Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation

RIP3 activation leads to activation of necroptosis and the NLRP3 inflammasome pathways. The activation of RIP3 in lupus nephritis (LN) has not been investigated. In this study, RIP3 and necroptosis pathway activations were demonstrated in podocytes in renal biopsies from patients with class IV LN an...

Full description

Saved in:
Bibliographic Details
Published inJournal of autoimmunity Vol. 103; p. 102286
Main Authors Guo, Chaohuan, Fu, Rong, Zhou, Mianjing, Wang, Shuang, Huang, Yuefang, Hu, Haoqiang, Zhao, Jijun, Gaskin, Felicia, Yang, Niansheng, Fu, Shu Man
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract RIP3 activation leads to activation of necroptosis and the NLRP3 inflammasome pathways. The activation of RIP3 in lupus nephritis (LN) has not been investigated. In this study, RIP3 and necroptosis pathway activations were demonstrated in podocytes in renal biopsies from patients with class IV LN and in the diseased kidneys from lupus-prone NZM2328 and MRL/lpr mice. RIP3 activation was accompanied with the activation of MLKL, the effector molecule of the necroptosis pathway, and activation of caspase-1, the effector of the NLRP3 inflammasome pathway. Podocyte activation of RIP3 was detected readily with the development of LN in NZM2328 mice, suggesting this activation may play a significant role in the pathogenesis of LN. GSK872, a RIP3 specific inhibitor, inhibited the development of LN in MRL/lpr mice with down-regulation of RIP3 activation in podocytes, decreased the splenic sizes and weights and anti-dsDNA antibody titers. IgG from pooled sera of diseased NZM2328 mice succumbing to LN induced both the necroptosis pathway and NLRP3 inflammasome activation in a podocyte cell line and this activation was specifically blocked by GSK872. These results indicate that the necroptosis pathway and the RIP3 dependent NLRP3 inflammasome pathway are activated in podocytes during LN. Inhibition of RIP3 kinase may be a novel therapeutic approach to treat LN and systemic lupus erythematosus (SLE). •Necroptosis and NLRP3 inflammasome pathways are activated in podocytes in LN.•RIP3 regulates both NLRP3 inflammasome and necroptosis activation.•IgG from LN activates RIP3 dependent necroptosis and NLRP3 inflammasome pathways.•Inhibition of RIP3 reduces autoimmunity and alleviates clinical manifestation of LN.
AbstractList RIP3 activation leads to activation of necroptosis and the NLRP3 inflammasome pathways. The activation of RIP3 in lupus nephritis (LN) has not been investigated. In this study, RIP3 and necroptosis pathway activations were demonstrated in podocytes in renal biopsies from patients with class IV LN and in the diseased kidneys from lupus-prone NZM2328 and MRL/ lpr mice. RIP3 activation was accompanied with the activation of MLKL, the effector molecule of the necroptosis pathway, and activation of caspase-1, the effector of the NLRP3 inflammasome pathway. Podocyte activation of RIP3 was detected readily with the development of LN in NZM2328 mice, suggesting this activation may play a significant role in the pathogenesis of LN. GSK872, a RIP3 specific inhibitor, inhibited the development of LN in MRL/ lpr mice with down-regulation of RIP3 activation in podocytes, decreased the splenic sizes and weights and anti-dsDNA antibody titers. IgG from pooled sera of diseased NZM2328 mice succumbing to LN induced both the necroptosis pathway and NLRP3 inflammasome activation in a podocyte cell line and this activation was specifically blocked by GSK872. These results indicate that the necroptosis pathway and the RIP3 dependent NLRP3 inflammasome pathway are activated in podocytes during LN. Inhibition of RIP3 kinase may be a novel therapeutic approach to treat LN and systemic lupus erythematosus (SLE).
RIP3 activation leads to activation of necroptosis and the NLRP3 inflammasome pathways. The activation of RIP3 in lupus nephritis (LN) has not been investigated. In this study, RIP3 and necroptosis pathway activations were demonstrated in podocytes in renal biopsies from patients with class IV LN and in the diseased kidneys from lupus-prone NZM2328 and MRL/lpr mice. RIP3 activation was accompanied with the activation of MLKL, the effector molecule of the necroptosis pathway, and activation of caspase-1, the effector of the NLRP3 inflammasome pathway. Podocyte activation of RIP3 was detected readily with the development of LN in NZM2328 mice, suggesting this activation may play a significant role in the pathogenesis of LN. GSK872, a RIP3 specific inhibitor, inhibited the development of LN in MRL/lpr mice with down-regulation of RIP3 activation in podocytes, decreased the splenic sizes and weights and anti-dsDNA antibody titers. IgG from pooled sera of diseased NZM2328 mice succumbing to LN induced both the necroptosis pathway and NLRP3 inflammasome activation in a podocyte cell line and this activation was specifically blocked by GSK872. These results indicate that the necroptosis pathway and the RIP3 dependent NLRP3 inflammasome pathway are activated in podocytes during LN. Inhibition of RIP3 kinase may be a novel therapeutic approach to treat LN and systemic lupus erythematosus (SLE).
RIP3 activation leads to activation of necroptosis and the NLRP3 inflammasome pathways. The activation of RIP3 in lupus nephritis (LN) has not been investigated. In this study, RIP3 and necroptosis pathway activations were demonstrated in podocytes in renal biopsies from patients with class IV LN and in the diseased kidneys from lupus-prone NZM2328 and MRL/lpr mice. RIP3 activation was accompanied with the activation of MLKL, the effector molecule of the necroptosis pathway, and activation of caspase-1, the effector of the NLRP3 inflammasome pathway. Podocyte activation of RIP3 was detected readily with the development of LN in NZM2328 mice, suggesting this activation may play a significant role in the pathogenesis of LN. GSK872, a RIP3 specific inhibitor, inhibited the development of LN in MRL/lpr mice with down-regulation of RIP3 activation in podocytes, decreased the splenic sizes and weights and anti-dsDNA antibody titers. IgG from pooled sera of diseased NZM2328 mice succumbing to LN induced both the necroptosis pathway and NLRP3 inflammasome activation in a podocyte cell line and this activation was specifically blocked by GSK872. These results indicate that the necroptosis pathway and the RIP3 dependent NLRP3 inflammasome pathway are activated in podocytes during LN. Inhibition of RIP3 kinase may be a novel therapeutic approach to treat LN and systemic lupus erythematosus (SLE). •Necroptosis and NLRP3 inflammasome pathways are activated in podocytes in LN.•RIP3 regulates both NLRP3 inflammasome and necroptosis activation.•IgG from LN activates RIP3 dependent necroptosis and NLRP3 inflammasome pathways.•Inhibition of RIP3 reduces autoimmunity and alleviates clinical manifestation of LN.
RIP3 activation leads to activation of necroptosis and the NLRP3 inflammasome pathways. The activation of RIP3 in lupus nephritis (LN) has not been investigated. In this study, RIP3 and necroptosis pathway activations were demonstrated in podocytes in renal biopsies from patients with class IV LN and in the diseased kidneys from lupus-prone NZM2328 and MRL/lpr mice. RIP3 activation was accompanied with the activation of MLKL, the effector molecule of the necroptosis pathway, and activation of caspase-1, the effector of the NLRP3 inflammasome pathway. Podocyte activation of RIP3 was detected readily with the development of LN in NZM2328 mice, suggesting this activation may play a significant role in the pathogenesis of LN. GSK872, a RIP3 specific inhibitor, inhibited the development of LN in MRL/lpr mice with down-regulation of RIP3 activation in podocytes, decreased the splenic sizes and weights and anti-dsDNA antibody titers. IgG from pooled sera of diseased NZM2328 mice succumbing to LN induced both the necroptosis pathway and NLRP3 inflammasome activation in a podocyte cell line and this activation was specifically blocked by GSK872. These results indicate that the necroptosis pathway and the RIP3 dependent NLRP3 inflammasome pathway are activated in podocytes during LN. Inhibition of RIP3 kinase may be a novel therapeutic approach to treat LN and systemic lupus erythematosus (SLE).RIP3 activation leads to activation of necroptosis and the NLRP3 inflammasome pathways. The activation of RIP3 in lupus nephritis (LN) has not been investigated. In this study, RIP3 and necroptosis pathway activations were demonstrated in podocytes in renal biopsies from patients with class IV LN and in the diseased kidneys from lupus-prone NZM2328 and MRL/lpr mice. RIP3 activation was accompanied with the activation of MLKL, the effector molecule of the necroptosis pathway, and activation of caspase-1, the effector of the NLRP3 inflammasome pathway. Podocyte activation of RIP3 was detected readily with the development of LN in NZM2328 mice, suggesting this activation may play a significant role in the pathogenesis of LN. GSK872, a RIP3 specific inhibitor, inhibited the development of LN in MRL/lpr mice with down-regulation of RIP3 activation in podocytes, decreased the splenic sizes and weights and anti-dsDNA antibody titers. IgG from pooled sera of diseased NZM2328 mice succumbing to LN induced both the necroptosis pathway and NLRP3 inflammasome activation in a podocyte cell line and this activation was specifically blocked by GSK872. These results indicate that the necroptosis pathway and the RIP3 dependent NLRP3 inflammasome pathway are activated in podocytes during LN. Inhibition of RIP3 kinase may be a novel therapeutic approach to treat LN and systemic lupus erythematosus (SLE).
ArticleNumber 102286
Author Huang, Yuefang
Gaskin, Felicia
Zhou, Mianjing
Fu, Rong
Hu, Haoqiang
Fu, Shu Man
Guo, Chaohuan
Wang, Shuang
Zhao, Jijun
Yang, Niansheng
AuthorAffiliation 1 Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
6 Division of Rheumatology and Center of Inflammation, Immunology and Regenerative Medicine, Department of Medicine and Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908-0133, USA
3 Department of Pediatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
2 Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
5 Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22908-0203, USA
4 Department of Nephrology, Dongguan People’s Hospital, Dongguan, PR China
AuthorAffiliation_xml – name: 6 Division of Rheumatology and Center of Inflammation, Immunology and Regenerative Medicine, Department of Medicine and Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908-0133, USA
– name: 1 Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
– name: 5 Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA 22908-0203, USA
– name: 3 Department of Pediatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
– name: 4 Department of Nephrology, Dongguan People’s Hospital, Dongguan, PR China
– name: 2 Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
Author_xml – sequence: 1
  givenname: Chaohuan
  surname: Guo
  fullname: Guo, Chaohuan
  organization: Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
– sequence: 2
  givenname: Rong
  surname: Fu
  fullname: Fu, Rong
  organization: Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
– sequence: 3
  givenname: Mianjing
  surname: Zhou
  fullname: Zhou, Mianjing
  organization: Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
– sequence: 4
  givenname: Shuang
  surname: Wang
  fullname: Wang, Shuang
  organization: Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
– sequence: 5
  givenname: Yuefang
  surname: Huang
  fullname: Huang, Yuefang
  organization: Department of Pediatrics, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
– sequence: 6
  givenname: Haoqiang
  surname: Hu
  fullname: Hu, Haoqiang
  organization: Department of Nephrology, Dongguan People's Hospital, Dongguan, PR China
– sequence: 7
  givenname: Jijun
  surname: Zhao
  fullname: Zhao, Jijun
  organization: Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
– sequence: 8
  givenname: Felicia
  surname: Gaskin
  fullname: Gaskin, Felicia
  organization: Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, 22908-0203, USA
– sequence: 9
  givenname: Niansheng
  surname: Yang
  fullname: Yang, Niansheng
  email: zsuyns@163.com
  organization: Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
– sequence: 10
  givenname: Shu Man
  surname: Fu
  fullname: Fu, Shu Man
  organization: Division of Rheumatology and Center of Inflammation, Immunology and Regenerative Medicine, Department of Medicine and Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908-0133, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31133359$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URKeFP8ACZckmwdeO86gQEqp4VBpBVcESWY5z3fGQ2GnsjNR_j4dpEXRRVl6c851rnXNCjpx3SMhLoAVQqN5si61aYsEotAUVBYXyCVkBbUXegqiPyIo2bZU3JcAxOQlhSymAEOIZOeYAnHPRrsiPSxU3_hodBhsyb7JhmZaQOZw2s402nGVXF5c863FC16OLSdGzn6Lf25Xrsy_rq6RbZwY1jir4ETOlo92paL17Tp4aNQR8cfeeku8fP3w7_5yvv366OH-_zrWoWcyrShnOq47TpqlEV3ZGlEYzBh1WumlNy9uWQaMaUzJWGW401Ep0AH3DyrrT_JS8O-ROSzdir9NHZzXIabajmm-lV1b-qzi7kdd-J6uaNmVNU8Dru4DZ3ywYohxt0DgMyqFfgmSMM6CpWkjWV3_f-nPkvtNkaA6GVFQIMxqpbfxdRzptBwlU7ueTW7mfT-7nk1TINF9C2QP0Pv1R6O0BwtTwzuIsg7boNPZ2Rh1l7-3j-NkDXA_WWa2Gn3j7P_gXDtTIug
CitedBy_id crossref_primary_10_1111_cpr_13108
crossref_primary_10_1038_s41419_020_03378_w
crossref_primary_10_1038_s41581_023_00694_0
crossref_primary_10_1016_j_intimp_2024_112886
crossref_primary_10_1002_rai2_12104
crossref_primary_10_1002_rai2_12103
crossref_primary_10_1007_s11064_023_04038_z
crossref_primary_10_3390_biom12030403
crossref_primary_10_1038_s41419_019_2094_z
crossref_primary_10_1002_ehf2_14059
crossref_primary_10_1016_j_cca_2024_117785
crossref_primary_10_1016_j_jaut_2022_102890
crossref_primary_10_1016_j_retram_2025_103502
crossref_primary_10_2147_JIR_S418598
crossref_primary_10_1007_s11010_024_05029_6
crossref_primary_10_3389_fphar_2021_798381
crossref_primary_10_1016_j_clim_2024_110313
crossref_primary_10_1007_s40620_022_01269_1
crossref_primary_10_1016_j_ymthe_2024_03_003
crossref_primary_10_1038_s41420_022_01167_2
crossref_primary_10_1002_adbi_202300173
crossref_primary_10_1042_BCJ20240569
crossref_primary_10_1111_1756_185X_14780
crossref_primary_10_1016_j_clim_2024_109939
crossref_primary_10_1016_j_artmed_2024_103042
crossref_primary_10_1016_j_biopha_2024_116261
crossref_primary_10_3389_fgene_2022_1039951
crossref_primary_10_1002_cam4_6803
crossref_primary_10_1016_j_cca_2020_05_034
crossref_primary_10_3389_fcell_2020_00502
crossref_primary_10_1016_j_biopha_2024_116667
crossref_primary_10_1016_j_phrs_2024_107063
crossref_primary_10_3724_abbs_2022137
crossref_primary_10_3390_ijms24043067
crossref_primary_10_1016_j_nefro_2022_12_009
crossref_primary_10_1159_000539496
crossref_primary_10_1186_s12974_022_02626_4
crossref_primary_10_3389_fimmu_2023_1297408
crossref_primary_10_1016_j_nefroe_2023_04_006
crossref_primary_10_1007_s00210_021_02159_2
crossref_primary_10_3390_ijms222212476
crossref_primary_10_1016_j_jep_2023_116938
crossref_primary_10_1016_j_intimp_2021_108131
crossref_primary_10_1111_sji_13368
crossref_primary_10_1186_s12885_024_12308_4
crossref_primary_10_1053_j_gastro_2024_02_001
crossref_primary_10_1136_annrheumdis_2021_221985
crossref_primary_10_3389_fphar_2024_1436013
crossref_primary_10_3389_fimmu_2024_1502855
crossref_primary_10_1038_s41581_022_00658_w
crossref_primary_10_1186_s12967_024_05951_9
crossref_primary_10_1002_jbt_22591
crossref_primary_10_3390_ani11041044
crossref_primary_10_1111_cns_14397
crossref_primary_10_1038_s41584_021_00652_9
crossref_primary_10_1002_mco2_311
crossref_primary_10_1016_j_autrev_2024_103714
crossref_primary_10_1016_j_clim_2024_110180
crossref_primary_10_18705_2782_3806_2022_2_2_33_45
crossref_primary_10_3389_fimmu_2023_1230050
crossref_primary_10_3892_mmr_2023_13091
crossref_primary_10_1016_j_freeradbiomed_2022_01_028
crossref_primary_10_1016_j_lfs_2024_122604
crossref_primary_10_1038_s41419_023_05680_9
crossref_primary_10_3389_fimmu_2022_894847
crossref_primary_10_3389_fcell_2021_771931
crossref_primary_10_3389_fimmu_2024_1329009
crossref_primary_10_18632_aging_204897
crossref_primary_10_1186_s13075_020_02332_7
crossref_primary_10_1016_j_biopha_2022_113925
crossref_primary_10_1080_08820139_2022_2122834
crossref_primary_10_3389_fcimb_2022_1068324
crossref_primary_10_1016_j_intimp_2022_108868
crossref_primary_10_1002_art_42071
crossref_primary_10_1007_s00280_024_04685_1
crossref_primary_10_1016_j_intimp_2021_108067
crossref_primary_10_3390_ijms241210066
crossref_primary_10_3389_fimmu_2024_1452678
crossref_primary_10_1097_FJC_0000000000001293
crossref_primary_10_1016_j_biopha_2023_115380
crossref_primary_10_1016_j_biopha_2023_114696
crossref_primary_10_3389_fimmu_2021_720877
crossref_primary_10_1016_j_biopha_2020_110542
crossref_primary_10_3390_jcm8091340
crossref_primary_10_3390_antiox11020246
crossref_primary_10_1007_s10495_024_02072_y
crossref_primary_10_1016_j_kint_2024_06_025
crossref_primary_10_3389_fimmu_2022_916664
crossref_primary_10_1016_j_intimp_2023_109974
crossref_primary_10_1166_jbn_2022_3395
crossref_primary_10_1007_s00011_020_01354_w
crossref_primary_10_1016_j_jaut_2022_102871
crossref_primary_10_1111_cns_70135
crossref_primary_10_1016_j_jaut_2019_102331
crossref_primary_10_2174_0109298673255656231003111621
crossref_primary_10_1016_j_cca_2020_06_039
crossref_primary_10_1136_lupus_2024_001146
crossref_primary_10_1038_s41598_022_23730_8
crossref_primary_10_1007_s10735_024_10208_2
crossref_primary_10_1136_lupus_2021_000611
crossref_primary_10_3389_fceld_2024_1348153
crossref_primary_10_1002_ardp_202400302
crossref_primary_10_3389_fimmu_2023_1120034
crossref_primary_10_1016_j_jaut_2020_102540
crossref_primary_10_3390_ijms25031439
crossref_primary_10_1007_s10157_022_02258_1
crossref_primary_10_1038_s41401_022_00886_7
crossref_primary_10_1007_s10735_023_10135_8
crossref_primary_10_1016_j_jaut_2020_102424
crossref_primary_10_3390_ijms24020969
crossref_primary_10_1016_j_lfs_2022_120839
crossref_primary_10_1111_1346_8138_15929
crossref_primary_10_1177_09612033221102076
crossref_primary_10_1111_imr_13282
crossref_primary_10_1038_s41401_020_00603_2
Cites_doi 10.1006/clim.2001.5079
10.1016/j.immuni.2014.12.011
10.1016/j.jmb.2017.10.004
10.4049/jimmunol.1601565
10.1016/j.bcp.2018.01.025
10.1681/ASN.2014080741
10.1164/rccm.201406-1095OC
10.1038/ni.3030
10.1016/j.tibs.2018.11.002
10.1002/art.38174
10.1038/ncomms7282
10.1177/0961203310393262
10.1111/cei.12417
10.1038/ncomms10274
10.1038/nrm2970
10.1038/ki.2011.450
10.1016/j.cell.2011.11.031
10.1016/S0002-9440(10)64239-3
10.1002/art.39499
10.1126/science.1172308
10.1126/science.aad1210
10.1016/j.clim.2016.08.010
10.4049/jimmunol.1701229
10.1002/art.40155
10.1111/ajt.12447
10.1016/B978-0-12-801430-1.00003-2
10.1002/art.38993
10.1038/nri2725
10.1038/nri3452
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.jaut.2019.05.014
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1095-9157
EndPage 102286
ExternalDocumentID PMC6708470
31133359
10_1016_j_jaut_2019_05_014
S0896841119302434
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R01 AR047988
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AAAJQ
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFRF
ABJNI
ABMAC
ABMZM
ABOCM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
CJTIS
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDU
HMG
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG5
LUGTX
LZ5
M29
M41
MO0
N9A
O-L
O9-
O9~
OAUVE
OK0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSH
SSI
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
ZU3
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c572t-66af336b308865b4bf54fc221be6c89f9399218a8f4226f3fc17a5b11d8247bc3
IEDL.DBID .~1
ISSN 0896-8411
1095-9157
IngestDate Thu Aug 21 17:57:54 EDT 2025
Mon Jul 21 09:40:16 EDT 2025
Thu Apr 03 07:08:08 EDT 2025
Thu Apr 24 23:02:31 EDT 2025
Tue Jul 01 03:24:09 EDT 2025
Fri Feb 23 02:29:31 EST 2024
Tue Aug 26 18:13:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Podocyte
Lupus nephritis
RIP3
NLRP3 inflammasome
Necroptosis
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-66af336b308865b4bf54fc221be6c89f9399218a8f4226f3fc17a5b11d8247bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
Acquisition of data. C. Guo, R. Fu, M. Zhou, S. Wang, Y. Huang, H. Hu, J. Zhao, N. Yang.
Analysis and interpretation of data. C. Guo, R. Fu, M. Zhou, S. Wang, Y. Huang, H. Hu, J. Zhao, F. Gaskin, N. Yang and S.M. Fu.
All authors were involved in drafting and revising the article, and all authors approved the final version to be published. Dr. Yang had full access to all of the data in the study and took responsibility for the integrity of the data and the accuracy of the data analysis.
Study conception and design. C. Guo, R. Fu, M. Zhou, F Gaskin, N. Yang and S.M. Fu.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6708470
PMID 31133359
PQID 2232100951
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6708470
proquest_miscellaneous_2232100951
pubmed_primary_31133359
crossref_citationtrail_10_1016_j_jaut_2019_05_014
crossref_primary_10_1016_j_jaut_2019_05_014
elsevier_sciencedirect_doi_10_1016_j_jaut_2019_05_014
elsevier_clinicalkey_doi_10_1016_j_jaut_2019_05_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of autoimmunity
PublicationTitleAlternate J Autoimmun
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sung, Ge, Dai, Wang, Fu, Sharma (bib10) 2017; 198
Waters, Fu, Gaskin, Deshmukh, Sung, Kannapell (bib8) 2001; 100
Kang, Yang, Toth, Kovalenko, Wallach (bib4) 2014; 545
Takemoto, Asker, Gerhardt, Lundkvist, Johansson, Saito (bib9) 2002; 161
Arbore, West, Spolski, Robertson, Klos, Rheinheimer (bib29) 2016; 352
Latz, Xiao, Stutz (bib21) 2013; 13
Rayamajhi, Miao (bib26) 2014; 15
Qing, Conegliano, Shashaty, Seo, Reilly, Worthen (bib16) 2014; 190
Ichinose, Ushigusa, Nishino, Nakashima, Suzuki, Horai (bib20) 2016; 68
Zhang, Shao, Lin, Zhang, Lu, Lin (bib2) 2009; 325
Lawlor, Khan, Mildenhall, Gerlic, Croker, D'Cruz (bib5) 2015; 6
Hussain, Zimmermann, van Wijk, Fulda (bib13) 2018; 153
Fenton (bib7) 2015; 179
Sun, Wang, Wang, He, Chen, Liao (bib3) 2012; 148
Fu, Guo, Wang, Huang, Jin, Hu (bib12) 2017; 69
Mulay, Desai, Kumar, Eberhard, Thomasova, Romoli (bib17) 2016; 7
Lau, Wang, Jiang, Haig, Pavlosky, Linkermann (bib19) 2013; 13
Xu, Ma, Shao, Wu, Zhou, Zhang (bib14) 2015; 26
Tschopp, Schroder (bib22) 2010; 10
Zhao, Wang, Dai, Zhang, Huang, Wang (bib23) 2013; 65
Linkermann, Brasen, Himmerkus, Liu, Huber, Kunzendorf (bib18) 2012; 81
Indramohan, Stehlik, Dorfleutner (bib24) 2018; 430
Petrie, Czabotar, Murphy (bib25) 2019; 44
Zhao, Wang, Huang, Zhang, Wang, Gaskin (bib11) 2015; 67
Mistry, Kaplan (bib6) 2017; 185
Zhang, Yang, Wang, Huang, Li, Tan (bib15) 2011; 20
Gaiha, McKim, Woods, Pertel, Rohrbach, Barteneva (bib28) 2014; 41
O'Donnell, Lehman, Roderick, Martinez-Marin, Zelic, Doran (bib27) 2018; 200
Vandenabeele, Galluzzi, Vanden Berghe, Kroemer (bib1) 2010; 11
Arbore (10.1016/j.jaut.2019.05.014_bib29) 2016; 352
Kang (10.1016/j.jaut.2019.05.014_bib4) 2014; 545
Fu (10.1016/j.jaut.2019.05.014_bib12) 2017; 69
Latz (10.1016/j.jaut.2019.05.014_bib21) 2013; 13
Sung (10.1016/j.jaut.2019.05.014_bib10) 2017; 198
Zhao (10.1016/j.jaut.2019.05.014_bib11) 2015; 67
Petrie (10.1016/j.jaut.2019.05.014_bib25) 2019; 44
Ichinose (10.1016/j.jaut.2019.05.014_bib20) 2016; 68
Takemoto (10.1016/j.jaut.2019.05.014_bib9) 2002; 161
Linkermann (10.1016/j.jaut.2019.05.014_bib18) 2012; 81
Zhao (10.1016/j.jaut.2019.05.014_bib23) 2013; 65
Indramohan (10.1016/j.jaut.2019.05.014_bib24) 2018; 430
Rayamajhi (10.1016/j.jaut.2019.05.014_bib26) 2014; 15
Sun (10.1016/j.jaut.2019.05.014_bib3) 2012; 148
Zhang (10.1016/j.jaut.2019.05.014_bib15) 2011; 20
O'Donnell (10.1016/j.jaut.2019.05.014_bib27) 2018; 200
Mistry (10.1016/j.jaut.2019.05.014_bib6) 2017; 185
Zhang (10.1016/j.jaut.2019.05.014_bib2) 2009; 325
Xu (10.1016/j.jaut.2019.05.014_bib14) 2015; 26
Fenton (10.1016/j.jaut.2019.05.014_bib7) 2015; 179
Gaiha (10.1016/j.jaut.2019.05.014_bib28) 2014; 41
Mulay (10.1016/j.jaut.2019.05.014_bib17) 2016; 7
Qing (10.1016/j.jaut.2019.05.014_bib16) 2014; 190
Tschopp (10.1016/j.jaut.2019.05.014_bib22) 2010; 10
Lawlor (10.1016/j.jaut.2019.05.014_bib5) 2015; 6
Lau (10.1016/j.jaut.2019.05.014_bib19) 2013; 13
Hussain (10.1016/j.jaut.2019.05.014_bib13) 2018; 153
Waters (10.1016/j.jaut.2019.05.014_bib8) 2001; 100
Vandenabeele (10.1016/j.jaut.2019.05.014_bib1) 2010; 11
References_xml – volume: 325
  start-page: 332
  year: 2009
  end-page: 336
  ident: bib2
  article-title: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis
  publication-title: Science
– volume: 148
  start-page: 213
  year: 2012
  end-page: 227
  ident: bib3
  article-title: Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase
  publication-title: Cell
– volume: 430
  start-page: 153
  year: 2018
  end-page: 173
  ident: bib24
  article-title: COPs and POPs patrol inflammasome activation
  publication-title: J. Mol. Biol.
– volume: 200
  start-page: 737
  year: 2018
  end-page: 748
  ident: bib27
  article-title: Dendritic cell RIPK1 maintains immune homeostasis by preventing inflammation and autoimmunity
  publication-title: J. Immunol.
– volume: 100
  start-page: 372
  year: 2001
  end-page: 383
  ident: bib8
  article-title: NZM2328: a new mouse model of systemic lupus erythematosus with unique genetic susceptibility loci
  publication-title: Clin. Immunol.
– volume: 67
  start-page: 1036
  year: 2015
  end-page: 1044
  ident: bib11
  article-title: Lupus nephritis: glycogen synthase kinase 3beta promotion of renal damage through activation of the NLRP3 inflammasome in lupus-prone mice
  publication-title: Arthritis Rheum.
– volume: 545
  start-page: 67
  year: 2014
  end-page: 81
  ident: bib4
  article-title: Activation of the NLRP3 inflammasome by proteins that signal for necroptosis
  publication-title: Methods Enzymol.
– volume: 198
  start-page: 2589
  year: 2017
  end-page: 2601
  ident: bib10
  article-title: Dependence of glomerulonephritis induction on novel intraglomerular alternatively activated bone marrow-derived macrophages and mac-1 and PD-L1 in lupus-prone NZM2328 mice
  publication-title: J. Immunol.
– volume: 352
  start-page: aad1210
  year: 2016
  ident: bib29
  article-title: T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4(+) T cells
  publication-title: Science
– volume: 10
  start-page: 210
  year: 2010
  end-page: 215
  ident: bib22
  article-title: NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production?
  publication-title: Nat. Rev. Immunol.
– volume: 185
  start-page: 59
  year: 2017
  end-page: 73
  ident: bib6
  article-title: Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis
  publication-title: Clin. Immunol.
– volume: 81
  start-page: 751
  year: 2012
  end-page: 761
  ident: bib18
  article-title: Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury
  publication-title: Kidney Int.
– volume: 44
  start-page: 53
  year: 2019
  end-page: 63
  ident: bib25
  article-title: The structural basis of necroptotic cell death signaling
  publication-title: Trends Biochem. Sci.
– volume: 13
  start-page: 2805
  year: 2013
  end-page: 2818
  ident: bib19
  article-title: RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival
  publication-title: Am. J. Transplant.
– volume: 68
  start-page: 944
  year: 2016
  end-page: 952
  ident: bib20
  article-title: Lupus nephritis IgG induction of calcium/calmodulin-dependent protein kinase IV expression in podocytes and alteration of their function
  publication-title: Arthritis Rheum.
– volume: 41
  start-page: 1001
  year: 2014
  end-page: 1012
  ident: bib28
  article-title: Dysfunctional HIV-specific CD8+ T cell proliferation is associated with increased caspase-8 activity and mediated by necroptosis
  publication-title: Immunity
– volume: 190
  start-page: 1243
  year: 2014
  end-page: 1254
  ident: bib16
  article-title: Red blood cells induce necroptosis of lung endothelial cells and increase susceptibility to lung inflammation
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 15
  start-page: 1100
  year: 2014
  end-page: 1102
  ident: bib26
  article-title: The RIP1-RIP3 complex initiates mitochondrial fission to fuel NLRP3
  publication-title: Nat. Immunol.
– volume: 6
  start-page: 6282
  year: 2015
  ident: bib5
  article-title: RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL
  publication-title: Nat. Commun.
– volume: 7
  start-page: 10274
  year: 2016
  ident: bib17
  article-title: Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis
  publication-title: Nat. Commun.
– volume: 161
  start-page: 799
  year: 2002
  end-page: 805
  ident: bib9
  article-title: A new method for large scale isolation of kidney glomeruli from mice
  publication-title: Am. J. Pathol.
– volume: 26
  start-page: 2647
  year: 2015
  end-page: 2658
  ident: bib14
  article-title: A role for tubular necroptosis in cisplatin-induced AKI
  publication-title: J. Am. Soc. Nephrol.
– volume: 65
  start-page: 3176
  year: 2013
  end-page: 3185
  ident: bib23
  article-title: P2X7 blockade attenuates murine lupus nephritis by inhibiting activation of the NLRP3/ASC/caspase 1 pathway
  publication-title: Arthritis Rheum.
– volume: 20
  start-page: 667
  year: 2011
  end-page: 677
  ident: bib15
  article-title: Adenosine 2A receptor is protective against renal injury in MRL/lpr mice
  publication-title: Lupus
– volume: 69
  start-page: 1636
  year: 2017
  end-page: 1646
  ident: bib12
  article-title: Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis
  publication-title: Arthritis Rheum.
– volume: 13
  start-page: 397
  year: 2013
  end-page: 411
  ident: bib21
  article-title: Activation and regulation of the inflammasomes
  publication-title: Nat. Rev. Immunol.
– volume: 153
  start-page: 242
  year: 2018
  end-page: 247
  ident: bib13
  article-title: Mouse lung fibroblasts are highly susceptible to necroptosis in a reactive oxygen species-dependent manner
  publication-title: Biochem. Pharmacol.
– volume: 11
  start-page: 700
  year: 2010
  end-page: 714
  ident: bib1
  article-title: Molecular mechanisms of necroptosis: an ordered cellular explosion
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 179
  start-page: 11
  year: 2015
  end-page: 16
  ident: bib7
  article-title: The effect of cell death in the initiation of lupus nephritis
  publication-title: Clin. Exp. Immunol.
– volume: 100
  start-page: 372
  issue: 3
  year: 2001
  ident: 10.1016/j.jaut.2019.05.014_bib8
  article-title: NZM2328: a new mouse model of systemic lupus erythematosus with unique genetic susceptibility loci
  publication-title: Clin. Immunol.
  doi: 10.1006/clim.2001.5079
– volume: 41
  start-page: 1001
  issue: 6
  year: 2014
  ident: 10.1016/j.jaut.2019.05.014_bib28
  article-title: Dysfunctional HIV-specific CD8+ T cell proliferation is associated with increased caspase-8 activity and mediated by necroptosis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.12.011
– volume: 430
  start-page: 153
  issue: 2
  year: 2018
  ident: 10.1016/j.jaut.2019.05.014_bib24
  article-title: COPs and POPs patrol inflammasome activation
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.10.004
– volume: 198
  start-page: 2589
  issue: 7
  year: 2017
  ident: 10.1016/j.jaut.2019.05.014_bib10
  article-title: Dependence of glomerulonephritis induction on novel intraglomerular alternatively activated bone marrow-derived macrophages and mac-1 and PD-L1 in lupus-prone NZM2328 mice
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1601565
– volume: 153
  start-page: 242
  year: 2018
  ident: 10.1016/j.jaut.2019.05.014_bib13
  article-title: Mouse lung fibroblasts are highly susceptible to necroptosis in a reactive oxygen species-dependent manner
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2018.01.025
– volume: 26
  start-page: 2647
  issue: 11
  year: 2015
  ident: 10.1016/j.jaut.2019.05.014_bib14
  article-title: A role for tubular necroptosis in cisplatin-induced AKI
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2014080741
– volume: 190
  start-page: 1243
  issue: 11
  year: 2014
  ident: 10.1016/j.jaut.2019.05.014_bib16
  article-title: Red blood cells induce necroptosis of lung endothelial cells and increase susceptibility to lung inflammation
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201406-1095OC
– volume: 15
  start-page: 1100
  issue: 12
  year: 2014
  ident: 10.1016/j.jaut.2019.05.014_bib26
  article-title: The RIP1-RIP3 complex initiates mitochondrial fission to fuel NLRP3
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3030
– volume: 44
  start-page: 53
  issue: 1
  year: 2019
  ident: 10.1016/j.jaut.2019.05.014_bib25
  article-title: The structural basis of necroptotic cell death signaling
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2018.11.002
– volume: 65
  start-page: 3176
  issue: 12
  year: 2013
  ident: 10.1016/j.jaut.2019.05.014_bib23
  article-title: P2X7 blockade attenuates murine lupus nephritis by inhibiting activation of the NLRP3/ASC/caspase 1 pathway
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.38174
– volume: 6
  start-page: 6282
  year: 2015
  ident: 10.1016/j.jaut.2019.05.014_bib5
  article-title: RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7282
– volume: 20
  start-page: 667
  issue: 7
  year: 2011
  ident: 10.1016/j.jaut.2019.05.014_bib15
  article-title: Adenosine 2A receptor is protective against renal injury in MRL/lpr mice
  publication-title: Lupus
  doi: 10.1177/0961203310393262
– volume: 179
  start-page: 11
  issue: 1
  year: 2015
  ident: 10.1016/j.jaut.2019.05.014_bib7
  article-title: The effect of cell death in the initiation of lupus nephritis
  publication-title: Clin. Exp. Immunol.
  doi: 10.1111/cei.12417
– volume: 7
  start-page: 10274
  year: 2016
  ident: 10.1016/j.jaut.2019.05.014_bib17
  article-title: Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10274
– volume: 11
  start-page: 700
  issue: 10
  year: 2010
  ident: 10.1016/j.jaut.2019.05.014_bib1
  article-title: Molecular mechanisms of necroptosis: an ordered cellular explosion
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2970
– volume: 81
  start-page: 751
  issue: 8
  year: 2012
  ident: 10.1016/j.jaut.2019.05.014_bib18
  article-title: Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury
  publication-title: Kidney Int.
  doi: 10.1038/ki.2011.450
– volume: 148
  start-page: 213
  issue: 1–2
  year: 2012
  ident: 10.1016/j.jaut.2019.05.014_bib3
  article-title: Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.031
– volume: 161
  start-page: 799
  issue: 3
  year: 2002
  ident: 10.1016/j.jaut.2019.05.014_bib9
  article-title: A new method for large scale isolation of kidney glomeruli from mice
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)64239-3
– volume: 68
  start-page: 944
  issue: 4
  year: 2016
  ident: 10.1016/j.jaut.2019.05.014_bib20
  article-title: Lupus nephritis IgG induction of calcium/calmodulin-dependent protein kinase IV expression in podocytes and alteration of their function
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.39499
– volume: 325
  start-page: 332
  issue: 5938
  year: 2009
  ident: 10.1016/j.jaut.2019.05.014_bib2
  article-title: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis
  publication-title: Science
  doi: 10.1126/science.1172308
– volume: 352
  start-page: aad1210
  issue: 6292
  year: 2016
  ident: 10.1016/j.jaut.2019.05.014_bib29
  article-title: T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4(+) T cells
  publication-title: Science
  doi: 10.1126/science.aad1210
– volume: 185
  start-page: 59
  year: 2017
  ident: 10.1016/j.jaut.2019.05.014_bib6
  article-title: Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis
  publication-title: Clin. Immunol.
  doi: 10.1016/j.clim.2016.08.010
– volume: 200
  start-page: 737
  issue: 2
  year: 2018
  ident: 10.1016/j.jaut.2019.05.014_bib27
  article-title: Dendritic cell RIPK1 maintains immune homeostasis by preventing inflammation and autoimmunity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1701229
– volume: 69
  start-page: 1636
  issue: 8
  year: 2017
  ident: 10.1016/j.jaut.2019.05.014_bib12
  article-title: Podocyte activation of NLRP3 inflammasomes contributes to the development of proteinuria in lupus nephritis
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.40155
– volume: 13
  start-page: 2805
  issue: 11
  year: 2013
  ident: 10.1016/j.jaut.2019.05.014_bib19
  article-title: RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival
  publication-title: Am. J. Transplant.
  doi: 10.1111/ajt.12447
– volume: 545
  start-page: 67
  year: 2014
  ident: 10.1016/j.jaut.2019.05.014_bib4
  article-title: Activation of the NLRP3 inflammasome by proteins that signal for necroptosis
  publication-title: Methods Enzymol.
  doi: 10.1016/B978-0-12-801430-1.00003-2
– volume: 67
  start-page: 1036
  issue: 4
  year: 2015
  ident: 10.1016/j.jaut.2019.05.014_bib11
  article-title: Lupus nephritis: glycogen synthase kinase 3beta promotion of renal damage through activation of the NLRP3 inflammasome in lupus-prone mice
  publication-title: Arthritis Rheum.
  doi: 10.1002/art.38993
– volume: 10
  start-page: 210
  issue: 3
  year: 2010
  ident: 10.1016/j.jaut.2019.05.014_bib22
  article-title: NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production?
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2725
– volume: 13
  start-page: 397
  issue: 6
  year: 2013
  ident: 10.1016/j.jaut.2019.05.014_bib21
  article-title: Activation and regulation of the inflammasomes
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3452
SSID ssj0011555
Score 2.5735416
Snippet RIP3 activation leads to activation of necroptosis and the NLRP3 inflammasome pathways. The activation of RIP3 in lupus nephritis (LN) has not been...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102286
SubjectTerms Lupus nephritis
Necroptosis
NLRP3 inflammasome
Podocyte
RIP3
Title Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0896841119302434
https://dx.doi.org/10.1016/j.jaut.2019.05.014
https://www.ncbi.nlm.nih.gov/pubmed/31133359
https://www.proquest.com/docview/2232100951
https://pubmed.ncbi.nlm.nih.gov/PMC6708470
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIhAXBOVrKVRG4obCrmM7jrlVFdUW6KoqVOoFWbZjw1ZtsmKzh1747cysk4gFUSSUU-KxZGXGMy_OzBtCXlnlonZaZXlVcjy60Zl1UmY8Ss-4q4S3WDt8PCumZ-L9uTzfIgd9LQymVXa-P_n0tbfunoy7tzlezOfjT5NSF6WAvao50uohJ6gQCq38zY8hzQMAz7rzKQpnKN0VzqQcrwvMEoEQqBN7p_hbcPoTfP6eQ_lLUDq8T-51aJLupwU_IFuh3iG3U3_J6x1y57j7c_6QfDkBqNd8Rc82X9Im0svVYrWkdQBlIq3RW3p6dMJp3xO3hRFs7tU2KG7ris4-nsI42COY0JVdNleBYk1EOtF9RM4O330-mGZda4XMS5W3WVHYyHnhODiZQjrhohTR5zlzofCljhr5allpy4iVtpFHz5SVjrGqzIVynj8m23VTh6eEqgBffNILFwRcNkJ4AwgmvKog-gevRoT179T4jncc219cmj7B7MKgHgzqwUykAT2MyOthziKxbtwozXtVmb6eFDyggaBw4yw5zNqwuH_Oe9lbg4GtiP9XbB2a1dIA0oIPaMSsI_IkWcewes4Y51zqEVEbdjMIIM335kg9_7am-y7UBCDE5Nl_rneX3MW7lBf3nGy331fhBQCp1u2td8oeubV_9GE6-wlujR4S
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8aQ8AuCAaD8hkkbii0ju044YYmpg7aahqbtAuybMeGTltS0fSwC3877zUfoiCGhHKLnyXL7-tn-30AvDbKhtzmKk6KjNPVTR4bK2XMg3SM20I4Q7nD01k6PhUfz-TZFux3uTAUVtna_samr611-2fY7uZwMZ8PP4-yPM0E6mrOqayeuAE3BaovtTF4-6OP80DEs259StQxkbeZM02Q1zmFiaAPzJvyneJv3ulP9Pl7EOUvXungHtxt4WT0vlnxfdjy5S7cahpMXu3C7Wn7dP4Avhwh1qu-kmmbL6MqRBerxWoZlR65SXWN3kXHh0c86pri1jhC3b3qishNWUSzyTGOo0CiDF2aZXXpI0qKaK50H8LpwYeT_XHc9laInVRJHaepCZynlqOVSaUVNkgRXJIw61OX5SGngrUsM1mgVNvAg2PKSMtYkSVCWcf3YLusSv8YIuXxyCedsF7gZwL6N8RgwqkC3b93agCs21Pt2sLj1P_iQncRZuea-KCJD3okNfJhAG_6OYum7Ma11Lxjle4SStEEavQK186S_awNkfvnvFedNGjURXpgMaWvVkuNUAtP0ARaB_CokY5-9ZwxzrnMB6A25KYnoDrfmyPl_Nu63neqRoghRk_-c70v4c74ZDrRk8PZp6ewQyNNkNwz2K6_r_xzRFW1fbHWmp_CTh-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathogenesis+of+lupus+nephritis%3A+RIP3+dependent+necroptosis+and+NLRP3+inflammasome+activation&rft.jtitle=Journal+of+autoimmunity&rft.au=Guo%2C+Chaohuan&rft.au=Fu%2C+Rong&rft.au=Zhou%2C+Mianjing&rft.au=Wang%2C+Shuang&rft.date=2019-09-01&rft.eissn=1095-9157&rft.volume=103&rft.spage=102286&rft_id=info:doi/10.1016%2Fj.jaut.2019.05.014&rft_id=info%3Apmid%2F31133359&rft.externalDocID=31133359
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-8411&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-8411&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-8411&client=summon