Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation
RIP3 activation leads to activation of necroptosis and the NLRP3 inflammasome pathways. The activation of RIP3 in lupus nephritis (LN) has not been investigated. In this study, RIP3 and necroptosis pathway activations were demonstrated in podocytes in renal biopsies from patients with class IV LN an...
Saved in:
Published in | Journal of autoimmunity Vol. 103; p. 102286 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | RIP3 activation leads to activation of necroptosis and the NLRP3 inflammasome pathways. The activation of RIP3 in lupus nephritis (LN) has not been investigated. In this study, RIP3 and necroptosis pathway activations were demonstrated in podocytes in renal biopsies from patients with class IV LN and in the diseased kidneys from lupus-prone NZM2328 and MRL/lpr mice. RIP3 activation was accompanied with the activation of MLKL, the effector molecule of the necroptosis pathway, and activation of caspase-1, the effector of the NLRP3 inflammasome pathway. Podocyte activation of RIP3 was detected readily with the development of LN in NZM2328 mice, suggesting this activation may play a significant role in the pathogenesis of LN. GSK872, a RIP3 specific inhibitor, inhibited the development of LN in MRL/lpr mice with down-regulation of RIP3 activation in podocytes, decreased the splenic sizes and weights and anti-dsDNA antibody titers. IgG from pooled sera of diseased NZM2328 mice succumbing to LN induced both the necroptosis pathway and NLRP3 inflammasome activation in a podocyte cell line and this activation was specifically blocked by GSK872. These results indicate that the necroptosis pathway and the RIP3 dependent NLRP3 inflammasome pathway are activated in podocytes during LN. Inhibition of RIP3 kinase may be a novel therapeutic approach to treat LN and systemic lupus erythematosus (SLE).
•Necroptosis and NLRP3 inflammasome pathways are activated in podocytes in LN.•RIP3 regulates both NLRP3 inflammasome and necroptosis activation.•IgG from LN activates RIP3 dependent necroptosis and NLRP3 inflammasome pathways.•Inhibition of RIP3 reduces autoimmunity and alleviates clinical manifestation of LN. |
---|---|
AbstractList | RIP3 activation leads to activation of necroptosis and the NLRP3 inflammasome pathways. The activation of RIP3 in lupus nephritis (LN) has not been investigated. In this study, RIP3 and necroptosis pathway activations were demonstrated in podocytes in renal biopsies from patients with class IV LN and in the diseased kidneys from lupus-prone NZM2328 and MRL/
lpr
mice. RIP3 activation was accompanied with the activation of MLKL, the effector molecule of the necroptosis pathway, and activation of caspase-1, the effector of the NLRP3 inflammasome pathway. Podocyte activation of RIP3 was detected readily with the development of LN in NZM2328 mice, suggesting this activation may play a significant role in the pathogenesis of LN. GSK872, a RIP3 specific inhibitor, inhibited the development of LN in MRL/
lpr
mice with down-regulation of RIP3 activation in podocytes, decreased the splenic sizes and weights and anti-dsDNA antibody titers. IgG from pooled sera of diseased NZM2328 mice succumbing to LN induced both the necroptosis pathway and NLRP3 inflammasome activation in a podocyte cell line and this activation was specifically blocked by GSK872. These results indicate that the necroptosis pathway and the RIP3 dependent NLRP3 inflammasome pathway are activated in podocytes during LN. Inhibition of RIP3 kinase may be a novel therapeutic approach to treat LN and systemic lupus erythematosus (SLE). RIP3 activation leads to activation of necroptosis and the NLRP3 inflammasome pathways. The activation of RIP3 in lupus nephritis (LN) has not been investigated. In this study, RIP3 and necroptosis pathway activations were demonstrated in podocytes in renal biopsies from patients with class IV LN and in the diseased kidneys from lupus-prone NZM2328 and MRL/lpr mice. RIP3 activation was accompanied with the activation of MLKL, the effector molecule of the necroptosis pathway, and activation of caspase-1, the effector of the NLRP3 inflammasome pathway. Podocyte activation of RIP3 was detected readily with the development of LN in NZM2328 mice, suggesting this activation may play a significant role in the pathogenesis of LN. GSK872, a RIP3 specific inhibitor, inhibited the development of LN in MRL/lpr mice with down-regulation of RIP3 activation in podocytes, decreased the splenic sizes and weights and anti-dsDNA antibody titers. IgG from pooled sera of diseased NZM2328 mice succumbing to LN induced both the necroptosis pathway and NLRP3 inflammasome activation in a podocyte cell line and this activation was specifically blocked by GSK872. These results indicate that the necroptosis pathway and the RIP3 dependent NLRP3 inflammasome pathway are activated in podocytes during LN. Inhibition of RIP3 kinase may be a novel therapeutic approach to treat LN and systemic lupus erythematosus (SLE). RIP3 activation leads to activation of necroptosis and the NLRP3 inflammasome pathways. The activation of RIP3 in lupus nephritis (LN) has not been investigated. In this study, RIP3 and necroptosis pathway activations were demonstrated in podocytes in renal biopsies from patients with class IV LN and in the diseased kidneys from lupus-prone NZM2328 and MRL/lpr mice. RIP3 activation was accompanied with the activation of MLKL, the effector molecule of the necroptosis pathway, and activation of caspase-1, the effector of the NLRP3 inflammasome pathway. Podocyte activation of RIP3 was detected readily with the development of LN in NZM2328 mice, suggesting this activation may play a significant role in the pathogenesis of LN. GSK872, a RIP3 specific inhibitor, inhibited the development of LN in MRL/lpr mice with down-regulation of RIP3 activation in podocytes, decreased the splenic sizes and weights and anti-dsDNA antibody titers. IgG from pooled sera of diseased NZM2328 mice succumbing to LN induced both the necroptosis pathway and NLRP3 inflammasome activation in a podocyte cell line and this activation was specifically blocked by GSK872. These results indicate that the necroptosis pathway and the RIP3 dependent NLRP3 inflammasome pathway are activated in podocytes during LN. Inhibition of RIP3 kinase may be a novel therapeutic approach to treat LN and systemic lupus erythematosus (SLE). •Necroptosis and NLRP3 inflammasome pathways are activated in podocytes in LN.•RIP3 regulates both NLRP3 inflammasome and necroptosis activation.•IgG from LN activates RIP3 dependent necroptosis and NLRP3 inflammasome pathways.•Inhibition of RIP3 reduces autoimmunity and alleviates clinical manifestation of LN. RIP3 activation leads to activation of necroptosis and the NLRP3 inflammasome pathways. The activation of RIP3 in lupus nephritis (LN) has not been investigated. In this study, RIP3 and necroptosis pathway activations were demonstrated in podocytes in renal biopsies from patients with class IV LN and in the diseased kidneys from lupus-prone NZM2328 and MRL/lpr mice. RIP3 activation was accompanied with the activation of MLKL, the effector molecule of the necroptosis pathway, and activation of caspase-1, the effector of the NLRP3 inflammasome pathway. Podocyte activation of RIP3 was detected readily with the development of LN in NZM2328 mice, suggesting this activation may play a significant role in the pathogenesis of LN. GSK872, a RIP3 specific inhibitor, inhibited the development of LN in MRL/lpr mice with down-regulation of RIP3 activation in podocytes, decreased the splenic sizes and weights and anti-dsDNA antibody titers. IgG from pooled sera of diseased NZM2328 mice succumbing to LN induced both the necroptosis pathway and NLRP3 inflammasome activation in a podocyte cell line and this activation was specifically blocked by GSK872. These results indicate that the necroptosis pathway and the RIP3 dependent NLRP3 inflammasome pathway are activated in podocytes during LN. Inhibition of RIP3 kinase may be a novel therapeutic approach to treat LN and systemic lupus erythematosus (SLE).RIP3 activation leads to activation of necroptosis and the NLRP3 inflammasome pathways. The activation of RIP3 in lupus nephritis (LN) has not been investigated. In this study, RIP3 and necroptosis pathway activations were demonstrated in podocytes in renal biopsies from patients with class IV LN and in the diseased kidneys from lupus-prone NZM2328 and MRL/lpr mice. RIP3 activation was accompanied with the activation of MLKL, the effector molecule of the necroptosis pathway, and activation of caspase-1, the effector of the NLRP3 inflammasome pathway. Podocyte activation of RIP3 was detected readily with the development of LN in NZM2328 mice, suggesting this activation may play a significant role in the pathogenesis of LN. GSK872, a RIP3 specific inhibitor, inhibited the development of LN in MRL/lpr mice with down-regulation of RIP3 activation in podocytes, decreased the splenic sizes and weights and anti-dsDNA antibody titers. IgG from pooled sera of diseased NZM2328 mice succumbing to LN induced both the necroptosis pathway and NLRP3 inflammasome activation in a podocyte cell line and this activation was specifically blocked by GSK872. These results indicate that the necroptosis pathway and the RIP3 dependent NLRP3 inflammasome pathway are activated in podocytes during LN. Inhibition of RIP3 kinase may be a novel therapeutic approach to treat LN and systemic lupus erythematosus (SLE). |
ArticleNumber | 102286 |
Author | Huang, Yuefang Gaskin, Felicia Zhou, Mianjing Fu, Rong Hu, Haoqiang Fu, Shu Man Guo, Chaohuan Wang, Shuang Zhao, Jijun Yang, Niansheng |
AuthorAffiliation | 1 Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China 6 Division of Rheumatology and Center of Inflammation, Immunology and Regenerative Medicine, Department of Medicine and Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908-0133, USA 3 Department of Pediatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China 2 Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China 5 Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22908-0203, USA 4 Department of Nephrology, Dongguan People’s Hospital, Dongguan, PR China |
AuthorAffiliation_xml | – name: 6 Division of Rheumatology and Center of Inflammation, Immunology and Regenerative Medicine, Department of Medicine and Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908-0133, USA – name: 1 Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China – name: 5 Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22908-0203, USA – name: 3 Department of Pediatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China – name: 4 Department of Nephrology, Dongguan People’s Hospital, Dongguan, PR China – name: 2 Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China |
Author_xml | – sequence: 1 givenname: Chaohuan surname: Guo fullname: Guo, Chaohuan organization: Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China – sequence: 2 givenname: Rong surname: Fu fullname: Fu, Rong organization: Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China – sequence: 3 givenname: Mianjing surname: Zhou fullname: Zhou, Mianjing organization: Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China – sequence: 4 givenname: Shuang surname: Wang fullname: Wang, Shuang organization: Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China – sequence: 5 givenname: Yuefang surname: Huang fullname: Huang, Yuefang organization: Department of Pediatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China – sequence: 6 givenname: Haoqiang surname: Hu fullname: Hu, Haoqiang organization: Department of Nephrology, Dongguan People's Hospital, Dongguan, PR China – sequence: 7 givenname: Jijun surname: Zhao fullname: Zhao, Jijun organization: Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China – sequence: 8 givenname: Felicia surname: Gaskin fullname: Gaskin, Felicia organization: Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, 22908-0203, USA – sequence: 9 givenname: Niansheng surname: Yang fullname: Yang, Niansheng email: zsuyns@163.com organization: Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China – sequence: 10 givenname: Shu Man surname: Fu fullname: Fu, Shu Man organization: Division of Rheumatology and Center of Inflammation, Immunology and Regenerative Medicine, Department of Medicine and Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908-0133, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31133359$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URKeFP8ACZckmwdeO86gQEqp4VBpBVcESWY5z3fGQ2GnsjNR_j4dpEXRRVl6c851rnXNCjpx3SMhLoAVQqN5si61aYsEotAUVBYXyCVkBbUXegqiPyIo2bZU3JcAxOQlhSymAEOIZOeYAnHPRrsiPSxU3_hodBhsyb7JhmZaQOZw2s402nGVXF5c863FC16OLSdGzn6Lf25Xrsy_rq6RbZwY1jir4ETOlo92paL17Tp4aNQR8cfeeku8fP3w7_5yvv366OH-_zrWoWcyrShnOq47TpqlEV3ZGlEYzBh1WumlNy9uWQaMaUzJWGW401Ep0AH3DyrrT_JS8O-ROSzdir9NHZzXIabajmm-lV1b-qzi7kdd-J6uaNmVNU8Dru4DZ3ywYohxt0DgMyqFfgmSMM6CpWkjWV3_f-nPkvtNkaA6GVFQIMxqpbfxdRzptBwlU7ueTW7mfT-7nk1TINF9C2QP0Pv1R6O0BwtTwzuIsg7boNPZ2Rh1l7-3j-NkDXA_WWa2Gn3j7P_gXDtTIug |
CitedBy_id | crossref_primary_10_1111_cpr_13108 crossref_primary_10_1038_s41419_020_03378_w crossref_primary_10_1038_s41581_023_00694_0 crossref_primary_10_1016_j_intimp_2024_112886 crossref_primary_10_1002_rai2_12104 crossref_primary_10_1002_rai2_12103 crossref_primary_10_1007_s11064_023_04038_z crossref_primary_10_3390_biom12030403 crossref_primary_10_1038_s41419_019_2094_z crossref_primary_10_1002_ehf2_14059 crossref_primary_10_1016_j_cca_2024_117785 crossref_primary_10_1016_j_jaut_2022_102890 crossref_primary_10_1016_j_retram_2025_103502 crossref_primary_10_2147_JIR_S418598 crossref_primary_10_1007_s11010_024_05029_6 crossref_primary_10_3389_fphar_2021_798381 crossref_primary_10_1016_j_clim_2024_110313 crossref_primary_10_1007_s40620_022_01269_1 crossref_primary_10_1016_j_ymthe_2024_03_003 crossref_primary_10_1038_s41420_022_01167_2 crossref_primary_10_1002_adbi_202300173 crossref_primary_10_1042_BCJ20240569 crossref_primary_10_1111_1756_185X_14780 crossref_primary_10_1016_j_clim_2024_109939 crossref_primary_10_1016_j_artmed_2024_103042 crossref_primary_10_1016_j_biopha_2024_116261 crossref_primary_10_3389_fgene_2022_1039951 crossref_primary_10_1002_cam4_6803 crossref_primary_10_1016_j_cca_2020_05_034 crossref_primary_10_3389_fcell_2020_00502 crossref_primary_10_1016_j_biopha_2024_116667 crossref_primary_10_1016_j_phrs_2024_107063 crossref_primary_10_3724_abbs_2022137 crossref_primary_10_3390_ijms24043067 crossref_primary_10_1016_j_nefro_2022_12_009 crossref_primary_10_1159_000539496 crossref_primary_10_1186_s12974_022_02626_4 crossref_primary_10_3389_fimmu_2023_1297408 crossref_primary_10_1016_j_nefroe_2023_04_006 crossref_primary_10_1007_s00210_021_02159_2 crossref_primary_10_3390_ijms222212476 crossref_primary_10_1016_j_jep_2023_116938 crossref_primary_10_1016_j_intimp_2021_108131 crossref_primary_10_1111_sji_13368 crossref_primary_10_1186_s12885_024_12308_4 crossref_primary_10_1053_j_gastro_2024_02_001 crossref_primary_10_1136_annrheumdis_2021_221985 crossref_primary_10_3389_fphar_2024_1436013 crossref_primary_10_3389_fimmu_2024_1502855 crossref_primary_10_1038_s41581_022_00658_w crossref_primary_10_1186_s12967_024_05951_9 crossref_primary_10_1002_jbt_22591 crossref_primary_10_3390_ani11041044 crossref_primary_10_1111_cns_14397 crossref_primary_10_1038_s41584_021_00652_9 crossref_primary_10_1002_mco2_311 crossref_primary_10_1016_j_autrev_2024_103714 crossref_primary_10_1016_j_clim_2024_110180 crossref_primary_10_18705_2782_3806_2022_2_2_33_45 crossref_primary_10_3389_fimmu_2023_1230050 crossref_primary_10_3892_mmr_2023_13091 crossref_primary_10_1016_j_freeradbiomed_2022_01_028 crossref_primary_10_1016_j_lfs_2024_122604 crossref_primary_10_1038_s41419_023_05680_9 crossref_primary_10_3389_fimmu_2022_894847 crossref_primary_10_3389_fcell_2021_771931 crossref_primary_10_3389_fimmu_2024_1329009 crossref_primary_10_18632_aging_204897 crossref_primary_10_1186_s13075_020_02332_7 crossref_primary_10_1016_j_biopha_2022_113925 crossref_primary_10_1080_08820139_2022_2122834 crossref_primary_10_3389_fcimb_2022_1068324 crossref_primary_10_1016_j_intimp_2022_108868 crossref_primary_10_1002_art_42071 crossref_primary_10_1007_s00280_024_04685_1 crossref_primary_10_1016_j_intimp_2021_108067 crossref_primary_10_3390_ijms241210066 crossref_primary_10_3389_fimmu_2024_1452678 crossref_primary_10_1097_FJC_0000000000001293 crossref_primary_10_1016_j_biopha_2023_115380 crossref_primary_10_1016_j_biopha_2023_114696 crossref_primary_10_3389_fimmu_2021_720877 crossref_primary_10_1016_j_biopha_2020_110542 crossref_primary_10_3390_jcm8091340 crossref_primary_10_3390_antiox11020246 crossref_primary_10_1007_s10495_024_02072_y crossref_primary_10_1016_j_kint_2024_06_025 crossref_primary_10_3389_fimmu_2022_916664 crossref_primary_10_1016_j_intimp_2023_109974 crossref_primary_10_1166_jbn_2022_3395 crossref_primary_10_1007_s00011_020_01354_w crossref_primary_10_1016_j_jaut_2022_102871 crossref_primary_10_1111_cns_70135 crossref_primary_10_1016_j_jaut_2019_102331 crossref_primary_10_2174_0109298673255656231003111621 crossref_primary_10_1016_j_cca_2020_06_039 crossref_primary_10_1136_lupus_2024_001146 crossref_primary_10_1038_s41598_022_23730_8 crossref_primary_10_1007_s10735_024_10208_2 crossref_primary_10_1136_lupus_2021_000611 crossref_primary_10_3389_fceld_2024_1348153 crossref_primary_10_1002_ardp_202400302 crossref_primary_10_3389_fimmu_2023_1120034 crossref_primary_10_1016_j_jaut_2020_102540 crossref_primary_10_3390_ijms25031439 crossref_primary_10_1007_s10157_022_02258_1 crossref_primary_10_1038_s41401_022_00886_7 crossref_primary_10_1007_s10735_023_10135_8 crossref_primary_10_1016_j_jaut_2020_102424 crossref_primary_10_3390_ijms24020969 crossref_primary_10_1016_j_lfs_2022_120839 crossref_primary_10_1111_1346_8138_15929 crossref_primary_10_1177_09612033221102076 crossref_primary_10_1111_imr_13282 crossref_primary_10_1038_s41401_020_00603_2 |
Cites_doi | 10.1006/clim.2001.5079 10.1016/j.immuni.2014.12.011 10.1016/j.jmb.2017.10.004 10.4049/jimmunol.1601565 10.1016/j.bcp.2018.01.025 10.1681/ASN.2014080741 10.1164/rccm.201406-1095OC 10.1038/ni.3030 10.1016/j.tibs.2018.11.002 10.1002/art.38174 10.1038/ncomms7282 10.1177/0961203310393262 10.1111/cei.12417 10.1038/ncomms10274 10.1038/nrm2970 10.1038/ki.2011.450 10.1016/j.cell.2011.11.031 10.1016/S0002-9440(10)64239-3 10.1002/art.39499 10.1126/science.1172308 10.1126/science.aad1210 10.1016/j.clim.2016.08.010 10.4049/jimmunol.1701229 10.1002/art.40155 10.1111/ajt.12447 10.1016/B978-0-12-801430-1.00003-2 10.1002/art.38993 10.1038/nri2725 10.1038/nri3452 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.jaut.2019.05.014 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1095-9157 |
EndPage | 102286 |
ExternalDocumentID | PMC6708470 31133359 10_1016_j_jaut_2019_05_014 S0896841119302434 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: R01 AR047988 |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AAAJQ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABFRF ABJNI ABMAC ABMZM ABOCM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG CJTIS COF CS3 DM4 DU5 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDU HMG HMK HMO HVGLF HZ~ IHE J1W KOM LG5 LUGTX LZ5 M29 M41 MO0 N9A O-L O9- O9~ OAUVE OK0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SIN SPCBC SSH SSI SSZ T5K WUQ XPP Z5R ZGI ZMT ZU3 ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AGRNS CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c572t-66af336b308865b4bf54fc221be6c89f9399218a8f4226f3fc17a5b11d8247bc3 |
IEDL.DBID | .~1 |
ISSN | 0896-8411 1095-9157 |
IngestDate | Thu Aug 21 17:57:54 EDT 2025 Mon Jul 21 09:40:16 EDT 2025 Thu Apr 03 07:08:08 EDT 2025 Thu Apr 24 23:02:31 EDT 2025 Tue Jul 01 03:24:09 EDT 2025 Fri Feb 23 02:29:31 EST 2024 Tue Aug 26 18:13:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Podocyte Lupus nephritis RIP3 NLRP3 inflammasome Necroptosis |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c572t-66af336b308865b4bf54fc221be6c89f9399218a8f4226f3fc17a5b11d8247bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. Acquisition of data. C. Guo, R. Fu, M. Zhou, S. Wang, Y. Huang, H. Hu, J. Zhao, N. Yang. Analysis and interpretation of data. C. Guo, R. Fu, M. Zhou, S. Wang, Y. Huang, H. Hu, J. Zhao, F. Gaskin, N. Yang and S.M. Fu. All authors were involved in drafting and revising the article, and all authors approved the final version to be published. Dr. Yang had full access to all of the data in the study and took responsibility for the integrity of the data and the accuracy of the data analysis. Study conception and design. C. Guo, R. Fu, M. Zhou, F Gaskin, N. Yang and S.M. Fu. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6708470 |
PMID | 31133359 |
PQID | 2232100951 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6708470 proquest_miscellaneous_2232100951 pubmed_primary_31133359 crossref_citationtrail_10_1016_j_jaut_2019_05_014 crossref_primary_10_1016_j_jaut_2019_05_014 elsevier_sciencedirect_doi_10_1016_j_jaut_2019_05_014 elsevier_clinicalkey_doi_10_1016_j_jaut_2019_05_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of autoimmunity |
PublicationTitleAlternate | J Autoimmun |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Sung, Ge, Dai, Wang, Fu, Sharma (bib10) 2017; 198 Waters, Fu, Gaskin, Deshmukh, Sung, Kannapell (bib8) 2001; 100 Kang, Yang, Toth, Kovalenko, Wallach (bib4) 2014; 545 Takemoto, Asker, Gerhardt, Lundkvist, Johansson, Saito (bib9) 2002; 161 Arbore, West, Spolski, Robertson, Klos, Rheinheimer (bib29) 2016; 352 Latz, Xiao, Stutz (bib21) 2013; 13 Rayamajhi, Miao (bib26) 2014; 15 Qing, Conegliano, Shashaty, Seo, Reilly, Worthen (bib16) 2014; 190 Ichinose, Ushigusa, Nishino, Nakashima, Suzuki, Horai (bib20) 2016; 68 Zhang, Shao, Lin, Zhang, Lu, Lin (bib2) 2009; 325 Lawlor, Khan, Mildenhall, Gerlic, Croker, D'Cruz (bib5) 2015; 6 Hussain, Zimmermann, van Wijk, Fulda (bib13) 2018; 153 Fenton (bib7) 2015; 179 Sun, Wang, Wang, He, Chen, Liao (bib3) 2012; 148 Fu, Guo, Wang, Huang, Jin, Hu (bib12) 2017; 69 Mulay, Desai, Kumar, Eberhard, Thomasova, Romoli (bib17) 2016; 7 Lau, Wang, Jiang, Haig, Pavlosky, Linkermann (bib19) 2013; 13 Xu, Ma, Shao, Wu, Zhou, Zhang (bib14) 2015; 26 Tschopp, Schroder (bib22) 2010; 10 Zhao, Wang, Dai, Zhang, Huang, Wang (bib23) 2013; 65 Linkermann, Brasen, Himmerkus, Liu, Huber, Kunzendorf (bib18) 2012; 81 Indramohan, Stehlik, Dorfleutner (bib24) 2018; 430 Petrie, Czabotar, Murphy (bib25) 2019; 44 Zhao, Wang, Huang, Zhang, Wang, Gaskin (bib11) 2015; 67 Mistry, Kaplan (bib6) 2017; 185 Zhang, Yang, Wang, Huang, Li, Tan (bib15) 2011; 20 Gaiha, McKim, Woods, Pertel, Rohrbach, Barteneva (bib28) 2014; 41 O'Donnell, Lehman, Roderick, Martinez-Marin, Zelic, Doran (bib27) 2018; 200 Vandenabeele, Galluzzi, Vanden Berghe, Kroemer (bib1) 2010; 11 Arbore (10.1016/j.jaut.2019.05.014_bib29) 2016; 352 Kang (10.1016/j.jaut.2019.05.014_bib4) 2014; 545 Fu (10.1016/j.jaut.2019.05.014_bib12) 2017; 69 Latz (10.1016/j.jaut.2019.05.014_bib21) 2013; 13 Sung (10.1016/j.jaut.2019.05.014_bib10) 2017; 198 Zhao (10.1016/j.jaut.2019.05.014_bib11) 2015; 67 Petrie (10.1016/j.jaut.2019.05.014_bib25) 2019; 44 Ichinose (10.1016/j.jaut.2019.05.014_bib20) 2016; 68 Takemoto (10.1016/j.jaut.2019.05.014_bib9) 2002; 161 Linkermann (10.1016/j.jaut.2019.05.014_bib18) 2012; 81 Zhao (10.1016/j.jaut.2019.05.014_bib23) 2013; 65 Indramohan (10.1016/j.jaut.2019.05.014_bib24) 2018; 430 Rayamajhi (10.1016/j.jaut.2019.05.014_bib26) 2014; 15 Sun (10.1016/j.jaut.2019.05.014_bib3) 2012; 148 Zhang (10.1016/j.jaut.2019.05.014_bib15) 2011; 20 O'Donnell (10.1016/j.jaut.2019.05.014_bib27) 2018; 200 Mistry (10.1016/j.jaut.2019.05.014_bib6) 2017; 185 Zhang (10.1016/j.jaut.2019.05.014_bib2) 2009; 325 Xu (10.1016/j.jaut.2019.05.014_bib14) 2015; 26 Fenton (10.1016/j.jaut.2019.05.014_bib7) 2015; 179 Gaiha (10.1016/j.jaut.2019.05.014_bib28) 2014; 41 Mulay (10.1016/j.jaut.2019.05.014_bib17) 2016; 7 Qing (10.1016/j.jaut.2019.05.014_bib16) 2014; 190 Tschopp (10.1016/j.jaut.2019.05.014_bib22) 2010; 10 Lawlor (10.1016/j.jaut.2019.05.014_bib5) 2015; 6 Lau (10.1016/j.jaut.2019.05.014_bib19) 2013; 13 Hussain (10.1016/j.jaut.2019.05.014_bib13) 2018; 153 Waters (10.1016/j.jaut.2019.05.014_bib8) 2001; 100 Vandenabeele (10.1016/j.jaut.2019.05.014_bib1) 2010; 11 |
References_xml | – volume: 325 start-page: 332 year: 2009 end-page: 336 ident: bib2 article-title: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis publication-title: Science – volume: 148 start-page: 213 year: 2012 end-page: 227 ident: bib3 article-title: Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase publication-title: Cell – volume: 430 start-page: 153 year: 2018 end-page: 173 ident: bib24 article-title: COPs and POPs patrol inflammasome activation publication-title: J. Mol. Biol. – volume: 200 start-page: 737 year: 2018 end-page: 748 ident: bib27 article-title: Dendritic cell RIPK1 maintains immune homeostasis by preventing inflammation and autoimmunity publication-title: J. Immunol. – volume: 100 start-page: 372 year: 2001 end-page: 383 ident: bib8 article-title: NZM2328: a new mouse model of systemic lupus erythematosus with unique genetic susceptibility loci publication-title: Clin. Immunol. – volume: 67 start-page: 1036 year: 2015 end-page: 1044 ident: bib11 article-title: Lupus nephritis: glycogen synthase kinase 3beta promotion of renal damage through activation of the NLRP3 inflammasome in lupus-prone mice publication-title: Arthritis Rheum. – volume: 545 start-page: 67 year: 2014 end-page: 81 ident: bib4 article-title: Activation of the NLRP3 inflammasome by proteins that signal for necroptosis publication-title: Methods Enzymol. – volume: 198 start-page: 2589 year: 2017 end-page: 2601 ident: bib10 article-title: Dependence of glomerulonephritis induction on novel intraglomerular alternatively activated bone marrow-derived macrophages and mac-1 and PD-L1 in lupus-prone NZM2328 mice publication-title: J. Immunol. – volume: 352 start-page: aad1210 year: 2016 ident: bib29 article-title: T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4(+) T cells publication-title: Science – volume: 10 start-page: 210 year: 2010 end-page: 215 ident: bib22 article-title: NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? publication-title: Nat. Rev. Immunol. – volume: 185 start-page: 59 year: 2017 end-page: 73 ident: bib6 article-title: Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis publication-title: Clin. Immunol. – volume: 81 start-page: 751 year: 2012 end-page: 761 ident: bib18 article-title: Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury publication-title: Kidney Int. – volume: 44 start-page: 53 year: 2019 end-page: 63 ident: bib25 article-title: The structural basis of necroptotic cell death signaling publication-title: Trends Biochem. Sci. – volume: 13 start-page: 2805 year: 2013 end-page: 2818 ident: bib19 article-title: RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival publication-title: Am. J. Transplant. – volume: 68 start-page: 944 year: 2016 end-page: 952 ident: bib20 article-title: Lupus nephritis IgG induction of calcium/calmodulin-dependent protein kinase IV expression in podocytes and alteration of their function publication-title: Arthritis Rheum. – volume: 41 start-page: 1001 year: 2014 end-page: 1012 ident: bib28 article-title: Dysfunctional HIV-specific CD8+ T cell proliferation is associated with increased caspase-8 activity and mediated by necroptosis publication-title: Immunity – volume: 190 start-page: 1243 year: 2014 end-page: 1254 ident: bib16 article-title: Red blood cells induce necroptosis of lung endothelial cells and increase susceptibility to lung inflammation publication-title: Am. J. Respir. Crit. Care Med. – volume: 15 start-page: 1100 year: 2014 end-page: 1102 ident: bib26 article-title: The RIP1-RIP3 complex initiates mitochondrial fission to fuel NLRP3 publication-title: Nat. Immunol. – volume: 6 start-page: 6282 year: 2015 ident: bib5 article-title: RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL publication-title: Nat. Commun. – volume: 7 start-page: 10274 year: 2016 ident: bib17 article-title: Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis publication-title: Nat. Commun. – volume: 161 start-page: 799 year: 2002 end-page: 805 ident: bib9 article-title: A new method for large scale isolation of kidney glomeruli from mice publication-title: Am. J. Pathol. – volume: 26 start-page: 2647 year: 2015 end-page: 2658 ident: bib14 article-title: A role for tubular necroptosis in cisplatin-induced AKI publication-title: J. Am. Soc. Nephrol. – volume: 65 start-page: 3176 year: 2013 end-page: 3185 ident: bib23 article-title: P2X7 blockade attenuates murine lupus nephritis by inhibiting activation of the NLRP3/ASC/caspase 1 pathway publication-title: Arthritis Rheum. – volume: 20 start-page: 667 year: 2011 end-page: 677 ident: bib15 article-title: Adenosine 2A receptor is protective against renal injury in MRL/lpr mice publication-title: Lupus – volume: 69 start-page: 1636 year: 2017 end-page: 1646 ident: bib12 article-title: Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis publication-title: Arthritis Rheum. – volume: 13 start-page: 397 year: 2013 end-page: 411 ident: bib21 article-title: Activation and regulation of the inflammasomes publication-title: Nat. Rev. Immunol. – volume: 153 start-page: 242 year: 2018 end-page: 247 ident: bib13 article-title: Mouse lung fibroblasts are highly susceptible to necroptosis in a reactive oxygen species-dependent manner publication-title: Biochem. Pharmacol. – volume: 11 start-page: 700 year: 2010 end-page: 714 ident: bib1 article-title: Molecular mechanisms of necroptosis: an ordered cellular explosion publication-title: Nat. Rev. Mol. Cell Biol. – volume: 179 start-page: 11 year: 2015 end-page: 16 ident: bib7 article-title: The effect of cell death in the initiation of lupus nephritis publication-title: Clin. Exp. Immunol. – volume: 100 start-page: 372 issue: 3 year: 2001 ident: 10.1016/j.jaut.2019.05.014_bib8 article-title: NZM2328: a new mouse model of systemic lupus erythematosus with unique genetic susceptibility loci publication-title: Clin. Immunol. doi: 10.1006/clim.2001.5079 – volume: 41 start-page: 1001 issue: 6 year: 2014 ident: 10.1016/j.jaut.2019.05.014_bib28 article-title: Dysfunctional HIV-specific CD8+ T cell proliferation is associated with increased caspase-8 activity and mediated by necroptosis publication-title: Immunity doi: 10.1016/j.immuni.2014.12.011 – volume: 430 start-page: 153 issue: 2 year: 2018 ident: 10.1016/j.jaut.2019.05.014_bib24 article-title: COPs and POPs patrol inflammasome activation publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.10.004 – volume: 198 start-page: 2589 issue: 7 year: 2017 ident: 10.1016/j.jaut.2019.05.014_bib10 article-title: Dependence of glomerulonephritis induction on novel intraglomerular alternatively activated bone marrow-derived macrophages and mac-1 and PD-L1 in lupus-prone NZM2328 mice publication-title: J. Immunol. doi: 10.4049/jimmunol.1601565 – volume: 153 start-page: 242 year: 2018 ident: 10.1016/j.jaut.2019.05.014_bib13 article-title: Mouse lung fibroblasts are highly susceptible to necroptosis in a reactive oxygen species-dependent manner publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2018.01.025 – volume: 26 start-page: 2647 issue: 11 year: 2015 ident: 10.1016/j.jaut.2019.05.014_bib14 article-title: A role for tubular necroptosis in cisplatin-induced AKI publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2014080741 – volume: 190 start-page: 1243 issue: 11 year: 2014 ident: 10.1016/j.jaut.2019.05.014_bib16 article-title: Red blood cells induce necroptosis of lung endothelial cells and increase susceptibility to lung inflammation publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201406-1095OC – volume: 15 start-page: 1100 issue: 12 year: 2014 ident: 10.1016/j.jaut.2019.05.014_bib26 article-title: The RIP1-RIP3 complex initiates mitochondrial fission to fuel NLRP3 publication-title: Nat. Immunol. doi: 10.1038/ni.3030 – volume: 44 start-page: 53 issue: 1 year: 2019 ident: 10.1016/j.jaut.2019.05.014_bib25 article-title: The structural basis of necroptotic cell death signaling publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2018.11.002 – volume: 65 start-page: 3176 issue: 12 year: 2013 ident: 10.1016/j.jaut.2019.05.014_bib23 article-title: P2X7 blockade attenuates murine lupus nephritis by inhibiting activation of the NLRP3/ASC/caspase 1 pathway publication-title: Arthritis Rheum. doi: 10.1002/art.38174 – volume: 6 start-page: 6282 year: 2015 ident: 10.1016/j.jaut.2019.05.014_bib5 article-title: RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL publication-title: Nat. Commun. doi: 10.1038/ncomms7282 – volume: 20 start-page: 667 issue: 7 year: 2011 ident: 10.1016/j.jaut.2019.05.014_bib15 article-title: Adenosine 2A receptor is protective against renal injury in MRL/lpr mice publication-title: Lupus doi: 10.1177/0961203310393262 – volume: 179 start-page: 11 issue: 1 year: 2015 ident: 10.1016/j.jaut.2019.05.014_bib7 article-title: The effect of cell death in the initiation of lupus nephritis publication-title: Clin. Exp. Immunol. doi: 10.1111/cei.12417 – volume: 7 start-page: 10274 year: 2016 ident: 10.1016/j.jaut.2019.05.014_bib17 article-title: Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis publication-title: Nat. Commun. doi: 10.1038/ncomms10274 – volume: 11 start-page: 700 issue: 10 year: 2010 ident: 10.1016/j.jaut.2019.05.014_bib1 article-title: Molecular mechanisms of necroptosis: an ordered cellular explosion publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2970 – volume: 81 start-page: 751 issue: 8 year: 2012 ident: 10.1016/j.jaut.2019.05.014_bib18 article-title: Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury publication-title: Kidney Int. doi: 10.1038/ki.2011.450 – volume: 148 start-page: 213 issue: 1–2 year: 2012 ident: 10.1016/j.jaut.2019.05.014_bib3 article-title: Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase publication-title: Cell doi: 10.1016/j.cell.2011.11.031 – volume: 161 start-page: 799 issue: 3 year: 2002 ident: 10.1016/j.jaut.2019.05.014_bib9 article-title: A new method for large scale isolation of kidney glomeruli from mice publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)64239-3 – volume: 68 start-page: 944 issue: 4 year: 2016 ident: 10.1016/j.jaut.2019.05.014_bib20 article-title: Lupus nephritis IgG induction of calcium/calmodulin-dependent protein kinase IV expression in podocytes and alteration of their function publication-title: Arthritis Rheum. doi: 10.1002/art.39499 – volume: 325 start-page: 332 issue: 5938 year: 2009 ident: 10.1016/j.jaut.2019.05.014_bib2 article-title: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis publication-title: Science doi: 10.1126/science.1172308 – volume: 352 start-page: aad1210 issue: 6292 year: 2016 ident: 10.1016/j.jaut.2019.05.014_bib29 article-title: T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4(+) T cells publication-title: Science doi: 10.1126/science.aad1210 – volume: 185 start-page: 59 year: 2017 ident: 10.1016/j.jaut.2019.05.014_bib6 article-title: Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis publication-title: Clin. Immunol. doi: 10.1016/j.clim.2016.08.010 – volume: 200 start-page: 737 issue: 2 year: 2018 ident: 10.1016/j.jaut.2019.05.014_bib27 article-title: Dendritic cell RIPK1 maintains immune homeostasis by preventing inflammation and autoimmunity publication-title: J. Immunol. doi: 10.4049/jimmunol.1701229 – volume: 69 start-page: 1636 issue: 8 year: 2017 ident: 10.1016/j.jaut.2019.05.014_bib12 article-title: Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis publication-title: Arthritis Rheum. doi: 10.1002/art.40155 – volume: 13 start-page: 2805 issue: 11 year: 2013 ident: 10.1016/j.jaut.2019.05.014_bib19 article-title: RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival publication-title: Am. J. Transplant. doi: 10.1111/ajt.12447 – volume: 545 start-page: 67 year: 2014 ident: 10.1016/j.jaut.2019.05.014_bib4 article-title: Activation of the NLRP3 inflammasome by proteins that signal for necroptosis publication-title: Methods Enzymol. doi: 10.1016/B978-0-12-801430-1.00003-2 – volume: 67 start-page: 1036 issue: 4 year: 2015 ident: 10.1016/j.jaut.2019.05.014_bib11 article-title: Lupus nephritis: glycogen synthase kinase 3beta promotion of renal damage through activation of the NLRP3 inflammasome in lupus-prone mice publication-title: Arthritis Rheum. doi: 10.1002/art.38993 – volume: 10 start-page: 210 issue: 3 year: 2010 ident: 10.1016/j.jaut.2019.05.014_bib22 article-title: NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2725 – volume: 13 start-page: 397 issue: 6 year: 2013 ident: 10.1016/j.jaut.2019.05.014_bib21 article-title: Activation and regulation of the inflammasomes publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3452 |
SSID | ssj0011555 |
Score | 2.5735416 |
Snippet | RIP3 activation leads to activation of necroptosis and the NLRP3 inflammasome pathways. The activation of RIP3 in lupus nephritis (LN) has not been... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102286 |
SubjectTerms | Lupus nephritis Necroptosis NLRP3 inflammasome Podocyte RIP3 |
Title | Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0896841119302434 https://dx.doi.org/10.1016/j.jaut.2019.05.014 https://www.ncbi.nlm.nih.gov/pubmed/31133359 https://www.proquest.com/docview/2232100951 https://pubmed.ncbi.nlm.nih.gov/PMC6708470 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIhAXBOVrKVRG4obCrmM7jrlVFdUW6KoqVOoFWbZjw1ZtsmKzh1747cysk4gFUSSUU-KxZGXGMy_OzBtCXlnlonZaZXlVcjy60Zl1UmY8Ss-4q4S3WDt8PCumZ-L9uTzfIgd9LQymVXa-P_n0tbfunoy7tzlezOfjT5NSF6WAvao50uohJ6gQCq38zY8hzQMAz7rzKQpnKN0VzqQcrwvMEoEQqBN7p_hbcPoTfP6eQ_lLUDq8T-51aJLupwU_IFuh3iG3U3_J6x1y57j7c_6QfDkBqNd8Rc82X9Im0svVYrWkdQBlIq3RW3p6dMJp3xO3hRFs7tU2KG7ris4-nsI42COY0JVdNleBYk1EOtF9RM4O330-mGZda4XMS5W3WVHYyHnhODiZQjrhohTR5zlzofCljhr5allpy4iVtpFHz5SVjrGqzIVynj8m23VTh6eEqgBffNILFwRcNkJ4AwgmvKog-gevRoT179T4jncc219cmj7B7MKgHgzqwUykAT2MyOthziKxbtwozXtVmb6eFDyggaBw4yw5zNqwuH_Oe9lbg4GtiP9XbB2a1dIA0oIPaMSsI_IkWcewes4Y51zqEVEbdjMIIM335kg9_7am-y7UBCDE5Nl_rneX3MW7lBf3nGy331fhBQCp1u2td8oeubV_9GE6-wlujR4S |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8aQ8AuCAaD8hkkbii0ju044YYmpg7aahqbtAuybMeGTltS0fSwC3877zUfoiCGhHKLnyXL7-tn-30AvDbKhtzmKk6KjNPVTR4bK2XMg3SM20I4Q7nD01k6PhUfz-TZFux3uTAUVtna_samr611-2fY7uZwMZ8PP4-yPM0E6mrOqayeuAE3BaovtTF4-6OP80DEs259StQxkbeZM02Q1zmFiaAPzJvyneJv3ulP9Pl7EOUvXungHtxt4WT0vlnxfdjy5S7cahpMXu3C7Wn7dP4Avhwh1qu-kmmbL6MqRBerxWoZlR65SXWN3kXHh0c86pri1jhC3b3qishNWUSzyTGOo0CiDF2aZXXpI0qKaK50H8LpwYeT_XHc9laInVRJHaepCZynlqOVSaUVNkgRXJIw61OX5SGngrUsM1mgVNvAg2PKSMtYkSVCWcf3YLusSv8YIuXxyCedsF7gZwL6N8RgwqkC3b93agCs21Pt2sLj1P_iQncRZuea-KCJD3okNfJhAG_6OYum7Ma11Lxjle4SStEEavQK186S_awNkfvnvFedNGjURXpgMaWvVkuNUAtP0ARaB_CokY5-9ZwxzrnMB6A25KYnoDrfmyPl_Nu63neqRoghRk_-c70v4c74ZDrRk8PZp6ewQyNNkNwz2K6_r_xzRFW1fbHWmp_CTh-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathogenesis+of+lupus+nephritis%3A+RIP3+dependent+necroptosis+and+NLRP3+inflammasome+activation&rft.jtitle=Journal+of+autoimmunity&rft.au=Guo%2C+Chaohuan&rft.au=Fu%2C+Rong&rft.au=Zhou%2C+Mianjing&rft.au=Wang%2C+Shuang&rft.date=2019-09-01&rft.eissn=1095-9157&rft.volume=103&rft.spage=102286&rft_id=info:doi/10.1016%2Fj.jaut.2019.05.014&rft_id=info%3Apmid%2F31133359&rft.externalDocID=31133359 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-8411&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-8411&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-8411&client=summon |