A Machine-Learning Framework to Identify Distinct Phenotypes of Aortic Stenosis Severity

The authors explored the development and validation of machine-learning models for augmenting the echocardiographic grading of aortic stenosis (AS) severity. In AS, symptoms and adverse events develop secondarily to valvular obstruction and left ventricular decompensation. The current echocardiograp...

Full description

Saved in:
Bibliographic Details
Published inJACC. Cardiovascular imaging Vol. 14; no. 9; pp. 1707 - 1720
Main Authors Sengupta, Partho P., Shrestha, Sirish, Kagiyama, Nobuyuki, Hamirani, Yasmin, Kulkarni, Hemant, Yanamala, Naveena, Bing, Rong, Chin, Calvin W.L., Pawade, Tania A., Messika-Zeitoun, David, Tastet, Lionel, Shen, Mylène, Newby, David E., Clavel, Marie-Annick, Pibarot, Phillippe, Dweck, Marc R., Larose, Éric, Guzzetti, Ezequiel, Bernier, Mathieu, Beaudoin, Jonathan, Arsenault, Marie, Côté, Nancy, Everett, Russell, Jenkins, William S.A., Tribouilloy, Christophe, Dreyfus, Julien, Mathieu, Tiffany, Renard, Cedric, Gun, Mesut, Macron, Laurent, Sechrist, Jacob W., Lacomis, Joan M., Nguyen, Virginia, Gay, Laura Galian, Calabria, Hug Cuéllar, Ntalas, Ioannis, Prendergast, Bernard, Rajani, Ronak, Evangelista, Arturo, Cavalcante, João L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…