Automatic sleep staging: A computer assisted approach for optimal combination of features and polysomnographic channels

•A subject-independent automatic sleep staging method with application in sleep–wake detection and in multiclass sleep staging.•An extensive dataset with 40 polysomnographic (PSG) recording.•A time–frequency based feature extraction method using maximum overlap discrete wavelet transform (MODWT).•A...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 40; no. 17; pp. 7046 - 7059
Main Authors Khalighi, Sirvan, Sousa, Teresa, Pires, Gabriel, Nunes, Urbano
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.12.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A subject-independent automatic sleep staging method with application in sleep–wake detection and in multiclass sleep staging.•An extensive dataset with 40 polysomnographic (PSG) recording.•A time–frequency based feature extraction method using maximum overlap discrete wavelet transform (MODWT).•A two-step feature selector to find the most discriminative features.•The best combinations of the PSG channels in sleep–wake detection and in multiclass sleep staging. To improve applicability of automatic sleep staging an efficient subject-independent method is proposed with application in sleep–wake detection and in multiclass sleep staging (awake, non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep). In turn, NREM is further divided into three stages denoted here by N1, N2, and N3. To assess the method, polysomnographic (PSG) records of 40 patients from our ISRUC-Sleep dataset, which was scored by an expert clinician in the central hospital of Coimbra, are used. To find the best combination of PSG signals for automatic sleep staging, six electroencephalographic (EEG), two electrooculographic (EOG), and one electromyographic (EMG) channels are analyzed. An extensive set of feature extraction techniques are applied, covering temporal, frequency and time–frequency domains. The maximum overlap wavelet transform (MODWT), a shift invariant transform, was used to extract the features in time–frequency domain. The extracted feature set is transformed and normalized to reduce the effect of extreme values of features. The most discriminative features are selected through a two-step method composed by a manual selection step based on features’ histogram analysis followed by an automatic feature selector. The selected feature set is classified using support vector machines (SVMs). The system achieved the best performance by combining 6 channels (C3, C4, O1, left EOG (LOC), right EOG (ROC) and chin EMG (X1)) for sleep–wake detection, and 9 channels (C3, C4, O1, O2, F3, F4, LOC, ROC, X1) for multiclass sleep staging.
AbstractList To improve applicability of automatic sleep staging an efficient subject-independent method is proposed with application in sleep-wake detection and in multiclass sleep staging (awake, non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep). In turn, NREM is further divided into three stages denoted here by N1, N2, and N3. To assess the method, polysomnographic (PSG) records of 40 patients from our ISRUC-Sleep dataset, which was scored by an expert clinician in the central hospital ofCoimbra, are used. To find the best combination of PSG signals for automatic sleep staging, six electro-encephalographic (EEC), two electrooculographic (EOG), and one electromyographic (EMG) channels are analyzed. An extensive set of feature extraction techniques are applied, covering temporal, frequency and time-frequency domains. The maximum overlap wavelet transform (MODWT), a shift invariant transform, was used to extract the features in time-frequency domain. The extracted feature set is transformed and normalized to reduce the effect of extreme values of features. The most discriminative features are selected through a two-step method composed by a manual selection step based on features' histogram analysis followed by an automatic feature selector. The selected feature set is classified using support vector machines (SVMs). The system achieved the best performance by combining 6 channels (C3, C4, O1, left EOG (LOC), right EOG (ROC) and chin EMG (X1)) for sleep-wake detection, and 9 channels (C3, C4, O1, O2, F3, F4, LOC, ROC, X1) for multiclass sleep staging.
To improve applicability of automatic sleep staging an efficient subject-independent method is proposed with application in sleepawake detection and in multiclass sleep staging (awake, non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep). In turn, NREM is further divided into three stages denoted here by N1, N2, and N3. To assess the method, polysomnographic (PSG) records of 40 patients from our ISRUC-Sleep dataset, which was scored by an expert clinician in the central hospital of Coimbra, are used. To find the best combination of PSG signals for automatic sleep staging, six electroencephalographic (EEG), two electrooculographic (EOG), and one electromyographic (EMG) channels are analyzed. An extensive set of feature extraction techniques are applied, covering temporal, frequency and time-frequency domains. The maximum overlap wavelet transform (MODWT), a shift invariant transform, was used to extract the features in time-frequency domain. The extracted feature set is transformed and normalized to reduce the effect of extreme values of features. The most discriminative features are selected through a two-step method composed by a manual selection step based on featuresa histogram analysis followed by an automatic feature selector. The selected feature set is classified using support vector machines (SVMs). The system achieved the best performance by combining 6 channels (C3, C4, O1, left EOG (LOC), right EOG (ROC) and chin EMG (X1)) for sleepawake detection, and 9 channels (C3, C4, O1, O2, F3, F4, LOC, ROC, X1) for multiclass sleep staging.
•A subject-independent automatic sleep staging method with application in sleep–wake detection and in multiclass sleep staging.•An extensive dataset with 40 polysomnographic (PSG) recording.•A time–frequency based feature extraction method using maximum overlap discrete wavelet transform (MODWT).•A two-step feature selector to find the most discriminative features.•The best combinations of the PSG channels in sleep–wake detection and in multiclass sleep staging. To improve applicability of automatic sleep staging an efficient subject-independent method is proposed with application in sleep–wake detection and in multiclass sleep staging (awake, non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep). In turn, NREM is further divided into three stages denoted here by N1, N2, and N3. To assess the method, polysomnographic (PSG) records of 40 patients from our ISRUC-Sleep dataset, which was scored by an expert clinician in the central hospital of Coimbra, are used. To find the best combination of PSG signals for automatic sleep staging, six electroencephalographic (EEG), two electrooculographic (EOG), and one electromyographic (EMG) channels are analyzed. An extensive set of feature extraction techniques are applied, covering temporal, frequency and time–frequency domains. The maximum overlap wavelet transform (MODWT), a shift invariant transform, was used to extract the features in time–frequency domain. The extracted feature set is transformed and normalized to reduce the effect of extreme values of features. The most discriminative features are selected through a two-step method composed by a manual selection step based on features’ histogram analysis followed by an automatic feature selector. The selected feature set is classified using support vector machines (SVMs). The system achieved the best performance by combining 6 channels (C3, C4, O1, left EOG (LOC), right EOG (ROC) and chin EMG (X1)) for sleep–wake detection, and 9 channels (C3, C4, O1, O2, F3, F4, LOC, ROC, X1) for multiclass sleep staging.
Author Khalighi, Sirvan
Nunes, Urbano
Sousa, Teresa
Pires, Gabriel
Author_xml – sequence: 1
  givenname: Sirvan
  surname: Khalighi
  fullname: Khalighi, Sirvan
  email: skhalighi@isr.uc.pt
– sequence: 2
  givenname: Teresa
  surname: Sousa
  fullname: Sousa, Teresa
– sequence: 3
  givenname: Gabriel
  surname: Pires
  fullname: Pires, Gabriel
– sequence: 4
  givenname: Urbano
  surname: Nunes
  fullname: Nunes, Urbano
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27667419$$DView record in Pascal Francis
BookMark eNqNks1u1DAUhS1UJKaFF2DlDRKbBP_bQWxGFVCkSmxgbXmcmxmPEjvYHqq-PQnTbli0rLz5zrnX555LdBFTBITeUtJSQtWHYwvlzrWMUN4S1RLGX6ANNZo3Snf8Am1IJ3UjqBav0GUpR0KoJkRv0N32VNPkavC4jAAzLtXtQ9x_xFvs0zSfKmTsSgmlQo_dPOfk_AEPKeM01zC5ccV2IS4WKeI04AFcPWUo2MUez2m8L2mKaZ_dfFiG-IOLEcbyGr0c3FjgzcN7hX5--fzj-qa5_f712_X2tvFSs9pwrfpOE8mYB0a5H4YdGKG5ocI52QkjB0aJVJoK4gWs3-oJNTvTCS-E1PwKvT_7Lov_OkGpdgrFwzi6COlU7BIDpYwZof4LJYZSwZ9HJeVCS2nI86gQRlMl5Yq-e0Bd8W4csos-FDvnJeZ8b5lWSgvaLZw5cz6nUjIM1of6N_-aXRgtJXYthT3atRR2LYUlyi6lWKTsH-mj-5OiT2fRcjf4HSDb4gNED33I4KvtU3hK_gcZ39HA
CitedBy_id crossref_primary_10_1109_JSEN_2020_3019668
crossref_primary_10_1016_j_measurement_2023_112641
crossref_primary_10_2139_ssrn_4170465
crossref_primary_10_3390_diagnostics14060580
crossref_primary_10_1016_j_cmpb_2019_105116
crossref_primary_10_1109_TNSRE_2022_3227040
crossref_primary_10_1155_2018_6534041
crossref_primary_10_1016_j_eswa_2018_07_023
crossref_primary_10_1371_journal_pone_0256111
crossref_primary_10_1016_j_compbiomed_2015_01_012
crossref_primary_10_1007_s00500_021_06218_x
crossref_primary_10_1016_j_bspc_2022_104429
crossref_primary_10_1371_journal_pone_0297582
crossref_primary_10_1016_j_bbe_2017_01_005
crossref_primary_10_1016_j_heliyon_2022_e12136
crossref_primary_10_1007_s13246_015_0409_7
crossref_primary_10_1016_j_eswa_2018_03_020
crossref_primary_10_1016_j_jneumeth_2015_01_022
crossref_primary_10_1007_s13369_024_09623_0
crossref_primary_10_1016_j_jneumeth_2020_108971
crossref_primary_10_1016_j_cmpb_2015_10_013
crossref_primary_10_1016_j_compbiomed_2015_01_017
crossref_primary_10_1016_j_jneumeth_2016_07_012
crossref_primary_10_1016_j_bspc_2019_101611
crossref_primary_10_1016_j_cmpb_2023_107992
crossref_primary_10_1109_JBHI_2021_3103614
crossref_primary_10_1016_j_neuroimage_2020_117579
crossref_primary_10_1049_cit2_12042
crossref_primary_10_3390_e18090272
crossref_primary_10_4018_IJIRR_299941
crossref_primary_10_1016_j_bspc_2020_102063
crossref_primary_10_1016_j_knosys_2016_11_016
crossref_primary_10_3389_fnins_2023_1273627
crossref_primary_10_1109_ACCESS_2022_3210518
crossref_primary_10_1016_j_artmed_2022_102279
crossref_primary_10_1016_j_chaos_2021_110798
crossref_primary_10_2196_20921
crossref_primary_10_1088_1741_2552_aa70ac
crossref_primary_10_1016_j_bspc_2018_10_001
crossref_primary_10_1093_sleep_zsaa112
crossref_primary_10_54856_jiswa_202205210
crossref_primary_10_1109_JBHI_2023_3339713
crossref_primary_10_1109_TNSRE_2023_3246478
crossref_primary_10_3390_s24134317
crossref_primary_10_1016_j_compbiomed_2018_03_001
crossref_primary_10_3389_fnbot_2017_00035
crossref_primary_10_3390_s22249914
crossref_primary_10_1109_ACCESS_2020_2994985
crossref_primary_10_1186_s12938_017_0358_3
crossref_primary_10_1007_s40747_022_00779_6
crossref_primary_10_4015_S1016237218500412
crossref_primary_10_1007_s11571_022_09794_2
crossref_primary_10_1016_j_cmpb_2016_12_004
crossref_primary_10_1007_s42979_021_00528_5
crossref_primary_10_1016_j_compbiomed_2020_103697
crossref_primary_10_1109_ACCESS_2020_2982434
crossref_primary_10_1016_j_compbiomed_2022_105877
crossref_primary_10_1016_j_eswa_2018_02_034
crossref_primary_10_1088_1361_6579_ab3632
crossref_primary_10_1016_j_bspc_2021_102898
crossref_primary_10_1016_j_bspc_2023_105647
crossref_primary_10_1016_j_apenergy_2024_123920
crossref_primary_10_1371_journal_pcbi_1011793
crossref_primary_10_1016_j_neucom_2016_04_049
crossref_primary_10_1155_2021_8222721
crossref_primary_10_1080_10255842_2024_2401918
crossref_primary_10_3390_app142310980
crossref_primary_10_1016_j_artmed_2021_102038
crossref_primary_10_1088_1361_6579_ac6bdb
crossref_primary_10_1016_j_bbe_2020_01_010
Cites_doi 10.1145/1961189.1961199
10.5664/jcsm.26814
10.1109/10.966600
10.1109/EMBC.2012.6346412
10.1002/j.1538-7305.1948.tb00917.x
10.1007/s10916-009-9286-5
10.1016/S0378-4371(98)00437-3
10.1016/j.eswa.2012.09.022
10.1002/acs.1147
10.3414/ME09-02-0052
10.1016/0167-8655(94)90127-9
10.1109/IEMBS.2011.6090897
10.1016/j.eswa.2011.03.028
10.1023/A:1009715923555
10.1016/j.bspc.2007.05.005
10.1007/11011620_8
10.1109/T-C.1971.223410
10.1016/j.compbiomed.2010.04.007
10.1016/j.smrv.2011.06.003
10.3414/ME09-01-0054
10.1093/brain/awl241
10.1016/j.epsr.2007.05.011
10.1109/TPAMI.2005.159
10.1007/978-3-540-69731-2_62
10.1016/j.eswa.2010.04.043
10.1016/S1388-2457(03)00123-8
10.1159/000085205
10.1016/S0165-0270(02)00340-0
10.1053/smrv.1999.0086
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2013.06.023
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-6793
EndPage 7059
ExternalDocumentID 27667419
10_1016_j_eswa_2013_06_023
S095741741300403X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
EFKBS
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c572t-376d970522ce213cffbe8473814aa59485f210567140c4e0017d018b894c44573
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 11 00:45:21 EDT 2025
Mon Jul 21 10:05:40 EDT 2025
Fri Jul 11 15:30:47 EDT 2025
Fri Jul 11 06:31:15 EDT 2025
Mon Jul 21 09:13:28 EDT 2025
Tue Jul 01 03:12:20 EDT 2025
Thu Apr 24 22:53:35 EDT 2025
Fri Feb 23 02:29:08 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Features selection
Sleep dataset
Automatic sleep staging
Polysomnographic signals
The maximum overlap discrete wavelet transform
Performance evaluation
Invariant
Histogram
Time frequency domain method
Expert
Electroencephalography
Overlap
Modeling
Eye movement
Vector support machine
Selection criterion
Electromyography
Hospital
Overlay
Pattern extraction
Frequency domain method
Pattern recognition
Discrete wavelet transforms
Polysomnography
Wake
Time domain method
Sleep
Wavelet transformation
Extreme value
Feature extraction
Automatic analysis
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-376d970522ce213cffbe8473814aa59485f210567140c4e0017d018b894c44573
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://hdl.handle.net/10316/27275
PQID 1448716550
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1701122846
proquest_miscellaneous_1701081143
proquest_miscellaneous_1513475580
proquest_miscellaneous_1448716550
pascalfrancis_primary_27667419
crossref_citationtrail_10_1016_j_eswa_2013_06_023
crossref_primary_10_1016_j_eswa_2013_06_023
elsevier_sciencedirect_doi_10_1016_j_eswa_2013_06_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Pudil, Novoviˇcová, Kittler (b0150) 1994; 15
Ronzhina, Janousek, Kolarova, Novakova, Honzik, Provaznik (b0165) 2012; 16
(pp. 2259-62).
Álvarez-Estévez, Fernández-Pastoriza, Hernández-Pereira, Moret-Bonillo (b0020) 2013; 40
Gunes, Polat, Yosunkaya (b0075) 2010; 37
Burges (b0050) 1998; 2
(Vol. 5097, pp. 643–651).
Ahmad, S. (2007). Temporal pattern identification and summarization method for complex time serial data. PhD Dessertation, Information Extraction and Multimedia Group Dep. of Comp. School of Elec. and Phy. Sci., Uni.of Surrey Guildford, Surrey GU2 7XH, UK.
Anderer, Gruber, Parapatics, Woertz, Miazhynskaia, Klosch (b0030) 2005; 51
Jo, Park, Lee, An, Yoo (b0100) 2010; 40
Maszczyk, T., & Duch, W. (2008). Comparison of Shannon, Renyi and Tsallis entropy used in decision trees. In
Shannon (b0170) 1948; 27
Renyi, A. (1960). On measures of entropy and information. In
Tang, Lu, Tsai, Kao, Lee (b0185) 2007; 22
Iber, C., Ancoli-Israel, S., Chesson, A., & Quan, S. (2007). The AASM manual for the scoring of sleep and associated events: Rules terminology and technical specifications.
Silber, Ancoli-Israel, Bonnet, Chokroverty, Grigg-Damberger, Hirshkowitz (b0175) 2007; 3
Fraiwan, Lweesy, Khasawneh, Fraiwan, Wenz, Dickhaus (b0065) 2010; 49
(p. 547).
Chapotot, Becq (b0060) 2010; 24
Becq, Charbonnier, Chapotot, Buguet, Bourdon, Baconnier (b0045) 2005
Zoubek, Charbonnier, Lesecq, Buguet, Chapotot (b0205) 2007; 2
Khalighi, S., Sousa, T., Oliveira, D., Pires, G., & Nunes, U. (2011). Efficient feature selection for sleep staging based on maximal overlap discrete wavelet transform and SVM. In
Fraiwan, Lweesy, Khasawneh, Wenz, Dickhaus (b0070) 2011
Helland, Gapelyuk, Suhrbier, Riedl, Penzel, Kurths (b0080) 2010; 49
Himanen, Hasan (b0085) 2000; 4
Adeli, Zhou, Dadmehr (b0005) 2003; 123
Ambrogetti, Hensley, Olsen (b0025) 2006
Mormann, Andrzejak, Elger, Lehnertz (b0130) 2007; 130
Tagluk, Sezgin, Akin (b0180) 2010; 34
Ansari-Asl, K., Chanel, G., & Pun, T. (2007). A channel selection method for EEG classification in emotion assessment based on synchronization likelihood. In
Omerhodzic, Avdakovic, Nuhanovic, Dizdarevic (b0135) 2010; 6
Tsallis, Mendes, Plastino (b0190) 1998; 261
(pp. 3306–3309).
Agarwal, Gotman (b0010) 2001; 48
Chang, Lin (b0055) 2011; 2
Khushaba, Al-Ani, Al-Jumaily (b0120) 2011; 38
Kemp, Olivan (b0105) 2003; 114
Poznan, Poland.
.
Khalighi, S., Sousa, T., & Nunes, U. (2012). Adaptive automatic sleep stage classification under covariate shift. In
Yilmaz, Alkan, Asyali (b0200) 2008; 78
Rechtschaffen, A., & Kales, A. (Eds.). (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Bethesda, MD, U.S. National Institute of Neurological Diseases and Blindness, Neurol. Inform. Netw.
Arbabi, E., & Shamsollahi, M. (2005). Comparation between different types of features used for classification in BCI. In
Whitney (b0195) 1971; 20
Jasper (b0095) 1958
Peng, Long, Ding (b0140) 2005; 27
Percival, Walden (b0145) 2000
Chang (10.1016/j.eswa.2013.06.023_b0055) 2011; 2
Helland (10.1016/j.eswa.2013.06.023_b0080) 2010; 49
10.1016/j.eswa.2013.06.023_b0125
Percival (10.1016/j.eswa.2013.06.023_b0145) 2000
Anderer (10.1016/j.eswa.2013.06.023_b0030) 2005; 51
Peng (10.1016/j.eswa.2013.06.023_b0140) 2005; 27
10.1016/j.eswa.2013.06.023_b0040
Álvarez-Estévez (10.1016/j.eswa.2013.06.023_b0020) 2013; 40
10.1016/j.eswa.2013.06.023_b0090
Tsallis (10.1016/j.eswa.2013.06.023_b0190) 1998; 261
Shannon (10.1016/j.eswa.2013.06.023_b0170) 1948; 27
Whitney (10.1016/j.eswa.2013.06.023_b0195) 1971; 20
Jasper (10.1016/j.eswa.2013.06.023_b0095) 1958
Silber (10.1016/j.eswa.2013.06.023_b0175) 2007; 3
Becq (10.1016/j.eswa.2013.06.023_b0045) 2005
Fraiwan (10.1016/j.eswa.2013.06.023_b0070) 2011
Yilmaz (10.1016/j.eswa.2013.06.023_b0200) 2008; 78
Omerhodzic (10.1016/j.eswa.2013.06.023_b0135) 2010; 6
10.1016/j.eswa.2013.06.023_b0115
10.1016/j.eswa.2013.06.023_b0015
Ambrogetti (10.1016/j.eswa.2013.06.023_b0025) 2006
Gunes (10.1016/j.eswa.2013.06.023_b0075) 2010; 37
Himanen (10.1016/j.eswa.2013.06.023_b0085) 2000; 4
Khushaba (10.1016/j.eswa.2013.06.023_b0120) 2011; 38
Pudil (10.1016/j.eswa.2013.06.023_b0150) 1994; 15
Jo (10.1016/j.eswa.2013.06.023_b0100) 2010; 40
Kemp (10.1016/j.eswa.2013.06.023_b0105) 2003; 114
Mormann (10.1016/j.eswa.2013.06.023_b0130) 2007; 130
10.1016/j.eswa.2013.06.023_b0035
Burges (10.1016/j.eswa.2013.06.023_b0050) 1998; 2
10.1016/j.eswa.2013.06.023_b0155
Ronzhina (10.1016/j.eswa.2013.06.023_b0165) 2012; 16
Adeli (10.1016/j.eswa.2013.06.023_b0005) 2003; 123
10.1016/j.eswa.2013.06.023_b0110
Tagluk (10.1016/j.eswa.2013.06.023_b0180) 2010; 34
10.1016/j.eswa.2013.06.023_b0160
Zoubek (10.1016/j.eswa.2013.06.023_b0205) 2007; 2
Chapotot (10.1016/j.eswa.2013.06.023_b0060) 2010; 24
Fraiwan (10.1016/j.eswa.2013.06.023_b0065) 2010; 49
Agarwal (10.1016/j.eswa.2013.06.023_b0010) 2001; 48
Tang (10.1016/j.eswa.2013.06.023_b0185) 2007; 22
References_xml – volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: b0140
  article-title: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: (p. 547).
– reference: Khalighi, S., Sousa, T., & Nunes, U. (2012). Adaptive automatic sleep stage classification under covariate shift. In
– volume: 114
  start-page: 1755
  year: 2003
  end-page: 1761
  ident: b0105
  article-title: European data format ‘plus’ (EDF+), an EDF alike standard format for the exchange of physiological data
  publication-title: Clinical Neurophysiology
– reference: Rechtschaffen, A., & Kales, A. (Eds.). (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Bethesda, MD, U.S. National Institute of Neurological Diseases and Blindness, Neurol. Inform. Netw.
– reference: Ansari-Asl, K., Chanel, G., & Pun, T. (2007). A channel selection method for EEG classification in emotion assessment based on synchronization likelihood. In
– reference: (pp. 2259-62).
– start-page: 371
  year: 1958
  end-page: 375
  ident: b0095
  article-title: Appendix to report to committee on clinical examination in EEG: The ten–twenty electrode system of the international federation
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 24
  start-page: 409
  year: 2010
  end-page: 423
  ident: b0060
  article-title: Automated sleep–wake staging combining robust feature extraction, artificial neural network classification, and flexible decision rules
  publication-title: International Journal of Adaptive Control and Signal Processing
– volume: 3
  start-page: 121
  year: 2007
  end-page: 131
  ident: b0175
  article-title: The visual scoring of sleep in adults
  publication-title: Journal of Clinical Sleep Medicine
– volume: 15
  start-page: 1119
  year: 1994
  end-page: 1125
  ident: b0150
  article-title: Floating search methods in feature selection
  publication-title: Pattern Recognition Letters
– volume: 49
  start-page: 230
  year: 2010
  end-page: 237
  ident: b0065
  article-title: Classification of sleep stages using multi-wavelet time frequency entropy and LDA
  publication-title: Methods of Information in Medicine
– volume: 40
  start-page: 629
  year: 2010
  end-page: 634
  ident: b0100
  article-title: Genetic fuzzy classifier for sleep stage identification
  publication-title: Computers in Biology and Medicine
– reference: , Poznan, Poland.
– volume: 38
  start-page: 11515
  year: 2011
  end-page: 11526
  ident: b0120
  article-title: Feature subset selection using differential evolution and a statistical repair mechanism
  publication-title: Expert Systems with Applications
– reference: Renyi, A. (1960). On measures of entropy and information. In
– volume: 51
  start-page: 115
  year: 2005
  end-page: 133
  ident: b0030
  article-title: An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: Validation study of the Somnolyzer 24
  publication-title: Neuropsychobiology
– volume: 2
  year: 1998
  ident: b0050
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining and Knowledge Discovery
– reference: Iber, C., Ancoli-Israel, S., Chesson, A., & Quan, S. (2007). The AASM manual for the scoring of sleep and associated events: Rules terminology and technical specifications.
– volume: 6
  year: 2010
  ident: b0135
  article-title: Energy distribution of EEG signals: EEG signal wavelet-neural network classifier
  publication-title: International Journal of Biological and Life Sciences
– reference: (pp. 3306–3309).
– reference: Maszczyk, T., & Duch, W. (2008). Comparison of Shannon, Renyi and Tsallis entropy used in decision trees. In
– volume: 49
  start-page: 467
  year: 2010
  end-page: 472
  ident: b0080
  article-title: Investigation of an automatic sleep stage classification by means of multiscorer hypnogram
  publication-title: Methods of Information in Medicine
– volume: 34
  start-page: 717
  year: 2010
  end-page: 725
  ident: b0180
  article-title: Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG
  publication-title: Journal of Medical Systems
– reference: Arbabi, E., & Shamsollahi, M. (2005). Comparation between different types of features used for classification in BCI. In
– volume: 2
  start-page: 171
  year: 2007
  end-page: 179
  ident: b0205
  article-title: Feature selection for sleep/wake stages classification using data driven methods
  publication-title: Biomedical Signal Processing and Control
– volume: 20
  start-page: 1100
  year: 1971
  end-page: 1103
  ident: b0195
  article-title: A direct method of nonparametric measurement selection
  publication-title: EEE Transactions on Computers
– volume: 48
  start-page: 1412
  year: 2001
  end-page: 1423
  ident: b0010
  article-title: Computer-assisted sleep staging
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 22
  start-page: 414
  year: 2007
  end-page: 417
  ident: b0185
  article-title: Harmonic parameters with HHT and wavelet transform for automatic sleep stages scoring
  publication-title: Proceedings of World Academy of Science, Engineering and Technology
– volume: 123
  start-page: 69
  year: 2003
  end-page: 87
  ident: b0005
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: Journal of Neuroscience Methods
– volume: 37
  start-page: 7922
  year: 2010
  end-page: 7928
  ident: b0075
  article-title: Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting
  publication-title: Expert Systems with Applications
– volume: 78
  start-page: 683
  year: 2008
  end-page: 693
  ident: b0200
  article-title: Applications of parametric spectral estimation methods on detection of power system harmonics
  publication-title: Electric Power Systems Research
– reference: Ahmad, S. (2007). Temporal pattern identification and summarization method for complex time serial data. PhD Dessertation, Information Extraction and Multimedia Group Dep. of Comp. School of Elec. and Phy. Sci., Uni.of Surrey Guildford, Surrey GU2 7XH, UK.
– volume: 130
  start-page: 314
  year: 2007
  end-page: 333
  ident: b0130
  article-title: Seizure prediction: The long and winding road
  publication-title: Brain
– reference: .
– year: 2000
  ident: b0145
  article-title: Wavelet methods for time series analysis
– volume: 16
  start-page: 251
  year: 2012
  end-page: 263
  ident: b0165
  article-title: Sleep scoring using artificial neural networks
  publication-title: Sleep Medicine Reviews
– year: 2011
  ident: b0070
  article-title: Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier
  publication-title: Comuter Methods and Programs in Biomedicine
– volume: 261
  start-page: 534
  year: 1998
  end-page: 554
  ident: b0190
  article-title: The role of constraints within generalized nonextensive statistics
  publication-title: Physica A
– volume: 40
  start-page: 1796
  year: 2013
  end-page: 1803
  ident: b0020
  article-title: A method for the automatic analysis of the sleep macrostructure in continuum
  publication-title: Expert Systems with Applications
– start-page: 113
  year: 2005
  end-page: 127
  ident: b0045
  article-title: Comparison between five classifiers for automatic scoring of human sleep recordings
  publication-title: Studies in computational intelligence (SCI)
– reference: (Vol. 5097, pp. 643–651).
– reference: Khalighi, S., Sousa, T., Oliveira, D., Pires, G., & Nunes, U. (2011). Efficient feature selection for sleep staging based on maximal overlap discrete wavelet transform and SVM. In
– volume: 2
  start-page: 27
  year: 2011
  ident: b0055
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Transactions on Intelligent Systems and Technology
– volume: 27
  start-page: 623
  year: 1948
  end-page: 656
  ident: b0170
  article-title: A mathematical theory of communication
  publication-title: Bell System Technical Journal
– year: 2006
  ident: b0025
  article-title: Sleep disorders: A clinical textbook
– volume: 4
  start-page: 149
  year: 2000
  end-page: 167
  ident: b0085
  article-title: Limitations of Rechtschaffen and Kales
  publication-title: Sleep Medicine Reviews
– ident: 10.1016/j.eswa.2013.06.023_b0035
– volume: 2
  start-page: 27
  year: 2011
  ident: 10.1016/j.eswa.2013.06.023_b0055
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Transactions on Intelligent Systems and Technology
  doi: 10.1145/1961189.1961199
– volume: 6
  year: 2010
  ident: 10.1016/j.eswa.2013.06.023_b0135
  article-title: Energy distribution of EEG signals: EEG signal wavelet-neural network classifier
  publication-title: International Journal of Biological and Life Sciences
– volume: 3
  start-page: 121
  year: 2007
  ident: 10.1016/j.eswa.2013.06.023_b0175
  article-title: The visual scoring of sleep in adults
  publication-title: Journal of Clinical Sleep Medicine
  doi: 10.5664/jcsm.26814
– volume: 48
  start-page: 1412
  year: 2001
  ident: 10.1016/j.eswa.2013.06.023_b0010
  article-title: Computer-assisted sleep staging
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.966600
– ident: 10.1016/j.eswa.2013.06.023_b0115
  doi: 10.1109/EMBC.2012.6346412
– volume: 27
  start-page: 623
  year: 1948
  ident: 10.1016/j.eswa.2013.06.023_b0170
  article-title: A mathematical theory of communication
  publication-title: Bell System Technical Journal
  doi: 10.1002/j.1538-7305.1948.tb00917.x
– volume: 34
  start-page: 717
  year: 2010
  ident: 10.1016/j.eswa.2013.06.023_b0180
  article-title: Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-009-9286-5
– volume: 261
  start-page: 534
  year: 1998
  ident: 10.1016/j.eswa.2013.06.023_b0190
  article-title: The role of constraints within generalized nonextensive statistics
  publication-title: Physica A
  doi: 10.1016/S0378-4371(98)00437-3
– volume: 40
  start-page: 1796
  year: 2013
  ident: 10.1016/j.eswa.2013.06.023_b0020
  article-title: A method for the automatic analysis of the sleep macrostructure in continuum
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.09.022
– volume: 24
  start-page: 409
  year: 2010
  ident: 10.1016/j.eswa.2013.06.023_b0060
  article-title: Automated sleep–wake staging combining robust feature extraction, artificial neural network classification, and flexible decision rules
  publication-title: International Journal of Adaptive Control and Signal Processing
  doi: 10.1002/acs.1147
– volume: 49
  start-page: 467
  year: 2010
  ident: 10.1016/j.eswa.2013.06.023_b0080
  article-title: Investigation of an automatic sleep stage classification by means of multiscorer hypnogram
  publication-title: Methods of Information in Medicine
  doi: 10.3414/ME09-02-0052
– volume: 15
  start-page: 1119
  year: 1994
  ident: 10.1016/j.eswa.2013.06.023_b0150
  article-title: Floating search methods in feature selection
  publication-title: Pattern Recognition Letters
  doi: 10.1016/0167-8655(94)90127-9
– start-page: 371
  year: 1958
  ident: 10.1016/j.eswa.2013.06.023_b0095
  article-title: Appendix to report to committee on clinical examination in EEG: The ten–twenty electrode system of the international federation
  publication-title: Electroencephalography and Clinical Neurophysiology
– ident: 10.1016/j.eswa.2013.06.023_b0110
  doi: 10.1109/IEMBS.2011.6090897
– volume: 38
  start-page: 11515
  year: 2011
  ident: 10.1016/j.eswa.2013.06.023_b0120
  article-title: Feature subset selection using differential evolution and a statistical repair mechanism
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.03.028
– volume: 2
  year: 1998
  ident: 10.1016/j.eswa.2013.06.023_b0050
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1009715923555
– volume: 2
  start-page: 171
  year: 2007
  ident: 10.1016/j.eswa.2013.06.023_b0205
  article-title: Feature selection for sleep/wake stages classification using data driven methods
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2007.05.005
– start-page: 113
  year: 2005
  ident: 10.1016/j.eswa.2013.06.023_b0045
  article-title: Comparison between five classifiers for automatic scoring of human sleep recordings
  doi: 10.1007/11011620_8
– volume: 20
  start-page: 1100
  year: 1971
  ident: 10.1016/j.eswa.2013.06.023_b0195
  article-title: A direct method of nonparametric measurement selection
  publication-title: EEE Transactions on Computers
  doi: 10.1109/T-C.1971.223410
– volume: 40
  start-page: 629
  year: 2010
  ident: 10.1016/j.eswa.2013.06.023_b0100
  article-title: Genetic fuzzy classifier for sleep stage identification
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2010.04.007
– volume: 16
  start-page: 251
  year: 2012
  ident: 10.1016/j.eswa.2013.06.023_b0165
  article-title: Sleep scoring using artificial neural networks
  publication-title: Sleep Medicine Reviews
  doi: 10.1016/j.smrv.2011.06.003
– volume: 49
  start-page: 230
  year: 2010
  ident: 10.1016/j.eswa.2013.06.023_b0065
  article-title: Classification of sleep stages using multi-wavelet time frequency entropy and LDA
  publication-title: Methods of Information in Medicine
  doi: 10.3414/ME09-01-0054
– volume: 130
  start-page: 314
  year: 2007
  ident: 10.1016/j.eswa.2013.06.023_b0130
  article-title: Seizure prediction: The long and winding road
  publication-title: Brain
  doi: 10.1093/brain/awl241
– ident: 10.1016/j.eswa.2013.06.023_b0160
– ident: 10.1016/j.eswa.2013.06.023_b0090
– volume: 78
  start-page: 683
  year: 2008
  ident: 10.1016/j.eswa.2013.06.023_b0200
  article-title: Applications of parametric spectral estimation methods on detection of power system harmonics
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2007.05.011
– ident: 10.1016/j.eswa.2013.06.023_b0015
– volume: 27
  start-page: 1226
  year: 2005
  ident: 10.1016/j.eswa.2013.06.023_b0140
  article-title: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2005.159
– ident: 10.1016/j.eswa.2013.06.023_b0155
– volume: 22
  start-page: 414
  year: 2007
  ident: 10.1016/j.eswa.2013.06.023_b0185
  article-title: Harmonic parameters with HHT and wavelet transform for automatic sleep stages scoring
  publication-title: Proceedings of World Academy of Science, Engineering and Technology
– year: 2006
  ident: 10.1016/j.eswa.2013.06.023_b0025
– ident: 10.1016/j.eswa.2013.06.023_b0125
  doi: 10.1007/978-3-540-69731-2_62
– volume: 37
  start-page: 7922
  year: 2010
  ident: 10.1016/j.eswa.2013.06.023_b0075
  article-title: Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.04.043
– volume: 114
  start-page: 1755
  year: 2003
  ident: 10.1016/j.eswa.2013.06.023_b0105
  article-title: European data format ‘plus’ (EDF+), an EDF alike standard format for the exchange of physiological data
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(03)00123-8
– year: 2000
  ident: 10.1016/j.eswa.2013.06.023_b0145
– volume: 51
  start-page: 115
  year: 2005
  ident: 10.1016/j.eswa.2013.06.023_b0030
  article-title: An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: Validation study of the Somnolyzer 24×7 utilizing the Siesta database
  publication-title: Neuropsychobiology
  doi: 10.1159/000085205
– ident: 10.1016/j.eswa.2013.06.023_b0040
– year: 2011
  ident: 10.1016/j.eswa.2013.06.023_b0070
  article-title: Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier
  publication-title: Comuter Methods and Programs in Biomedicine
– volume: 123
  start-page: 69
  year: 2003
  ident: 10.1016/j.eswa.2013.06.023_b0005
  article-title: Analysis of EEG records in an epileptic patient using wavelet transform
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/S0165-0270(02)00340-0
– volume: 4
  start-page: 149
  year: 2000
  ident: 10.1016/j.eswa.2013.06.023_b0085
  article-title: Limitations of Rechtschaffen and Kales
  publication-title: Sleep Medicine Reviews
  doi: 10.1053/smrv.1999.0086
SSID ssj0017007
Score 2.4416966
Snippet •A subject-independent automatic sleep staging method with application in sleep–wake detection and in multiclass sleep staging.•An extensive dataset with 40...
To improve applicability of automatic sleep staging an efficient subject-independent method is proposed with application in sleep-wake detection and in...
To improve applicability of automatic sleep staging an efficient subject-independent method is proposed with application in sleepawake detection and in...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7046
SubjectTerms Applied sciences
Artificial intelligence
Automatic sleep staging
Biological and medical sciences
Channels
Computer science; control theory; systems
Data processing. List processing. Character string processing
EEC
Electrodiagnosis. Electric activity recording
Exact sciences and technology
Eye movements
Feature extraction
Features selection
Fundamental and applied biological sciences. Psychology
Invariants
Investigative techniques, diagnostic techniques (general aspects)
Medical sciences
Memory organisation. Data processing
Nervous system
Patients
Pattern recognition. Digital image processing. Computational geometry
Polysomnographic signals
Sleep
Sleep dataset
Sleep. Vigilance
Software
Support vector machines
The maximum overlap discrete wavelet transform
Vertebrates: nervous system and sense organs
Wavelet transforms
Title Automatic sleep staging: A computer assisted approach for optimal combination of features and polysomnographic channels
URI https://dx.doi.org/10.1016/j.eswa.2013.06.023
https://www.proquest.com/docview/1448716550
https://www.proquest.com/docview/1513475580
https://www.proquest.com/docview/1701081143
https://www.proquest.com/docview/1701122846
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kXgTxLdZHWcGbxDbZV-KtiFIVvWiht7DZbKBSk2BaxIu_3Zk8CkXMwWPCLJvd2Z2Zj8x8Q8jFQOvY12XaoPUAoLjG0TZhjgpkEGglA-lhvfPTsxyN-cNETNbITVMLg2mVte2vbHppres3_Xo3-_l02n-B4ADcoUIrDCeRTbCCnSs85VffyzQPpJ9TFd-eclC6Lpypcrxs8YncQy4rOTw99pdz2sx1AVuWVL0ufpnt0hfd7ZCtOoikw-o7d8maTffIdtOggdb3dZ98DhfzrORkpcXM2pxCKIhNia7pkJpGGqJnVHVMG3pxCnEszcCUvMMcIAbYuVQfzRKa2JIItKA6jWmezb6K7D2tWK9hEqwiTmE9B2R8d_t6M3LqTguOEcqbo5WJAzWAWMxYz2UmSSILbgu8OdcaCV1EAtBQSGT3M9zitsYD14_8gBvOhWKHpJNmqT0iFCCNBqPABknkcqPjCAnrkSNeKuPHVnaJ22xxaGoacuyGMQubfLO3ENUSolpCTLrzWJdcLsfkFQlHq7RoNBeuHKUQvETruN6KmpdTeUpKOGZBl5w3eg_hEuKfFZ3abFEAfuIIPAHttcgIrNoVwm-TUQCPfYCorF3G9SCqkMf_XOgJ2cCnKinnlHTmHwt7BqHVPOqVd6dH1of3j6PnHxywI4E
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3SzaGF0O-SbdpUhd6KWduyJLu3JTRsmmQvTWBvQpZlSNnYJt4l5N93xpYXQokPvdojZGukmXlo5g3At9CYIjVd2qCLEaBENjCu5IHKZJYZJTMZU73z5VIurpNfK7Hag5OhFobSKr3t7216Z639k5lfzVlzczP7jcEBukNFVhh3Il89g31ipxIT2J-fnS-Wu8sEFfZV0ygf0ABfO9Onebn2nuiHIt7ReMb8Kf900JgWV63s2138Y7k7d3T6Gl76OJLN-099A3uueguvhh4NzB_Zd3A_327qjpaVtWvnGobRIPUl-sHmzA7SGECTtgs2MIwzDGVZjdbkFudAMYTPnQZZXbLSdVygLTNVwZp6_dDWt1VPfI2TUCFxhf_zHq5Pf16dLALfbCGwQsUbMjRFpkIMx6yLI27LMnfoudChJ8YQp4soER0KSQR_NnG0rEUYpXmaJTZJhOIfYFLVlTsEhqjGoF3gYZlHiTVFTpz1RBMvlU0LJ6cQDUusrWcip4YYaz2knP3RpBZNatGUdxfzKXzfjWl6Ho5RaTFoTj_aTRodxei440dq3k0VKylxp2VT-DroXeM5pMsVU7l62yKESgh7IuAbkRFUuCtEOiajECGniFL5uEwUY2AhP_7nj36B54urywt9cbY8P4IX9KbP0fkEk83d1n3GSGuTH_uT9BcDMSYy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+sleep+staging%3A+A+computer+assisted+approach+for+optimal+combination+of+features+and+polysomnographic+channels&rft.jtitle=Expert+systems+with+applications&rft.au=Khalighi%2C+S&rft.au=Sousa%2C+T&rft.au=Pires%2C+G&rft.au=Nunes%2C+U&rft.date=2013-12-01&rft.issn=0957-4174&rft.volume=40&rft.issue=17&rft.spage=7046&rft.epage=7059&rft_id=info:doi/10.1016%2Fj.eswa.2013.06.023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon