Automatic sleep staging: A computer assisted approach for optimal combination of features and polysomnographic channels
•A subject-independent automatic sleep staging method with application in sleep–wake detection and in multiclass sleep staging.•An extensive dataset with 40 polysomnographic (PSG) recording.•A time–frequency based feature extraction method using maximum overlap discrete wavelet transform (MODWT).•A...
Saved in:
Published in | Expert systems with applications Vol. 40; no. 17; pp. 7046 - 7059 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.12.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A subject-independent automatic sleep staging method with application in sleep–wake detection and in multiclass sleep staging.•An extensive dataset with 40 polysomnographic (PSG) recording.•A time–frequency based feature extraction method using maximum overlap discrete wavelet transform (MODWT).•A two-step feature selector to find the most discriminative features.•The best combinations of the PSG channels in sleep–wake detection and in multiclass sleep staging.
To improve applicability of automatic sleep staging an efficient subject-independent method is proposed with application in sleep–wake detection and in multiclass sleep staging (awake, non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep). In turn, NREM is further divided into three stages denoted here by N1, N2, and N3. To assess the method, polysomnographic (PSG) records of 40 patients from our ISRUC-Sleep dataset, which was scored by an expert clinician in the central hospital of Coimbra, are used. To find the best combination of PSG signals for automatic sleep staging, six electroencephalographic (EEG), two electrooculographic (EOG), and one electromyographic (EMG) channels are analyzed. An extensive set of feature extraction techniques are applied, covering temporal, frequency and time–frequency domains. The maximum overlap wavelet transform (MODWT), a shift invariant transform, was used to extract the features in time–frequency domain. The extracted feature set is transformed and normalized to reduce the effect of extreme values of features. The most discriminative features are selected through a two-step method composed by a manual selection step based on features’ histogram analysis followed by an automatic feature selector. The selected feature set is classified using support vector machines (SVMs). The system achieved the best performance by combining 6 channels (C3, C4, O1, left EOG (LOC), right EOG (ROC) and chin EMG (X1)) for sleep–wake detection, and 9 channels (C3, C4, O1, O2, F3, F4, LOC, ROC, X1) for multiclass sleep staging. |
---|---|
AbstractList | To improve applicability of automatic sleep staging an efficient subject-independent method is proposed with application in sleep-wake detection and in multiclass sleep staging (awake, non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep). In turn, NREM is further divided into three stages denoted here by N1, N2, and N3. To assess the method, polysomnographic (PSG) records of 40 patients from our ISRUC-Sleep dataset, which was scored by an expert clinician in the central hospital ofCoimbra, are used. To find the best combination of PSG signals for automatic sleep staging, six electro-encephalographic (EEC), two electrooculographic (EOG), and one electromyographic (EMG) channels are analyzed. An extensive set of feature extraction techniques are applied, covering temporal, frequency and time-frequency domains. The maximum overlap wavelet transform (MODWT), a shift invariant transform, was used to extract the features in time-frequency domain. The extracted feature set is transformed and normalized to reduce the effect of extreme values of features. The most discriminative features are selected through a two-step method composed by a manual selection step based on features' histogram analysis followed by an automatic feature selector. The selected feature set is classified using support vector machines (SVMs). The system achieved the best performance by combining 6 channels (C3, C4, O1, left EOG (LOC), right EOG (ROC) and chin EMG (X1)) for sleep-wake detection, and 9 channels (C3, C4, O1, O2, F3, F4, LOC, ROC, X1) for multiclass sleep staging. To improve applicability of automatic sleep staging an efficient subject-independent method is proposed with application in sleepawake detection and in multiclass sleep staging (awake, non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep). In turn, NREM is further divided into three stages denoted here by N1, N2, and N3. To assess the method, polysomnographic (PSG) records of 40 patients from our ISRUC-Sleep dataset, which was scored by an expert clinician in the central hospital of Coimbra, are used. To find the best combination of PSG signals for automatic sleep staging, six electroencephalographic (EEG), two electrooculographic (EOG), and one electromyographic (EMG) channels are analyzed. An extensive set of feature extraction techniques are applied, covering temporal, frequency and time-frequency domains. The maximum overlap wavelet transform (MODWT), a shift invariant transform, was used to extract the features in time-frequency domain. The extracted feature set is transformed and normalized to reduce the effect of extreme values of features. The most discriminative features are selected through a two-step method composed by a manual selection step based on featuresa histogram analysis followed by an automatic feature selector. The selected feature set is classified using support vector machines (SVMs). The system achieved the best performance by combining 6 channels (C3, C4, O1, left EOG (LOC), right EOG (ROC) and chin EMG (X1)) for sleepawake detection, and 9 channels (C3, C4, O1, O2, F3, F4, LOC, ROC, X1) for multiclass sleep staging. •A subject-independent automatic sleep staging method with application in sleep–wake detection and in multiclass sleep staging.•An extensive dataset with 40 polysomnographic (PSG) recording.•A time–frequency based feature extraction method using maximum overlap discrete wavelet transform (MODWT).•A two-step feature selector to find the most discriminative features.•The best combinations of the PSG channels in sleep–wake detection and in multiclass sleep staging. To improve applicability of automatic sleep staging an efficient subject-independent method is proposed with application in sleep–wake detection and in multiclass sleep staging (awake, non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep). In turn, NREM is further divided into three stages denoted here by N1, N2, and N3. To assess the method, polysomnographic (PSG) records of 40 patients from our ISRUC-Sleep dataset, which was scored by an expert clinician in the central hospital of Coimbra, are used. To find the best combination of PSG signals for automatic sleep staging, six electroencephalographic (EEG), two electrooculographic (EOG), and one electromyographic (EMG) channels are analyzed. An extensive set of feature extraction techniques are applied, covering temporal, frequency and time–frequency domains. The maximum overlap wavelet transform (MODWT), a shift invariant transform, was used to extract the features in time–frequency domain. The extracted feature set is transformed and normalized to reduce the effect of extreme values of features. The most discriminative features are selected through a two-step method composed by a manual selection step based on features’ histogram analysis followed by an automatic feature selector. The selected feature set is classified using support vector machines (SVMs). The system achieved the best performance by combining 6 channels (C3, C4, O1, left EOG (LOC), right EOG (ROC) and chin EMG (X1)) for sleep–wake detection, and 9 channels (C3, C4, O1, O2, F3, F4, LOC, ROC, X1) for multiclass sleep staging. |
Author | Khalighi, Sirvan Nunes, Urbano Sousa, Teresa Pires, Gabriel |
Author_xml | – sequence: 1 givenname: Sirvan surname: Khalighi fullname: Khalighi, Sirvan email: skhalighi@isr.uc.pt – sequence: 2 givenname: Teresa surname: Sousa fullname: Sousa, Teresa – sequence: 3 givenname: Gabriel surname: Pires fullname: Pires, Gabriel – sequence: 4 givenname: Urbano surname: Nunes fullname: Nunes, Urbano |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27667419$$DView record in Pascal Francis |
BookMark | eNqNks1u1DAUhS1UJKaFF2DlDRKbBP_bQWxGFVCkSmxgbXmcmxmPEjvYHqq-PQnTbli0rLz5zrnX555LdBFTBITeUtJSQtWHYwvlzrWMUN4S1RLGX6ANNZo3Snf8Am1IJ3UjqBav0GUpR0KoJkRv0N32VNPkavC4jAAzLtXtQ9x_xFvs0zSfKmTsSgmlQo_dPOfk_AEPKeM01zC5ccV2IS4WKeI04AFcPWUo2MUez2m8L2mKaZ_dfFiG-IOLEcbyGr0c3FjgzcN7hX5--fzj-qa5_f712_X2tvFSs9pwrfpOE8mYB0a5H4YdGKG5ocI52QkjB0aJVJoK4gWs3-oJNTvTCS-E1PwKvT_7Lov_OkGpdgrFwzi6COlU7BIDpYwZof4LJYZSwZ9HJeVCS2nI86gQRlMl5Yq-e0Bd8W4csos-FDvnJeZ8b5lWSgvaLZw5cz6nUjIM1of6N_-aXRgtJXYthT3atRR2LYUlyi6lWKTsH-mj-5OiT2fRcjf4HSDb4gNED33I4KvtU3hK_gcZ39HA |
CitedBy_id | crossref_primary_10_1109_JSEN_2020_3019668 crossref_primary_10_1016_j_measurement_2023_112641 crossref_primary_10_2139_ssrn_4170465 crossref_primary_10_3390_diagnostics14060580 crossref_primary_10_1016_j_cmpb_2019_105116 crossref_primary_10_1109_TNSRE_2022_3227040 crossref_primary_10_1155_2018_6534041 crossref_primary_10_1016_j_eswa_2018_07_023 crossref_primary_10_1371_journal_pone_0256111 crossref_primary_10_1016_j_compbiomed_2015_01_012 crossref_primary_10_1007_s00500_021_06218_x crossref_primary_10_1016_j_bspc_2022_104429 crossref_primary_10_1371_journal_pone_0297582 crossref_primary_10_1016_j_bbe_2017_01_005 crossref_primary_10_1016_j_heliyon_2022_e12136 crossref_primary_10_1007_s13246_015_0409_7 crossref_primary_10_1016_j_eswa_2018_03_020 crossref_primary_10_1016_j_jneumeth_2015_01_022 crossref_primary_10_1007_s13369_024_09623_0 crossref_primary_10_1016_j_jneumeth_2020_108971 crossref_primary_10_1016_j_cmpb_2015_10_013 crossref_primary_10_1016_j_compbiomed_2015_01_017 crossref_primary_10_1016_j_jneumeth_2016_07_012 crossref_primary_10_1016_j_bspc_2019_101611 crossref_primary_10_1016_j_cmpb_2023_107992 crossref_primary_10_1109_JBHI_2021_3103614 crossref_primary_10_1016_j_neuroimage_2020_117579 crossref_primary_10_1049_cit2_12042 crossref_primary_10_3390_e18090272 crossref_primary_10_4018_IJIRR_299941 crossref_primary_10_1016_j_bspc_2020_102063 crossref_primary_10_1016_j_knosys_2016_11_016 crossref_primary_10_3389_fnins_2023_1273627 crossref_primary_10_1109_ACCESS_2022_3210518 crossref_primary_10_1016_j_artmed_2022_102279 crossref_primary_10_1016_j_chaos_2021_110798 crossref_primary_10_2196_20921 crossref_primary_10_1088_1741_2552_aa70ac crossref_primary_10_1016_j_bspc_2018_10_001 crossref_primary_10_1093_sleep_zsaa112 crossref_primary_10_54856_jiswa_202205210 crossref_primary_10_1109_JBHI_2023_3339713 crossref_primary_10_1109_TNSRE_2023_3246478 crossref_primary_10_3390_s24134317 crossref_primary_10_1016_j_compbiomed_2018_03_001 crossref_primary_10_3389_fnbot_2017_00035 crossref_primary_10_3390_s22249914 crossref_primary_10_1109_ACCESS_2020_2994985 crossref_primary_10_1186_s12938_017_0358_3 crossref_primary_10_1007_s40747_022_00779_6 crossref_primary_10_4015_S1016237218500412 crossref_primary_10_1007_s11571_022_09794_2 crossref_primary_10_1016_j_cmpb_2016_12_004 crossref_primary_10_1007_s42979_021_00528_5 crossref_primary_10_1016_j_compbiomed_2020_103697 crossref_primary_10_1109_ACCESS_2020_2982434 crossref_primary_10_1016_j_compbiomed_2022_105877 crossref_primary_10_1016_j_eswa_2018_02_034 crossref_primary_10_1088_1361_6579_ab3632 crossref_primary_10_1016_j_bspc_2021_102898 crossref_primary_10_1016_j_bspc_2023_105647 crossref_primary_10_1016_j_apenergy_2024_123920 crossref_primary_10_1371_journal_pcbi_1011793 crossref_primary_10_1016_j_neucom_2016_04_049 crossref_primary_10_1155_2021_8222721 crossref_primary_10_1080_10255842_2024_2401918 crossref_primary_10_3390_app142310980 crossref_primary_10_1016_j_artmed_2021_102038 crossref_primary_10_1088_1361_6579_ac6bdb crossref_primary_10_1016_j_bbe_2020_01_010 |
Cites_doi | 10.1145/1961189.1961199 10.5664/jcsm.26814 10.1109/10.966600 10.1109/EMBC.2012.6346412 10.1002/j.1538-7305.1948.tb00917.x 10.1007/s10916-009-9286-5 10.1016/S0378-4371(98)00437-3 10.1016/j.eswa.2012.09.022 10.1002/acs.1147 10.3414/ME09-02-0052 10.1016/0167-8655(94)90127-9 10.1109/IEMBS.2011.6090897 10.1016/j.eswa.2011.03.028 10.1023/A:1009715923555 10.1016/j.bspc.2007.05.005 10.1007/11011620_8 10.1109/T-C.1971.223410 10.1016/j.compbiomed.2010.04.007 10.1016/j.smrv.2011.06.003 10.3414/ME09-01-0054 10.1093/brain/awl241 10.1016/j.epsr.2007.05.011 10.1109/TPAMI.2005.159 10.1007/978-3-540-69731-2_62 10.1016/j.eswa.2010.04.043 10.1016/S1388-2457(03)00123-8 10.1159/000085205 10.1016/S0165-0270(02)00340-0 10.1053/smrv.1999.0086 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2013.06.023 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISSN | 1873-6793 |
EndPage | 7059 |
ExternalDocumentID | 27667419 10_1016_j_eswa_2013_06_023 S095741741300403X |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW SSH WUQ XPP ZMT EFKBS IQODW 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c572t-376d970522ce213cffbe8473814aa59485f210567140c4e0017d018b894c44573 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Fri Jul 11 00:45:21 EDT 2025 Mon Jul 21 10:05:40 EDT 2025 Fri Jul 11 15:30:47 EDT 2025 Fri Jul 11 06:31:15 EDT 2025 Mon Jul 21 09:13:28 EDT 2025 Tue Jul 01 03:12:20 EDT 2025 Thu Apr 24 22:53:35 EDT 2025 Fri Feb 23 02:29:08 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | Features selection Sleep dataset Automatic sleep staging Polysomnographic signals The maximum overlap discrete wavelet transform Performance evaluation Invariant Histogram Time frequency domain method Expert Electroencephalography Overlap Modeling Eye movement Vector support machine Selection criterion Electromyography Hospital Overlay Pattern extraction Frequency domain method Pattern recognition Discrete wavelet transforms Polysomnography Wake Time domain method Sleep Wavelet transformation Extreme value Feature extraction Automatic analysis |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c572t-376d970522ce213cffbe8473814aa59485f210567140c4e0017d018b894c44573 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | http://hdl.handle.net/10316/27275 |
PQID | 1448716550 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1701122846 proquest_miscellaneous_1701081143 proquest_miscellaneous_1513475580 proquest_miscellaneous_1448716550 pascalfrancis_primary_27667419 crossref_citationtrail_10_1016_j_eswa_2013_06_023 crossref_primary_10_1016_j_eswa_2013_06_023 elsevier_sciencedirect_doi_10_1016_j_eswa_2013_06_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Expert systems with applications |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Pudil, Novoviˇcová, Kittler (b0150) 1994; 15 Ronzhina, Janousek, Kolarova, Novakova, Honzik, Provaznik (b0165) 2012; 16 (pp. 2259-62). Álvarez-Estévez, Fernández-Pastoriza, Hernández-Pereira, Moret-Bonillo (b0020) 2013; 40 Gunes, Polat, Yosunkaya (b0075) 2010; 37 Burges (b0050) 1998; 2 (Vol. 5097, pp. 643–651). Ahmad, S. (2007). Temporal pattern identification and summarization method for complex time serial data. PhD Dessertation, Information Extraction and Multimedia Group Dep. of Comp. School of Elec. and Phy. Sci., Uni.of Surrey Guildford, Surrey GU2 7XH, UK. Anderer, Gruber, Parapatics, Woertz, Miazhynskaia, Klosch (b0030) 2005; 51 Jo, Park, Lee, An, Yoo (b0100) 2010; 40 Maszczyk, T., & Duch, W. (2008). Comparison of Shannon, Renyi and Tsallis entropy used in decision trees. In Shannon (b0170) 1948; 27 Renyi, A. (1960). On measures of entropy and information. In Tang, Lu, Tsai, Kao, Lee (b0185) 2007; 22 Iber, C., Ancoli-Israel, S., Chesson, A., & Quan, S. (2007). The AASM manual for the scoring of sleep and associated events: Rules terminology and technical specifications. Silber, Ancoli-Israel, Bonnet, Chokroverty, Grigg-Damberger, Hirshkowitz (b0175) 2007; 3 Fraiwan, Lweesy, Khasawneh, Fraiwan, Wenz, Dickhaus (b0065) 2010; 49 (p. 547). Chapotot, Becq (b0060) 2010; 24 Becq, Charbonnier, Chapotot, Buguet, Bourdon, Baconnier (b0045) 2005 Zoubek, Charbonnier, Lesecq, Buguet, Chapotot (b0205) 2007; 2 Khalighi, S., Sousa, T., Oliveira, D., Pires, G., & Nunes, U. (2011). Efficient feature selection for sleep staging based on maximal overlap discrete wavelet transform and SVM. In Fraiwan, Lweesy, Khasawneh, Wenz, Dickhaus (b0070) 2011 Helland, Gapelyuk, Suhrbier, Riedl, Penzel, Kurths (b0080) 2010; 49 Himanen, Hasan (b0085) 2000; 4 Adeli, Zhou, Dadmehr (b0005) 2003; 123 Ambrogetti, Hensley, Olsen (b0025) 2006 Mormann, Andrzejak, Elger, Lehnertz (b0130) 2007; 130 Tagluk, Sezgin, Akin (b0180) 2010; 34 Ansari-Asl, K., Chanel, G., & Pun, T. (2007). A channel selection method for EEG classification in emotion assessment based on synchronization likelihood. In Omerhodzic, Avdakovic, Nuhanovic, Dizdarevic (b0135) 2010; 6 Tsallis, Mendes, Plastino (b0190) 1998; 261 (pp. 3306–3309). Agarwal, Gotman (b0010) 2001; 48 Chang, Lin (b0055) 2011; 2 Khushaba, Al-Ani, Al-Jumaily (b0120) 2011; 38 Kemp, Olivan (b0105) 2003; 114 Poznan, Poland. . Khalighi, S., Sousa, T., & Nunes, U. (2012). Adaptive automatic sleep stage classification under covariate shift. In Yilmaz, Alkan, Asyali (b0200) 2008; 78 Rechtschaffen, A., & Kales, A. (Eds.). (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Bethesda, MD, U.S. National Institute of Neurological Diseases and Blindness, Neurol. Inform. Netw. Arbabi, E., & Shamsollahi, M. (2005). Comparation between different types of features used for classification in BCI. In Whitney (b0195) 1971; 20 Jasper (b0095) 1958 Peng, Long, Ding (b0140) 2005; 27 Percival, Walden (b0145) 2000 Chang (10.1016/j.eswa.2013.06.023_b0055) 2011; 2 Helland (10.1016/j.eswa.2013.06.023_b0080) 2010; 49 10.1016/j.eswa.2013.06.023_b0125 Percival (10.1016/j.eswa.2013.06.023_b0145) 2000 Anderer (10.1016/j.eswa.2013.06.023_b0030) 2005; 51 Peng (10.1016/j.eswa.2013.06.023_b0140) 2005; 27 10.1016/j.eswa.2013.06.023_b0040 Álvarez-Estévez (10.1016/j.eswa.2013.06.023_b0020) 2013; 40 10.1016/j.eswa.2013.06.023_b0090 Tsallis (10.1016/j.eswa.2013.06.023_b0190) 1998; 261 Shannon (10.1016/j.eswa.2013.06.023_b0170) 1948; 27 Whitney (10.1016/j.eswa.2013.06.023_b0195) 1971; 20 Jasper (10.1016/j.eswa.2013.06.023_b0095) 1958 Silber (10.1016/j.eswa.2013.06.023_b0175) 2007; 3 Becq (10.1016/j.eswa.2013.06.023_b0045) 2005 Fraiwan (10.1016/j.eswa.2013.06.023_b0070) 2011 Yilmaz (10.1016/j.eswa.2013.06.023_b0200) 2008; 78 Omerhodzic (10.1016/j.eswa.2013.06.023_b0135) 2010; 6 10.1016/j.eswa.2013.06.023_b0115 10.1016/j.eswa.2013.06.023_b0015 Ambrogetti (10.1016/j.eswa.2013.06.023_b0025) 2006 Gunes (10.1016/j.eswa.2013.06.023_b0075) 2010; 37 Himanen (10.1016/j.eswa.2013.06.023_b0085) 2000; 4 Khushaba (10.1016/j.eswa.2013.06.023_b0120) 2011; 38 Pudil (10.1016/j.eswa.2013.06.023_b0150) 1994; 15 Jo (10.1016/j.eswa.2013.06.023_b0100) 2010; 40 Kemp (10.1016/j.eswa.2013.06.023_b0105) 2003; 114 Mormann (10.1016/j.eswa.2013.06.023_b0130) 2007; 130 10.1016/j.eswa.2013.06.023_b0035 Burges (10.1016/j.eswa.2013.06.023_b0050) 1998; 2 10.1016/j.eswa.2013.06.023_b0155 Ronzhina (10.1016/j.eswa.2013.06.023_b0165) 2012; 16 Adeli (10.1016/j.eswa.2013.06.023_b0005) 2003; 123 10.1016/j.eswa.2013.06.023_b0110 Tagluk (10.1016/j.eswa.2013.06.023_b0180) 2010; 34 10.1016/j.eswa.2013.06.023_b0160 Zoubek (10.1016/j.eswa.2013.06.023_b0205) 2007; 2 Chapotot (10.1016/j.eswa.2013.06.023_b0060) 2010; 24 Fraiwan (10.1016/j.eswa.2013.06.023_b0065) 2010; 49 Agarwal (10.1016/j.eswa.2013.06.023_b0010) 2001; 48 Tang (10.1016/j.eswa.2013.06.023_b0185) 2007; 22 |
References_xml | – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: b0140 article-title: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: (p. 547). – reference: Khalighi, S., Sousa, T., & Nunes, U. (2012). Adaptive automatic sleep stage classification under covariate shift. In – volume: 114 start-page: 1755 year: 2003 end-page: 1761 ident: b0105 article-title: European data format ‘plus’ (EDF+), an EDF alike standard format for the exchange of physiological data publication-title: Clinical Neurophysiology – reference: Rechtschaffen, A., & Kales, A. (Eds.). (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Bethesda, MD, U.S. National Institute of Neurological Diseases and Blindness, Neurol. Inform. Netw. – reference: Ansari-Asl, K., Chanel, G., & Pun, T. (2007). A channel selection method for EEG classification in emotion assessment based on synchronization likelihood. In – reference: (pp. 2259-62). – start-page: 371 year: 1958 end-page: 375 ident: b0095 article-title: Appendix to report to committee on clinical examination in EEG: The ten–twenty electrode system of the international federation publication-title: Electroencephalography and Clinical Neurophysiology – volume: 24 start-page: 409 year: 2010 end-page: 423 ident: b0060 article-title: Automated sleep–wake staging combining robust feature extraction, artificial neural network classification, and flexible decision rules publication-title: International Journal of Adaptive Control and Signal Processing – volume: 3 start-page: 121 year: 2007 end-page: 131 ident: b0175 article-title: The visual scoring of sleep in adults publication-title: Journal of Clinical Sleep Medicine – volume: 15 start-page: 1119 year: 1994 end-page: 1125 ident: b0150 article-title: Floating search methods in feature selection publication-title: Pattern Recognition Letters – volume: 49 start-page: 230 year: 2010 end-page: 237 ident: b0065 article-title: Classification of sleep stages using multi-wavelet time frequency entropy and LDA publication-title: Methods of Information in Medicine – volume: 40 start-page: 629 year: 2010 end-page: 634 ident: b0100 article-title: Genetic fuzzy classifier for sleep stage identification publication-title: Computers in Biology and Medicine – reference: , Poznan, Poland. – volume: 38 start-page: 11515 year: 2011 end-page: 11526 ident: b0120 article-title: Feature subset selection using differential evolution and a statistical repair mechanism publication-title: Expert Systems with Applications – reference: Renyi, A. (1960). On measures of entropy and information. In – volume: 51 start-page: 115 year: 2005 end-page: 133 ident: b0030 article-title: An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: Validation study of the Somnolyzer 24 publication-title: Neuropsychobiology – volume: 2 year: 1998 ident: b0050 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Mining and Knowledge Discovery – reference: Iber, C., Ancoli-Israel, S., Chesson, A., & Quan, S. (2007). The AASM manual for the scoring of sleep and associated events: Rules terminology and technical specifications. – volume: 6 year: 2010 ident: b0135 article-title: Energy distribution of EEG signals: EEG signal wavelet-neural network classifier publication-title: International Journal of Biological and Life Sciences – reference: (pp. 3306–3309). – reference: Maszczyk, T., & Duch, W. (2008). Comparison of Shannon, Renyi and Tsallis entropy used in decision trees. In – volume: 49 start-page: 467 year: 2010 end-page: 472 ident: b0080 article-title: Investigation of an automatic sleep stage classification by means of multiscorer hypnogram publication-title: Methods of Information in Medicine – volume: 34 start-page: 717 year: 2010 end-page: 725 ident: b0180 article-title: Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG publication-title: Journal of Medical Systems – reference: Arbabi, E., & Shamsollahi, M. (2005). Comparation between different types of features used for classification in BCI. In – volume: 2 start-page: 171 year: 2007 end-page: 179 ident: b0205 article-title: Feature selection for sleep/wake stages classification using data driven methods publication-title: Biomedical Signal Processing and Control – volume: 20 start-page: 1100 year: 1971 end-page: 1103 ident: b0195 article-title: A direct method of nonparametric measurement selection publication-title: EEE Transactions on Computers – volume: 48 start-page: 1412 year: 2001 end-page: 1423 ident: b0010 article-title: Computer-assisted sleep staging publication-title: IEEE Transactions on Biomedical Engineering – volume: 22 start-page: 414 year: 2007 end-page: 417 ident: b0185 article-title: Harmonic parameters with HHT and wavelet transform for automatic sleep stages scoring publication-title: Proceedings of World Academy of Science, Engineering and Technology – volume: 123 start-page: 69 year: 2003 end-page: 87 ident: b0005 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: Journal of Neuroscience Methods – volume: 37 start-page: 7922 year: 2010 end-page: 7928 ident: b0075 article-title: Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting publication-title: Expert Systems with Applications – volume: 78 start-page: 683 year: 2008 end-page: 693 ident: b0200 article-title: Applications of parametric spectral estimation methods on detection of power system harmonics publication-title: Electric Power Systems Research – reference: Ahmad, S. (2007). Temporal pattern identification and summarization method for complex time serial data. PhD Dessertation, Information Extraction and Multimedia Group Dep. of Comp. School of Elec. and Phy. Sci., Uni.of Surrey Guildford, Surrey GU2 7XH, UK. – volume: 130 start-page: 314 year: 2007 end-page: 333 ident: b0130 article-title: Seizure prediction: The long and winding road publication-title: Brain – reference: . – year: 2000 ident: b0145 article-title: Wavelet methods for time series analysis – volume: 16 start-page: 251 year: 2012 end-page: 263 ident: b0165 article-title: Sleep scoring using artificial neural networks publication-title: Sleep Medicine Reviews – year: 2011 ident: b0070 article-title: Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier publication-title: Comuter Methods and Programs in Biomedicine – volume: 261 start-page: 534 year: 1998 end-page: 554 ident: b0190 article-title: The role of constraints within generalized nonextensive statistics publication-title: Physica A – volume: 40 start-page: 1796 year: 2013 end-page: 1803 ident: b0020 article-title: A method for the automatic analysis of the sleep macrostructure in continuum publication-title: Expert Systems with Applications – start-page: 113 year: 2005 end-page: 127 ident: b0045 article-title: Comparison between five classifiers for automatic scoring of human sleep recordings publication-title: Studies in computational intelligence (SCI) – reference: (Vol. 5097, pp. 643–651). – reference: Khalighi, S., Sousa, T., Oliveira, D., Pires, G., & Nunes, U. (2011). Efficient feature selection for sleep staging based on maximal overlap discrete wavelet transform and SVM. In – volume: 2 start-page: 27 year: 2011 ident: b0055 article-title: LIBSVM: A library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology – volume: 27 start-page: 623 year: 1948 end-page: 656 ident: b0170 article-title: A mathematical theory of communication publication-title: Bell System Technical Journal – year: 2006 ident: b0025 article-title: Sleep disorders: A clinical textbook – volume: 4 start-page: 149 year: 2000 end-page: 167 ident: b0085 article-title: Limitations of Rechtschaffen and Kales publication-title: Sleep Medicine Reviews – ident: 10.1016/j.eswa.2013.06.023_b0035 – volume: 2 start-page: 27 year: 2011 ident: 10.1016/j.eswa.2013.06.023_b0055 article-title: LIBSVM: A library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology doi: 10.1145/1961189.1961199 – volume: 6 year: 2010 ident: 10.1016/j.eswa.2013.06.023_b0135 article-title: Energy distribution of EEG signals: EEG signal wavelet-neural network classifier publication-title: International Journal of Biological and Life Sciences – volume: 3 start-page: 121 year: 2007 ident: 10.1016/j.eswa.2013.06.023_b0175 article-title: The visual scoring of sleep in adults publication-title: Journal of Clinical Sleep Medicine doi: 10.5664/jcsm.26814 – volume: 48 start-page: 1412 year: 2001 ident: 10.1016/j.eswa.2013.06.023_b0010 article-title: Computer-assisted sleep staging publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.966600 – ident: 10.1016/j.eswa.2013.06.023_b0115 doi: 10.1109/EMBC.2012.6346412 – volume: 27 start-page: 623 year: 1948 ident: 10.1016/j.eswa.2013.06.023_b0170 article-title: A mathematical theory of communication publication-title: Bell System Technical Journal doi: 10.1002/j.1538-7305.1948.tb00917.x – volume: 34 start-page: 717 year: 2010 ident: 10.1016/j.eswa.2013.06.023_b0180 article-title: Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG publication-title: Journal of Medical Systems doi: 10.1007/s10916-009-9286-5 – volume: 261 start-page: 534 year: 1998 ident: 10.1016/j.eswa.2013.06.023_b0190 article-title: The role of constraints within generalized nonextensive statistics publication-title: Physica A doi: 10.1016/S0378-4371(98)00437-3 – volume: 40 start-page: 1796 year: 2013 ident: 10.1016/j.eswa.2013.06.023_b0020 article-title: A method for the automatic analysis of the sleep macrostructure in continuum publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.09.022 – volume: 24 start-page: 409 year: 2010 ident: 10.1016/j.eswa.2013.06.023_b0060 article-title: Automated sleep–wake staging combining robust feature extraction, artificial neural network classification, and flexible decision rules publication-title: International Journal of Adaptive Control and Signal Processing doi: 10.1002/acs.1147 – volume: 49 start-page: 467 year: 2010 ident: 10.1016/j.eswa.2013.06.023_b0080 article-title: Investigation of an automatic sleep stage classification by means of multiscorer hypnogram publication-title: Methods of Information in Medicine doi: 10.3414/ME09-02-0052 – volume: 15 start-page: 1119 year: 1994 ident: 10.1016/j.eswa.2013.06.023_b0150 article-title: Floating search methods in feature selection publication-title: Pattern Recognition Letters doi: 10.1016/0167-8655(94)90127-9 – start-page: 371 year: 1958 ident: 10.1016/j.eswa.2013.06.023_b0095 article-title: Appendix to report to committee on clinical examination in EEG: The ten–twenty electrode system of the international federation publication-title: Electroencephalography and Clinical Neurophysiology – ident: 10.1016/j.eswa.2013.06.023_b0110 doi: 10.1109/IEMBS.2011.6090897 – volume: 38 start-page: 11515 year: 2011 ident: 10.1016/j.eswa.2013.06.023_b0120 article-title: Feature subset selection using differential evolution and a statistical repair mechanism publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.03.028 – volume: 2 year: 1998 ident: 10.1016/j.eswa.2013.06.023_b0050 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Mining and Knowledge Discovery doi: 10.1023/A:1009715923555 – volume: 2 start-page: 171 year: 2007 ident: 10.1016/j.eswa.2013.06.023_b0205 article-title: Feature selection for sleep/wake stages classification using data driven methods publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2007.05.005 – start-page: 113 year: 2005 ident: 10.1016/j.eswa.2013.06.023_b0045 article-title: Comparison between five classifiers for automatic scoring of human sleep recordings doi: 10.1007/11011620_8 – volume: 20 start-page: 1100 year: 1971 ident: 10.1016/j.eswa.2013.06.023_b0195 article-title: A direct method of nonparametric measurement selection publication-title: EEE Transactions on Computers doi: 10.1109/T-C.1971.223410 – volume: 40 start-page: 629 year: 2010 ident: 10.1016/j.eswa.2013.06.023_b0100 article-title: Genetic fuzzy classifier for sleep stage identification publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2010.04.007 – volume: 16 start-page: 251 year: 2012 ident: 10.1016/j.eswa.2013.06.023_b0165 article-title: Sleep scoring using artificial neural networks publication-title: Sleep Medicine Reviews doi: 10.1016/j.smrv.2011.06.003 – volume: 49 start-page: 230 year: 2010 ident: 10.1016/j.eswa.2013.06.023_b0065 article-title: Classification of sleep stages using multi-wavelet time frequency entropy and LDA publication-title: Methods of Information in Medicine doi: 10.3414/ME09-01-0054 – volume: 130 start-page: 314 year: 2007 ident: 10.1016/j.eswa.2013.06.023_b0130 article-title: Seizure prediction: The long and winding road publication-title: Brain doi: 10.1093/brain/awl241 – ident: 10.1016/j.eswa.2013.06.023_b0160 – ident: 10.1016/j.eswa.2013.06.023_b0090 – volume: 78 start-page: 683 year: 2008 ident: 10.1016/j.eswa.2013.06.023_b0200 article-title: Applications of parametric spectral estimation methods on detection of power system harmonics publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2007.05.011 – ident: 10.1016/j.eswa.2013.06.023_b0015 – volume: 27 start-page: 1226 year: 2005 ident: 10.1016/j.eswa.2013.06.023_b0140 article-title: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2005.159 – ident: 10.1016/j.eswa.2013.06.023_b0155 – volume: 22 start-page: 414 year: 2007 ident: 10.1016/j.eswa.2013.06.023_b0185 article-title: Harmonic parameters with HHT and wavelet transform for automatic sleep stages scoring publication-title: Proceedings of World Academy of Science, Engineering and Technology – year: 2006 ident: 10.1016/j.eswa.2013.06.023_b0025 – ident: 10.1016/j.eswa.2013.06.023_b0125 doi: 10.1007/978-3-540-69731-2_62 – volume: 37 start-page: 7922 year: 2010 ident: 10.1016/j.eswa.2013.06.023_b0075 article-title: Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.04.043 – volume: 114 start-page: 1755 year: 2003 ident: 10.1016/j.eswa.2013.06.023_b0105 article-title: European data format ‘plus’ (EDF+), an EDF alike standard format for the exchange of physiological data publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(03)00123-8 – year: 2000 ident: 10.1016/j.eswa.2013.06.023_b0145 – volume: 51 start-page: 115 year: 2005 ident: 10.1016/j.eswa.2013.06.023_b0030 article-title: An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: Validation study of the Somnolyzer 24×7 utilizing the Siesta database publication-title: Neuropsychobiology doi: 10.1159/000085205 – ident: 10.1016/j.eswa.2013.06.023_b0040 – year: 2011 ident: 10.1016/j.eswa.2013.06.023_b0070 article-title: Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier publication-title: Comuter Methods and Programs in Biomedicine – volume: 123 start-page: 69 year: 2003 ident: 10.1016/j.eswa.2013.06.023_b0005 article-title: Analysis of EEG records in an epileptic patient using wavelet transform publication-title: Journal of Neuroscience Methods doi: 10.1016/S0165-0270(02)00340-0 – volume: 4 start-page: 149 year: 2000 ident: 10.1016/j.eswa.2013.06.023_b0085 article-title: Limitations of Rechtschaffen and Kales publication-title: Sleep Medicine Reviews doi: 10.1053/smrv.1999.0086 |
SSID | ssj0017007 |
Score | 2.4416966 |
Snippet | •A subject-independent automatic sleep staging method with application in sleep–wake detection and in multiclass sleep staging.•An extensive dataset with 40... To improve applicability of automatic sleep staging an efficient subject-independent method is proposed with application in sleep-wake detection and in... To improve applicability of automatic sleep staging an efficient subject-independent method is proposed with application in sleepawake detection and in... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7046 |
SubjectTerms | Applied sciences Artificial intelligence Automatic sleep staging Biological and medical sciences Channels Computer science; control theory; systems Data processing. List processing. Character string processing EEC Electrodiagnosis. Electric activity recording Exact sciences and technology Eye movements Feature extraction Features selection Fundamental and applied biological sciences. Psychology Invariants Investigative techniques, diagnostic techniques (general aspects) Medical sciences Memory organisation. Data processing Nervous system Patients Pattern recognition. Digital image processing. Computational geometry Polysomnographic signals Sleep Sleep dataset Sleep. Vigilance Software Support vector machines The maximum overlap discrete wavelet transform Vertebrates: nervous system and sense organs Wavelet transforms |
Title | Automatic sleep staging: A computer assisted approach for optimal combination of features and polysomnographic channels |
URI | https://dx.doi.org/10.1016/j.eswa.2013.06.023 https://www.proquest.com/docview/1448716550 https://www.proquest.com/docview/1513475580 https://www.proquest.com/docview/1701081143 https://www.proquest.com/docview/1701122846 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kXgTxLdZHWcGbxDbZV-KtiFIVvWiht7DZbKBSk2BaxIu_3Zk8CkXMwWPCLJvd2Z2Zj8x8Q8jFQOvY12XaoPUAoLjG0TZhjgpkEGglA-lhvfPTsxyN-cNETNbITVMLg2mVte2vbHppres3_Xo3-_l02n-B4ADcoUIrDCeRTbCCnSs85VffyzQPpJ9TFd-eclC6Lpypcrxs8YncQy4rOTw99pdz2sx1AVuWVL0ufpnt0hfd7ZCtOoikw-o7d8maTffIdtOggdb3dZ98DhfzrORkpcXM2pxCKIhNia7pkJpGGqJnVHVMG3pxCnEszcCUvMMcIAbYuVQfzRKa2JIItKA6jWmezb6K7D2tWK9hEqwiTmE9B2R8d_t6M3LqTguOEcqbo5WJAzWAWMxYz2UmSSILbgu8OdcaCV1EAtBQSGT3M9zitsYD14_8gBvOhWKHpJNmqT0iFCCNBqPABknkcqPjCAnrkSNeKuPHVnaJ22xxaGoacuyGMQubfLO3ENUSolpCTLrzWJdcLsfkFQlHq7RoNBeuHKUQvETruN6KmpdTeUpKOGZBl5w3eg_hEuKfFZ3abFEAfuIIPAHttcgIrNoVwm-TUQCPfYCorF3G9SCqkMf_XOgJ2cCnKinnlHTmHwt7BqHVPOqVd6dH1of3j6PnHxywI4E |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3SzaGF0O-SbdpUhd6KWduyJLu3JTRsmmQvTWBvQpZlSNnYJt4l5N93xpYXQokPvdojZGukmXlo5g3At9CYIjVd2qCLEaBENjCu5IHKZJYZJTMZU73z5VIurpNfK7Hag5OhFobSKr3t7216Z639k5lfzVlzczP7jcEBukNFVhh3Il89g31ipxIT2J-fnS-Wu8sEFfZV0ygf0ABfO9Onebn2nuiHIt7ReMb8Kf900JgWV63s2138Y7k7d3T6Gl76OJLN-099A3uueguvhh4NzB_Zd3A_327qjpaVtWvnGobRIPUl-sHmzA7SGECTtgs2MIwzDGVZjdbkFudAMYTPnQZZXbLSdVygLTNVwZp6_dDWt1VPfI2TUCFxhf_zHq5Pf16dLALfbCGwQsUbMjRFpkIMx6yLI27LMnfoudChJ8YQp4soER0KSQR_NnG0rEUYpXmaJTZJhOIfYFLVlTsEhqjGoF3gYZlHiTVFTpz1RBMvlU0LJ6cQDUusrWcip4YYaz2knP3RpBZNatGUdxfzKXzfjWl6Ho5RaTFoTj_aTRodxei440dq3k0VKylxp2VT-DroXeM5pMsVU7l62yKESgh7IuAbkRFUuCtEOiajECGniFL5uEwUY2AhP_7nj36B54urywt9cbY8P4IX9KbP0fkEk83d1n3GSGuTH_uT9BcDMSYy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+sleep+staging%3A+A+computer+assisted+approach+for+optimal+combination+of+features+and+polysomnographic+channels&rft.jtitle=Expert+systems+with+applications&rft.au=Khalighi%2C+S&rft.au=Sousa%2C+T&rft.au=Pires%2C+G&rft.au=Nunes%2C+U&rft.date=2013-12-01&rft.issn=0957-4174&rft.volume=40&rft.issue=17&rft.spage=7046&rft.epage=7059&rft_id=info:doi/10.1016%2Fj.eswa.2013.06.023&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |