Inter- and intra-species intercropping of barley cultivars and legume species, as affected by soil phosphorus availability
Aims Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability. Methods Four barley cultivars (Hordeum vul...
Saved in:
Published in | Plant and soil Vol. 427; no. 1/2; pp. 125 - 138 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer
01.06.2018
Springer International Publishing Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aims Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability. Methods Four barley cultivars (Hordeum vulgare L.) and three legume species (Trifolium subterreneum, Ornithopus sativus and Medicago truncatula) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Aboveground biomass and shoot P were measured. Results Barley-legume intercrops had 10–70% greater P accumulation and 0–40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments. Conclusions Barley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P. |
---|---|
AbstractList | AIMS: Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability. METHODS: Four barley cultivars (Hordeum vulgare L.) and three legume species (Trifolium subterreneum, Ornithopus sativus and Medicago truncatula) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Above-ground biomass and shoot P were measured. RESULTS: Barley-legume intercrops had 10–70% greater P accumulation and 0–40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments. CONCLUSIONS: Barley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P. Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability.AIMSIntercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability.Four barley cultivars (Hordeum vulgare L.) and three legume species (Trifolium subterreneum, Ornithopus sativus and Medicago truncatula) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Above-ground biomass and shoot P were measured.METHODSFour barley cultivars (Hordeum vulgare L.) and three legume species (Trifolium subterreneum, Ornithopus sativus and Medicago truncatula) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Above-ground biomass and shoot P were measured.Barley-legume intercrops had 10-70% greater P accumulation and 0-40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments.RESULTSBarley-legume intercrops had 10-70% greater P accumulation and 0-40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments.Barley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P.CONCLUSIONSBarley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P. Aims Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability. Methods Four barley cultivars ( Hordeum vulgare L.) and three legume species ( Trifolium subterreneum, Ornithopus sativus and Medicago truncatula ) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Above-ground biomass and shoot P were measured. Results Barley-legume intercrops had 10–70% greater P accumulation and 0–40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments. Conclusions Barley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P. AimsIntercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability.MethodsFour barley cultivars (Hordeum vulgare L.) and three legume species (Trifolium subterreneum, Ornithopus sativus and Medicago truncatula) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Above-ground biomass and shoot P were measured.ResultsBarley-legume intercrops had 10–70% greater P accumulation and 0–40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments.ConclusionsBarley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P. Aims Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability. Methods Four barley cultivars (Hordeum vulgare L.) and three legume species (Trifolium subterreneum, Ornithopus sativus and Medicago truncatula) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Aboveground biomass and shoot P were measured. Results Barley-legume intercrops had 10–70% greater P accumulation and 0–40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments. Conclusions Barley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P. Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability. Four barley cultivars ( L.) and three legume species ( and ) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Above-ground biomass and shoot P were measured. Barley-legume intercrops had 10-70% greater P accumulation and 0-40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments. Barley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P. |
Audience | Academic |
Author | Shand, Charles A. Giles, Courtney D. Cooper, Patricia Stutter, Marc I. Zhang, Hao Darch, Tegan Lumsdon, David G. Blackwell, Martin S. A. Wearing, Catherine Haygarth, Philip M. Brown, Lawrie K. Menezes-Blackburn, Daniel George, Timothy S. Wendler, Renate Mezeli, Malika M. |
Author_xml | – sequence: 1 givenname: Tegan surname: Darch fullname: Darch, Tegan – sequence: 2 givenname: Courtney D. surname: Giles fullname: Giles, Courtney D. – sequence: 3 givenname: Martin S. A. surname: Blackwell fullname: Blackwell, Martin S. A. – sequence: 4 givenname: Timothy S. surname: George fullname: George, Timothy S. – sequence: 5 givenname: Lawrie K. surname: Brown fullname: Brown, Lawrie K. – sequence: 6 givenname: Daniel surname: Menezes-Blackburn fullname: Menezes-Blackburn, Daniel – sequence: 7 givenname: Charles A. surname: Shand fullname: Shand, Charles A. – sequence: 8 givenname: Marc I. surname: Stutter fullname: Stutter, Marc I. – sequence: 9 givenname: David G. surname: Lumsdon fullname: Lumsdon, David G. – sequence: 10 givenname: Malika M. surname: Mezeli fullname: Mezeli, Malika M. – sequence: 11 givenname: Renate surname: Wendler fullname: Wendler, Renate – sequence: 12 givenname: Hao surname: Zhang fullname: Zhang, Hao – sequence: 13 givenname: Catherine surname: Wearing fullname: Wearing, Catherine – sequence: 14 givenname: Patricia surname: Cooper fullname: Cooper, Patricia – sequence: 15 givenname: Philip M. surname: Haygarth fullname: Haygarth, Philip M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30996483$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktr3DAUhUVJaSZpf0A3xVAKXdSp3rY3hRD6CAS6yaI7IcvXEw0ayZXsgZlfX7mepmkWKUYYSee7V0c6Z-jEBw8IvSb4gmBcfUyEEMxLTKqSMSnKwzO0IqJipcBMnqAVxoyWuGp-nKKzlDZ4nhP5Ap0y3DSS12yFDtd-hFgW2neF9WPUZRrAWEjzDKKJYRisXxehL1odHewLM7nR7nRMvxkH62kLxRH6UOi83PdgRuiKdl-kYF0x3IWUR5zy3k5bp1vr7Lh_iZ732iV4dfyfo9svn2-vvpU3379eX13elEZUdCyp6doWt7Squ6YxkoGhpsJ9X4umI0Akl7lfpTklXdPKjlMjoccahMFUCM7O0ael7DC1W-gMzC6dGqLd6rhXQVv17463d2oddkpyVktOc4H3xwIx_JwgjWprkwHntIcwJUUpIYyKpmb_lxJMGKsFkVn69pF0E6bo80UoinktCafV3PtiUa21A2V9H_IRTf462FqT09DbvH4pOKHZrKgz8Oah23ubf148C8giyE-bUoT-XkKwmlOlllSpnCo1p0odMlM9Yowd9WjDfGHWPUnShUy5i19D_OvyKejdAm3SGOLD81GWASqloHVD2S_6KO7l |
CitedBy_id | crossref_primary_10_1007_s00374_022_01633_0 crossref_primary_10_1007_s11104_020_04768_x crossref_primary_10_1007_s42770_019_00089_z crossref_primary_10_1111_eva_13390 crossref_primary_10_1016_j_eja_2024_127504 crossref_primary_10_1007_s11104_021_04935_8 crossref_primary_10_3389_fpls_2021_818327 crossref_primary_10_2139_ssrn_4077055 crossref_primary_10_1007_s11104_024_06540_x crossref_primary_10_1016_j_fcr_2022_108757 crossref_primary_10_3390_agronomy9060314 crossref_primary_10_7717_peerj_11704 crossref_primary_10_3390_agronomy14050901 crossref_primary_10_3390_agriculture10080329 crossref_primary_10_3390_agronomy9030150 crossref_primary_10_1038_s41598_021_95242_w crossref_primary_10_3390_agronomy12102539 crossref_primary_10_1007_s00374_021_01559_z crossref_primary_10_1016_j_rhisph_2021_100337 crossref_primary_10_1016_j_scitotenv_2018_08_272 crossref_primary_10_1007_s11104_021_05104_7 crossref_primary_10_1007_s11368_025_04003_z crossref_primary_10_3390_agronomy11112267 crossref_primary_10_1007_s11104_024_06990_3 crossref_primary_10_1016_j_cj_2020_12_004 crossref_primary_10_1007_s11104_019_04142_6 crossref_primary_10_1007_s11104_018_3675_9 crossref_primary_10_1016_j_fcr_2023_109153 crossref_primary_10_1007_s13593_023_00916_6 crossref_primary_10_1186_s12896_020_00606_1 crossref_primary_10_3390_agronomy14061220 crossref_primary_10_3390_agronomy13030900 crossref_primary_10_1007_s11104_018_3888_y crossref_primary_10_3390_agriculture12020229 crossref_primary_10_7717_peerj_10880 crossref_primary_10_2134_jeq2019_02_0070 crossref_primary_10_1080_03650340_2023_2169915 crossref_primary_10_1080_15427528_2018_1547806 crossref_primary_10_1007_s11104_024_06904_3 crossref_primary_10_3390_plants13162337 crossref_primary_10_1007_s10343_022_00627_0 crossref_primary_10_1038_s41598_021_90436_8 crossref_primary_10_1038_s44264_024_00036_y crossref_primary_10_3389_fpls_2023_1153237 crossref_primary_10_1111_1365_2745_13592 crossref_primary_10_1007_s11104_019_03972_8 crossref_primary_10_1016_j_soilbio_2019_107695 crossref_primary_10_1016_j_farsys_2024_100083 crossref_primary_10_3390_agronomy14061121 crossref_primary_10_1155_2023_8890794 |
Cites_doi | 10.1016/j.tplants.2017.01.005 10.1071/PP99065 10.1023/A:1013351617532 10.1111/nph.12778 10.1007/s11104-015-2770-4 10.1007/s11104-015-2428-2 10.1104/pp.111.175448 10.1111/nph.13132 10.1038/srep18663 10.1038/35083573 10.1007/s11104-009-0209-5 10.1007/s11104-016-2949-3 10.1071/AR05060 10.1016/j.scitotenv.2015.08.048 10.1007/s11104-007-9512-1 10.1021/acs.est.6b03017 10.1023/A:1004356007312 10.1080/01904167.2015.1087032 10.1080/00380768.1991.10415018 10.1007/s00374-009-0411-x 10.1007/s11099-014-0036-7 10.1016/j.soilbio.2012.07.027 10.1111/nph.13043 10.1023/A:1004656205144 10.1007/s11104-015-2610-6 10.1093/aob/mcv182 10.1016/j.soilbio.2004.10.016 10.1080/00103629009368377 10.1016/j.soilbio.2011.11.015 10.1111/j.1365-2745.2008.01476.x 10.1016/j.plantsci.2016.11.002 10.1007/s10705-009-9341-0 10.1080/00288233.1981.10420868 10.1007/s10705-009-9303-6 10.1016/j.soilbio.2014.04.001 10.1007/s11104-016-2974-2 10.1007/s13593-014-0277-7 10.1111/nph.13613 10.1007/s11104-015-2740-x 10.1104/pp.111.175331 10.1111/ele.12080 10.1126/science.1259855 |
ContentType | Journal Article |
Copyright | Springer International Publishing AG, part of Springer Nature 2018 The Author(s) 2017 COPYRIGHT 2018 Springer Plant and Soil is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer International Publishing AG, part of Springer Nature 2018 – notice: The Author(s) 2017 – notice: COPYRIGHT 2018 Springer – notice: Plant and Soil is a copyright of Springer, (2017). All Rights Reserved. |
DBID | C6C AAYXX CITATION NPM 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI RC3 SOI 7S9 L.6 7X8 5PM |
DOI | 10.1007/s11104-017-3365-z |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Agricultural Science Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany Ecology |
EISSN | 1573-5036 |
EndPage | 138 |
ExternalDocumentID | PMC6438642 A541225558 30996483 10_1007_s11104_017_3365_z 26652892 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/K018167/1 funderid: http://dx.doi.org/10.13039/501100000268 – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/C/000I0320 – fundername: ; grantid: BB/K018167/1 |
GroupedDBID | -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2XV 2~F 2~H 30V 4.4 406 408 409 40D 40E 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYZH ABAKF ABBBX ABBHK ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ABXSQ ACAOD ACDTI ACGFS ACHIC ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADZKW AEEJZ AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN B-. B0M BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CCPQU CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JST JZLTJ KDC KOV KPH LAK LK8 LLZTM M0K M4Y M7P MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3A S3B SA0 SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 Y6R YLTOR Z45 ZMTXR ZOVNA ~02 ~8M ~EX ~KM -4W -56 -5G -BR -EM -Y2 1SB 2.D 28- 2P1 2VQ 3SX 3V. 53G 5QI 88A AANXM AARHV AAYTO ABQSL ABULA ACBXY ACKIV ADINQ ADYPR AEBTG AEFIE AFEXP AFFNX AFGCZ AGGDS AIDBO AJBLW BBWZM C6C CAG COF EN4 GQ6 JSODD KOW M0L N2Q NDZJH O9- OVD P0- R4E RNI RZC RZE RZK S1Z S26 S28 SBY SCLPG T16 TEORI WK6 XOL Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG AAYXX ADHKG AGQPQ CITATION ABRTQ NPM PQGLB AEIIB PMFND 7SN 7ST 7T7 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQUKI RC3 SOI 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c572t-2cdbb0b278d99c63ec2c70ff859d1e1646ffe7a421d9b6d42c6ef0ae5c025543 |
IEDL.DBID | C6C |
ISSN | 0032-079X |
IngestDate | Thu Aug 21 18:19:37 EDT 2025 Tue Jul 22 03:31:50 EDT 2025 Tue Aug 05 11:18:17 EDT 2025 Fri Jul 25 19:08:44 EDT 2025 Tue Jun 10 20:44:52 EDT 2025 Mon Jul 21 06:02:43 EDT 2025 Tue Jul 01 01:47:00 EDT 2025 Thu Apr 24 23:10:57 EDT 2025 Fri Feb 21 02:33:26 EST 2025 Thu Jun 19 22:57:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1/2 |
Keywords | Phosphorus availability Barley Phosphorus uptake Yield Plant diversity Legume |
Language | English |
License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c572t-2cdbb0b278d99c63ec2c70ff859d1e1646ffe7a421d9b6d42c6ef0ae5c025543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Responsible Editor: Hans Lambers. |
ORCID | 0000-0003-2367-043X |
OpenAccessLink | https://doi.org/10.1007/s11104-017-3365-z |
PMID | 30996483 |
PQID | 2048614272 |
PQPubID | 54098 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6438642 proquest_miscellaneous_2211325983 proquest_miscellaneous_2101338516 proquest_journals_2048614272 gale_infotracacademiconefile_A541225558 pubmed_primary_30996483 crossref_primary_10_1007_s11104_017_3365_z crossref_citationtrail_10_1007_s11104_017_3365_z springer_journals_10_1007_s11104_017_3365_z jstor_primary_10_2307_26652892 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Netherlands – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationTitleAlternate | Plant Soil |
PublicationYear | 2018 |
Publisher | Springer Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer International Publishing – name: Springer Nature B.V |
References | TadanoTSakaiHSecretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditionsSoil Sci Plant Nutr19913712914010.1080/00380768.1991.104150181:CAS:528:DyaK3MXlvVaitrY%3D SteffenWRichardsonKRockströmJCornellSEFetzerIBennettEMBiggsRCarpenterSRde VriesWde WitCAFolkeCGertenDHeinkeJMaceGMPerssonLMRamanathanVReyersBSörlinSPlanetary boundaries: guiding human development on a changing planetScience2015347125985510.1126/science.1259855255924181:CAS:528:DC%2BC2MXitlKkt7g%3D TangXPlacellaSADaydéFBernardLRobinAJournetEPJustesEHinsingerPPhosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradientPlant Soil201640711913410.1007/s11104-016-2949-31:CAS:528:DC%2BC28Xps12gtbY%3D TangXBernardLBraumanADaufresneTDeleportePDesclauxDSoucheGPlacellaSAHinsingerPIncrease in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditionsSoil Biol Biochem201475869310.1016/j.soilbio.2014.04.0011:CAS:528:DC%2BC2cXpslKrsrc%3D NuruzzamanMLambersHBollandMDAVeneklaasEJPhosphorus uptake by grain legumes and subsequently grown wheat at different levels of residual phosphorus fertiliserAust J Agric Res2005561041104710.1071/AR050601:CAS:528:DC%2BD2MXhtFChsLbE GilesCDBrownLKAduMOMezeliMMSandralGASimpsonRJWendlerRShandCAMenezes-BlackburnDDarchTStutterMILumsdonDGZhangHBlackwellMSAWearingCCooperPHaygarthPMGeorgeTSResponse-based selection of barley cultivars and legume species for complementarity: root morphology and exudation in relation to nutrient sourcePlant Sci2017255122810.1016/j.plantsci.2016.11.002281313381:CAS:528:DC%2BC28XhvVKqtbzM HeQBertnessMDAltieriAHGlobal shifts towards positive species interactions with increasing environmental stressEcol Lett20131669570610.1111/ele.1208023363430 WangZGBaoXGLiXFJinXZhaoJHSunJHChristiePLiLIntercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decadePlant Soil201539126528210.1007/s11104-015-2428-21:CAS:528:DC%2BC2MXjslCqsbc%3D Høgh-JensenHSchjoerringJKInteractions between nitrogen, phosphorus and potassium determine growth and N2-fixation in white clover and ryegrass leysNutr Cycling Agroecosyst20108732733810.1007/s10705-009-9341-01:CAS:528:DC%2BC3cXosFGjsbg%3D LiHShenJZhangFMarschnerPCawthrayGRengelZPhosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soilBiol Fertil Soils201046799110.1007/s00374-009-0411-x1:CAS:528:DC%2BC3cXktl2lsg%3D%3D FauconMPHoubenDLambersHPlant functional traits: soil and ecosystem servicesTrends Plant Sci20172238539410.1016/j.tplants.2017.01.005282093281:CAS:528:DC%2BC2sXit1ertLk%3D JonesDLOrganic acids in the rhizosphere - a critical reviewPlant Soil1998205254410.1023/A:10043560073121:CAS:528:DyaK1MXhtlGjs78%3D LiCDongYLiHShenJZhangFShift from complementarity to facilitation on P uptake by intercropped wheat neighboring with faba bean when available soil P is depletedSci Rep201661866310.1038/srep186632672833947004991:CAS:528:DC%2BC28Xkt12mtA%3D%3D LoreauMHectorAPartitioning selection and complementarity in biodiversity experimentsNature2001412727610.1038/35083573114523081:CAS:528:DC%2BD3MXlt1Crtbc%3D SuBYSongYXSongCCuiLYongTWYangWYGrowth and photosynthetic responses of soybean seedlings to maize shading in relay intercropping system in Southwest ChinaPhotosynthetica20145233234010.1007/s11099-014-0036-71:CAS:528:DC%2BC2cXhtVaksbnM ChikowoRCorbeelsMMapfumoPTittonellPVanlauweBGillerKENitrogen and phosphorus capture and recovery efficiencies, and crop responses to a range of soil fertility management strategies in sub-Saharan AfricaNutr Cycl Agroecosyst201088597710.1007/s10705-009-9303-6 SchobCKerleSKarleyAJMorcilloLPakemanRJNewtonACBrookerRWIntraspecific genetic diversity and composition modify species-level diversity-productivity relationshipsNew Phytol201520572073010.1111/nph.1304325250812 ZhangDZhangCTangXLiHZhangFRengelZWhalleyWRDaviesWJShenJIncreased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maizeNew Phytol201620982383110.1111/nph.13613263137361:CAS:528:DC%2BC2MXitV2jtrjJ HayesJERichardsonAESimpsonRJPhytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume seedlingsAust J Plant Physiol19992680180910.1071/PP990651:CAS:528:DC%2BD3cXlt1OgtQ%3D%3D LiLTilmanDLambersHZhangFSPlant diversity and overyielding: insights from belowground facilitation of intercropping in agricultureNew Phytol2014203636910.1111/nph.12778250138761:CAS:528:DC%2BC2cXovFWrsrw%3D GeorgeTSBrownLKNewtonACHallettPDSunBHThomasWTBWhitePJImpact of soil tillage on the robustness of the genetic component of variation in phosphorus (P) use efficiency in barley (Hordeum Vulgare L.)Plant Soil201133911312310.1007/s11104-009-0209-51:CAS:528:DC%2BC3MXmsVCiug%3D%3D MendozaRBailleresMGarcíaIRuizOPhosphorus fertilization of a grass-legume mixture: effect on plant growth, nutrients acquisition and symbiotic associations with soil microorganismsJ Plant Nutr20163969170110.1080/01904167.2015.10870321:CAS:528:DC%2BC2MXhslSqtrzK HeYDingNShiJWuMLiaoHXuJProfiling of microbial PLFAs: implications for interspecific interactions due to intercropping which increase phosphorus uptake in phosphorus limited acidic soilsSoil Biol Biochem20135762563410.1016/j.soilbio.2012.07.0271:CAS:528:DC%2BC3sXitVGgsbc%3D Bedoussac L, Journet EP, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G, Jensen ES, Prieur L and Justes E (2015) Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. Rev Agron Sustainable Dev 35, 911–935 MaestreFTCallawayRMValladaresFLortieCJRefining the stress-gradient hypothesis for competition and facilitation in plant communitiesJ Ecol20099719920510.1111/j.1365-2745.2008.01476.x GeorgeTSRichardsonAESimpsonRJBehaviour of plant-derived extracellular phytase upon addition to soilSoil Biol Biochem20053797798810.1016/j.soilbio.2004.10.0161:CAS:528:DC%2BD2MXhvVSltbk%3D BrookerRWBennettAECongWFDaniellTJGeorgeTSHallettPDHawesCIannettaPPMJonesHGKarleyAJLiLMcKenzieBMPakemanRJPatersonESchöbCShenJSquireGWatsonCAZhangCZhangFZhangJWhitePJImproving intercropping: a synthesis of research in agronomy, plant physiology and ecologyNew Phytol201520610711710.1111/nph.1313225866856 LiHShenJZhangFClairotteMDrevonJJLe CadreEHinsingerPDynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus Vulgaris L.) and durum wheat (Triticum Turgidum Durum L.) grown in monocropping and intercropping systemsPlant Soil200831213915010.1007/s11104-007-9512-11:CAS:528:DC%2BD1cXht1aju7nF WendlingMBüchiLAmosséCSinajSWalterACharlesRInfluence of root and leaf traits on the uptake of nutrients in cover cropsPlant Soil201640941943410.1007/s11104-016-2974-21:CAS:528:DC%2BC28XhtFahs7%2FO CrèmeARumpelCGastalFde la Luz Mora GilMChabbiAEffects of grasses and a legume grown in monoculture or mixture on soil organic matter and phosphorus formsPlant Soil201640211712810.1007/s11104-015-2740-x1:CAS:528:DC%2BC2MXitVKrtLbK Menezes-BlackburnDParedesCZhangHGilesCDDarchTStutterMGeorgeTSShandCLumsdonDCooperPWendlerRBrownLBlackwellMSWearingCHaygarthPMOrganic acids regulation of chemical-microbial phosphorus transformations in soilsEnviron Sci Technol201650115211153110.1021/acs.est.6b03017277000991:CAS:528:DC%2BC28Xhs1WktbzL Richardson, A. E. and Simpson R. J. 2011 Soil Microorganisms Mediating Phosphorus Availability. Plant Physiol. 156, 989–996 PrietoIViolleCBarrePDurandJLGhesquiereMLitricoIComplementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1, 15033. Richardson a E and Simpson R J 2011 soil microorganisms mediating phosphorus availabilityPlant Physiol2015156989996 van DijkKCLesschenJPOenemaOPhosphorus flows and balances of the European Union member statesSci Total Environ20165421078109310.1016/j.scitotenv.2015.08.048264217561:CAS:528:DC%2BC2MXhsVyqsLfO BetencourtEDuputelMColombBDesclauxDHinsingerPIntercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soilSoil Biol Biochem20124618119010.1016/j.soilbio.2011.11.0151:CAS:528:DC%2BC38XosFCmtA%3D%3D HeffernanBHandbook of methods of inorganic chemical analysis for forest soils, foliage and water1985CSIRO Division of Forest ResearchCanberra HinsingerPBioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a reviewPlant Soil200123717319510.1023/A:10133516175321:CAS:528:DC%2BD38XovVWlsQ%3D%3D HinsingerPBetencourtEBernardLBraumanAPlassardCShenJTangXZhangFP for two, Sharing a Scarce Resource: Soil Phosphorus Acquisition in the Rhizosphere of Intercropped SpeciesPlant Physiol20111561078108610.1104/pp.111.1753312150818331359631:CAS:528:DC%2BC3MXptFWlu7w%3D MoirJJordanPMootDLucasRPhosphorus response and optimum pH ranges of twelve pasture legumes grown in an acid upland New Zealand soil under glasshouse conditionsJ Soil Sci Plant Nutr2016164384601:CAS:528:DC%2BC1cXpvVyltbY%3D XueYXiaHChristiePZhangZLiLTangCCrop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical reviewAnn Bot201611736337710.1093/aob/mcv1822674959047655401:CAS:528:DC%2BC1cXlvV2hs70%3D Faucon MP, Houben D, Reynoird JP, Mercadal-Dulaurent AM, Armand R and Lambers H (2015) Chapter two - advances and perspectives to improve the phosphorus availability in cropping Systems for Agroecological Phosphorus Management. In: LS Donald (ed) Advan in Agron Academic Press 134, pp. 51–79 McLarenTIMcLaughlinMJMcBeathTMSimpsonRJSmernikRJGuppyCNRichardsonAEThe fate of fertiliser P in soil under pasture and uptake by subterraneum clover – a field study using 33P-labelled single superphosphatePlant Soil2015401233810.1007/s11104-015-2610-61:CAS:528:DC%2BC2MXht1Grtb%2FJ de RuiterJMThe phosphate response of eight Mediterranean annual and p C Li (3365_CR22) 2016; 6 Y He (3365_CR14) 2013; 57 RW Brooker (3365_CR3) 2015; 206 TS George (3365_CR10) 2005; 37 KC Dijk van (3365_CR42) 2016; 542 D Zhang (3365_CR46) 2016; 209 M Loreau (3365_CR27) 2001; 412 T Tadano (3365_CR39) 1991; 37 W Steffen (3365_CR37) 2015; 347 R Chikowo (3365_CR4) 2010; 88 L Li (3365_CR26) 1999; 212 P Hinsinger (3365_CR16) 2001; 237 I Prieto (3365_CR34) 2015; 156 H Høgh-Jensen (3365_CR18) 2010; 87 P Hinsinger (3365_CR17) 2011; 156 D Menezes-Blackburn (3365_CR31) 2016; 50 H Li (3365_CR24) 2010; 46 M Wendling (3365_CR44) 2016; 409 TS George (3365_CR9) 2011; 339 E Betencourt (3365_CR2) 2012; 46 CD Giles (3365_CR11) 2017; 255 TI McLaren (3365_CR29) 2015; 401 JM Ruiter de (3365_CR6) 1981; 24 Q He (3365_CR13) 2013; 16 R Mendoza (3365_CR30) 2016; 39 A Crème (3365_CR5) 2016; 402 GCJ Irving (3365_CR19) 1990; 21 DL Jones (3365_CR20) 1998; 205 FT Maestre (3365_CR28) 2009; 97 J Moir (3365_CR32) 2016; 16 3365_CR35 H Li (3365_CR23) 2008; 312 BY Su (3365_CR38) 2014; 52 X Tang (3365_CR40) 2014; 75 L Li (3365_CR25) 2014; 203 MP Faucon (3365_CR7) 2017; 22 Y Xue (3365_CR45) 2016; 117 3365_CR1 M Nuruzzaman (3365_CR33) 2005; 56 C Schob (3365_CR36) 2015; 205 ZG Wang (3365_CR43) 2015; 391 JE Hayes (3365_CR12) 1999; 26 X Tang (3365_CR41) 2016; 407 3365_CR8 B Heffernan (3365_CR15) 1985 DR Kidd (3365_CR21) 2016; 402 |
References_xml | – reference: BetencourtEDuputelMColombBDesclauxDHinsingerPIntercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soilSoil Biol Biochem20124618119010.1016/j.soilbio.2011.11.0151:CAS:528:DC%2BC38XosFCmtA%3D%3D – reference: GilesCDBrownLKAduMOMezeliMMSandralGASimpsonRJWendlerRShandCAMenezes-BlackburnDDarchTStutterMILumsdonDGZhangHBlackwellMSAWearingCCooperPHaygarthPMGeorgeTSResponse-based selection of barley cultivars and legume species for complementarity: root morphology and exudation in relation to nutrient sourcePlant Sci2017255122810.1016/j.plantsci.2016.11.002281313381:CAS:528:DC%2BC28XhvVKqtbzM – reference: HinsingerPBioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a reviewPlant Soil200123717319510.1023/A:10133516175321:CAS:528:DC%2BD38XovVWlsQ%3D%3D – reference: van DijkKCLesschenJPOenemaOPhosphorus flows and balances of the European Union member statesSci Total Environ20165421078109310.1016/j.scitotenv.2015.08.048264217561:CAS:528:DC%2BC2MXhsVyqsLfO – reference: LoreauMHectorAPartitioning selection and complementarity in biodiversity experimentsNature2001412727610.1038/35083573114523081:CAS:528:DC%2BD3MXlt1Crtbc%3D – reference: TangXPlacellaSADaydéFBernardLRobinAJournetEPJustesEHinsingerPPhosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradientPlant Soil201640711913410.1007/s11104-016-2949-31:CAS:528:DC%2BC28Xps12gtbY%3D – reference: TadanoTSakaiHSecretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditionsSoil Sci Plant Nutr19913712914010.1080/00380768.1991.104150181:CAS:528:DyaK3MXlvVaitrY%3D – reference: FauconMPHoubenDLambersHPlant functional traits: soil and ecosystem servicesTrends Plant Sci20172238539410.1016/j.tplants.2017.01.005282093281:CAS:528:DC%2BC2sXit1ertLk%3D – reference: SuBYSongYXSongCCuiLYongTWYangWYGrowth and photosynthetic responses of soybean seedlings to maize shading in relay intercropping system in Southwest ChinaPhotosynthetica20145233234010.1007/s11099-014-0036-71:CAS:528:DC%2BC2cXhtVaksbnM – reference: GeorgeTSBrownLKNewtonACHallettPDSunBHThomasWTBWhitePJImpact of soil tillage on the robustness of the genetic component of variation in phosphorus (P) use efficiency in barley (Hordeum Vulgare L.)Plant Soil201133911312310.1007/s11104-009-0209-51:CAS:528:DC%2BC3MXmsVCiug%3D%3D – reference: Høgh-JensenHSchjoerringJKInteractions between nitrogen, phosphorus and potassium determine growth and N2-fixation in white clover and ryegrass leysNutr Cycling Agroecosyst20108732733810.1007/s10705-009-9341-01:CAS:528:DC%2BC3cXosFGjsbg%3D – reference: LiCDongYLiHShenJZhangFShift from complementarity to facilitation on P uptake by intercropped wheat neighboring with faba bean when available soil P is depletedSci Rep201661866310.1038/srep186632672833947004991:CAS:528:DC%2BC28Xkt12mtA%3D%3D – reference: HeYDingNShiJWuMLiaoHXuJProfiling of microbial PLFAs: implications for interspecific interactions due to intercropping which increase phosphorus uptake in phosphorus limited acidic soilsSoil Biol Biochem20135762563410.1016/j.soilbio.2012.07.0271:CAS:528:DC%2BC3sXitVGgsbc%3D – reference: LiLYangSLiXZhangFChristiePInterspecific complementary and competitive interactions between intercropped maize and faba beanPlant Soil199921210511410.1023/A:10046562051441:CAS:528:DyaK1MXns1Glu7k%3D – reference: BrookerRWBennettAECongWFDaniellTJGeorgeTSHallettPDHawesCIannettaPPMJonesHGKarleyAJLiLMcKenzieBMPakemanRJPatersonESchöbCShenJSquireGWatsonCAZhangCZhangFZhangJWhitePJImproving intercropping: a synthesis of research in agronomy, plant physiology and ecologyNew Phytol201520610711710.1111/nph.1313225866856 – reference: NuruzzamanMLambersHBollandMDAVeneklaasEJPhosphorus uptake by grain legumes and subsequently grown wheat at different levels of residual phosphorus fertiliserAust J Agric Res2005561041104710.1071/AR050601:CAS:528:DC%2BD2MXhtFChsLbE – reference: MendozaRBailleresMGarcíaIRuizOPhosphorus fertilization of a grass-legume mixture: effect on plant growth, nutrients acquisition and symbiotic associations with soil microorganismsJ Plant Nutr20163969170110.1080/01904167.2015.10870321:CAS:528:DC%2BC2MXhslSqtrzK – reference: WangZGBaoXGLiXFJinXZhaoJHSunJHChristiePLiLIntercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decadePlant Soil201539126528210.1007/s11104-015-2428-21:CAS:528:DC%2BC2MXjslCqsbc%3D – reference: HayesJERichardsonAESimpsonRJPhytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume seedlingsAust J Plant Physiol19992680180910.1071/PP990651:CAS:528:DC%2BD3cXlt1OgtQ%3D%3D – reference: ZhangDZhangCTangXLiHZhangFRengelZWhalleyWRDaviesWJShenJIncreased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maizeNew Phytol201620982383110.1111/nph.13613263137361:CAS:528:DC%2BC2MXitV2jtrjJ – reference: LiLTilmanDLambersHZhangFSPlant diversity and overyielding: insights from belowground facilitation of intercropping in agricultureNew Phytol2014203636910.1111/nph.12778250138761:CAS:528:DC%2BC2cXovFWrsrw%3D – reference: McLarenTIMcLaughlinMJMcBeathTMSimpsonRJSmernikRJGuppyCNRichardsonAEThe fate of fertiliser P in soil under pasture and uptake by subterraneum clover – a field study using 33P-labelled single superphosphatePlant Soil2015401233810.1007/s11104-015-2610-61:CAS:528:DC%2BC2MXht1Grtb%2FJ – reference: CrèmeARumpelCGastalFde la Luz Mora GilMChabbiAEffects of grasses and a legume grown in monoculture or mixture on soil organic matter and phosphorus formsPlant Soil201640211712810.1007/s11104-015-2740-x1:CAS:528:DC%2BC2MXitVKrtLbK – reference: IrvingGCJMcLaughlinMJA rapid and simple field-test for phosphorus in Olsen and bray no 1 extracts of soilCommun Soil Sci Plant Anal1990212245225510.1080/001036290093683771:CAS:528:DyaK3MXisVKgs70%3D – reference: WendlingMBüchiLAmosséCSinajSWalterACharlesRInfluence of root and leaf traits on the uptake of nutrients in cover cropsPlant Soil201640941943410.1007/s11104-016-2974-21:CAS:528:DC%2BC28XhtFahs7%2FO – reference: HeffernanBHandbook of methods of inorganic chemical analysis for forest soils, foliage and water1985CSIRO Division of Forest ResearchCanberra – reference: PrietoIViolleCBarrePDurandJLGhesquiereMLitricoIComplementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1, 15033. Richardson a E and Simpson R J 2011 soil microorganisms mediating phosphorus availabilityPlant Physiol2015156989996 – reference: XueYXiaHChristiePZhangZLiLTangCCrop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical reviewAnn Bot201611736337710.1093/aob/mcv1822674959047655401:CAS:528:DC%2BC1cXlvV2hs70%3D – reference: Menezes-BlackburnDParedesCZhangHGilesCDDarchTStutterMGeorgeTSShandCLumsdonDCooperPWendlerRBrownLBlackwellMSWearingCHaygarthPMOrganic acids regulation of chemical-microbial phosphorus transformations in soilsEnviron Sci Technol201650115211153110.1021/acs.est.6b03017277000991:CAS:528:DC%2BC28Xhs1WktbzL – reference: Richardson, A. E. and Simpson R. J. 2011 Soil Microorganisms Mediating Phosphorus Availability. Plant Physiol. 156, 989–996 – reference: ChikowoRCorbeelsMMapfumoPTittonellPVanlauweBGillerKENitrogen and phosphorus capture and recovery efficiencies, and crop responses to a range of soil fertility management strategies in sub-Saharan AfricaNutr Cycl Agroecosyst201088597710.1007/s10705-009-9303-6 – reference: Faucon MP, Houben D, Reynoird JP, Mercadal-Dulaurent AM, Armand R and Lambers H (2015) Chapter two - advances and perspectives to improve the phosphorus availability in cropping Systems for Agroecological Phosphorus Management. In: LS Donald (ed) Advan in Agron Academic Press 134, pp. 51–79 – reference: KiddDRRyanMHHalingRELambersHSandralGAYangZCulvenorRACawthrayGRStefanskiASimpsonRJRhizosphere carboxylates and morphological root traits in pasture legumes and grassesPlant Soil2016402778910.1007/s11104-015-2770-41:CAS:528:DC%2BC2MXitVSksbnF – reference: HeQBertnessMDAltieriAHGlobal shifts towards positive species interactions with increasing environmental stressEcol Lett20131669570610.1111/ele.1208023363430 – reference: MoirJJordanPMootDLucasRPhosphorus response and optimum pH ranges of twelve pasture legumes grown in an acid upland New Zealand soil under glasshouse conditionsJ Soil Sci Plant Nutr2016164384601:CAS:528:DC%2BC1cXpvVyltbY%3D – reference: LiHShenJZhangFClairotteMDrevonJJLe CadreEHinsingerPDynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus Vulgaris L.) and durum wheat (Triticum Turgidum Durum L.) grown in monocropping and intercropping systemsPlant Soil200831213915010.1007/s11104-007-9512-11:CAS:528:DC%2BD1cXht1aju7nF – reference: JonesDLOrganic acids in the rhizosphere - a critical reviewPlant Soil1998205254410.1023/A:10043560073121:CAS:528:DyaK1MXhtlGjs78%3D – reference: LiHShenJZhangFMarschnerPCawthrayGRengelZPhosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soilBiol Fertil Soils201046799110.1007/s00374-009-0411-x1:CAS:528:DC%2BC3cXktl2lsg%3D%3D – reference: GeorgeTSRichardsonAESimpsonRJBehaviour of plant-derived extracellular phytase upon addition to soilSoil Biol Biochem20053797798810.1016/j.soilbio.2004.10.0161:CAS:528:DC%2BD2MXhvVSltbk%3D – reference: HinsingerPBetencourtEBernardLBraumanAPlassardCShenJTangXZhangFP for two, Sharing a Scarce Resource: Soil Phosphorus Acquisition in the Rhizosphere of Intercropped SpeciesPlant Physiol20111561078108610.1104/pp.111.1753312150818331359631:CAS:528:DC%2BC3MXptFWlu7w%3D – reference: SteffenWRichardsonKRockströmJCornellSEFetzerIBennettEMBiggsRCarpenterSRde VriesWde WitCAFolkeCGertenDHeinkeJMaceGMPerssonLMRamanathanVReyersBSörlinSPlanetary boundaries: guiding human development on a changing planetScience2015347125985510.1126/science.1259855255924181:CAS:528:DC%2BC2MXitlKkt7g%3D – reference: Bedoussac L, Journet EP, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G, Jensen ES, Prieur L and Justes E (2015) Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. Rev Agron Sustainable Dev 35, 911–935 – reference: de RuiterJMThe phosphate response of eight Mediterranean annual and perennial legumesN Z J Agric Res198124333610.1080/00288233.1981.10420868 – reference: MaestreFTCallawayRMValladaresFLortieCJRefining the stress-gradient hypothesis for competition and facilitation in plant communitiesJ Ecol20099719920510.1111/j.1365-2745.2008.01476.x – reference: TangXBernardLBraumanADaufresneTDeleportePDesclauxDSoucheGPlacellaSAHinsingerPIncrease in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditionsSoil Biol Biochem201475869310.1016/j.soilbio.2014.04.0011:CAS:528:DC%2BC2cXpslKrsrc%3D – reference: SchobCKerleSKarleyAJMorcilloLPakemanRJNewtonACBrookerRWIntraspecific genetic diversity and composition modify species-level diversity-productivity relationshipsNew Phytol201520572073010.1111/nph.1304325250812 – volume: 22 start-page: 385 year: 2017 ident: 3365_CR7 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2017.01.005 – volume: 26 start-page: 801 year: 1999 ident: 3365_CR12 publication-title: Aust J Plant Physiol doi: 10.1071/PP99065 – volume: 237 start-page: 173 year: 2001 ident: 3365_CR16 publication-title: Plant Soil doi: 10.1023/A:1013351617532 – volume: 203 start-page: 63 year: 2014 ident: 3365_CR25 publication-title: New Phytol doi: 10.1111/nph.12778 – volume: 402 start-page: 77 year: 2016 ident: 3365_CR21 publication-title: Plant Soil doi: 10.1007/s11104-015-2770-4 – volume: 391 start-page: 265 year: 2015 ident: 3365_CR43 publication-title: Plant Soil doi: 10.1007/s11104-015-2428-2 – ident: 3365_CR35 doi: 10.1104/pp.111.175448 – volume: 206 start-page: 107 year: 2015 ident: 3365_CR3 publication-title: New Phytol doi: 10.1111/nph.13132 – volume: 6 start-page: 18663 year: 2016 ident: 3365_CR22 publication-title: Sci Rep doi: 10.1038/srep18663 – volume: 412 start-page: 72 year: 2001 ident: 3365_CR27 publication-title: Nature doi: 10.1038/35083573 – volume: 339 start-page: 113 year: 2011 ident: 3365_CR9 publication-title: Plant Soil doi: 10.1007/s11104-009-0209-5 – volume: 407 start-page: 119 year: 2016 ident: 3365_CR41 publication-title: Plant Soil doi: 10.1007/s11104-016-2949-3 – volume: 56 start-page: 1041 year: 2005 ident: 3365_CR33 publication-title: Aust J Agric Res doi: 10.1071/AR05060 – volume: 156 start-page: 989 year: 2015 ident: 3365_CR34 publication-title: Plant Physiol – volume: 542 start-page: 1078 year: 2016 ident: 3365_CR42 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2015.08.048 – volume: 312 start-page: 139 year: 2008 ident: 3365_CR23 publication-title: Plant Soil doi: 10.1007/s11104-007-9512-1 – volume: 50 start-page: 11521 year: 2016 ident: 3365_CR31 publication-title: Environ Sci Technol doi: 10.1021/acs.est.6b03017 – volume: 205 start-page: 25 year: 1998 ident: 3365_CR20 publication-title: Plant Soil doi: 10.1023/A:1004356007312 – volume: 39 start-page: 691 year: 2016 ident: 3365_CR30 publication-title: J Plant Nutr doi: 10.1080/01904167.2015.1087032 – volume: 37 start-page: 129 year: 1991 ident: 3365_CR39 publication-title: Soil Sci Plant Nutr doi: 10.1080/00380768.1991.10415018 – volume: 46 start-page: 79 year: 2010 ident: 3365_CR24 publication-title: Biol Fertil Soils doi: 10.1007/s00374-009-0411-x – volume: 52 start-page: 332 year: 2014 ident: 3365_CR38 publication-title: Photosynthetica doi: 10.1007/s11099-014-0036-7 – volume: 57 start-page: 625 year: 2013 ident: 3365_CR14 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2012.07.027 – volume: 205 start-page: 720 year: 2015 ident: 3365_CR36 publication-title: New Phytol doi: 10.1111/nph.13043 – volume: 212 start-page: 105 year: 1999 ident: 3365_CR26 publication-title: Plant Soil doi: 10.1023/A:1004656205144 – volume: 401 start-page: 23 year: 2015 ident: 3365_CR29 publication-title: Plant Soil doi: 10.1007/s11104-015-2610-6 – volume: 117 start-page: 363 year: 2016 ident: 3365_CR45 publication-title: Ann Bot doi: 10.1093/aob/mcv182 – volume: 37 start-page: 977 year: 2005 ident: 3365_CR10 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2004.10.016 – volume: 21 start-page: 2245 year: 1990 ident: 3365_CR19 publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103629009368377 – volume: 46 start-page: 181 year: 2012 ident: 3365_CR2 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.11.015 – volume: 97 start-page: 199 year: 2009 ident: 3365_CR28 publication-title: J Ecol doi: 10.1111/j.1365-2745.2008.01476.x – volume: 255 start-page: 12 year: 2017 ident: 3365_CR11 publication-title: Plant Sci doi: 10.1016/j.plantsci.2016.11.002 – volume: 87 start-page: 327 year: 2010 ident: 3365_CR18 publication-title: Nutr Cycling Agroecosyst doi: 10.1007/s10705-009-9341-0 – ident: 3365_CR8 – volume: 24 start-page: 33 year: 1981 ident: 3365_CR6 publication-title: N Z J Agric Res doi: 10.1080/00288233.1981.10420868 – volume: 88 start-page: 59 year: 2010 ident: 3365_CR4 publication-title: Nutr Cycl Agroecosyst doi: 10.1007/s10705-009-9303-6 – volume: 75 start-page: 86 year: 2014 ident: 3365_CR40 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2014.04.001 – volume: 409 start-page: 419 year: 2016 ident: 3365_CR44 publication-title: Plant Soil doi: 10.1007/s11104-016-2974-2 – ident: 3365_CR1 doi: 10.1007/s13593-014-0277-7 – volume: 209 start-page: 823 year: 2016 ident: 3365_CR46 publication-title: New Phytol doi: 10.1111/nph.13613 – volume: 16 start-page: 438 year: 2016 ident: 3365_CR32 publication-title: J Soil Sci Plant Nutr – volume: 402 start-page: 117 year: 2016 ident: 3365_CR5 publication-title: Plant Soil doi: 10.1007/s11104-015-2740-x – volume-title: Handbook of methods of inorganic chemical analysis for forest soils, foliage and water year: 1985 ident: 3365_CR15 – volume: 156 start-page: 1078 year: 2011 ident: 3365_CR17 publication-title: Plant Physiol doi: 10.1104/pp.111.175331 – volume: 16 start-page: 695 year: 2013 ident: 3365_CR13 publication-title: Ecol Lett doi: 10.1111/ele.12080 – volume: 347 start-page: 1259855 year: 2015 ident: 3365_CR37 publication-title: Science doi: 10.1126/science.1259855 |
SSID | ssj0003216 |
Score | 2.4671214 |
Snippet | Aims Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines... Aims Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines... Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines... AimsIntercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines... AIMS: Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines... |
SourceID | pubmedcentral proquest gale pubmed crossref springer jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 125 |
SubjectTerms | aboveground biomass Accumulation Agricultural practices Alfalfa Barley Biodiversity Biomass biomass production Biomedical and Life Sciences Constraining Cultivars Ecology Environmental aspects Exudation Hordeum vulgare Intercropping Legumes Life Sciences Medicago truncatula Monoculture Ornithopus sativus Phosphorus Plant diversity Plant Physiology Plant Sciences Plant-soil relationships production technology Regular Regular Article soil Soil improvement Soil phosphorus Soil Science & Conservation Soils Species species diversity Sustainable production Trifolium |
SummonAdditionalLinks | – databaseName: ProQuest Central (New) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1rixMxMGjPD_pB9HytnkcEQVDDbTfJPj5JT-44BA-RE_otZJPs3ULZrX0ctL_emWy2tT76obBtkiHdmcwj8yLkrRE61iLTTNvUMGG4YSUXloHdlnFRFbry6dFfL9OLH-LLWI7Dhds8hFX2PNEzatsavCM_wQKzIEqSLPk0_cmwaxR6V0MLjbvkAFhwng_IwenZ5bfvG17ME9_8FB9YnBXj3q_pk-dA8mEEBhwyDPVa70imwJ-7GMV_aZ9_B1H-4Un1Aur8EXkYNEs66kjhMbnjmkPyYHQ9C9U13CG5d9qCLrh6Qtb-IpBR3VhaI2CGGZdgNOM3N8O2XphHRduKluiOX1GEUd-CFezXTNw18DQaFn2kGn72gSHO0nJF5209odObdg6f2RLGbnU96QqCr56Sq_Ozq88XLHRhYEZmyYIlxpZlXCZZbovCpNyZxGRxVeWysEOH5ckAfqZFMrRFmVqRmNRVsXbSoLki-DMyaNrGvSBUSg3qQQ4SUAPrqHKwywthRVmIIpPDMo9I3CNAmVChHBtlTNS2tjLiTAHOFOJMrSPyfrNk2pXn2Df5HWJV4dEFuEaHDATYHRbBUiMphsDepISdHHvE_w4TI-YVqDMSTNQkIkc9Rahw6OdqS6IRebMZhuOKPhjduHYJc4AFcg5qbrpnDhjlHMzSnEfkeUdkm41w0OhTgSPZDvltJmC58N2Rpr7xZcNB98zB2ozIh55Qt1v_7zt7uf-PviL3QYPMu9i5IzJYzJbuNWhpi_I4HMVfrdk5-A priority: 102 providerName: ProQuest |
Title | Inter- and intra-species intercropping of barley cultivars and legume species, as affected by soil phosphorus availability |
URI | https://www.jstor.org/stable/26652892 https://link.springer.com/article/10.1007/s11104-017-3365-z https://www.ncbi.nlm.nih.gov/pubmed/30996483 https://www.proquest.com/docview/2048614272 https://www.proquest.com/docview/2101338516 https://www.proquest.com/docview/2211325983 https://pubmed.ncbi.nlm.nih.gov/PMC6438642 |
Volume | 427 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgAwkeEJSvwKiMhIQEREtiO04e09IygZgQ2qTyFDmOs0Wqkqkfk9K_njsnzegYk3ho09Rnx-r5zr-rzz8T8k5z5SkulavyULtcM-1mjOcuxG2S8SJWhd0e_f04PDrlX2di1pFF416Ya-v3h0uwRZsnAaaACVmbu2Rf-EziKQ3jcNw7XRbYU07xg-vJeLZdwLypiZ0pqHPEbTLiTTDz72zJa0umdiaaPiaPOghJk1bnT8gdUw3Iw-Rs0dFomAG5N6oB9DUDcn9iWambp2Rj__tzqapyWuIjXNxkCXEy3pkFnuSFW6doXdAMV-Abiq2VlxD42jpzcwZujHaVPlEFX9tcEJPTrKHLupzTi_N6Ca_FGsouVTlvOcCbZ-RkOjkZH7ndwQuuFjJYuYHOs8zLAhnlcaxDZnSgpVcUkYhz3yAjGbQvFQ_8PM7CnAc6NIWnjNAYoXD2nOxVdWVeEiqEAkQQwaSnwFsUEYTiMc95FvNYCj-LHOJtVZHqjpQcz8aYp1d0yqi9FLSXovbSjUM-9FUuWkaO24Tfo35TtFZoV6tu0wH0Dnmv0kRwHzyaENCToR0Cf7aJSfIpIBgBUWngkIPt2Eg7O1-mSHsMACeQUPy2LwYLxWUXVZl6DTLg9RgDZBveIgNxOININGIOedEOt74jDEB8yLFE7gzEXgAZwndLqvLcMoUD3IwgwHTIx-2Qver6P3-zV_8l_Zo8AAwZtdlzB2RvtVibN4DTVtmQ7Cejz6MpXr_8-jaB62hy_OPn0FouvJ8GyW_J0zny |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxEB6VFAl4QFCuhVKMBEICVuza3usBoRRapbSNECpS3iyv19tGirIhR1Hyn_iPzOyREI689SFSEtsjJzP-ZmY9B8ALI7WnZaRdnYXGlUYYNxUyc9Fvi4TME52X6dGn3bDzTX7uBb0t-NnkwlBYZYOJJVBnhaFn5O-owCyqEh7xD6PvLnWNotvVpoVGJRbHdv4DXbbJ-6NPyN-XnB8enH3suHVXAdcEEZ-63GRp6qU8irMkMaGwhpvIy_M4SDLfUrmtPLeRltzPkjTMJDehzT1tA0PmtxRI9hpsSxF6vAXb-wfdL1-X0C942WuV3rhelPSaa9QyVw8VLQV84JmmyLLFmiKs1UEVEvkvY_fvmM0_Lm5LfXh4B27XhixrV5J3F7bscAdutc_HdTEPuwPX9ws0Pef3YFE-d3SZHmasT4RdSvBEH50-2TF1EaO0LVbkLKXb_zkjGv1LdLrLNQN7jhDK6kVvmcavyzgUm7F0ziZFf8BGF8UEX-MZjl3q_qCqPz6_D2dXwZ4H0BoWQ_sIWBBotEZiVLgakSqPE-SIzGSayCQK_DR2wGsYoExdEJ36cgzUqpQz8UwhzxTxTC0ceL1cMqqqgWya_Iq4qggpkK7RdcID7o5qbql2IH1E0yDAneyVjP-dJgXoK7SeAvSIuQO7jUSoGmMmanUiHHi-HEZ0oCsfPbTFDOcg4gqBVnW4YQ73fYFecCwceFgJ2XIjAh2IUNJItCZ-ywlUnXx9ZNi_KKuUo6kbo3PrwJtGUFdb_-9_9njzD30GNzpnpyfq5Kh7_ARuovEaV2F7u9Cajmf2KRqI03SvPpYM1BUDwS8tnndb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxEB6VFKHygKAcXSjFSCAkYNVdr_d6QCiljVoKUYVaKW-W1-ttI0W7IUdR8s_4d8zskRCOvPUhUhLbIycz_mZmPQfAKy2Uo0SobJUG2hba03biidRGvy30RBarrEyP_toNji_E557f24CfTS4MhVU2mFgCdVpoeka-TwVmUZXwkO9ndVjE2WHn4_C7TR2k6Ka1aadRicipmf1A92384eQQef2a887R-adju-4wYGs_5BOb6zRJnISHURrHOvCM5jp0sizy49Q1VHory0yoBHfTOAlSwXVgMkcZX5MpLjwkews2Q3KKWrB5cNQ9-7ZQAx4v-67SG9sJ415zpVrm7aHSpeAPPN8UZTZfUYq1aqjCI_9l-P4dv_nHJW6pGzv34V5t1LJ2JYUPYMPk23C3fTmqC3uYbbh9UKAZOnsI8_IZpM1UnrI-EbYp2RP9dfpkRtRRjFK4WJGxhCIBZoxo9K_RAS_XDMwlwimrF71nCr8uY1JMypIZGxf9ARteFWN8jaY4dq36g6oW-ewRnN8Eex5DKy9yswPM9xVaJhEqX4WolUUxckSkIolFHPpuElngNAyQui6OTj06BnJZ1pl4JpFnkngm5xa8XSwZVpVB1k1-Q1yVhBpIV6s6-QF3R_W3ZNsXLiKr7-NO9krG_06TgvUlWlI-esfcgt1GImSNN2O5PB0WvFwMI1LQ9Y_KTTHFOYi-nocWdrBmDnddDz3iyLPgSSVki4146EwEgkbCFfFbTKBK5asjef-qrFiOZm-Ejq4F7xpBXW79v__Z0_U_9AXcQQCQX066p89gC-3YqIrg24XWZDQ1z9FWnCR79alkIG8YB34B1z17kA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inter-+and+intra-species+intercropping+of+barley+cultivars+and+legume+species%2C+as+affected+by+soil+phosphorus+availability&rft.jtitle=Plant+and+soil&rft.au=Darch%2C+Tegan&rft.au=Giles%2C+Courtney+D.&rft.au=Blackwell%2C+Martin+S.+A.&rft.au=George%2C+Timothy+S.&rft.date=2018-06-01&rft.pub=Springer+International+Publishing&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=427&rft.issue=1&rft.spage=125&rft.epage=138&rft_id=info:doi/10.1007%2Fs11104-017-3365-z&rft_id=info%3Apmid%2F30996483&rft.externalDocID=PMC6438642 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |