Fabrication of Heat Storage Pellets Consisting of a Metallic Latent Heat Storage Microcapsule and an Al2O3 Matrix

Energy efficiency is fundamental in the steel industry. Latent heat storage (LHS) systems with phase change materials (PCM) are attractive technologies for the recovery and utilization of heat, especially for the development of high-temperature thermal energy storage system. This paper describes fab...

Full description

Saved in:
Bibliographic Details
Published inISIJ International Vol. 60; no. 10; pp. 2152 - 2156
Main Authors Sakai, Hiroki, Kurniawan, Ade, Akiyama, Tomohiro, Nomura, Takahiro
Format Journal Article
LanguageEnglish
Published The Iron and Steel Institute of Japan 15.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Energy efficiency is fundamental in the steel industry. Latent heat storage (LHS) systems with phase change materials (PCM) are attractive technologies for the recovery and utilization of heat, especially for the development of high-temperature thermal energy storage system. This paper describes fabrication of LHS pellets for high-temperature applications using metallic microencapsulated PCM (MEPCM). The LHS pellets consist of Al–Si PCM parts and an Al2O3 matrix. The pellets were fabricated by mixing MEPCM with sinterable alumina. The powder mixture was then pelletized and sintered at different pressures and atmospheric conditions, respectively. Some MEPCM in the pellets remained spherical after being sintered at 1000°C, a high-temperature condition above the PCM melting temperature. All fabricated pellets exhibited latent heat of PCM at the melting point of the PCM, about 577°C. The maximum value of latent heat was 73.5 J g−1. This was observed for the LHS pellet pelletized at 20 MPa and sintered under O2 atmosphere. Therefore, this study presents a great material for high-temperature thermal energy storage systems in the steel industry.
AbstractList Energy efficiency is fundamental in the steel industry. Latent heat storage (LHS) systems with phase change materials (PCM) are attractive technologies for the recovery and utilization of heat, especially for the development of high-temperature thermal energy storage system. This paper describes fabrication of LHS pellets for high-temperature applications using metallic microencapsulated PCM (MEPCM). The LHS pellets consist of Al–Si PCM parts and an Al2O3 matrix. The pellets were fabricated by mixing MEPCM with sinterable alumina. The powder mixture was then pelletized and sintered at different pressures and atmospheric conditions, respectively. Some MEPCM in the pellets remained spherical after being sintered at 1000°C, a high-temperature condition above the PCM melting temperature. All fabricated pellets exhibited latent heat of PCM at the melting point of the PCM, about 577°C. The maximum value of latent heat was 73.5 J g−1. This was observed for the LHS pellet pelletized at 20 MPa and sintered under O2 atmosphere. Therefore, this study presents a great material for high-temperature thermal energy storage systems in the steel industry.
Author Sakai, Hiroki
Kurniawan, Ade
Nomura, Takahiro
Akiyama, Tomohiro
Author_xml – sequence: 1
  fullname: Sakai, Hiroki
  organization: Graduate School of Engineering, Hokkaido University
– sequence: 2
  fullname: Kurniawan, Ade
  organization: Faculty of Engineering, Hokkaido University
– sequence: 3
  fullname: Akiyama, Tomohiro
  organization: Faculty of Engineering, Hokkaido University
– sequence: 4
  fullname: Nomura, Takahiro
  organization: Faculty of Engineering, Hokkaido University
BookMark eNptkE1PAjEQhhuDiYj8h55NFvux3Y8jEhEMqAl48LSZ7XaxpHaxrYn-e3eFkPhxmJnLvE9mnnPUs41VCF1SMmJciCvt9VbboJyFoBsLZjRfze_m9-uIEZpHGUtPUJ_yOI1EnJAe6pOciogKkZ-hofe6JITFWcwp76O3KZROy28Qbmo8UxDwKjQONgo_KmNU8HjSWK990HbTrQBeqgDGaIkXEJQNP0NLLV0jYeffjcJgq7bw2LAHjpcQnP64QKc1GK-GhzlAT9Ob9WQWLR5u55PxIpIiZSFKaMbrNJdVVvMqAcbKBLjkccbyNGWiJJwmlIJIVE4Y4SyXSkGZckKzqq7jkg_Q9Z7bnuO9U3Wxc_oV3GdBSdF5LP54LA4ei85j0XpsIc97yNaH9rkjAlzQ0qh_EAnp-G3_zTpm5Au4Qln-BWPRkRs
CitedBy_id crossref_primary_10_2139_ssrn_4010856
crossref_primary_10_2355_isijinternational_ISIJINT_2022_204
crossref_primary_10_2355_isijinternational_ISIJINT_2022_336
crossref_primary_10_1021_acsami_3c17129
crossref_primary_10_1016_j_est_2024_111261
crossref_primary_10_1016_j_est_2022_104919
crossref_primary_10_2355_isijinternational_ISIJINT_2022_109
crossref_primary_10_1016_j_solmat_2021_111540
crossref_primary_10_1016_j_est_2023_109635
crossref_primary_10_1016_j_energy_2021_121746
Cites_doi 10.1007/s10973-017-6261-0
10.1016/j.rser.2007.10.005
10.2355/isijinternational.44.257
10.2355/isijinternational.42.215
10.2355/isijinternational.42.1189
10.2355/isijinternational.33.1144
10.1016/j.egypro.2015.03.145
10.1016/j.apenergy.2013.02.019
10.1039/C8TA04708A
10.2355/isijinternational.50.1326
10.1016/j.energy.2014.07.040
10.2355/isijinternational.48.540
10.2355/isijinternational.41.1423
10.1016/j.solmat.2018.11.013
10.1016/j.enconman.2015.05.012
10.1016/j.apenergy.2017.09.054
10.1016/j.enconman.2003.09.015
10.1016/j.apenergy.2016.02.106
10.1016/j.solmat.2018.12.023
10.1016/S1359-4311(02)00192-8
10.2355/isijinternational.40.286
10.2355/isijinternational.37.1031
10.2355/isijinternational.29.447
10.1016/j.apenergy.2018.09.017
10.1016/j.solmat.2018.08.001
10.2355/isijinternational.33.1136
10.1016/j.apenergy.2014.07.052
10.1016/j.apenergy.2016.11.025
10.1016/j.egypro.2015.03.083
10.2355/isijinternational.50.1305
10.2355/isijinternational.ISIJINT-2015-169
10.1016/j.apenergy.2016.06.147
10.2355/isijinternational.41.111
ContentType Journal Article
Copyright 2020 The Iron and Steel Institute of Japan.
Copyright_xml – notice: 2020 The Iron and Steel Institute of Japan.
DBID AAYXX
CITATION
DOI 10.2355/isijinternational.ISIJINT-2019-827
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-5460
EndPage 2156
ExternalDocumentID 10_2355_isijinternational_ISIJINT_2019_827
article_isijinternational_60_10_60_ISIJINT_2019_827_article_char_en
GroupedDBID 5GY
AAFWJ
ABEFU
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HH5
JSF
JSH
KQ8
OK1
RJT
RZJ
SJN
XJN
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c572t-6183f79cd8f3d6a22b6a3c348297725b031611a56e9020329ceeab73018dff4b3
ISSN 0915-1559
IngestDate Fri Aug 23 00:33:19 EDT 2024
Thu Aug 17 20:21:06 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c572t-6183f79cd8f3d6a22b6a3c348297725b031611a56e9020329ceeab73018dff4b3
OpenAccessLink http://dx.doi.org/10.2355/isijinternational.ISIJINT-2019-827
PageCount 5
ParticipantIDs crossref_primary_10_2355_isijinternational_ISIJINT_2019_827
jstage_primary_article_isijinternational_60_10_60_ISIJINT_2019_827_article_char_en
PublicationCentury 2000
PublicationDate 2020-10-15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-15
  day: 15
PublicationDecade 2020
PublicationTitle ISIJ International
PublicationTitleAlternate ISIJ Int.
PublicationYear 2020
Publisher The Iron and Steel Institute of Japan
Publisher_xml – name: The Iron and Steel Institute of Japan
References 22) J. E. Rea, C. J. Oshman, A. Singh, J. Alleman, P. A. Parilla, C. L. Hardin, M. L. Olsen, N. P. Siegel, D. S. Ginley and E. S. Toberer: Appl. Energy, 230 (2018), 1218.
5) E. Kasai, T. Kitajima, T. Akiyama, J. Yagi and F. Saito: ISIJ Int., 37 (1997), 1031.
15) B. Zalba, J. M. Marín, L. F. Cabeza and H. Mehling: Appl. Therm. Eng., 23 (2003), 251.
3) T. Akiyama, H. Sato, A. Muramatsu and J. Yagi: ISIJ Int., 33 (1993), 1136.
10) H. Zhang, H. Wang, X. Zhu, Y.-J. Qiu, K. Li, R. Chen and Q. Liao: Appl. Energy, 112 (2013), 956.
24) G. Nardin, A. Meneghetti, F. Dal Magro and N. Benedetti: Appl. Energy, 136 (2014), 947.
27) N. Maruoka, T. Mizuochi, H. Purwanto and T. Akiyama: ISIJ Int., 44 (2004), 257.
19) P. Blanco-Rodríguez, J. Rodríguez-Aseguinolaza, E. Risueño, A. Faik, M. Tello and S. Doppiu: Energy, 75 (2014), 630.
28) N. Maruoka and T. Akiyama: ISIJ Int., 50 (2010), 1305.
8) T. Mizuochi, T. Akiyama, T. Shimada, E. Kasai and J. Yagi: ISIJ Int., 41 (2001), 1423.
11) T. Nomura, T. Oya, N. Okinaka and T. Akiyama: ISIJ Int., 50 (2010), 1326.
26) N. Maruoka, K. Sato, J. Yagi and T. Akiyama: ISIJ Int., 42 (2002), 215.
25) F. Dal Magro, M. Jimenez-Arreola and A. Romagnoli: Appl. Energy, 208 (2017), 972.
13) L. Miró, J. Gasia and L. F. Cabeza: Appl. Energy, 179 (2016), 284.
7) N. Maruoka and T. Akiyama: ISIJ Int., 42 (2002), 1189.
9) N. Shigaki, H. Tobo, S. Ozawa, Y. Ta and K. Hagiwara: ISIJ Int., 55 (2015), 2258.
33) N. Sheng, C. Zhu, H. Sakai, T. Akiyama and T. Nomura: Sol. Energy Mater. Sol. Cells, 191 (2019), 141.
20) E. Risueño, A. Gil, J. Rodríguez-Aseguinolaza, M. Tello, A. Faik and B. D’Aguanno: J. Therm. Anal. Calorim., 129 (2017), 885.
21) N. Gokon, S. Nakamura, T. Yamaguchi and T. Kodama: Energy Procedia, 69 (2015), 1759.
31) T. Nomura, J. Yoolerd, N. Sheng, H. Sakai, Y. Hasegawa, M. Haga, G. Saito and T. Akiyama: Sol. Energy Mater. Sol. Cells, 187 (2018), 255.
4) A. Muramatsu, H. Sato, T. Akiyama and J. Yagi: ISIJ Int., 33 (1993), 1144.
23) C. E. Andraka, A. M. Kruizenga, B. A. Hernandez-Sanchez and E. N. Coker: Energy Procedia, 69 (2015), 726.
14) R. Fukahori, T. Nomura, C. Zhu, N. Sheng, N. Okinaka and T. Akiyama: Appl. Energy, 170 (2016), 324.
29) T. Nomura, J. Yoolerd, N. Sheng, H. Sakai, Y. Hasegawa, M. Haga and T. Akiyama: Sol. Energy Mater. Sol. Cells, 193 (2019), 281.
1) T. Akiyama, R. Takahashi and J. Yagi: ISIJ Int., 29 (1989), 447.
16) M. M. Farid, A. M. Khudhair, S. A. K. Razack and S. Al-Hallaj: Energy Convers. Manag., 45 (2004), 1597.
6) T. Shimada, V. Kochura, T. Akiyama, E. Kasai and J. Yagi: ISIJ Int., 41 (2001), 111.
32) N. Sheng, C. Zhu, G. Saito, T. Hiraki, M. Haka, Y. Hasegawa, H. Sakai, T. Akiyama and T. Nomura: J. Mater. Chem. A, 6 (2018), 18143.
2) T. Akiyama, K. Oikawa, T. Shimada, E. Kasai and J. Yagi: ISIJ Int., 40 (2000), 286.
17) A. Sharma, V. V. Tyagi, C. R. Chen and D. Buddhi: Renew. Sustain. Energy Rev., 13 (2009), 318.
18) A. Kaizawa, H. Kamano, A. Kawai, T. Jozuka, T. Senda, N. Maruoka, N. Okinaka and T. Akiyama: ISIJ Int., 48 (2008), 540.
12) F. Dal Magro, A. Meneghetti, G. Nardin and S. Savino: Energy Convers. Manag., 104 (2015), 78.
30) T. Nomura, N. Sheng, C. Zhu, G. Saito, D. Hanzaki, T. Hiraki and T. Akiyama: Appl. Energy, 188 (2017), 9.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 20
  doi: 10.1007/s10973-017-6261-0
– ident: 17
  doi: 10.1016/j.rser.2007.10.005
– ident: 27
  doi: 10.2355/isijinternational.44.257
– ident: 26
  doi: 10.2355/isijinternational.42.215
– ident: 7
  doi: 10.2355/isijinternational.42.1189
– ident: 4
  doi: 10.2355/isijinternational.33.1144
– ident: 21
  doi: 10.1016/j.egypro.2015.03.145
– ident: 10
  doi: 10.1016/j.apenergy.2013.02.019
– ident: 32
  doi: 10.1039/C8TA04708A
– ident: 11
  doi: 10.2355/isijinternational.50.1326
– ident: 19
  doi: 10.1016/j.energy.2014.07.040
– ident: 18
  doi: 10.2355/isijinternational.48.540
– ident: 8
  doi: 10.2355/isijinternational.41.1423
– ident: 33
  doi: 10.1016/j.solmat.2018.11.013
– ident: 12
  doi: 10.1016/j.enconman.2015.05.012
– ident: 25
  doi: 10.1016/j.apenergy.2017.09.054
– ident: 16
  doi: 10.1016/j.enconman.2003.09.015
– ident: 14
  doi: 10.1016/j.apenergy.2016.02.106
– ident: 29
  doi: 10.1016/j.solmat.2018.12.023
– ident: 15
  doi: 10.1016/S1359-4311(02)00192-8
– ident: 2
  doi: 10.2355/isijinternational.40.286
– ident: 5
  doi: 10.2355/isijinternational.37.1031
– ident: 1
  doi: 10.2355/isijinternational.29.447
– ident: 22
  doi: 10.1016/j.apenergy.2018.09.017
– ident: 31
  doi: 10.1016/j.solmat.2018.08.001
– ident: 3
  doi: 10.2355/isijinternational.33.1136
– ident: 24
  doi: 10.1016/j.apenergy.2014.07.052
– ident: 30
  doi: 10.1016/j.apenergy.2016.11.025
– ident: 23
  doi: 10.1016/j.egypro.2015.03.083
– ident: 28
  doi: 10.2355/isijinternational.50.1305
– ident: 9
  doi: 10.2355/isijinternational.ISIJINT-2015-169
– ident: 13
  doi: 10.1016/j.apenergy.2016.06.147
– ident: 6
  doi: 10.2355/isijinternational.41.111
SSID ssib002484313
ssj0027274
Score 2.3917503
Snippet Energy efficiency is fundamental in the steel industry. Latent heat storage (LHS) systems with phase change materials (PCM) are attractive technologies for the...
SourceID crossref
jstage
SourceType Aggregation Database
Publisher
StartPage 2152
SubjectTerms high temperature waste heat recovery
phase change material
steelmaking
Title Fabrication of Heat Storage Pellets Consisting of a Metallic Latent Heat Storage Microcapsule and an Al2O3 Matrix
URI https://www.jstage.jst.go.jp/article/isijinternational/60/10/60_ISIJINT-2019-827/_article/-char/en
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ISIJ International, 2020/10/15, Vol.60(10), pp.2152-2156
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfKQAgeEJ9ifEx-4InKY3ESJxFPFWJqBx2CddLeIjtxRNY12bpUfPz13MVOmoxKDHio1XzcyfL94vvw-UzIK1dmMsykYlJHIfOU8JhSWcS05wWu42jl14dNTA_F-Ng7OPFPBoNuheBVpXaTnxv3lfyLVOEeyBV3yf6FZFumcAP-g3yhBQlDey0Z70u1tDG3OiCP3v4RONF1Hg5G5Ct7Iudlk9wsh1MN5jZWtv4IVmZR9YmmmJ6XSPCcz7Qt4zocnfFP7nCKpfy_d03ZydHkoK420QYU22iNnJtDrsf5spznndWiIpffTMR1lK6xNs9_yEVtxM7KRfkViNoQdblYLc0T4Nk-sVEKcEkx6cPvhhsdn-ESqNE7ZrJ1vYD5njlPoJmN7ZVF3V5vbjW1bq2ehkuxSQdwsKBAcPllftobg10clsnhDBDkRCw0FQn6BbivKMY2XREcJeQa_8Yztjxj5BkDzxvkJg8iH6MAHz53_boQDDV3HQngpjx4Myi3yWvb8zd_7nfPgrp1Ck5Ek4BY20Sz--SedWboyCDzARno4iG52ylx-YhcdDBKy4wi3KiFG7UYpWuM4iuSNhilBqN9oi5GKWAUfrTGKDUYfUyO99_P3o2ZPeaDJX7AKyZAq2RBlKRh5qZCcq6EdBMsugS-CfcVqB3hONIXOsJlcx6BXScVaqYwzTJPuU_IVlEW-imhiaO12pPCFToFPwGc_yAIlUw5zFPAONsmb5uhi89NNZf4-sLdJl_MaLe09svfQCswtwPbq0xaGtxVCZPYs__q0nNyZ_21vSBb1XKlX4KVXKmdOrq0U-PwF_qmxMs
link.rule.ids 315,786,790,870,27957,27958
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+Heat+Storage+Pellets+Consisting+of+a+Metallic+Latent+Heat+Storage+Microcapsule+and+an+Al2O3+Matrix&rft.jtitle=ISIJ+international&rft.au=Sakai%2C+Hiroki&rft.au=Kurniawan%2C+Ade&rft.au=Akiyama%2C+Tomohiro&rft.au=Nomura%2C+Takahiro&rft.date=2020-10-15&rft.issn=0915-1559&rft.eissn=1347-5460&rft.volume=60&rft.issue=10&rft.spage=2152&rft.epage=2156&rft_id=info:doi/10.2355%2Fisijinternational.ISIJINT-2019-827&rft.externalDBID=n%2Fa&rft.externalDocID=10_2355_isijinternational_ISIJINT_2019_827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0915-1559&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0915-1559&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0915-1559&client=summon