Patient specific CFD models of nasal airflow: Overview of methods and challenges
Respiratory physiology and pathology are strongly dependent on the airflow inside the nasal cavity. However, the nasal anatomy, which is characterized by complex airway channels and significant individual differences, is difficult to analyze. Thus, commonly adopted diagnostic tools have yielded limi...
Saved in:
Published in | Journal of biomechanics Vol. 46; no. 2; pp. 299 - 306 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
18.01.2013
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Respiratory physiology and pathology are strongly dependent on the airflow inside the nasal cavity. However, the nasal anatomy, which is characterized by complex airway channels and significant individual differences, is difficult to analyze. Thus, commonly adopted diagnostic tools have yielded limited success. Nevertheless, with the rapid advances in computer resources, there have been more elaborate attempts to correlate airflow characteristics in human nasal airways with the symptoms and functions of the nose by computational fluid dynamics study. Furthermore, the computed nasal geometry can be virtually modified to reflect predicted results of the proposed surgical technique. In this article, several computational fluid mechanics (CFD) issues on patient-specific three dimensional (3D) modeling of nasal cavity and clinical applications were reviewed in relation to the cases of deviated nasal septum (decision for surgery), turbinectomy, and maxillary sinus ventilation (simulated- and post-surgery). Clinical relevance of fluid mechanical parameters, such as nasal resistance, flow allocation, wall shear stress, heat/humidity/NO gas distributions, to the symptoms and surgical outcome were discussed. Absolute values of such parameters reported by many research groups were different each other due to individual difference of nasal anatomy, the methodology for 3D modeling and numerical grid, laminar/turbulent flow model in CFD code. But, the correlation of these parameters to symptoms and surgery outcome seems to be obvious in each research group with subject-specific models and its variations (virtual- and post-surgery models). For the more reliable, patient-specific, and objective tools for diagnosis and outcomes of nasal surgery by using CFD, the future challenges will be the standardizations on the methodology for creating 3D airway models and the CFD procedures. |
---|---|
AbstractList | Respiratory physiology and pathology are strongly dependent on the airflow inside the nasal cavity. However, the nasal anatomy, which is characterized by complex airway channels and significant individual differences, is difficult to analyze. Thus, commonly adopted diagnostic tools have yielded limited success. Nevertheless, with the rapid advances in computer resources, there have been more elaborate attempts to correlate airflow characteristics in human nasal airways with the symptoms and functions of the nose by computational fluid dynamics study. Furthermore, the computed nasal geometry can be virtually modified to reflect predicted results of the proposed surgical technique. In this article, several computational fluid mechanics (CFD) issues on patient-specific three dimensional (3D) modeling of nasal cavity and clinical applications were reviewed in relation to the cases of deviated nasal septum (decision for surgery), turbinectomy, and maxillary sinus ventilation (simulated- and post-surgery). Clinical relevance of fluid mechanical parameters, such as nasal resistance, flow allocation, wall shear stress, heat/humidity/NO gas distributions, to the symptoms and surgical outcome were discussed. Absolute values of such parameters reported by many research groups were different each other due to individual difference of nasal anatomy, the methodology for 3D modeling and numerical grid, laminar/turbulent flow model in CFD code. But, the correlation of these parameters to symptoms and surgery outcome seems to be obvious in each research group with subject-specific models and its variations (virtual- and post-surgery models). For the more reliable, patient-specific, and objective tools for diagnosis and outcomes of nasal surgery by using CFD, the future challenges will be the standardizations on the methodology for creating 3D airway models and the CFD procedures. Abstract Respiratory physiology and pathology are strongly dependent on the airflow inside the nasal cavity. However, the nasal anatomy, which is characterized by complex airway channels and significant individual differences, is difficult to analyze. Thus, commonly adopted diagnostic tools have yielded limited success. Nevertheless, with the rapid advances in computer resources, there have been more elaborate attempts to correlate airflow characteristics in human nasal airways with the symptoms and functions of the nose by computational fluid dynamics study. Furthermore, the computed nasal geometry can be virtually modified to reflect predicted results of the proposed surgical technique. In this article, several computational fluid mechanics (CFD) issues on patient-specific three dimensional (3D) modeling of nasal cavity and clinical applications were reviewed in relation to the cases of deviated nasal septum (decision for surgery), turbinectomy, and maxillary sinus ventilation (simulated- and post-surgery). Clinical relevance of fluid mechanical parameters, such as nasal resistance, flow allocation, wall shear stress, heat/humidity/NO gas distributions, to the symptoms and surgical outcome were discussed. Absolute values of such parameters reported by many research groups were different each other due to individual difference of nasal anatomy, the methodology for 3D modeling and numerical grid, laminar/turbulent flow model in CFD code. But, the correlation of these parameters to symptoms and surgery outcome seems to be obvious in each research group with subject-specific models and its variations (virtual- and post-surgery models). For the more reliable, patient-specific, and objective tools for diagnosis and outcomes of nasal surgery by using CFD, the future challenges will be the standardizations on the methodology for creating 3D airway models and the CFD procedures. Respiratory physiology and pathology are strongly dependent on the airflow inside the nasal cavity. However, the nasal anatomy, which is characterized by complex airway channels and significant individual differences, is difficult to analyze. Thus, commonly adopted diagnostic tools have yielded limited success. Nevertheless, with the rapid advances in computer resources, there have been more elaborate attempts to correlate airflow characteristics in human nasal airways with the symptoms and functions of the nose by computational fluid dynamics study. Furthermore, the computed nasal geometry can be virtually modified to reflect predicted results of the proposed surgical technique. In this article, several computational fluid mechanics (CFD) issues on patient-specific three dimensional (3D) modeling of nasal cavity and clinical applications were reviewed in relation to the cases of deviated nasal septum (decision for surgery), turbinectomy, and maxillary sinus ventilation (simulated- and post-surgery). Clinical relevance of fluid mechanical parameters, such as nasal resistance, flow allocation, wall shear stress, heat/humidity/NO gas distributions, to the symptoms and surgical outcome were discussed. Absolute values of such parameters reported by many research groups were different each other due to individual difference of nasal anatomy, the methodology for 3D modeling and numerical grid, laminar/turbulent flow model in CFD code. But, the correlation of these parameters to symptoms and surgery outcome seems to be obvious in each research group with subject-specific models and its variations (virtual- and post-surgery models). For the more reliable, patient-specific, and objective tools for diagnosis and outcomes of nasal surgery by using CFD, the future challenges will be the standardizations on the methodology for creating 3D airway models and the CFD procedures.Respiratory physiology and pathology are strongly dependent on the airflow inside the nasal cavity. However, the nasal anatomy, which is characterized by complex airway channels and significant individual differences, is difficult to analyze. Thus, commonly adopted diagnostic tools have yielded limited success. Nevertheless, with the rapid advances in computer resources, there have been more elaborate attempts to correlate airflow characteristics in human nasal airways with the symptoms and functions of the nose by computational fluid dynamics study. Furthermore, the computed nasal geometry can be virtually modified to reflect predicted results of the proposed surgical technique. In this article, several computational fluid mechanics (CFD) issues on patient-specific three dimensional (3D) modeling of nasal cavity and clinical applications were reviewed in relation to the cases of deviated nasal septum (decision for surgery), turbinectomy, and maxillary sinus ventilation (simulated- and post-surgery). Clinical relevance of fluid mechanical parameters, such as nasal resistance, flow allocation, wall shear stress, heat/humidity/NO gas distributions, to the symptoms and surgical outcome were discussed. Absolute values of such parameters reported by many research groups were different each other due to individual difference of nasal anatomy, the methodology for 3D modeling and numerical grid, laminar/turbulent flow model in CFD code. But, the correlation of these parameters to symptoms and surgery outcome seems to be obvious in each research group with subject-specific models and its variations (virtual- and post-surgery models). For the more reliable, patient-specific, and objective tools for diagnosis and outcomes of nasal surgery by using CFD, the future challenges will be the standardizations on the methodology for creating 3D airway models and the CFD procedures. |
Author | Kim, Sung Kyun Kim, Jee-In Na, Yang Chung, Seung-Kyu |
Author_xml | – sequence: 1 givenname: Sung Kyun surname: Kim fullname: Kim, Sung Kyun email: sungkim@konkuk.ac.kr organization: Department of Mechanical Engineering, Konkuk University, Seoul, Republic of Korea – sequence: 2 givenname: Yang surname: Na fullname: Na, Yang organization: Department of Mechanical Engineering, Konkuk University, Seoul, Republic of Korea – sequence: 3 givenname: Jee-In surname: Kim fullname: Kim, Jee-In organization: Department of Computer Information and Communication, Konkuk University, Seoul, Republic of Korea – sequence: 4 givenname: Seung-Kyu surname: Chung fullname: Chung, Seung-Kyu email: rhinochung@skku.edu organization: Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center/Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23261244$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkFv1DAQhS1URLeFv1BF4sIlqT1OnAQhBFpaQKrUSsDZ8joT1sGxt3a2Vf89TrcFaQ-Ukw_zvafxe3NEDpx3SMgJowWjTJwOxbAyfkS9LoAyKBgrKMAzsmBNzXPgDT0gC0qB5S209JAcxThQSuuybl-QQ-AgGJTlglxdqcmgm7K4QW16o7Pl-ads9B3amPk-cyoqmykTeutv32aXNxhuDN7OoxGnte9iplyX6bWyFt1PjC_J817ZiK8e3mPy4_zs-_JLfnH5-evy40WuqxqmnAOroIJVp8qWs1Vblg0CrXXfM6CUK4aIAhrBOIO6aVWPTc1qrSraVaxTHT8mb3a-m-CvtxgnOZqo0Vrl0G-jTDIuWiF4mdDXe-jgt8Gl7RLVCNG2HCBRJw_UdjViJzfBjCrcycesEiB2gA4-xoD9H4RROZciB_lYipxLkYxJeu_8bk-ozZRi924Kytin5R928lQJpvCDjDpVprEzAfUkO2-etni_Z6GtcUYr-wvvMP6NQ0aQVH6bD2e-m7kLUd___R8G_7PBb8sy06k |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2015_03_015 crossref_primary_10_1016_j_jaerosci_2017_10_008 crossref_primary_10_1002_alr_22086 crossref_primary_10_3389_fvets_2023_1229687 crossref_primary_10_1002_lio2_335 crossref_primary_10_1016_j_aforl_2018_02_010 crossref_primary_10_1016_j_ijthermalsci_2023_108521 crossref_primary_10_1016_j_jocs_2014_06_001 crossref_primary_10_1007_s12206_018_0246_1 crossref_primary_10_1016_j_otorri_2017_05_005 crossref_primary_10_1016_j_resp_2020_103508 crossref_primary_10_1002_alr_21879 crossref_primary_10_1515_cdbme_2016_0136 crossref_primary_10_1016_j_clinbiomech_2018_12_014 crossref_primary_10_1016_j_resp_2020_103533 crossref_primary_10_4103_indianjotol_indianjotol_179_22 crossref_primary_10_1016_j_jaerosci_2025_106548 crossref_primary_10_1371_journal_pone_0130186 crossref_primary_10_1016_j_compbiomed_2018_05_016 crossref_primary_10_17116_otorino20158049_13 crossref_primary_10_1055_s_0041_1722956 crossref_primary_10_1115_1_4030825 crossref_primary_10_1590_1414_431x20165182 crossref_primary_10_1016_j_compbiomed_2019_103505 crossref_primary_10_1016_j_resp_2013_09_004 crossref_primary_10_1016_j_jbiomech_2016_01_009 crossref_primary_10_3795_KSME_B_2016_40_4_221 crossref_primary_10_1016_j_addr_2021_113826 crossref_primary_10_1038_s41598_024_63024_9 crossref_primary_10_1002_lary_29882 crossref_primary_10_3389_fvets_2023_1139398 crossref_primary_10_1016_j_jbiomech_2019_109503 crossref_primary_10_1371_journal_pone_0151531 crossref_primary_10_1002_lio2_59 crossref_primary_10_1080_10255842_2021_1995720 crossref_primary_10_1177_0194599816630726 crossref_primary_10_1016_j_resp_2017_01_004 crossref_primary_10_1088_2057_1976_aac6af crossref_primary_10_7248_jjrhi_60_134 crossref_primary_10_1007_s11548_021_02332_1 crossref_primary_10_1016_j_resp_2013_12_010 crossref_primary_10_1007_s12551_022_01040_7 crossref_primary_10_1097_SCS_0000000000008033 crossref_primary_10_1063_5_0036095 crossref_primary_10_3390_bioengineering11030239 crossref_primary_10_1002_cnm_2906 crossref_primary_10_1016_j_jaerosci_2016_07_010 crossref_primary_10_1016_j_jbiomech_2013_08_007 crossref_primary_10_1007_s12206_017_0431_7 crossref_primary_10_1007_s12206_019_0226_0 crossref_primary_10_12677_MOS_2023_124348 crossref_primary_10_2478_pjmpe_2023_0008 crossref_primary_10_1186_s42492_021_00080_2 crossref_primary_10_1063_5_0253363 crossref_primary_10_1007_s11095_016_1875_7 crossref_primary_10_1016_j_resp_2022_103917 crossref_primary_10_1016_j_anorl_2018_11_008 crossref_primary_10_1088_2057_1976_aa6513 crossref_primary_10_1016_j_ijom_2020_07_032 crossref_primary_10_1016_j_heliyon_2025_e42598 crossref_primary_10_1007_s11517_018_1823_2 crossref_primary_10_1007_s00405_018_5073_6 crossref_primary_10_1016_j_csite_2021_101079 crossref_primary_10_1016_j_otoeng_2017_05_001 crossref_primary_10_1111_coa_13344 crossref_primary_10_1111_ocr_12622 crossref_primary_10_1063_5_0169775 crossref_primary_10_1111_vru_12531 crossref_primary_10_1007_s00542_019_04431_1 crossref_primary_10_1016_j_compbiomed_2013_09_003 crossref_primary_10_1016_j_tvjl_2019_105392 crossref_primary_10_1007_s00348_013_1644_x |
Cites_doi | 10.1017/S002221511000191X 10.4193/Rhino09.196 10.5407/JKSV.2011.9.3.065 10.2500/105065889782009589 10.1016/j.jaerosci.2007.05.003 10.1046/j.1365-2273.1997.00862.x 10.1017/S0022215106003410 10.1016/S0030-6665(20)31438-9 10.1001/archfacial.2009.86 10.1016/j.resp.2012.01.013 10.1001/archotol.131.12.1102 10.1177/019459989110400409 10.1002/lary.20585 10.1016/j.anl.2005.05.011 10.1007/s11517-008-0384-1 10.1098/rsta.2008.0083 10.1001/archotol.130.3.324 10.1016/j.jbiomech.2009.03.035 10.1017/S002221511200045X 10.1007/s003480050430 10.1001/archfacial.2011.18 10.1055/s-2007-997334 10.1109/IEMBS.2007.4353592 10.1016/j.resp.2011.02.011 10.1016/j.resp.2008.07.027 10.1002/fld.1866 10.1046/j.1365-2273.2002.00531.x 10.1177/0194599811401202 10.1016/j.resp.2012.03.002 10.1098/rsif.2009.0306 10.1016/j.resp.2010.05.010 10.1007/s10439-008-9556-2 10.1016/j.resp.2008.05.002 10.1016/j.resp.2011.12.005 10.1088/0957-0233/15/6/007 10.1152/japplphysiol.90376.2008 10.1097/MLG.0b013e318159aa26 10.1016/j.resp.2008.01.012 10.1152/japplphysiol.91615.2008 10.2500/ajra.2010.24.3428 10.1097/00005537-199704000-00009 10.1016/j.resp.2008.07.023 10.1114/1.108 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd Elsevier Ltd Copyright © 2012 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2012 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2012.11.022 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
EndPage | 306 |
ExternalDocumentID | 2889429051 23261244 10_1016_j_jbiomech_2012_11_022 S0021929012006744 1_s2_0_S0021929012006744 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBD EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P ML~ MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- .GJ 29J 3V. 53G AACTN AAQQT AAQXK ACNNM ACRPL ADMUD ADNMO AFCTW AFFDN AFJKZ AFKWA AGHFR AI. AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 MVM OHT PKN R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP YCJ ZGI AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX AGQPQ AGRNS AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c572t-3215252bda4931b9448e207cff12003a1eee62861312789afe8717ca50d51dad3 |
IEDL.DBID | 7X7 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Jul 11 10:31:15 EDT 2025 Wed Aug 13 05:54:27 EDT 2025 Thu Apr 03 07:00:06 EDT 2025 Thu Apr 24 23:02:31 EDT 2025 Tue Jul 01 01:14:02 EDT 2025 Fri Feb 23 02:34:48 EST 2024 Sun Feb 23 10:20:44 EST 2025 Tue Aug 26 16:33:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | CFD 3D modeling Biomedical flow Physiology Nasal cavity |
Language | English |
License | Copyright © 2012 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c572t-3215252bda4931b9448e207cff12003a1eee62861312789afe8717ca50d51dad3 |
Notes | SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Undefined-1 ObjectType-Review-2 ObjectType-Article-3 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 23261244 |
PQID | 1286699322 |
PQPubID | 1226346 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1273696634 proquest_journals_1286699322 pubmed_primary_23261244 crossref_primary_10_1016_j_jbiomech_2012_11_022 crossref_citationtrail_10_1016_j_jbiomech_2012_11_022 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2012_11_022 elsevier_clinicalkeyesjournals_1_s2_0_S0021929012006744 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2012_11_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-18 |
PublicationDateYYYYMMDD | 2013-01-18 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationTitleAlternate | J Biomech |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Garcia, Rhee, Senior, Kimbell (bib18) 2010; 24 Rennie, Hood, Blenke, Scroter, Doorly, Jones, Towey, Tolley (bib49) 2011; 145 Chen, Lee, Chong, Wang (bib6) 2009; 119 Moore, Eccles (bib43) 2012; 126 Yoon, Hong (bib63) 2000; 11 Calhoun, Waggenspack, Simpson (bib5) 1991; 104 Liu, Matida, Gu, Johnson (bib38) 2007; 38 Moghadas, Abouali, Faramarzi, Ahmadi (bib42) 2011; 172 Proctor, Andersen (bib48) 1982 Heo, G.E., Chang, J.W., Seung-kyu Chung, S.K., Kim, S.K., 2011. Experimental and Numerical Flow Visualization on Detailed Flow Field in the Post-surgery Models for the Simulation of the Middle Turbinectomy, in: Proceedings of the KSME Spring Annual Meeting. Jones, Strobl, Holland (bib26) 1997; 22 Naftali, Schroter, Shiner, Elad (bib46) 1998; 26 Jesson, Köpman, Malm (bib25) 1989; 3 Na, Chung, Chung, Kim (bib44) 2012; 180 Tingelhoff, K., Moral, A.I., Kunkel, M.E., Rilk, M., Wagner, I., Eichhorn, K.W.G., Wahl, F.M., Bootz, F., 2007. Comparison between Manual and Semi-automatic Segmentation of Nasal Cavity and Paranasal Sinuses from CT Images, Conference of the IEEE EMBS 2007, pp. 5505–5508 . Xiong, Zhan, Zuo, Rong, Li, Xu, G. (bib62) 2010 Min, Jung, Kim (bib41) 1995; 33 Xiong, Zhan, Zuo, Li, Rong, Xu (bib61) 2008; 46 Konstantinidis, Triaridis (bib33) 2005; 32 Hopkins, Kelly, Wexler, Prasad (bib23) 2000; 29 Kim, Do (bib29) 2002; 13 Doorly, Franke, Gambarruto, Taylor, Schroter (bib12) 2006 Doorly, Franke, Gambarruto (bib14) 2011; 366 Doorly, Taylor, Schroter (bib13) 2008; 163 Na, Chung, Chung, Kim (bib45) 2012; 181 Kwon (bib34) 2000; 11 Robin, Eccles (bib51) 2002; 27 Xiong, Zhan, Zuo, Rong, Li, Xu (bib69) 2011; 125 Chen, Leong, Chong, Wang (bib7) 2010; 48 Elad, Wolf, Keck (bib16) 2008; 163 Vogt, K., Jalowayski, A.A., 2010. 4-Phase-Rhenomanometry Basics and Practices 2010, Rhinology, Suppl. 21, Standardization Committee on the Objective Assessment of the Upper Airway, 5–6 . Ho, Yuen, Tang (bib21) 2004; 130 Manoukian, Wyatt, Leopold, Bass (bib39) 1997; 107 Hood, Schroter, Doorly, Blenke, Tolley (bib22) 2009; 107 Lee, Na, Kim, Chung (bib35) 2010; 172 Kaliner, Osguthorpe, Fireman, Anon, Georgitis, Davis, Naclerio, Kennedy (bib27) 1997; 99 Singh, Patel, Kenyon (bib54) 2006; 120 Kim, S.K., Chung, S.K., Na, Y., Kim, J.I., 2012. CFD on the Nasal Airflows: Technical Improvements, Diagnosis and Surgery Plan, 1st International Conference on CFD in Medicine and Biology/7th International Biofluid Mechanics Symposium, March 25–30 , Dead Sea, Israel. Wen, Inthavong, Tu, Wang (bib60) 2008; 161 Rhee, Pawar, Garcia, Kimbell (bib66) 2011; 13 Kim, Son (bib30) 2002; 26 Taylor, Doorly, Schroter (bib55) 2010; 7 Chung, Kim (bib8) 2008; 163 Leong, Chen, Lee, Wang (bib36) 2010; 48 Scherer, Hahn, Mozell (bib52) 1989; 22 Bailey (bib2) 1998; 335–344 Kim, Chung (bib31) 2004; 15 Hess, Lampercht, Horlitz (bib19) 1992; 71 Liu, Johnson, Matida, Kherani, Marsan (bib65) 2009; 106 Segal, Kepler, Kimbell (bib67) 2008; 36 Mihaescu, Mylavarapu, Gutmark, Powell (bib40) 2009; 42 Ozlugedik, Nakiboglu, Sert, Elhan, Tonuk, Akyar, Tekdemir (bib47) 2008; 118 Rhee (bib50) 2009; 11 Lindemann, Keck, Wiesmiller, Rettinger, Brambs, Pless (bib37) 2005; 43 Wexler, Segal, Kimbell (bib68) 2005; 131 Gambaruto, Taylor, Doorly (bib17) 2009; 59 Abouali, Keshavarzian, Ghalati, Faramarzi, Ahmadi, Bagheri (bib1) 2012; 181 Robin (10.1016/j.jbiomech.2012.11.022_bib51) 2002; 27 Doorly (10.1016/j.jbiomech.2012.11.022_bib13) 2008; 163 Jesson (10.1016/j.jbiomech.2012.11.022_bib25) 1989; 3 Min (10.1016/j.jbiomech.2012.11.022_bib41) 1995; 33 Singh (10.1016/j.jbiomech.2012.11.022_bib54) 2006; 120 Elad (10.1016/j.jbiomech.2012.11.022_bib16) 2008; 163 Kwon (10.1016/j.jbiomech.2012.11.022_bib34) 2000; 11 Moore (10.1016/j.jbiomech.2012.11.022_bib43) 2012; 126 Xiong (10.1016/j.jbiomech.2012.11.022_bib62) 2010 Doorly (10.1016/j.jbiomech.2012.11.022_bib12) 2006 Mihaescu (10.1016/j.jbiomech.2012.11.022_bib40) 2009; 42 Chen (10.1016/j.jbiomech.2012.11.022_bib7) 2010; 48 Proctor (10.1016/j.jbiomech.2012.11.022_bib48) 1982 Rennie (10.1016/j.jbiomech.2012.11.022_bib49) 2011; 145 Rhee (10.1016/j.jbiomech.2012.11.022_bib50) 2009; 11 Liu (10.1016/j.jbiomech.2012.11.022_bib38) 2007; 38 Bailey (10.1016/j.jbiomech.2012.11.022_bib2) 1998; 335–344 Na (10.1016/j.jbiomech.2012.11.022_bib45) 2012; 181 Hood (10.1016/j.jbiomech.2012.11.022_bib22) 2009; 107 Konstantinidis (10.1016/j.jbiomech.2012.11.022_bib33) 2005; 32 Leong (10.1016/j.jbiomech.2012.11.022_bib36) 2010; 48 Naftali (10.1016/j.jbiomech.2012.11.022_bib46) 1998; 26 10.1016/j.jbiomech.2012.11.022_bib58 10.1016/j.jbiomech.2012.11.022_bib56 Na (10.1016/j.jbiomech.2012.11.022_bib44) 2012; 180 Hess (10.1016/j.jbiomech.2012.11.022_bib19) 1992; 71 Jones (10.1016/j.jbiomech.2012.11.022_bib26) 1997; 22 Manoukian (10.1016/j.jbiomech.2012.11.022_bib39) 1997; 107 Ho (10.1016/j.jbiomech.2012.11.022_bib21) 2004; 130 Liu (10.1016/j.jbiomech.2012.11.022_bib65) 2009; 106 Xiong (10.1016/j.jbiomech.2012.11.022_bib69) 2011; 125 Yoon (10.1016/j.jbiomech.2012.11.022_bib63) 2000; 11 Moghadas (10.1016/j.jbiomech.2012.11.022_bib42) 2011; 172 Taylor (10.1016/j.jbiomech.2012.11.022_bib55) 2010; 7 Kim (10.1016/j.jbiomech.2012.11.022_bib31) 2004; 15 Chung (10.1016/j.jbiomech.2012.11.022_bib8) 2008; 163 Wexler (10.1016/j.jbiomech.2012.11.022_bib68) 2005; 131 Abouali (10.1016/j.jbiomech.2012.11.022_bib1) 2012; 181 10.1016/j.jbiomech.2012.11.022_bib20 Scherer (10.1016/j.jbiomech.2012.11.022_bib52) 1989; 22 Calhoun (10.1016/j.jbiomech.2012.11.022_bib5) 1991; 104 Lindemann (10.1016/j.jbiomech.2012.11.022_bib37) 2005; 43 Rhee (10.1016/j.jbiomech.2012.11.022_bib66) 2011; 13 Chen (10.1016/j.jbiomech.2012.11.022_bib6) 2009; 119 Kaliner (10.1016/j.jbiomech.2012.11.022_bib27) 1997; 99 Hopkins (10.1016/j.jbiomech.2012.11.022_bib23) 2000; 29 Xiong (10.1016/j.jbiomech.2012.11.022_bib61) 2008; 46 Garcia (10.1016/j.jbiomech.2012.11.022_bib18) 2010; 24 Ozlugedik (10.1016/j.jbiomech.2012.11.022_bib47) 2008; 118 Gambaruto (10.1016/j.jbiomech.2012.11.022_bib17) 2009; 59 Doorly (10.1016/j.jbiomech.2012.11.022_bib14) 2011; 366 Kim (10.1016/j.jbiomech.2012.11.022_bib29) 2002; 13 Kim (10.1016/j.jbiomech.2012.11.022_bib30) 2002; 26 Segal (10.1016/j.jbiomech.2012.11.022_bib67) 2008; 36 10.1016/j.jbiomech.2012.11.022_bib32 Lee (10.1016/j.jbiomech.2012.11.022_bib35) 2010; 172 Wen (10.1016/j.jbiomech.2012.11.022_bib60) 2008; 161 |
References_xml | – start-page: S270 year: 2006 ident: bib12 article-title: Nasal airflow: computational and experimental modeling publication-title: 5th World Congress of Biomechanics, Munich – volume: 107 start-page: 1195 year: 2009 end-page: 1203 ident: bib22 article-title: Computational modeling of flow and gas exchange in models of the human maxillary sinus publication-title: Journal of Applied Physiology – volume: 26 start-page: 566 year: 2002 end-page: 569 ident: bib30 article-title: Particle image velocimetry measurements in nasal airflow publication-title: Transactions of the KSME B – volume: 15 start-page: 1090 year: 2004 end-page: 1096 ident: bib31 article-title: An investigation on airflow in disordered nasal cavity and its corrected models by tomographic PIV publication-title: Measurement Science and Technology – volume: 13 start-page: 305 year: 2011 end-page: 310 ident: bib66 article-title: Toward persionalized nasal surgery using computational fluid dynamics publication-title: Archives of Facial Plastic Surgery – volume: 335–344 year: 1998 ident: bib2 publication-title: Head and Neck Surgery: Otolaryngology – volume: 130 start-page: 324 year: 2004 end-page: 328 ident: bib21 article-title: Time course in the relief of nasal blockage after septal and turbinate surgery publication-title: Archives of Otolaryngology-Head and Neck Surgery – volume: 172 start-page: 136 year: 2010 end-page: 146 ident: bib35 article-title: Unsteady flow characteristics through a human nasal airway publication-title: Respiration Physiology and Neurobiology – volume: 46 start-page: 1161 year: 2008 end-page: 1167 ident: bib61 article-title: Numerical flow simulation in the post-endoscopic sinus surgery nasal cavity publication-title: Medical and Biological Engineering and Computing – volume: 33 start-page: 61 year: 1995 end-page: 65 ident: bib41 article-title: Prevalence study of nasal septal deformities in Korea: results of a nation-wide survey publication-title: Rhinology – volume: 59 start-page: 1259 year: 2009 end-page: 1283 ident: bib17 article-title: Modeling nasal airflow using a Fourier descriptor representation of geometry publication-title: International Journal for Numerical Methods in Fluids – volume: 22 start-page: 47 year: 1997 end-page: 51 ident: bib26 article-title: A study of the CT findings in 100 patients with rhinosinusitis and 100 controls publication-title: Clinical Otolaryngology and Allied Sciences – volume: 24 start-page: 46 year: 2010 end-page: 53 ident: bib18 article-title: Septal deviation and nasal resistance: an investigation using virtual surgery and computational fluid dynamics publication-title: American Journal of Rhinology and Allergy – volume: 7 start-page: 515 year: 2010 end-page: 527 ident: bib55 article-title: Inflow boundary profile prescription for numerical simulation of nasal airflow publication-title: Journal of the Royal Society, Interface – reference: Heo, G.E., Chang, J.W., Seung-kyu Chung, S.K., Kim, S.K., 2011. Experimental and Numerical Flow Visualization on Detailed Flow Field in the Post-surgery Models for the Simulation of the Middle Turbinectomy, in: Proceedings of the KSME Spring Annual Meeting. – reference: Tingelhoff, K., Moral, A.I., Kunkel, M.E., Rilk, M., Wagner, I., Eichhorn, K.W.G., Wahl, F.M., Bootz, F., 2007. Comparison between Manual and Semi-automatic Segmentation of Nasal Cavity and Paranasal Sinuses from CT Images, Conference of the IEEE EMBS 2007, pp. 5505–5508 . – reference: Vogt, K., Jalowayski, A.A., 2010. 4-Phase-Rhenomanometry Basics and Practices 2010, Rhinology, Suppl. 21, Standardization Committee on the Objective Assessment of the Upper Airway, 5–6 . – volume: 181 start-page: 335 year: 2012 end-page: 345 ident: bib1 article-title: Micro- and nanoparticle deposition in human nasal passage pre- and postvitual maxillary sinus endoscopic surgery publication-title: Respiration Physiology and Neurobiology – volume: 11 start-page: 27 year: 2000 end-page: 30 ident: bib34 article-title: Endoscopic sinus surgery: Partial middle turbinectomy publication-title: Journal of Clinical Otolaryngology – volume: 104 start-page: 480 year: 1991 end-page: 483 ident: bib5 article-title: CT evaluation of the paranasal sinuses in symptomatic and asymptomatic populations publication-title: Otolaryngology-Head and Neck Surgery – volume: 13 start-page: 155 year: 2002 end-page: 159 ident: bib29 article-title: Basic surgical technique for endoscopic sinus surgery publication-title: Journal of Clinical Otolaryngology – volume: 48 start-page: 394 year: 2010 end-page: 400 ident: bib7 article-title: Aerodynamic effects of inferior turbinate surgery on nasal airflow–a computational fluid dynamics model publication-title: Rhinology – volume: 163 start-page: 121 year: 2008 end-page: 127 ident: bib16 article-title: Air-conditioning in the human nasal cavity publication-title: Respiration Physiology and Neurobiology – volume: 36 start-page: 1870 year: 2008 end-page: 1882 ident: bib67 article-title: Effects of differences in nasal anatomy on airflow distribution: a comparison of four individuals at rest publication-title: Annals of Biomedical Engineering – volume: 107 start-page: 472 year: 1997 end-page: 477 ident: bib39 article-title: Recent trends in utilization of procedures in otolaryngology-head and neck surgery publication-title: Laryngoscope – volume: 43 start-page: 24 year: 2005 end-page: 28 ident: bib37 article-title: Numerical simulation of intranasal air flow and temperature after resection of the turbinates publication-title: Rhinology – reference: Kim, S.K., Chung, S.K., Na, Y., Kim, J.I., 2012. CFD on the Nasal Airflows: Technical Improvements, Diagnosis and Surgery Plan, 1st International Conference on CFD in Medicine and Biology/7th International Biofluid Mechanics Symposium, March 25–30 , Dead Sea, Israel. – volume: 27 start-page: 77 year: 2002 end-page: 80 ident: bib51 article-title: What, if any, is the value of septal surgery? publication-title: Clinical Otolaryngology and Allied Sciences – volume: 22 start-page: 265 year: 1989 end-page: 278 ident: bib52 article-title: The biophysics of nasal airflow publication-title: Otolaryngologic Clinics of North America – volume: 181 start-page: 62 year: 2012 end-page: 73 ident: bib45 article-title: The quantitative effect of an accessory ostium on ventilation of the maxillary sinus publication-title: Respiration Physiology and Neurobiology – volume: 26 start-page: 831 year: 1998 end-page: 839 ident: bib46 article-title: Transport phenomena in the human nasal cavity: a computational model publication-title: Annals of Biomedical Engineering – volume: 163 start-page: 111 year: 2008 end-page: 120 ident: bib8 article-title: Digital particle image velocimetry studies of nasal airflow publication-title: Respiration Physiology and Neurobiology – volume: 172 start-page: 9 year: 2011 end-page: 18 ident: bib42 article-title: Numerical investigation of septal deviation effect on deposition of nano/microparticles in human nasal passage publication-title: Respiration Physiology and Neurobiology – volume: 99 start-page: S829 year: 1997 end-page: 848 ident: bib27 article-title: Sinusitis: bench to bedside: current findings, future directions publication-title: Journal of Allergy and Clinical Immunology – volume: 131 start-page: 1102 year: 2005 end-page: 1107 ident: bib68 article-title: Aerodynamics effects of inferior turbinate reduction computational fluid dynamics simulation publication-title: Archives of Otolaryngology Head and Neck Surgery – volume: 163 start-page: 100 year: 2008 end-page: 110 ident: bib13 article-title: Mechanics of airflow in the human nasal airway publication-title: Respiration Physiology and Neurobiology – volume: 145 start-page: 165 year: 2011 end-page: 170 ident: bib49 article-title: Physical and computational modeling of ventilation of the maxillary sinus publication-title: Otolaryngology-Head and Neck Surgery – volume: 38 start-page: 683 year: 2007 end-page: 700 ident: bib38 article-title: Numerical simulation of aerosol deposition in a 3-D human nasal cavity using RANS, RANS/EIM, and LES publication-title: Journal of Aerosol Science – volume: 126 start-page: 563 year: 2012 end-page: 569 ident: bib43 article-title: Normal nasal patency: problems in obtaining standard reference values for the surgeon publication-title: Journal of Laryngology and Otology – volume: 11 start-page: 416 year: 2009 end-page: 419 ident: bib50 article-title: Measuring outcomes in nasal surgery publication-title: Archives of Facial Plastic Surgery – volume: 71 start-page: 468 year: 1992 end-page: 471 ident: bib19 article-title: Experimentelle untersuchung der strombahnen in der nasenhaupthoehle des menschen am nasen-modell publication-title: Laryngo-Rhino-Otologie – volume: 32 start-page: 369 year: 2005 end-page: 374 ident: bib33 article-title: Long term results following nasal septal surgery. Focus on patients' satisfaction publication-title: Auris, Nasus, Larynx – year: 1982 ident: bib48 publication-title: The Nose: Upper Airway Physiology and the Atmospheric Environment – volume: 125 start-page: 30 year: 2011 end-page: 37 ident: bib69 article-title: Use of computational fluid dynamics to study the influence of the uncinate process on nasal airflow publication-title: The Journal of Laryngology and Otology – volume: 42 start-page: 1553 year: 2009 end-page: 1559 ident: bib40 article-title: Validation of computational fluid dynamics methodology used for human upper airway flow simulation publication-title: Journal of Biomechanics – volume: 29 start-page: 91 year: 2000 end-page: 95 ident: bib23 article-title: Particle image velocimetry measurements in complex geometries publication-title: Experiments in Fluids – volume: 118 start-page: 330 year: 2008 end-page: 334 ident: bib47 article-title: Numerical study of the aerodynamic effects of septoplasty and partial lateral turbinectomy publication-title: Laryngoscope – volume: 180 start-page: 289 year: 2012 end-page: 297 ident: bib44 article-title: Effects of single-sided inferior turbinectomy on nasal airflow characteristics publication-title: Respiration Physiology and Neurobiology – volume: 120 start-page: 916 year: 2006 end-page: 920 ident: bib54 article-title: Is there objective evidence that septal surgery improves nasal airflow? publication-title: Journal of Laryngology and Otology – start-page: 1 year: 2010 end-page: 8 ident: bib62 article-title: Use of computational fluid dynamics to study the influence of the uncinate process on nasal airflow publication-title: Journal of Laryngology and Otology – volume: 106 start-page: 784 year: 2009 end-page: 795 ident: bib65 article-title: Creation of a standardized geometry of the human nasal cavity publication-title: Journal of Applied Physiology – volume: 119 start-page: 1730 year: 2009 end-page: 1736 ident: bib6 article-title: Assessment of septal deviation effects on nasal air flow: a computational fluid dynamics model publication-title: Laryngoscope – volume: 366 start-page: 3225 year: 2011 end-page: 3246 ident: bib14 article-title: Nasal architecture: form and flow publication-title: Philosophical Transactions of the Royal Society A – volume: 161 start-page: 125 year: 2008 end-page: 135 ident: bib60 article-title: Numerical simulations for detailed airflow dynamics in a human nasal cavity publication-title: Respiration Physiology and Neurobiology – volume: 3 start-page: 201 year: 1989 end-page: 203 ident: bib25 article-title: Selection with and without rhinomanometry of patients for septoplasity publication-title: American Journal of Rhinology – volume: 48 start-page: 139 year: 2010 end-page: 145 ident: bib36 article-title: A review of the implications of computational fluid dynamic studies on nasal airflow and physiology publication-title: Rhinology – volume: 11 start-page: 73 year: 2000 end-page: 77 ident: bib63 article-title: Creation of large maxillary sinus ostium: a modified antrostomy technique removing perpendicular plate of palatine bone for improved patency publication-title: Journal of Clinical Otolaryngology – volume: 33 start-page: 61 year: 1995 ident: 10.1016/j.jbiomech.2012.11.022_bib41 article-title: Prevalence study of nasal septal deformities in Korea: results of a nation-wide survey publication-title: Rhinology – volume: 125 start-page: 30 year: 2011 ident: 10.1016/j.jbiomech.2012.11.022_bib69 article-title: Use of computational fluid dynamics to study the influence of the uncinate process on nasal airflow publication-title: The Journal of Laryngology and Otology doi: 10.1017/S002221511000191X – volume: 48 start-page: 394 year: 2010 ident: 10.1016/j.jbiomech.2012.11.022_bib7 article-title: Aerodynamic effects of inferior turbinate surgery on nasal airflow–a computational fluid dynamics model publication-title: Rhinology doi: 10.4193/Rhino09.196 – ident: 10.1016/j.jbiomech.2012.11.022_bib20 doi: 10.5407/JKSV.2011.9.3.065 – volume: 26 start-page: 566 issue: 6 year: 2002 ident: 10.1016/j.jbiomech.2012.11.022_bib30 article-title: Particle image velocimetry measurements in nasal airflow publication-title: Transactions of the KSME B – year: 1982 ident: 10.1016/j.jbiomech.2012.11.022_bib48 – volume: 3 start-page: 201 year: 1989 ident: 10.1016/j.jbiomech.2012.11.022_bib25 article-title: Selection with and without rhinomanometry of patients for septoplasity publication-title: American Journal of Rhinology doi: 10.2500/105065889782009589 – volume: 38 start-page: 683 year: 2007 ident: 10.1016/j.jbiomech.2012.11.022_bib38 article-title: Numerical simulation of aerosol deposition in a 3-D human nasal cavity using RANS, RANS/EIM, and LES publication-title: Journal of Aerosol Science doi: 10.1016/j.jaerosci.2007.05.003 – volume: 22 start-page: 47 year: 1997 ident: 10.1016/j.jbiomech.2012.11.022_bib26 article-title: A study of the CT findings in 100 patients with rhinosinusitis and 100 controls publication-title: Clinical Otolaryngology and Allied Sciences doi: 10.1046/j.1365-2273.1997.00862.x – volume: 120 start-page: 916 year: 2006 ident: 10.1016/j.jbiomech.2012.11.022_bib54 article-title: Is there objective evidence that septal surgery improves nasal airflow? publication-title: Journal of Laryngology and Otology doi: 10.1017/S0022215106003410 – volume: 13 start-page: 155 year: 2002 ident: 10.1016/j.jbiomech.2012.11.022_bib29 article-title: Basic surgical technique for endoscopic sinus surgery publication-title: Journal of Clinical Otolaryngology – volume: 22 start-page: 265 issue: 2 year: 1989 ident: 10.1016/j.jbiomech.2012.11.022_bib52 article-title: The biophysics of nasal airflow publication-title: Otolaryngologic Clinics of North America doi: 10.1016/S0030-6665(20)31438-9 – volume: 11 start-page: 416 issue: 6 year: 2009 ident: 10.1016/j.jbiomech.2012.11.022_bib50 article-title: Measuring outcomes in nasal surgery publication-title: Archives of Facial Plastic Surgery doi: 10.1001/archfacial.2009.86 – volume: 181 start-page: 62 year: 2012 ident: 10.1016/j.jbiomech.2012.11.022_bib45 article-title: The quantitative effect of an accessory ostium on ventilation of the maxillary sinus publication-title: Respiration Physiology and Neurobiology doi: 10.1016/j.resp.2012.01.013 – volume: 131 start-page: 1102 year: 2005 ident: 10.1016/j.jbiomech.2012.11.022_bib68 article-title: Aerodynamics effects of inferior turbinate reduction computational fluid dynamics simulation publication-title: Archives of Otolaryngology Head and Neck Surgery doi: 10.1001/archotol.131.12.1102 – volume: 104 start-page: 480 year: 1991 ident: 10.1016/j.jbiomech.2012.11.022_bib5 article-title: CT evaluation of the paranasal sinuses in symptomatic and asymptomatic populations publication-title: Otolaryngology-Head and Neck Surgery doi: 10.1177/019459989110400409 – volume: 119 start-page: 1730 year: 2009 ident: 10.1016/j.jbiomech.2012.11.022_bib6 article-title: Assessment of septal deviation effects on nasal air flow: a computational fluid dynamics model publication-title: Laryngoscope doi: 10.1002/lary.20585 – volume: 11 start-page: 73 year: 2000 ident: 10.1016/j.jbiomech.2012.11.022_bib63 article-title: Creation of large maxillary sinus ostium: a modified antrostomy technique removing perpendicular plate of palatine bone for improved patency publication-title: Journal of Clinical Otolaryngology – volume: 32 start-page: 369 year: 2005 ident: 10.1016/j.jbiomech.2012.11.022_bib33 article-title: Long term results following nasal septal surgery. Focus on patients' satisfaction publication-title: Auris, Nasus, Larynx doi: 10.1016/j.anl.2005.05.011 – volume: 46 start-page: 1161 year: 2008 ident: 10.1016/j.jbiomech.2012.11.022_bib61 article-title: Numerical flow simulation in the post-endoscopic sinus surgery nasal cavity publication-title: Medical and Biological Engineering and Computing doi: 10.1007/s11517-008-0384-1 – volume: 366 start-page: 3225 year: 2011 ident: 10.1016/j.jbiomech.2012.11.022_bib14 article-title: Nasal architecture: form and flow publication-title: Philosophical Transactions of the Royal Society A doi: 10.1098/rsta.2008.0083 – volume: 130 start-page: 324 year: 2004 ident: 10.1016/j.jbiomech.2012.11.022_bib21 article-title: Time course in the relief of nasal blockage after septal and turbinate surgery publication-title: Archives of Otolaryngology-Head and Neck Surgery doi: 10.1001/archotol.130.3.324 – volume: 42 start-page: 1553 issue: 10 year: 2009 ident: 10.1016/j.jbiomech.2012.11.022_bib40 article-title: Validation of computational fluid dynamics methodology used for human upper airway flow simulation publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2009.03.035 – volume: 126 start-page: 563 issue: 6 year: 2012 ident: 10.1016/j.jbiomech.2012.11.022_bib43 article-title: Normal nasal patency: problems in obtaining standard reference values for the surgeon publication-title: Journal of Laryngology and Otology doi: 10.1017/S002221511200045X – volume: 99 start-page: S829 year: 1997 ident: 10.1016/j.jbiomech.2012.11.022_bib27 article-title: Sinusitis: bench to bedside: current findings, future directions publication-title: Journal of Allergy and Clinical Immunology – volume: 48 start-page: 139 issue: 2 year: 2010 ident: 10.1016/j.jbiomech.2012.11.022_bib36 article-title: A review of the implications of computational fluid dynamic studies on nasal airflow and physiology publication-title: Rhinology – volume: 335–344 year: 1998 ident: 10.1016/j.jbiomech.2012.11.022_bib2 – volume: 29 start-page: 91 year: 2000 ident: 10.1016/j.jbiomech.2012.11.022_bib23 article-title: Particle image velocimetry measurements in complex geometries publication-title: Experiments in Fluids doi: 10.1007/s003480050430 – volume: 13 start-page: 305 issue: 5 year: 2011 ident: 10.1016/j.jbiomech.2012.11.022_bib66 article-title: Toward persionalized nasal surgery using computational fluid dynamics publication-title: Archives of Facial Plastic Surgery doi: 10.1001/archfacial.2011.18 – volume: 71 start-page: 468 year: 1992 ident: 10.1016/j.jbiomech.2012.11.022_bib19 article-title: Experimentelle untersuchung der strombahnen in der nasenhaupthoehle des menschen am nasen-modell publication-title: Laryngo-Rhino-Otologie doi: 10.1055/s-2007-997334 – ident: 10.1016/j.jbiomech.2012.11.022_bib56 doi: 10.1109/IEMBS.2007.4353592 – volume: 172 start-page: 9 year: 2011 ident: 10.1016/j.jbiomech.2012.11.022_bib42 article-title: Numerical investigation of septal deviation effect on deposition of nano/microparticles in human nasal passage publication-title: Respiration Physiology and Neurobiology doi: 10.1016/j.resp.2011.02.011 – volume: 163 start-page: 100 year: 2008 ident: 10.1016/j.jbiomech.2012.11.022_bib13 article-title: Mechanics of airflow in the human nasal airway publication-title: Respiration Physiology and Neurobiology doi: 10.1016/j.resp.2008.07.027 – volume: 59 start-page: 1259 year: 2009 ident: 10.1016/j.jbiomech.2012.11.022_bib17 article-title: Modeling nasal airflow using a Fourier descriptor representation of geometry publication-title: International Journal for Numerical Methods in Fluids doi: 10.1002/fld.1866 – volume: 27 start-page: 77 year: 2002 ident: 10.1016/j.jbiomech.2012.11.022_bib51 article-title: What, if any, is the value of septal surgery? publication-title: Clinical Otolaryngology and Allied Sciences doi: 10.1046/j.1365-2273.2002.00531.x – volume: 145 start-page: 165 year: 2011 ident: 10.1016/j.jbiomech.2012.11.022_bib49 article-title: Physical and computational modeling of ventilation of the maxillary sinus publication-title: Otolaryngology-Head and Neck Surgery doi: 10.1177/0194599811401202 – volume: 181 start-page: 335 year: 2012 ident: 10.1016/j.jbiomech.2012.11.022_bib1 article-title: Micro- and nanoparticle deposition in human nasal passage pre- and postvitual maxillary sinus endoscopic surgery publication-title: Respiration Physiology and Neurobiology doi: 10.1016/j.resp.2012.03.002 – volume: 7 start-page: 515 year: 2010 ident: 10.1016/j.jbiomech.2012.11.022_bib55 article-title: Inflow boundary profile prescription for numerical simulation of nasal airflow publication-title: Journal of the Royal Society, Interface doi: 10.1098/rsif.2009.0306 – volume: 172 start-page: 136 year: 2010 ident: 10.1016/j.jbiomech.2012.11.022_bib35 article-title: Unsteady flow characteristics through a human nasal airway publication-title: Respiration Physiology and Neurobiology doi: 10.1016/j.resp.2010.05.010 – volume: 36 start-page: 1870 issue: 11 year: 2008 ident: 10.1016/j.jbiomech.2012.11.022_bib67 article-title: Effects of differences in nasal anatomy on airflow distribution: a comparison of four individuals at rest publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-008-9556-2 – volume: 163 start-page: 121 year: 2008 ident: 10.1016/j.jbiomech.2012.11.022_bib16 article-title: Air-conditioning in the human nasal cavity publication-title: Respiration Physiology and Neurobiology doi: 10.1016/j.resp.2008.05.002 – volume: 180 start-page: 289 year: 2012 ident: 10.1016/j.jbiomech.2012.11.022_bib44 article-title: Effects of single-sided inferior turbinectomy on nasal airflow characteristics publication-title: Respiration Physiology and Neurobiology doi: 10.1016/j.resp.2011.12.005 – ident: 10.1016/j.jbiomech.2012.11.022_bib58 – volume: 43 start-page: 24 year: 2005 ident: 10.1016/j.jbiomech.2012.11.022_bib37 article-title: Numerical simulation of intranasal air flow and temperature after resection of the turbinates publication-title: Rhinology – volume: 15 start-page: 1090 year: 2004 ident: 10.1016/j.jbiomech.2012.11.022_bib31 article-title: An investigation on airflow in disordered nasal cavity and its corrected models by tomographic PIV publication-title: Measurement Science and Technology doi: 10.1088/0957-0233/15/6/007 – volume: 106 start-page: 784 year: 2009 ident: 10.1016/j.jbiomech.2012.11.022_bib65 article-title: Creation of a standardized geometry of the human nasal cavity publication-title: Journal of Applied Physiology doi: 10.1152/japplphysiol.90376.2008 – volume: 118 start-page: 330 year: 2008 ident: 10.1016/j.jbiomech.2012.11.022_bib47 article-title: Numerical study of the aerodynamic effects of septoplasty and partial lateral turbinectomy publication-title: Laryngoscope doi: 10.1097/MLG.0b013e318159aa26 – volume: 161 start-page: 125 year: 2008 ident: 10.1016/j.jbiomech.2012.11.022_bib60 article-title: Numerical simulations for detailed airflow dynamics in a human nasal cavity publication-title: Respiration Physiology and Neurobiology doi: 10.1016/j.resp.2008.01.012 – volume: 107 start-page: 1195 issue: 4 year: 2009 ident: 10.1016/j.jbiomech.2012.11.022_bib22 article-title: Computational modeling of flow and gas exchange in models of the human maxillary sinus publication-title: Journal of Applied Physiology doi: 10.1152/japplphysiol.91615.2008 – start-page: S270 year: 2006 ident: 10.1016/j.jbiomech.2012.11.022_bib12 article-title: Nasal airflow: computational and experimental modeling publication-title: 5th World Congress of Biomechanics, Munich – start-page: 1 year: 2010 ident: 10.1016/j.jbiomech.2012.11.022_bib62 article-title: Use of computational fluid dynamics to study the influence of the uncinate process on nasal airflow publication-title: Journal of Laryngology and Otology – volume: 24 start-page: 46 issue: 1 year: 2010 ident: 10.1016/j.jbiomech.2012.11.022_bib18 article-title: Septal deviation and nasal resistance: an investigation using virtual surgery and computational fluid dynamics publication-title: American Journal of Rhinology and Allergy doi: 10.2500/ajra.2010.24.3428 – volume: 107 start-page: 472 issue: 4 year: 1997 ident: 10.1016/j.jbiomech.2012.11.022_bib39 article-title: Recent trends in utilization of procedures in otolaryngology-head and neck surgery publication-title: Laryngoscope doi: 10.1097/00005537-199704000-00009 – volume: 11 start-page: 27 year: 2000 ident: 10.1016/j.jbiomech.2012.11.022_bib34 article-title: Endoscopic sinus surgery: Partial middle turbinectomy publication-title: Journal of Clinical Otolaryngology – volume: 163 start-page: 111 year: 2008 ident: 10.1016/j.jbiomech.2012.11.022_bib8 article-title: Digital particle image velocimetry studies of nasal airflow publication-title: Respiration Physiology and Neurobiology doi: 10.1016/j.resp.2008.07.023 – volume: 26 start-page: 831 year: 1998 ident: 10.1016/j.jbiomech.2012.11.022_bib46 article-title: Transport phenomena in the human nasal cavity: a computational model publication-title: Annals of Biomedical Engineering doi: 10.1114/1.108 – ident: 10.1016/j.jbiomech.2012.11.022_bib32 |
SSID | ssj0007479 |
Score | 2.3647323 |
SecondaryResourceType | review_article |
Snippet | Respiratory physiology and pathology are strongly dependent on the airflow inside the nasal cavity. However, the nasal anatomy, which is characterized by... Abstract Respiratory physiology and pathology are strongly dependent on the airflow inside the nasal cavity. However, the nasal anatomy, which is characterized... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 299 |
SubjectTerms | 3D modeling Biomedical flow CFD Computer Simulation Humans Imaging, Three-Dimensional - methods Models, Biological Nasal cavity Nasal Cavity - pathology Nasal Cavity - physiopathology Nasal Cavity - surgery Nose Physical Medicine and Rehabilitation Physiology Pulmonary Ventilation Simulation Software Studies |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VPSA4INjyWCjISIhbduNH4g23amFVIRV6oFJvlhPb0q7abNVsqbjw25lxnG0RqkBwjWM5Gs-MZ-L55gN4iylHUzhVYuSW55kqKjSpPNQZBgt15WcyeE0A56PP5eGJ-nRanO7AfMDCUFll8v29T4_eOj2ZJmlOL5ZLwviitdE1IGXFWlFPUKU0afnkx02ZB4bLqcyDZ_T2LZTwarKKGPd4KcHFhLp5CnHXAXVXABoPosUjeJgiSHbQf-Rj2PHtCPYOWsyez7-zdyzWdMaf5SN4cKvd4AjuHaWL9D04Pu77qTJCWlK1EJsvPrBIi9OxdWCt7XANu7wMZ-vr9-zLN3Ip_pqGes7pjtnWsWagYumewMni49f5YZbIFbKm0GKTSSK0LUTtrKokrytM07zIdRMCyVNa7r0n2CqXnMCyNnhMrTQRKLiCO-vkU9ht161_DkzLUKNT9Y3VUikfbChnTonGzVSQTqoxFINETZM6jxMBxpkZSsxWZtgJQzuBaYnBnRjDdDvvou-98ccZetgwMyBL0RcaPB7-babvkkl3hptOmNz8pnZjqLYzf9Hcv1p1f9Aqc7MQSr3EsJGG32yH0erpKse2fn1F72giYixJuM96bdyKCGPkkqK2F__xYS_hvoi8Hzzjs33Y3Vxe-VcYfW3q19G8fgL1dypu priority: 102 providerName: Elsevier |
Title | Patient specific CFD models of nasal airflow: Overview of methods and challenges |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929012006744 https://www.clinicalkey.es/playcontent/1-s2.0-S0021929012006744 https://dx.doi.org/10.1016/j.jbiomech.2012.11.022 https://www.ncbi.nlm.nih.gov/pubmed/23261244 https://www.proquest.com/docview/1286699322 https://www.proquest.com/docview/1273696634 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYJiE4TNDBKIzKSIhbuvgjccMFlbGqgFYqxKTeLCe2JaqRjKXbxIW_nfcSJ-wyQJx6SB0rfs_Pv-f38SPkJbgcRWJlCsgtjiOZZLClYp9HABbyzE2EdwoLnE8W6fxUflglq3DhVoe0ys4mNobaVgXekR-CHU1TOEw5f3P-PULWKIyuBgqNLbKDrctQq9Wqd7iwN3xI8WARwID4RoXwerxu6tubgATjY-zkyflth9Nt4LM5hGYPyG5Aj3TaivshuePKAdmbluA5f_tBX9Emn7O5KB-Q-zdaDQ7I3ZMQRN8jy2XbS5VilSVmCtGj2TvaUOLUtPK0NDXMYb5e-LPq-jX9dIXmxF3jo5ZvuqamtLToaFjqR-R0dvzlaB4FYoWoSBTfRALJbBOeWyMzwfIMXDTHY1V4zzBXzTDnHJasMsGwUNZ4B26VQvIEmzBrrHhMtsuqdE8IVcLnYFBdYZSQ0nnj04mVvLAT6YUVckiSbkV1EbqOI_nFme7Sy9a6k4RGSYBLokESQ3LYjztv-278dYTqBKa7qlKwgxqOhv8b6eqwnWvNdM11rDGyzVCRcJlSJeHrsn5kQCwtEvmnWQ86rdK_J-q1fEhe9I9hx2MYx5SuusT_KCRhTHFx91tt7JcI8HGKiO3pn1_-jNzjDa0Hi9jkgGxvLi7dcwBXm3xEtsY_2ajZRyOyM33_cb6A37fHi-XnXy_8JEA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE4INjyWChgJOCWNnaceIOEUNWy2tJu6aGV9mac2JZYlaQ0W1b9U_xGZvKilwJC6jnrWOsZz3yTeXwArzHkyGMrE0RuYRjIOMUrFfosQLCQpW4UeaeowXl6kEyO5adZPFuBn10vDJVVdjaxNtS2zOkb-Sba0SRBZyrEh9PvAbFGUXa1o9Bo1GLPXSwxZKve7-6gfN8IMf54tD0JWlaBII-VWAQRMbnGIrNGphHPUoxPnAhV7j2nQi3DnXPUr8kjTl2ixjuMKRQxB9iYW2MjfO8NuImON6RgT836AI9m0bclJTxA2BFe6kieb8zrfvo6AcLFBk0OFeIqZ3gV2K2d3vg-3GvRKttq1OsBrLhiAGtbBUbq3y7YW1bXj9Yf5gdw99JowwHcmrZJ-zU4PGxmtzLq6qTKJLY93mE1BU_FSs8KU-Ee5uuZPymX79jnH2S-3JIeNfzWFTOFZXlH-1I9hONrOfJHsFqUhXsCTEU-QwPucqMiKZ03PhlZKXI7kj6ykRxC3J2oztsp50S2caK7cra57iShSRIYAmmUxBA2-3WnzZyPv65QncB018WKdlejK_q_la5qzUelua6EDjVl0jkpEh1ToiT-u7Rf2SKkBvn8067rnVbp3xv1t2oIr_rHaGEobWQKV57TbxSRPiZ0uI8bbeyPCPF4Qgjx6Z9f_hJuT46m-3p_92DvGdwRNaUID_hoHVYXZ-fuOQK7Rfaivk0Mvlz39f0F4x9bcQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anTTBA4KOS2GAkYC3rLHjJA0SQmNdtTFWKsSkvRkntqVVWzKWjmp_jV_HObmxlwFC2nPqWPW5-Ds5lw_gFYYcWWhkhMjN9z0ZJmhSvks9BAtpYkeBszE1OB9Mo91D-fEoPFqBn20vDJVVtj6xctSmyOgb-RD9aBThZSrE0DVlEbPx5P3Zd48YpCjT2tJp1Cqyby-XGL6V7_bGKOvXQkx2vm7veg3DgJeFsVh4AbG6hiI1WiYBTxOMVazw48w5TkVbmltrqXeTB5w6RrWzGF_ExCJgQm60CfC9t2A1pqioB6sfdqazL909gEC9KTDhHoIQ_0p_8nxzXnXXV-kQLjZpjqgQ112N10Hf6gqc3IO7DXZlW7Wy3YcVm_dhfSvHuP30kr1hVTVp9Zm-D3euDDrsw9pBk8Jfh9msnuTKqMeT6pTY9mTMKkKekhWO5brEPfTxuTsplm_Z5x_kzOySHtVs1yXTuWFZSwJTPoDDGzn0h9DLi9w-BhYHLkV3bjMdB1Jap100MlJkZiRdYAI5gLA9UZU1M8-JeuNEtcVtc9VKQpEkMCBSKIkBDLt1Z_XUj7-uiFuBqbanFb2wwovp_1basnEmpeKqFMpXlFfnpEh0TFEs8d8l3coGL9U46J923Wi1Sv3eqLOxAbzsHqO_oSSSzm1xQb-JiQIyosN9VGtjd0SIziPCi0_-_PIXsIamqz7tTfefwm1R8Ytwj482oLc4v7DPEOUt0ueNOTH4dtMW_AtHc2EM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patient+specific+CFD+models+of+nasal+airflow%3A+Overview+of+methods+and+challenges&rft.jtitle=Journal+of+biomechanics&rft.au=Kim%2C+Sung+Kyun&rft.au=Na%2C+Yang&rft.au=Kim%2C+Jee-In&rft.au=Chung%2C+Seung-Kyu&rft.date=2013-01-18&rft.pub=Elsevier+Limited&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=46&rft.issue=2&rft.spage=299&rft_id=info:doi/10.1016%2Fj.jbiomech.2012.11.022&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2889429051 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929012X00186%2Fcov150h.gif |