Inter- and intra-species intercropping of barley cultivars and legume species, as affected by soil phosphorus availability

Aims Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability. Methods Four barley cultivars (Hordeum vul...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 427; no. 1/2; pp. 125 - 138
Main Authors Darch, Tegan, Giles, Courtney D., Blackwell, Martin S. A., George, Timothy S., Brown, Lawrie K., Menezes-Blackburn, Daniel, Shand, Charles A., Stutter, Marc I., Lumsdon, David G., Mezeli, Malika M., Wendler, Renate, Zhang, Hao, Wearing, Catherine, Cooper, Patricia, Haygarth, Philip M.
Format Journal Article
LanguageEnglish
Published Cham Springer 01.06.2018
Springer International Publishing
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aims Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability. Methods Four barley cultivars (Hordeum vulgare L.) and three legume species (Trifolium subterreneum, Ornithopus sativus and Medicago truncatula) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Aboveground biomass and shoot P were measured. Results Barley-legume intercrops had 10–70% greater P accumulation and 0–40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments. Conclusions Barley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P.
AbstractList AIMS: Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability. METHODS: Four barley cultivars (Hordeum vulgare L.) and three legume species (Trifolium subterreneum, Ornithopus sativus and Medicago truncatula) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Above-ground biomass and shoot P were measured. RESULTS: Barley-legume intercrops had 10–70% greater P accumulation and 0–40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments. CONCLUSIONS: Barley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P.
Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability.AIMSIntercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability.Four barley cultivars (Hordeum vulgare L.) and three legume species (Trifolium subterreneum, Ornithopus sativus and Medicago truncatula) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Above-ground biomass and shoot P were measured.METHODSFour barley cultivars (Hordeum vulgare L.) and three legume species (Trifolium subterreneum, Ornithopus sativus and Medicago truncatula) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Above-ground biomass and shoot P were measured.Barley-legume intercrops had 10-70% greater P accumulation and 0-40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments.RESULTSBarley-legume intercrops had 10-70% greater P accumulation and 0-40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments.Barley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P.CONCLUSIONSBarley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P.
Aims Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability. Methods Four barley cultivars ( Hordeum vulgare L.) and three legume species ( Trifolium subterreneum, Ornithopus sativus and Medicago truncatula ) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Above-ground biomass and shoot P were measured. Results Barley-legume intercrops had 10–70% greater P accumulation and 0–40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments. Conclusions Barley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P.
AimsIntercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability.MethodsFour barley cultivars (Hordeum vulgare L.) and three legume species (Trifolium subterreneum, Ornithopus sativus and Medicago truncatula) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Above-ground biomass and shoot P were measured.ResultsBarley-legume intercrops had 10–70% greater P accumulation and 0–40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments.ConclusionsBarley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P.
Aims Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability. Methods Four barley cultivars (Hordeum vulgare L.) and three legume species (Trifolium subterreneum, Ornithopus sativus and Medicago truncatula) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Aboveground biomass and shoot P were measured. Results Barley-legume intercrops had 10–70% greater P accumulation and 0–40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments. Conclusions Barley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P.
Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability. Four barley cultivars ( L.) and three legume species ( and ) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Above-ground biomass and shoot P were measured. Barley-legume intercrops had 10-70% greater P accumulation and 0-40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments. Barley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P.
Audience Academic
Author Shand, Charles A.
Giles, Courtney D.
Cooper, Patricia
Stutter, Marc I.
Zhang, Hao
Darch, Tegan
Lumsdon, David G.
Blackwell, Martin S. A.
Wearing, Catherine
Haygarth, Philip M.
Brown, Lawrie K.
Menezes-Blackburn, Daniel
George, Timothy S.
Wendler, Renate
Mezeli, Malika M.
Author_xml – sequence: 1
  givenname: Tegan
  surname: Darch
  fullname: Darch, Tegan
– sequence: 2
  givenname: Courtney D.
  surname: Giles
  fullname: Giles, Courtney D.
– sequence: 3
  givenname: Martin S. A.
  surname: Blackwell
  fullname: Blackwell, Martin S. A.
– sequence: 4
  givenname: Timothy S.
  surname: George
  fullname: George, Timothy S.
– sequence: 5
  givenname: Lawrie K.
  surname: Brown
  fullname: Brown, Lawrie K.
– sequence: 6
  givenname: Daniel
  surname: Menezes-Blackburn
  fullname: Menezes-Blackburn, Daniel
– sequence: 7
  givenname: Charles A.
  surname: Shand
  fullname: Shand, Charles A.
– sequence: 8
  givenname: Marc I.
  surname: Stutter
  fullname: Stutter, Marc I.
– sequence: 9
  givenname: David G.
  surname: Lumsdon
  fullname: Lumsdon, David G.
– sequence: 10
  givenname: Malika M.
  surname: Mezeli
  fullname: Mezeli, Malika M.
– sequence: 11
  givenname: Renate
  surname: Wendler
  fullname: Wendler, Renate
– sequence: 12
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
– sequence: 13
  givenname: Catherine
  surname: Wearing
  fullname: Wearing, Catherine
– sequence: 14
  givenname: Patricia
  surname: Cooper
  fullname: Cooper, Patricia
– sequence: 15
  givenname: Philip M.
  surname: Haygarth
  fullname: Haygarth, Philip M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30996483$$D View this record in MEDLINE/PubMed
BookMark eNqFkktr3DAUhUVJaSZpf0A3xVAKXdSp3rY3hRD6CAS6yaI7IcvXEw0ayZXsgZlfX7mepmkWKUYYSee7V0c6Z-jEBw8IvSb4gmBcfUyEEMxLTKqSMSnKwzO0IqJipcBMnqAVxoyWuGp-nKKzlDZ4nhP5Ap0y3DSS12yFDtd-hFgW2neF9WPUZRrAWEjzDKKJYRisXxehL1odHewLM7nR7nRMvxkH62kLxRH6UOi83PdgRuiKdl-kYF0x3IWUR5zy3k5bp1vr7Lh_iZ732iV4dfyfo9svn2-vvpU3379eX13elEZUdCyp6doWt7Squ6YxkoGhpsJ9X4umI0Akl7lfpTklXdPKjlMjoccahMFUCM7O0ael7DC1W-gMzC6dGqLd6rhXQVv17463d2oddkpyVktOc4H3xwIx_JwgjWprkwHntIcwJUUpIYyKpmb_lxJMGKsFkVn69pF0E6bo80UoinktCafV3PtiUa21A2V9H_IRTf462FqT09DbvH4pOKHZrKgz8Oah23ubf148C8giyE-bUoT-XkKwmlOlllSpnCo1p0odMlM9Yowd9WjDfGHWPUnShUy5i19D_OvyKejdAm3SGOLD81GWASqloHVD2S_6KO7l
CitedBy_id crossref_primary_10_1007_s00374_022_01633_0
crossref_primary_10_1007_s11104_020_04768_x
crossref_primary_10_1007_s42770_019_00089_z
crossref_primary_10_1111_eva_13390
crossref_primary_10_1016_j_eja_2024_127504
crossref_primary_10_1007_s11104_021_04935_8
crossref_primary_10_3389_fpls_2021_818327
crossref_primary_10_2139_ssrn_4077055
crossref_primary_10_1007_s11104_024_06540_x
crossref_primary_10_1016_j_fcr_2022_108757
crossref_primary_10_3390_agronomy9060314
crossref_primary_10_7717_peerj_11704
crossref_primary_10_3390_agronomy14050901
crossref_primary_10_3390_agriculture10080329
crossref_primary_10_3390_agronomy9030150
crossref_primary_10_1038_s41598_021_95242_w
crossref_primary_10_3390_agronomy12102539
crossref_primary_10_1007_s00374_021_01559_z
crossref_primary_10_1016_j_rhisph_2021_100337
crossref_primary_10_1016_j_scitotenv_2018_08_272
crossref_primary_10_1007_s11104_021_05104_7
crossref_primary_10_1007_s11368_025_04003_z
crossref_primary_10_3390_agronomy11112267
crossref_primary_10_1007_s11104_024_06990_3
crossref_primary_10_1016_j_cj_2020_12_004
crossref_primary_10_1007_s11104_019_04142_6
crossref_primary_10_1007_s11104_018_3675_9
crossref_primary_10_1016_j_fcr_2023_109153
crossref_primary_10_1007_s13593_023_00916_6
crossref_primary_10_1186_s12896_020_00606_1
crossref_primary_10_3390_agronomy14061220
crossref_primary_10_3390_agronomy13030900
crossref_primary_10_1007_s11104_018_3888_y
crossref_primary_10_3390_agriculture12020229
crossref_primary_10_7717_peerj_10880
crossref_primary_10_2134_jeq2019_02_0070
crossref_primary_10_1080_03650340_2023_2169915
crossref_primary_10_1080_15427528_2018_1547806
crossref_primary_10_1007_s11104_024_06904_3
crossref_primary_10_3390_plants13162337
crossref_primary_10_1007_s10343_022_00627_0
crossref_primary_10_1038_s41598_021_90436_8
crossref_primary_10_1038_s44264_024_00036_y
crossref_primary_10_3389_fpls_2023_1153237
crossref_primary_10_1111_1365_2745_13592
crossref_primary_10_1007_s11104_019_03972_8
crossref_primary_10_1016_j_soilbio_2019_107695
crossref_primary_10_1016_j_farsys_2024_100083
crossref_primary_10_3390_agronomy14061121
crossref_primary_10_1155_2023_8890794
Cites_doi 10.1016/j.tplants.2017.01.005
10.1071/PP99065
10.1023/A:1013351617532
10.1111/nph.12778
10.1007/s11104-015-2770-4
10.1007/s11104-015-2428-2
10.1104/pp.111.175448
10.1111/nph.13132
10.1038/srep18663
10.1038/35083573
10.1007/s11104-009-0209-5
10.1007/s11104-016-2949-3
10.1071/AR05060
10.1016/j.scitotenv.2015.08.048
10.1007/s11104-007-9512-1
10.1021/acs.est.6b03017
10.1023/A:1004356007312
10.1080/01904167.2015.1087032
10.1080/00380768.1991.10415018
10.1007/s00374-009-0411-x
10.1007/s11099-014-0036-7
10.1016/j.soilbio.2012.07.027
10.1111/nph.13043
10.1023/A:1004656205144
10.1007/s11104-015-2610-6
10.1093/aob/mcv182
10.1016/j.soilbio.2004.10.016
10.1080/00103629009368377
10.1016/j.soilbio.2011.11.015
10.1111/j.1365-2745.2008.01476.x
10.1016/j.plantsci.2016.11.002
10.1007/s10705-009-9341-0
10.1080/00288233.1981.10420868
10.1007/s10705-009-9303-6
10.1016/j.soilbio.2014.04.001
10.1007/s11104-016-2974-2
10.1007/s13593-014-0277-7
10.1111/nph.13613
10.1007/s11104-015-2740-x
10.1104/pp.111.175331
10.1111/ele.12080
10.1126/science.1259855
ContentType Journal Article
Copyright Springer International Publishing AG, part of Springer Nature 2018
The Author(s) 2017
COPYRIGHT 2018 Springer
Plant and Soil is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer International Publishing AG, part of Springer Nature 2018
– notice: The Author(s) 2017
– notice: COPYRIGHT 2018 Springer
– notice: Plant and Soil is a copyright of Springer, (2017). All Rights Reserved.
DBID C6C
AAYXX
CITATION
NPM
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7S9
L.6
7X8
5PM
DOI 10.1007/s11104-017-3365-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

Agricultural Science Database

PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Botany
Ecology
EISSN 1573-5036
EndPage 138
ExternalDocumentID PMC6438642
A541225558
30996483
10_1007_s11104_017_3365_z
26652892
Genre Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/K018167/1
  funderid: http://dx.doi.org/10.13039/501100000268
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/C/000I0320
– fundername: ;
  grantid: BB/K018167/1
GroupedDBID -~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
203
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2XV
2~F
2~H
30V
4.4
406
408
409
40D
40E
5VS
67N
67Z
6NX
78A
7X2
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBHK
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADZKW
AEEJZ
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DATOO
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMK
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
IPSME
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JAAYA
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JZLTJ
KDC
KOV
KPH
LAK
LK8
LLZTM
M0K
M4Y
M7P
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3A
S3B
SA0
SAP
SBL
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
Y6R
YLTOR
Z45
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
-4W
-56
-5G
-BR
-EM
-Y2
1SB
2.D
28-
2P1
2VQ
3SX
3V.
53G
5QI
88A
AANXM
AARHV
AAYTO
ABQSL
ABULA
ACBXY
ACKIV
ADINQ
ADYPR
AEBTG
AEFIE
AFEXP
AFFNX
AFGCZ
AGGDS
AIDBO
AJBLW
BBWZM
C6C
CAG
COF
EN4
GQ6
JSODD
KOW
M0L
N2Q
NDZJH
O9-
OVD
P0-
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SBY
SCLPG
T16
TEORI
WK6
XOL
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
AAYXX
ADHKG
AGQPQ
CITATION
ABRTQ
NPM
PQGLB
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c572t-2cdbb0b278d99c63ec2c70ff859d1e1646ffe7a421d9b6d42c6ef0ae5c025543
IEDL.DBID C6C
ISSN 0032-079X
IngestDate Thu Aug 21 18:19:37 EDT 2025
Tue Jul 22 03:31:50 EDT 2025
Tue Aug 05 11:18:17 EDT 2025
Fri Jul 25 19:08:44 EDT 2025
Tue Jun 10 20:44:52 EDT 2025
Mon Jul 21 06:02:43 EDT 2025
Tue Jul 01 01:47:00 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Fri Feb 21 02:33:26 EST 2025
Thu Jun 19 22:57:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1/2
Keywords Phosphorus availability
Barley
Phosphorus uptake
Yield
Plant diversity
Legume
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-2cdbb0b278d99c63ec2c70ff859d1e1646ffe7a421d9b6d42c6ef0ae5c025543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Responsible Editor: Hans Lambers.
ORCID 0000-0003-2367-043X
OpenAccessLink https://doi.org/10.1007/s11104-017-3365-z
PMID 30996483
PQID 2048614272
PQPubID 54098
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6438642
proquest_miscellaneous_2211325983
proquest_miscellaneous_2101338516
proquest_journals_2048614272
gale_infotracacademiconefile_A541225558
pubmed_primary_30996483
crossref_primary_10_1007_s11104_017_3365_z
crossref_citationtrail_10_1007_s11104_017_3365_z
springer_journals_10_1007_s11104_017_3365_z
jstor_primary_10_2307_26652892
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Netherlands
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationTitleAlternate Plant Soil
PublicationYear 2018
Publisher Springer
Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer International Publishing
– name: Springer Nature B.V
References TadanoTSakaiHSecretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditionsSoil Sci Plant Nutr19913712914010.1080/00380768.1991.104150181:CAS:528:DyaK3MXlvVaitrY%3D
SteffenWRichardsonKRockströmJCornellSEFetzerIBennettEMBiggsRCarpenterSRde VriesWde WitCAFolkeCGertenDHeinkeJMaceGMPerssonLMRamanathanVReyersBSörlinSPlanetary boundaries: guiding human development on a changing planetScience2015347125985510.1126/science.1259855255924181:CAS:528:DC%2BC2MXitlKkt7g%3D
TangXPlacellaSADaydéFBernardLRobinAJournetEPJustesEHinsingerPPhosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradientPlant Soil201640711913410.1007/s11104-016-2949-31:CAS:528:DC%2BC28Xps12gtbY%3D
TangXBernardLBraumanADaufresneTDeleportePDesclauxDSoucheGPlacellaSAHinsingerPIncrease in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditionsSoil Biol Biochem201475869310.1016/j.soilbio.2014.04.0011:CAS:528:DC%2BC2cXpslKrsrc%3D
NuruzzamanMLambersHBollandMDAVeneklaasEJPhosphorus uptake by grain legumes and subsequently grown wheat at different levels of residual phosphorus fertiliserAust J Agric Res2005561041104710.1071/AR050601:CAS:528:DC%2BD2MXhtFChsLbE
GilesCDBrownLKAduMOMezeliMMSandralGASimpsonRJWendlerRShandCAMenezes-BlackburnDDarchTStutterMILumsdonDGZhangHBlackwellMSAWearingCCooperPHaygarthPMGeorgeTSResponse-based selection of barley cultivars and legume species for complementarity: root morphology and exudation in relation to nutrient sourcePlant Sci2017255122810.1016/j.plantsci.2016.11.002281313381:CAS:528:DC%2BC28XhvVKqtbzM
HeQBertnessMDAltieriAHGlobal shifts towards positive species interactions with increasing environmental stressEcol Lett20131669570610.1111/ele.1208023363430
WangZGBaoXGLiXFJinXZhaoJHSunJHChristiePLiLIntercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decadePlant Soil201539126528210.1007/s11104-015-2428-21:CAS:528:DC%2BC2MXjslCqsbc%3D
Høgh-JensenHSchjoerringJKInteractions between nitrogen, phosphorus and potassium determine growth and N2-fixation in white clover and ryegrass leysNutr Cycling Agroecosyst20108732733810.1007/s10705-009-9341-01:CAS:528:DC%2BC3cXosFGjsbg%3D
LiHShenJZhangFMarschnerPCawthrayGRengelZPhosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soilBiol Fertil Soils201046799110.1007/s00374-009-0411-x1:CAS:528:DC%2BC3cXktl2lsg%3D%3D
FauconMPHoubenDLambersHPlant functional traits: soil and ecosystem servicesTrends Plant Sci20172238539410.1016/j.tplants.2017.01.005282093281:CAS:528:DC%2BC2sXit1ertLk%3D
JonesDLOrganic acids in the rhizosphere - a critical reviewPlant Soil1998205254410.1023/A:10043560073121:CAS:528:DyaK1MXhtlGjs78%3D
LiCDongYLiHShenJZhangFShift from complementarity to facilitation on P uptake by intercropped wheat neighboring with faba bean when available soil P is depletedSci Rep201661866310.1038/srep186632672833947004991:CAS:528:DC%2BC28Xkt12mtA%3D%3D
LoreauMHectorAPartitioning selection and complementarity in biodiversity experimentsNature2001412727610.1038/35083573114523081:CAS:528:DC%2BD3MXlt1Crtbc%3D
SuBYSongYXSongCCuiLYongTWYangWYGrowth and photosynthetic responses of soybean seedlings to maize shading in relay intercropping system in Southwest ChinaPhotosynthetica20145233234010.1007/s11099-014-0036-71:CAS:528:DC%2BC2cXhtVaksbnM
ChikowoRCorbeelsMMapfumoPTittonellPVanlauweBGillerKENitrogen and phosphorus capture and recovery efficiencies, and crop responses to a range of soil fertility management strategies in sub-Saharan AfricaNutr Cycl Agroecosyst201088597710.1007/s10705-009-9303-6
SchobCKerleSKarleyAJMorcilloLPakemanRJNewtonACBrookerRWIntraspecific genetic diversity and composition modify species-level diversity-productivity relationshipsNew Phytol201520572073010.1111/nph.1304325250812
ZhangDZhangCTangXLiHZhangFRengelZWhalleyWRDaviesWJShenJIncreased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maizeNew Phytol201620982383110.1111/nph.13613263137361:CAS:528:DC%2BC2MXitV2jtrjJ
HayesJERichardsonAESimpsonRJPhytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume seedlingsAust J Plant Physiol19992680180910.1071/PP990651:CAS:528:DC%2BD3cXlt1OgtQ%3D%3D
LiLTilmanDLambersHZhangFSPlant diversity and overyielding: insights from belowground facilitation of intercropping in agricultureNew Phytol2014203636910.1111/nph.12778250138761:CAS:528:DC%2BC2cXovFWrsrw%3D
GeorgeTSBrownLKNewtonACHallettPDSunBHThomasWTBWhitePJImpact of soil tillage on the robustness of the genetic component of variation in phosphorus (P) use efficiency in barley (Hordeum Vulgare L.)Plant Soil201133911312310.1007/s11104-009-0209-51:CAS:528:DC%2BC3MXmsVCiug%3D%3D
MendozaRBailleresMGarcíaIRuizOPhosphorus fertilization of a grass-legume mixture: effect on plant growth, nutrients acquisition and symbiotic associations with soil microorganismsJ Plant Nutr20163969170110.1080/01904167.2015.10870321:CAS:528:DC%2BC2MXhslSqtrzK
HeYDingNShiJWuMLiaoHXuJProfiling of microbial PLFAs: implications for interspecific interactions due to intercropping which increase phosphorus uptake in phosphorus limited acidic soilsSoil Biol Biochem20135762563410.1016/j.soilbio.2012.07.0271:CAS:528:DC%2BC3sXitVGgsbc%3D
Bedoussac L, Journet EP, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G, Jensen ES, Prieur L and Justes E (2015) Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. Rev Agron Sustainable Dev 35, 911–935
MaestreFTCallawayRMValladaresFLortieCJRefining the stress-gradient hypothesis for competition and facilitation in plant communitiesJ Ecol20099719920510.1111/j.1365-2745.2008.01476.x
GeorgeTSRichardsonAESimpsonRJBehaviour of plant-derived extracellular phytase upon addition to soilSoil Biol Biochem20053797798810.1016/j.soilbio.2004.10.0161:CAS:528:DC%2BD2MXhvVSltbk%3D
BrookerRWBennettAECongWFDaniellTJGeorgeTSHallettPDHawesCIannettaPPMJonesHGKarleyAJLiLMcKenzieBMPakemanRJPatersonESchöbCShenJSquireGWatsonCAZhangCZhangFZhangJWhitePJImproving intercropping: a synthesis of research in agronomy, plant physiology and ecologyNew Phytol201520610711710.1111/nph.1313225866856
LiHShenJZhangFClairotteMDrevonJJLe CadreEHinsingerPDynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus Vulgaris L.) and durum wheat (Triticum Turgidum Durum L.) grown in monocropping and intercropping systemsPlant Soil200831213915010.1007/s11104-007-9512-11:CAS:528:DC%2BD1cXht1aju7nF
WendlingMBüchiLAmosséCSinajSWalterACharlesRInfluence of root and leaf traits on the uptake of nutrients in cover cropsPlant Soil201640941943410.1007/s11104-016-2974-21:CAS:528:DC%2BC28XhtFahs7%2FO
CrèmeARumpelCGastalFde la Luz Mora GilMChabbiAEffects of grasses and a legume grown in monoculture or mixture on soil organic matter and phosphorus formsPlant Soil201640211712810.1007/s11104-015-2740-x1:CAS:528:DC%2BC2MXitVKrtLbK
Menezes-BlackburnDParedesCZhangHGilesCDDarchTStutterMGeorgeTSShandCLumsdonDCooperPWendlerRBrownLBlackwellMSWearingCHaygarthPMOrganic acids regulation of chemical-microbial phosphorus transformations in soilsEnviron Sci Technol201650115211153110.1021/acs.est.6b03017277000991:CAS:528:DC%2BC28Xhs1WktbzL
Richardson, A. E. and Simpson R. J. 2011 Soil Microorganisms Mediating Phosphorus Availability. Plant Physiol. 156, 989–996
PrietoIViolleCBarrePDurandJLGhesquiereMLitricoIComplementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1, 15033. Richardson a E and Simpson R J 2011 soil microorganisms mediating phosphorus availabilityPlant Physiol2015156989996
van DijkKCLesschenJPOenemaOPhosphorus flows and balances of the European Union member statesSci Total Environ20165421078109310.1016/j.scitotenv.2015.08.048264217561:CAS:528:DC%2BC2MXhsVyqsLfO
BetencourtEDuputelMColombBDesclauxDHinsingerPIntercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soilSoil Biol Biochem20124618119010.1016/j.soilbio.2011.11.0151:CAS:528:DC%2BC38XosFCmtA%3D%3D
HeffernanBHandbook of methods of inorganic chemical analysis for forest soils, foliage and water1985CSIRO Division of Forest ResearchCanberra
HinsingerPBioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a reviewPlant Soil200123717319510.1023/A:10133516175321:CAS:528:DC%2BD38XovVWlsQ%3D%3D
HinsingerPBetencourtEBernardLBraumanAPlassardCShenJTangXZhangFP for two, Sharing a Scarce Resource: Soil Phosphorus Acquisition in the Rhizosphere of Intercropped SpeciesPlant Physiol20111561078108610.1104/pp.111.1753312150818331359631:CAS:528:DC%2BC3MXptFWlu7w%3D
MoirJJordanPMootDLucasRPhosphorus response and optimum pH ranges of twelve pasture legumes grown in an acid upland New Zealand soil under glasshouse conditionsJ Soil Sci Plant Nutr2016164384601:CAS:528:DC%2BC1cXpvVyltbY%3D
XueYXiaHChristiePZhangZLiLTangCCrop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical reviewAnn Bot201611736337710.1093/aob/mcv1822674959047655401:CAS:528:DC%2BC1cXlvV2hs70%3D
Faucon MP, Houben D, Reynoird JP, Mercadal-Dulaurent AM, Armand R and Lambers H (2015) Chapter two - advances and perspectives to improve the phosphorus availability in cropping Systems for Agroecological Phosphorus Management. In: LS Donald (ed) Advan in Agron Academic Press 134, pp. 51–79
McLarenTIMcLaughlinMJMcBeathTMSimpsonRJSmernikRJGuppyCNRichardsonAEThe fate of fertiliser P in soil under pasture and uptake by subterraneum clover – a field study using 33P-labelled single superphosphatePlant Soil2015401233810.1007/s11104-015-2610-61:CAS:528:DC%2BC2MXht1Grtb%2FJ
de RuiterJMThe phosphate response of eight Mediterranean annual and p
C Li (3365_CR22) 2016; 6
Y He (3365_CR14) 2013; 57
RW Brooker (3365_CR3) 2015; 206
TS George (3365_CR10) 2005; 37
KC Dijk van (3365_CR42) 2016; 542
D Zhang (3365_CR46) 2016; 209
M Loreau (3365_CR27) 2001; 412
T Tadano (3365_CR39) 1991; 37
W Steffen (3365_CR37) 2015; 347
R Chikowo (3365_CR4) 2010; 88
L Li (3365_CR26) 1999; 212
P Hinsinger (3365_CR16) 2001; 237
I Prieto (3365_CR34) 2015; 156
H Høgh-Jensen (3365_CR18) 2010; 87
P Hinsinger (3365_CR17) 2011; 156
D Menezes-Blackburn (3365_CR31) 2016; 50
H Li (3365_CR24) 2010; 46
M Wendling (3365_CR44) 2016; 409
TS George (3365_CR9) 2011; 339
E Betencourt (3365_CR2) 2012; 46
CD Giles (3365_CR11) 2017; 255
TI McLaren (3365_CR29) 2015; 401
JM Ruiter de (3365_CR6) 1981; 24
Q He (3365_CR13) 2013; 16
R Mendoza (3365_CR30) 2016; 39
A Crème (3365_CR5) 2016; 402
GCJ Irving (3365_CR19) 1990; 21
DL Jones (3365_CR20) 1998; 205
FT Maestre (3365_CR28) 2009; 97
J Moir (3365_CR32) 2016; 16
3365_CR35
H Li (3365_CR23) 2008; 312
BY Su (3365_CR38) 2014; 52
X Tang (3365_CR40) 2014; 75
L Li (3365_CR25) 2014; 203
MP Faucon (3365_CR7) 2017; 22
Y Xue (3365_CR45) 2016; 117
3365_CR1
M Nuruzzaman (3365_CR33) 2005; 56
C Schob (3365_CR36) 2015; 205
ZG Wang (3365_CR43) 2015; 391
JE Hayes (3365_CR12) 1999; 26
X Tang (3365_CR41) 2016; 407
3365_CR8
B Heffernan (3365_CR15) 1985
DR Kidd (3365_CR21) 2016; 402
References_xml – reference: BetencourtEDuputelMColombBDesclauxDHinsingerPIntercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soilSoil Biol Biochem20124618119010.1016/j.soilbio.2011.11.0151:CAS:528:DC%2BC38XosFCmtA%3D%3D
– reference: GilesCDBrownLKAduMOMezeliMMSandralGASimpsonRJWendlerRShandCAMenezes-BlackburnDDarchTStutterMILumsdonDGZhangHBlackwellMSAWearingCCooperPHaygarthPMGeorgeTSResponse-based selection of barley cultivars and legume species for complementarity: root morphology and exudation in relation to nutrient sourcePlant Sci2017255122810.1016/j.plantsci.2016.11.002281313381:CAS:528:DC%2BC28XhvVKqtbzM
– reference: HinsingerPBioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a reviewPlant Soil200123717319510.1023/A:10133516175321:CAS:528:DC%2BD38XovVWlsQ%3D%3D
– reference: van DijkKCLesschenJPOenemaOPhosphorus flows and balances of the European Union member statesSci Total Environ20165421078109310.1016/j.scitotenv.2015.08.048264217561:CAS:528:DC%2BC2MXhsVyqsLfO
– reference: LoreauMHectorAPartitioning selection and complementarity in biodiversity experimentsNature2001412727610.1038/35083573114523081:CAS:528:DC%2BD3MXlt1Crtbc%3D
– reference: TangXPlacellaSADaydéFBernardLRobinAJournetEPJustesEHinsingerPPhosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradientPlant Soil201640711913410.1007/s11104-016-2949-31:CAS:528:DC%2BC28Xps12gtbY%3D
– reference: TadanoTSakaiHSecretion of acid phosphatase by the roots of several crop species under phosphorus-deficient conditionsSoil Sci Plant Nutr19913712914010.1080/00380768.1991.104150181:CAS:528:DyaK3MXlvVaitrY%3D
– reference: FauconMPHoubenDLambersHPlant functional traits: soil and ecosystem servicesTrends Plant Sci20172238539410.1016/j.tplants.2017.01.005282093281:CAS:528:DC%2BC2sXit1ertLk%3D
– reference: SuBYSongYXSongCCuiLYongTWYangWYGrowth and photosynthetic responses of soybean seedlings to maize shading in relay intercropping system in Southwest ChinaPhotosynthetica20145233234010.1007/s11099-014-0036-71:CAS:528:DC%2BC2cXhtVaksbnM
– reference: GeorgeTSBrownLKNewtonACHallettPDSunBHThomasWTBWhitePJImpact of soil tillage on the robustness of the genetic component of variation in phosphorus (P) use efficiency in barley (Hordeum Vulgare L.)Plant Soil201133911312310.1007/s11104-009-0209-51:CAS:528:DC%2BC3MXmsVCiug%3D%3D
– reference: Høgh-JensenHSchjoerringJKInteractions between nitrogen, phosphorus and potassium determine growth and N2-fixation in white clover and ryegrass leysNutr Cycling Agroecosyst20108732733810.1007/s10705-009-9341-01:CAS:528:DC%2BC3cXosFGjsbg%3D
– reference: LiCDongYLiHShenJZhangFShift from complementarity to facilitation on P uptake by intercropped wheat neighboring with faba bean when available soil P is depletedSci Rep201661866310.1038/srep186632672833947004991:CAS:528:DC%2BC28Xkt12mtA%3D%3D
– reference: HeYDingNShiJWuMLiaoHXuJProfiling of microbial PLFAs: implications for interspecific interactions due to intercropping which increase phosphorus uptake in phosphorus limited acidic soilsSoil Biol Biochem20135762563410.1016/j.soilbio.2012.07.0271:CAS:528:DC%2BC3sXitVGgsbc%3D
– reference: LiLYangSLiXZhangFChristiePInterspecific complementary and competitive interactions between intercropped maize and faba beanPlant Soil199921210511410.1023/A:10046562051441:CAS:528:DyaK1MXns1Glu7k%3D
– reference: BrookerRWBennettAECongWFDaniellTJGeorgeTSHallettPDHawesCIannettaPPMJonesHGKarleyAJLiLMcKenzieBMPakemanRJPatersonESchöbCShenJSquireGWatsonCAZhangCZhangFZhangJWhitePJImproving intercropping: a synthesis of research in agronomy, plant physiology and ecologyNew Phytol201520610711710.1111/nph.1313225866856
– reference: NuruzzamanMLambersHBollandMDAVeneklaasEJPhosphorus uptake by grain legumes and subsequently grown wheat at different levels of residual phosphorus fertiliserAust J Agric Res2005561041104710.1071/AR050601:CAS:528:DC%2BD2MXhtFChsLbE
– reference: MendozaRBailleresMGarcíaIRuizOPhosphorus fertilization of a grass-legume mixture: effect on plant growth, nutrients acquisition and symbiotic associations with soil microorganismsJ Plant Nutr20163969170110.1080/01904167.2015.10870321:CAS:528:DC%2BC2MXhslSqtrzK
– reference: WangZGBaoXGLiXFJinXZhaoJHSunJHChristiePLiLIntercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decadePlant Soil201539126528210.1007/s11104-015-2428-21:CAS:528:DC%2BC2MXjslCqsbc%3D
– reference: HayesJERichardsonAESimpsonRJPhytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume seedlingsAust J Plant Physiol19992680180910.1071/PP990651:CAS:528:DC%2BD3cXlt1OgtQ%3D%3D
– reference: ZhangDZhangCTangXLiHZhangFRengelZWhalleyWRDaviesWJShenJIncreased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maizeNew Phytol201620982383110.1111/nph.13613263137361:CAS:528:DC%2BC2MXitV2jtrjJ
– reference: LiLTilmanDLambersHZhangFSPlant diversity and overyielding: insights from belowground facilitation of intercropping in agricultureNew Phytol2014203636910.1111/nph.12778250138761:CAS:528:DC%2BC2cXovFWrsrw%3D
– reference: McLarenTIMcLaughlinMJMcBeathTMSimpsonRJSmernikRJGuppyCNRichardsonAEThe fate of fertiliser P in soil under pasture and uptake by subterraneum clover – a field study using 33P-labelled single superphosphatePlant Soil2015401233810.1007/s11104-015-2610-61:CAS:528:DC%2BC2MXht1Grtb%2FJ
– reference: CrèmeARumpelCGastalFde la Luz Mora GilMChabbiAEffects of grasses and a legume grown in monoculture or mixture on soil organic matter and phosphorus formsPlant Soil201640211712810.1007/s11104-015-2740-x1:CAS:528:DC%2BC2MXitVKrtLbK
– reference: IrvingGCJMcLaughlinMJA rapid and simple field-test for phosphorus in Olsen and bray no 1 extracts of soilCommun Soil Sci Plant Anal1990212245225510.1080/001036290093683771:CAS:528:DyaK3MXisVKgs70%3D
– reference: WendlingMBüchiLAmosséCSinajSWalterACharlesRInfluence of root and leaf traits on the uptake of nutrients in cover cropsPlant Soil201640941943410.1007/s11104-016-2974-21:CAS:528:DC%2BC28XhtFahs7%2FO
– reference: HeffernanBHandbook of methods of inorganic chemical analysis for forest soils, foliage and water1985CSIRO Division of Forest ResearchCanberra
– reference: PrietoIViolleCBarrePDurandJLGhesquiereMLitricoIComplementary effects of species and genetic diversity on productivity and stability of sown grasslands. Nat. Plants 1, 15033. Richardson a E and Simpson R J 2011 soil microorganisms mediating phosphorus availabilityPlant Physiol2015156989996
– reference: XueYXiaHChristiePZhangZLiLTangCCrop acquisition of phosphorus, iron and zinc from soil in cereal/legume intercropping systems: a critical reviewAnn Bot201611736337710.1093/aob/mcv1822674959047655401:CAS:528:DC%2BC1cXlvV2hs70%3D
– reference: Menezes-BlackburnDParedesCZhangHGilesCDDarchTStutterMGeorgeTSShandCLumsdonDCooperPWendlerRBrownLBlackwellMSWearingCHaygarthPMOrganic acids regulation of chemical-microbial phosphorus transformations in soilsEnviron Sci Technol201650115211153110.1021/acs.est.6b03017277000991:CAS:528:DC%2BC28Xhs1WktbzL
– reference: Richardson, A. E. and Simpson R. J. 2011 Soil Microorganisms Mediating Phosphorus Availability. Plant Physiol. 156, 989–996
– reference: ChikowoRCorbeelsMMapfumoPTittonellPVanlauweBGillerKENitrogen and phosphorus capture and recovery efficiencies, and crop responses to a range of soil fertility management strategies in sub-Saharan AfricaNutr Cycl Agroecosyst201088597710.1007/s10705-009-9303-6
– reference: Faucon MP, Houben D, Reynoird JP, Mercadal-Dulaurent AM, Armand R and Lambers H (2015) Chapter two - advances and perspectives to improve the phosphorus availability in cropping Systems for Agroecological Phosphorus Management. In: LS Donald (ed) Advan in Agron Academic Press 134, pp. 51–79
– reference: KiddDRRyanMHHalingRELambersHSandralGAYangZCulvenorRACawthrayGRStefanskiASimpsonRJRhizosphere carboxylates and morphological root traits in pasture legumes and grassesPlant Soil2016402778910.1007/s11104-015-2770-41:CAS:528:DC%2BC2MXitVSksbnF
– reference: HeQBertnessMDAltieriAHGlobal shifts towards positive species interactions with increasing environmental stressEcol Lett20131669570610.1111/ele.1208023363430
– reference: MoirJJordanPMootDLucasRPhosphorus response and optimum pH ranges of twelve pasture legumes grown in an acid upland New Zealand soil under glasshouse conditionsJ Soil Sci Plant Nutr2016164384601:CAS:528:DC%2BC1cXpvVyltbY%3D
– reference: LiHShenJZhangFClairotteMDrevonJJLe CadreEHinsingerPDynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus Vulgaris L.) and durum wheat (Triticum Turgidum Durum L.) grown in monocropping and intercropping systemsPlant Soil200831213915010.1007/s11104-007-9512-11:CAS:528:DC%2BD1cXht1aju7nF
– reference: JonesDLOrganic acids in the rhizosphere - a critical reviewPlant Soil1998205254410.1023/A:10043560073121:CAS:528:DyaK1MXhtlGjs78%3D
– reference: LiHShenJZhangFMarschnerPCawthrayGRengelZPhosphorus uptake and rhizosphere properties of intercropped and monocropped maize, faba bean, and white lupin in acidic soilBiol Fertil Soils201046799110.1007/s00374-009-0411-x1:CAS:528:DC%2BC3cXktl2lsg%3D%3D
– reference: GeorgeTSRichardsonAESimpsonRJBehaviour of plant-derived extracellular phytase upon addition to soilSoil Biol Biochem20053797798810.1016/j.soilbio.2004.10.0161:CAS:528:DC%2BD2MXhvVSltbk%3D
– reference: HinsingerPBetencourtEBernardLBraumanAPlassardCShenJTangXZhangFP for two, Sharing a Scarce Resource: Soil Phosphorus Acquisition in the Rhizosphere of Intercropped SpeciesPlant Physiol20111561078108610.1104/pp.111.1753312150818331359631:CAS:528:DC%2BC3MXptFWlu7w%3D
– reference: SteffenWRichardsonKRockströmJCornellSEFetzerIBennettEMBiggsRCarpenterSRde VriesWde WitCAFolkeCGertenDHeinkeJMaceGMPerssonLMRamanathanVReyersBSörlinSPlanetary boundaries: guiding human development on a changing planetScience2015347125985510.1126/science.1259855255924181:CAS:528:DC%2BC2MXitlKkt7g%3D
– reference: Bedoussac L, Journet EP, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G, Jensen ES, Prieur L and Justes E (2015) Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. Rev Agron Sustainable Dev 35, 911–935
– reference: de RuiterJMThe phosphate response of eight Mediterranean annual and perennial legumesN Z J Agric Res198124333610.1080/00288233.1981.10420868
– reference: MaestreFTCallawayRMValladaresFLortieCJRefining the stress-gradient hypothesis for competition and facilitation in plant communitiesJ Ecol20099719920510.1111/j.1365-2745.2008.01476.x
– reference: TangXBernardLBraumanADaufresneTDeleportePDesclauxDSoucheGPlacellaSAHinsingerPIncrease in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditionsSoil Biol Biochem201475869310.1016/j.soilbio.2014.04.0011:CAS:528:DC%2BC2cXpslKrsrc%3D
– reference: SchobCKerleSKarleyAJMorcilloLPakemanRJNewtonACBrookerRWIntraspecific genetic diversity and composition modify species-level diversity-productivity relationshipsNew Phytol201520572073010.1111/nph.1304325250812
– volume: 22
  start-page: 385
  year: 2017
  ident: 3365_CR7
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2017.01.005
– volume: 26
  start-page: 801
  year: 1999
  ident: 3365_CR12
  publication-title: Aust J Plant Physiol
  doi: 10.1071/PP99065
– volume: 237
  start-page: 173
  year: 2001
  ident: 3365_CR16
  publication-title: Plant Soil
  doi: 10.1023/A:1013351617532
– volume: 203
  start-page: 63
  year: 2014
  ident: 3365_CR25
  publication-title: New Phytol
  doi: 10.1111/nph.12778
– volume: 402
  start-page: 77
  year: 2016
  ident: 3365_CR21
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2770-4
– volume: 391
  start-page: 265
  year: 2015
  ident: 3365_CR43
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2428-2
– ident: 3365_CR35
  doi: 10.1104/pp.111.175448
– volume: 206
  start-page: 107
  year: 2015
  ident: 3365_CR3
  publication-title: New Phytol
  doi: 10.1111/nph.13132
– volume: 6
  start-page: 18663
  year: 2016
  ident: 3365_CR22
  publication-title: Sci Rep
  doi: 10.1038/srep18663
– volume: 412
  start-page: 72
  year: 2001
  ident: 3365_CR27
  publication-title: Nature
  doi: 10.1038/35083573
– volume: 339
  start-page: 113
  year: 2011
  ident: 3365_CR9
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0209-5
– volume: 407
  start-page: 119
  year: 2016
  ident: 3365_CR41
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-2949-3
– volume: 56
  start-page: 1041
  year: 2005
  ident: 3365_CR33
  publication-title: Aust J Agric Res
  doi: 10.1071/AR05060
– volume: 156
  start-page: 989
  year: 2015
  ident: 3365_CR34
  publication-title: Plant Physiol
– volume: 542
  start-page: 1078
  year: 2016
  ident: 3365_CR42
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2015.08.048
– volume: 312
  start-page: 139
  year: 2008
  ident: 3365_CR23
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9512-1
– volume: 50
  start-page: 11521
  year: 2016
  ident: 3365_CR31
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.6b03017
– volume: 205
  start-page: 25
  year: 1998
  ident: 3365_CR20
  publication-title: Plant Soil
  doi: 10.1023/A:1004356007312
– volume: 39
  start-page: 691
  year: 2016
  ident: 3365_CR30
  publication-title: J Plant Nutr
  doi: 10.1080/01904167.2015.1087032
– volume: 37
  start-page: 129
  year: 1991
  ident: 3365_CR39
  publication-title: Soil Sci Plant Nutr
  doi: 10.1080/00380768.1991.10415018
– volume: 46
  start-page: 79
  year: 2010
  ident: 3365_CR24
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-009-0411-x
– volume: 52
  start-page: 332
  year: 2014
  ident: 3365_CR38
  publication-title: Photosynthetica
  doi: 10.1007/s11099-014-0036-7
– volume: 57
  start-page: 625
  year: 2013
  ident: 3365_CR14
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2012.07.027
– volume: 205
  start-page: 720
  year: 2015
  ident: 3365_CR36
  publication-title: New Phytol
  doi: 10.1111/nph.13043
– volume: 212
  start-page: 105
  year: 1999
  ident: 3365_CR26
  publication-title: Plant Soil
  doi: 10.1023/A:1004656205144
– volume: 401
  start-page: 23
  year: 2015
  ident: 3365_CR29
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2610-6
– volume: 117
  start-page: 363
  year: 2016
  ident: 3365_CR45
  publication-title: Ann Bot
  doi: 10.1093/aob/mcv182
– volume: 37
  start-page: 977
  year: 2005
  ident: 3365_CR10
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2004.10.016
– volume: 21
  start-page: 2245
  year: 1990
  ident: 3365_CR19
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103629009368377
– volume: 46
  start-page: 181
  year: 2012
  ident: 3365_CR2
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.11.015
– volume: 97
  start-page: 199
  year: 2009
  ident: 3365_CR28
  publication-title: J Ecol
  doi: 10.1111/j.1365-2745.2008.01476.x
– volume: 255
  start-page: 12
  year: 2017
  ident: 3365_CR11
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2016.11.002
– volume: 87
  start-page: 327
  year: 2010
  ident: 3365_CR18
  publication-title: Nutr Cycling Agroecosyst
  doi: 10.1007/s10705-009-9341-0
– ident: 3365_CR8
– volume: 24
  start-page: 33
  year: 1981
  ident: 3365_CR6
  publication-title: N Z J Agric Res
  doi: 10.1080/00288233.1981.10420868
– volume: 88
  start-page: 59
  year: 2010
  ident: 3365_CR4
  publication-title: Nutr Cycl Agroecosyst
  doi: 10.1007/s10705-009-9303-6
– volume: 75
  start-page: 86
  year: 2014
  ident: 3365_CR40
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2014.04.001
– volume: 409
  start-page: 419
  year: 2016
  ident: 3365_CR44
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-2974-2
– ident: 3365_CR1
  doi: 10.1007/s13593-014-0277-7
– volume: 209
  start-page: 823
  year: 2016
  ident: 3365_CR46
  publication-title: New Phytol
  doi: 10.1111/nph.13613
– volume: 16
  start-page: 438
  year: 2016
  ident: 3365_CR32
  publication-title: J Soil Sci Plant Nutr
– volume: 402
  start-page: 117
  year: 2016
  ident: 3365_CR5
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2740-x
– volume-title: Handbook of methods of inorganic chemical analysis for forest soils, foliage and water
  year: 1985
  ident: 3365_CR15
– volume: 156
  start-page: 1078
  year: 2011
  ident: 3365_CR17
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175331
– volume: 16
  start-page: 695
  year: 2013
  ident: 3365_CR13
  publication-title: Ecol Lett
  doi: 10.1111/ele.12080
– volume: 347
  start-page: 1259855
  year: 2015
  ident: 3365_CR37
  publication-title: Science
  doi: 10.1126/science.1259855
SSID ssj0003216
Score 2.4671214
Snippet Aims Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines...
Aims Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines...
Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines...
AimsIntercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines...
AIMS: Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 125
SubjectTerms aboveground biomass
Accumulation
Agricultural practices
Alfalfa
Barley
Biodiversity
Biomass
biomass production
Biomedical and Life Sciences
Constraining
Cultivars
Ecology
Environmental aspects
Exudation
Hordeum vulgare
Intercropping
Legumes
Life Sciences
Medicago truncatula
Monoculture
Ornithopus sativus
Phosphorus
Plant diversity
Plant Physiology
Plant Sciences
Plant-soil relationships
production technology
Regular
Regular Article
soil
Soil improvement
Soil phosphorus
Soil Science & Conservation
Soils
Species
species diversity
Sustainable production
Trifolium
SummonAdditionalLinks – databaseName: ProQuest Central (New)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1rixMxMGjPD_pB9HytnkcEQVDDbTfJPj5JT-44BA-RE_otZJPs3ULZrX0ctL_emWy2tT76obBtkiHdmcwj8yLkrRE61iLTTNvUMGG4YSUXloHdlnFRFbry6dFfL9OLH-LLWI7Dhds8hFX2PNEzatsavCM_wQKzIEqSLPk0_cmwaxR6V0MLjbvkAFhwng_IwenZ5bfvG17ME9_8FB9YnBXj3q_pk-dA8mEEBhwyDPVa70imwJ-7GMV_aZ9_B1H-4Un1Aur8EXkYNEs66kjhMbnjmkPyYHQ9C9U13CG5d9qCLrh6Qtb-IpBR3VhaI2CGGZdgNOM3N8O2XphHRduKluiOX1GEUd-CFezXTNw18DQaFn2kGn72gSHO0nJF5209odObdg6f2RLGbnU96QqCr56Sq_Ozq88XLHRhYEZmyYIlxpZlXCZZbovCpNyZxGRxVeWysEOH5ckAfqZFMrRFmVqRmNRVsXbSoLki-DMyaNrGvSBUSg3qQQ4SUAPrqHKwywthRVmIIpPDMo9I3CNAmVChHBtlTNS2tjLiTAHOFOJMrSPyfrNk2pXn2Df5HWJV4dEFuEaHDATYHRbBUiMphsDepISdHHvE_w4TI-YVqDMSTNQkIkc9Rahw6OdqS6IRebMZhuOKPhjduHYJc4AFcg5qbrpnDhjlHMzSnEfkeUdkm41w0OhTgSPZDvltJmC58N2Rpr7xZcNB98zB2ozIh55Qt1v_7zt7uf-PviL3QYPMu9i5IzJYzJbuNWhpi_I4HMVfrdk5-A
  priority: 102
  providerName: ProQuest
Title Inter- and intra-species intercropping of barley cultivars and legume species, as affected by soil phosphorus availability
URI https://www.jstor.org/stable/26652892
https://link.springer.com/article/10.1007/s11104-017-3365-z
https://www.ncbi.nlm.nih.gov/pubmed/30996483
https://www.proquest.com/docview/2048614272
https://www.proquest.com/docview/2101338516
https://www.proquest.com/docview/2211325983
https://pubmed.ncbi.nlm.nih.gov/PMC6438642
Volume 427
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgAwkeEJSvwKiMhIQEREtiO04e09IygZgQ2qTyFDmOs0Wqkqkfk9K_njsnzegYk3ho09Rnx-r5zr-rzz8T8k5z5SkulavyULtcM-1mjOcuxG2S8SJWhd0e_f04PDrlX2di1pFF416Ya-v3h0uwRZsnAaaACVmbu2Rf-EziKQ3jcNw7XRbYU07xg-vJeLZdwLypiZ0pqHPEbTLiTTDz72zJa0umdiaaPiaPOghJk1bnT8gdUw3Iw-Rs0dFomAG5N6oB9DUDcn9iWambp2Rj__tzqapyWuIjXNxkCXEy3pkFnuSFW6doXdAMV-Abiq2VlxD42jpzcwZujHaVPlEFX9tcEJPTrKHLupzTi_N6Ca_FGsouVTlvOcCbZ-RkOjkZH7ndwQuuFjJYuYHOs8zLAhnlcaxDZnSgpVcUkYhz3yAjGbQvFQ_8PM7CnAc6NIWnjNAYoXD2nOxVdWVeEiqEAkQQwaSnwFsUEYTiMc95FvNYCj-LHOJtVZHqjpQcz8aYp1d0yqi9FLSXovbSjUM-9FUuWkaO24Tfo35TtFZoV6tu0wH0Dnmv0kRwHzyaENCToR0Cf7aJSfIpIBgBUWngkIPt2Eg7O1-mSHsMACeQUPy2LwYLxWUXVZl6DTLg9RgDZBveIgNxOININGIOedEOt74jDEB8yLFE7gzEXgAZwndLqvLcMoUD3IwgwHTIx-2Qver6P3-zV_8l_Zo8AAwZtdlzB2RvtVibN4DTVtmQ7Cejz6MpXr_8-jaB62hy_OPn0FouvJ8GyW_J0zny
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxEB6VFAl4QFCuhVKMBEICVuza3usBoRRapbSNECpS3iyv19tGirIhR1Hyn_iPzOyREI689SFSEtsjJzP-ZmY9B8ALI7WnZaRdnYXGlUYYNxUyc9Fvi4TME52X6dGn3bDzTX7uBb0t-NnkwlBYZYOJJVBnhaFn5O-owCyqEh7xD6PvLnWNotvVpoVGJRbHdv4DXbbJ-6NPyN-XnB8enH3suHVXAdcEEZ-63GRp6qU8irMkMaGwhpvIy_M4SDLfUrmtPLeRltzPkjTMJDehzT1tA0PmtxRI9hpsSxF6vAXb-wfdL1-X0C942WuV3rhelPSaa9QyVw8VLQV84JmmyLLFmiKs1UEVEvkvY_fvmM0_Lm5LfXh4B27XhixrV5J3F7bscAdutc_HdTEPuwPX9ws0Pef3YFE-d3SZHmasT4RdSvBEH50-2TF1EaO0LVbkLKXb_zkjGv1LdLrLNQN7jhDK6kVvmcavyzgUm7F0ziZFf8BGF8UEX-MZjl3q_qCqPz6_D2dXwZ4H0BoWQ_sIWBBotEZiVLgakSqPE-SIzGSayCQK_DR2wGsYoExdEJ36cgzUqpQz8UwhzxTxTC0ceL1cMqqqgWya_Iq4qggpkK7RdcID7o5qbql2IH1E0yDAneyVjP-dJgXoK7SeAvSIuQO7jUSoGmMmanUiHHi-HEZ0oCsfPbTFDOcg4gqBVnW4YQ73fYFecCwceFgJ2XIjAh2IUNJItCZ-ywlUnXx9ZNi_KKuUo6kbo3PrwJtGUFdb_-9_9njzD30GNzpnpyfq5Kh7_ARuovEaV2F7u9Cajmf2KRqI03SvPpYM1BUDwS8tnndb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxEB6VFKHygKAcXSjFSCAkYNVdr_d6QCiljVoKUYVaKW-W1-ttI0W7IUdR8s_4d8zskRCOvPUhUhLbIycz_mZmPQfAKy2Uo0SobJUG2hba03biidRGvy30RBarrEyP_toNji_E557f24CfTS4MhVU2mFgCdVpoeka-TwVmUZXwkO9ndVjE2WHn4_C7TR2k6Ka1aadRicipmf1A92384eQQef2a887R-adju-4wYGs_5BOb6zRJnISHURrHOvCM5jp0sizy49Q1VHory0yoBHfTOAlSwXVgMkcZX5MpLjwkews2Q3KKWrB5cNQ9-7ZQAx4v-67SG9sJ415zpVrm7aHSpeAPPN8UZTZfUYq1aqjCI_9l-P4dv_nHJW6pGzv34V5t1LJ2JYUPYMPk23C3fTmqC3uYbbh9UKAZOnsI8_IZpM1UnrI-EbYp2RP9dfpkRtRRjFK4WJGxhCIBZoxo9K_RAS_XDMwlwimrF71nCr8uY1JMypIZGxf9ARteFWN8jaY4dq36g6oW-ewRnN8Eex5DKy9yswPM9xVaJhEqX4WolUUxckSkIolFHPpuElngNAyQui6OTj06BnJZ1pl4JpFnkngm5xa8XSwZVpVB1k1-Q1yVhBpIV6s6-QF3R_W3ZNsXLiKr7-NO9krG_06TgvUlWlI-esfcgt1GImSNN2O5PB0WvFwMI1LQ9Y_KTTHFOYi-nocWdrBmDnddDz3iyLPgSSVki4146EwEgkbCFfFbTKBK5asjef-qrFiOZm-Ejq4F7xpBXW79v__Z0_U_9AXcQQCQX066p89gC-3YqIrg24XWZDQ1z9FWnCR79alkIG8YB34B1z17kA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inter-+and+intra-species+intercropping+of+barley+cultivars+and+legume+species%2C+as+affected+by+soil+phosphorus+availability&rft.jtitle=Plant+and+soil&rft.au=Darch%2C+Tegan&rft.au=Giles%2C+Courtney+D.&rft.au=Blackwell%2C+Martin+S.+A.&rft.au=George%2C+Timothy+S.&rft.date=2018-06-01&rft.pub=Springer+International+Publishing&rft.issn=0032-079X&rft.eissn=1573-5036&rft.volume=427&rft.issue=1&rft.spage=125&rft.epage=138&rft_id=info:doi/10.1007%2Fs11104-017-3365-z&rft_id=info%3Apmid%2F30996483&rft.externalDocID=PMC6438642
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon