
– volume: 42
  start-page: 1313
  year: 2009
  ident: 10.1016/j.jbiomech.2017.02.031_b0010
  article-title: Validation of a freehand 3D ultrasound system for morphological measures of the medial gastrocnemius muscle
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.03.005
– volume: 12
  start-page: 1
  year: 2002
  ident: 10.1016/j.jbiomech.2017.02.031_b0075
  article-title: Ultrasonography, exploration of human muscle-tendon function
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1034/k.1600-0838.2002.120102.x
– volume: 12
  start-page: 366
  year: 2008
  ident: 10.1016/j.jbiomech.2017.02.031_b9010
  article-title: Strain and Slackness of Achilles tendon during passive joint mobilization via imaging ultrasonography
  publication-title: Braz. J. Phys. Ther.
  doi: 10.1590/S1413-35552008000500005
– volume: 71
  start-page: 555
  year: 1995
  ident: 10.1016/j.jbiomech.2017.02.031_b0035
  article-title: Ultrasonography gives directly but noninvasively elastic characteristic of human tendon in vivo
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/BF00238560
– volume: 2
  start-page: 139
  year: 2004
  ident: 10.1016/j.jbiomech.2017.02.031_b0025
  article-title: Anatomically based geometric modelling of the musculo-skeletal system and other organs
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-003-0036-1
– volume: 23
  start-page: 2327
  year: 1990
  ident: 10.1016/j.jbiomech.2017.02.031_b0050
  article-title: Relevance of in vivo force measurements to human biomechanics
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(90)90038-5
– volume: 108
  start-page: 670
  year: 2010
  ident: 10.1016/j.jbiomech.2017.02.031_b0005
  article-title: Tendinopathy alters mechanical and material properties of the Achilles tendon
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00259.2009
– volume: 35
  start-page: 1639
  year: 2002
  ident: 10.1016/j.jbiomech.2017.02.031_b0070
  article-title: Tensile properties of the in vivo human gastrocnemius tendon
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(02)00240-3
– volume: 3
  start-page: 141
  year: 1999
  ident: 10.1016/j.jbiomech.2017.02.031_b0115
  article-title: Fast surface and volume estimation from non-parallel cross-sections, for freehand three-dimensional ultrasound
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(99)80004-8
– volume: 44
  start-page: 1241
  year: 2014
  ident: 10.1016/j.jbiomech.2017.02.031_b0015
  article-title: Predictors of primary Achilles tendon ruptures
  publication-title: Sports Med.
  doi: 10.1007/s40279-014-0200-z
– volume: 178
  start-page: 197
  year: 2004
  ident: 10.1016/j.jbiomech.2017.02.031_b0080
  article-title: Geometric and elastic properties of in vivo human Achilles tendon in young adults
  publication-title: Cells Tissues Organs
  doi: 10.1159/000083731
– volume: 26
  start-page: 772
  year: 2011
  ident: 10.1016/j.jbiomech.2017.02.031_b0060
  article-title: Mechanical properties of the human Achilles tendon, in vivo
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2011.02.011
– volume: 97
  start-page: 472
  year: 2004
  ident: 10.1016/j.jbiomech.2017.02.031_b0065
  article-title: Achilles tendinopathy: aetiology and management
  publication-title: J. R. Soc. Med.
  doi: 10.1177/0141076809701004
SSID ssj0007479
Score 2.4140353
Snippet This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate...
Abstract This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 26
SubjectTerms Accuracy
Achilles tendon
Achilles Tendon - diagnostic imaging
Achilles Tendon - physiology
Adult
Anatomy
Ankle
Brightness
Calcaneus
Clinical trials
Data processing
Exploration
Feedback
Female
Finite Element Analysis
Finite element method
Finite element modelling
Geometry
Humans
Influence
Insertion
Isometric Contraction - physiology
Magnetic resonance imaging
Male
Mapping
Material properties
Mathematical models
Mechanical properties
Morphology
Motor task performance
Muscle contraction
NMR
Nuclear magnetic resonance
Physical Medicine and Rehabilitation
Rupture
Strain
Stress
Stress distribution
Stress, Mechanical
Subject specificity
Surgery
Tendons
Three dimensional analysis
Ultrasonic imaging
Ultrasonography
Ultrasound
Visual perception
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSAgOCLY8AgUZCXEzjZ04cbigFaKqkMqJSnuzHMdGXbXJsske-hf6qzvjOKESKiDO8eQ145nP8yTknRS5cqWSrE69ZTmYMFY5VTBlUt-ABWtUGOdz8q04Ps2_ruQqOtz6mFY56cSgqJvOoo_8kMNuANMJ9v3T5ifDqVEYXY0jNO6Se9i6DKW6XM0HLuwNH1M8OAMYkN6oEF5_WIf69hCQ4GXo25nx24zTbeAzGKGjx-RRRI90ObL7Cbnj2gXZX7Zwcr64pO9pyOcMjvIFeXij1eCC3D-JQfR9crXECu5z11P0f3ctHetF6FlPMeuW9pjTjlqQDh3tdzV6ahhWZGJWEf3h4HuG7SVFn_vvlwEAB5mmG_Tyb7Fd60e6pP4MsS11Y7I6NbEVylNyevTl--djFkcyMCtLMbAyy73gRVVagScZk5mqzowylTROCIAX3isAFNZK38imySuv8qzIvMkLb6tGZM_IXtu17gWhSjnBa2e8MjLPnVQKSOtUeqVqqZxNiJx4oW3sV45jM871lJi21hMPNfJQp0IDDxNyONNtxo4df6UoJ1brqR4VNKgGo_J_lK6PiqDXXPewUmNMnKMIctSomVglpJopI9YZMcw_PfVgkkf960Hz_kjI2_ky6AoMAJnWdbuwBuBiBaA3Ic9HOZ5_Efbdq2TJX_755q_IA3yTkPKZHZC9YbtzrwGWDfWbsPeuAeGHOBA
  priority: 102
  providerName: ProQuest
Title Achilles tendon stress is more sensitive to subject-specific geometry than subject-specific material properties: A finite element analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S002192901730132X
https://www.clinicalkey.es/playcontent/1-s2.0-S002192901730132X
https://dx.doi.org/10.1016/j.jbiomech.2017.02.031
https://www.ncbi.nlm.nih.gov/pubmed/28359571
https://www.proquest.com/docview/1887976514
https://www.proquest.com/docview/1883179505
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISF4QNDxERiTkRBvWRvHrh3ewrSpgFYhxKS-WU5iT61GWjXpw172B-yv5s5xuqFpAsFLoyY-5eMud7-cf3cm5L1gXFmpRFyMXBlzCGFxZtU4VmbkKohglfLL-ZxOx5Mz_mUmZjvkqK-FQVpl8P2dT_feOuwZhqc5XM3nWOMLbxtOA6KRpmyGFexcopUfXt3QPAAuB5pHEuPoW1XCi8OFr3H3kxKJ9L070-S-AHUfAPWB6OQpeRIQJM27i3xGdmw9IHt5DV_PPy_pB-o5nT5ZPiCPb7UbHJCHp2EifY9c51jFfWEbijnwZU27mhE6bygyb2mDvHb0hLRd0mZTYLYmxqpMZBbRcwv3064vKebd7x4GEOztmq4w07_Glq0faU7dHPEttR1hnZrQDuU5OTs5_nE0icOyDHEpJGtjmXLHknEmS4ZfMyY1WZEaZTJhLGMAMZxTACrKUrhKVBXPnOLpOHWGj12ZVSx9QXbrZW1fEaqUZUlhjVNGcG6FUiBajIRTqhDKlhERvS50GXqW49IZF7onpy10r0ONOtQjpkGHERlu5VZd144_Sshe1bqvSQUvqiGw_JukbYIzaHSiGxip7xhsRLKt5G82_1dn3e_tUd-cCCIGwEvAwBF5tz0M_gIngUxtlxs_BiBjBsA3Ii87O94-Iuy9lwmZvP6PC3tDHuE_zwlN98luu97Yt4Db2uLAv5jwK2fygDzIP3-dTGH76Xj67fsvg21GiQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VReJxQJBCSSmwSMDN1F577TUSQhFQpbTpqZVyW9b2LmpUnDR2hPIX-DH8RmbWDyqhAkLq2Z7Yzry-nSfAC8EjaRIpvMy3uRehC_NSI2NPat8W6MEK6db5TI7j8Wn0aSqmG_Cj64WhssrOJjpDXcxzipHvBagN6DrRv79bXHi0NYqyq90KjUYsDs36Gx7ZqrcHH5C_Lznf_3jyfuy1WwW8XCS89pIwsjyI0yTnBMZ1qNMs1FKnQhvO0UNaK9En5rmwhSiKKLUyCuPQ6ii2eVrQoAM0-TfQ8fp02Eum_QGPZtG3JSWBh7DDv9SRPHs9c_30LgESJG5OaBhc5QyvArvO6e3fg7stWmWjRrzuw4YpB7A1KvGk_nXNXjFXP-oC8wO4c2m04QBuTtqk_RZ8H1HH-LmpGMXb5yVr-lPYWcWoypdVVENPVpfVc1atMooMedQBSlVM7IvB76mXa0Yx_t8vI-B2OsQWlFVY0njYN2zE7BlhaWaa4nim29ErD-D0Wpj1EDbLeWkeAZPS8CAz2kotosgIKZE084WVMhPS5EMQHS9U3s5HpzUd56orhJupjoeKeKh8rpCHQ9jr6RbNhJC_UiQdq1XX_4oWW6ET-z9KU7WGp1KBqvBORTn4gEQwIAse8ukQ0p6yxVYNZvqnp-528qh-PajXxyE87y-jbaKEky7NfOXuQXiaIsgewnYjx_1fRHP-UpEEO3_-8Wdwa3wyOVJHB8eHj-E2vZUrNw13YbNerswThIR19tTpIYPP1634PwElt3Rv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB1VqVTBA4KUS0qBRQLeTOy1N14jIRRoo5bSqEJUytuytndRo9YJcSKUX-CT-Dpm1hcqoQJC6rM9sZ25nZ0rwDPBI2liKbzUt5kXoQvzEiMHntS-zdGD5dKt8zkeDw5Oo_cTMdmAH00vDJVVNjbRGep8llGMvB-gNqDrRP_et3VZxMne6M38q0cbpCjT2qzTqETkyKy_4fGtfH24h7x-zvlo_9O7A6_eMOBlIuZLLw4jy4NBEmecgLkOdZKGWupEaMM5ektrJfrHLBM2F3keJVZG4SC0OhrYLMlp6AGa_82YTkUd2Hy7Pz752PoBBOp1gUngIQjxL_UnT19OXXe9S4cEsZsaGgZXucaroK9zgaPbcKvGrmxYCdsd2DBFF7aHBZ7bL9bsBXPVpC5M34WblwYddmHruE7hb8P3IfWPn5uSUfR9VrCqW4WdlYxqfllJFfVkg9lyxspVSnEij_pBqaaJfTH4PcvFmlHE__fLCL-dRrE55RgWNCz2FRsye0bImpmqVJ7pehDLXTi9Fnbdg04xK8wDYFIaHqRGW6lFFBkhJZKmvrBSpkKarAei4YXK6mnptLTjXDVlcVPV8FARD5XPFfKwB_2Wbl7NC_krRdywWjXdsGi_Fbq0_6M0ZW2GShWoEu9UlJEPSAQDsuchn_QgaSlrpFUhqH966m4jj-rXg1rt7MHT9jJaKko_6cLMVu4eBKsJQu4e3K_kuP2LaOpfIuJg588__gS2UOnVh8Px0UO4QS_lak_DXegsFyvzCPHhMn1cKyKDz9et-z8B1Al6Cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achilles+tendon+stress+is+more+sensitive+to+subject-specific+geometry+than+subject-specific+material+properties%3A+A+finite+element+analysis&rft.jtitle=Journal+of+biomechanics&rft.au=Hansen%2C+Wencke&rft.au=Shim%2C+Vickie+B.&rft.au=Obst%2C+Steven&rft.au=Lloyd%2C+David+G.&rft.date=2017-05-03&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=56&rft.spage=26&rft.epage=31&rft_id=info:doi/10.1016%2Fj.jbiomech.2017.02.031&rft.externalDocID=S002192901730132X
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929017X00067%2Fcov150h.gif