A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis
Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3(FHY3)and FAR-RED IMPAIRED RESPONSE 1(FAR1), regulate chlorophyll biosynthesis and...
Saved in:
Published in | Journal of integrative plant biology Vol. 58; no. 1; pp. 91 - 103 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
China (Republic : 1949- )
Blackwell Pub
01.01.2016
Blackwell Publishing Ltd Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China%Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China%Biotechnology Research Institute, the Chinese Academy of Agricultural Sciences, Beijing 100081, China%Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China National Center for Plant Gene Research, Beijing 100093, China John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1672-9072 1744-7909 1744-7909 |
DOI | 10.1111/jipb.12369 |
Cover
Abstract | Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3(FHY3)and FAR-RED IMPAIRED RESPONSE 1(FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid(SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway.Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1.Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway. |
---|---|
AbstractList | Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR‐RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR‐RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen‐related genes, particularly genes encoding nucleotide‐binding and leucine‐rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5‐aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.
This study reveals that two light signaling transcription factors modulate plant immune response through regulating chlorophyll biosynthesis and the salicylic acid biosynthetic and signaling pathways. Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR-RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway. Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR-RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR-RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway. Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3(FHY3)and FAR-RED IMPAIRED RESPONSE 1(FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid(SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway.Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1.Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway. Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR‐RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR‐RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana . In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen‐related genes, particularly genes encoding nucleotide‐binding and leucine‐rich repeat domain resistant proteins, are highly induced in fhy3 far1 . Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1 , which encodes a 5‐aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1 . Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway. |
Author | Wang, Wanqing Niu, De Jin, Jing Bo Lin, Rongcheng Tang, Weijiang Wang, Haiyang Ma, Tingting |
AuthorAffiliation | Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China Biotechnology Research Institute, the Chinese Academy of Agricultural Sciences, Beijing 100081, China National Center for Plant Gene Research, Beijing 100093, China |
AuthorAffiliation_xml | – name: Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China%Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China%Biotechnology Research Institute, the Chinese Academy of Agricultural Sciences, Beijing 100081, China%Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China;National Center for Plant Gene Research, Beijing 100093, China – name: 2 Key Laboratory of Plant Molecular Physiology Institute of Botany the Chinese Academy of Sciences Beijing 100093 China – name: 4 National Center for Plant Gene Research Beijing 100093 China – name: 3 Biotechnology Research Institute the Chinese Academy of Agricultural Sciences Beijing 100081 China – name: 1 Key Laboratory of Photobiology Institute of Botany the Chinese Academy of Sciences Beijing 100093 China |
Author_xml | – sequence: 1 fullname: Wang, Wanqing – sequence: 2 fullname: Tang, Weijiang – sequence: 3 fullname: Ma, Tingting – sequence: 4 fullname: Niu, De – sequence: 5 fullname: Jin, Jing Bo – sequence: 6 fullname: Wang, Haiyang – sequence: 7 fullname: Lin, Rongcheng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25989254$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt1r1TAYxotM3Ife-AdoEAQROvPVprkRzob7YqhMh-hNSHuSnpy1SZe0bvWvN905O6iI5iaB9_c8efPm2U22rLMqSZ4iuI_ierM0XbmPMMn5g2QHMUpTxiHfiuec4ZRDhreT3RCWEJIC5vhRso0zXnCc0Z3EzUAnjQdOg8bUix4EU1vZGFsDLave-QCOTr4SIO0cHM0uEPCqHhrZqwC6RtoemLYdrOlHUI6gdfOpNomrReO86xZj04DSuDDafqGCCY-Th1o2QT1Z73vJ5dG7z4cn6fmH49PD2XlaZQzztCSoYhzJrFJIKUrnFUa00BBRxjguKlShXHNNaUZQyaXSRa6ohopKgnFZarKXvF35dkPZqnmlbO9lIzpvWulH4aQRv1esWYjafReUkTznMBq8XBncSKulrcXSDT5OJogfN7clhiiHCEIWuVfri7y7HlToRWtCpZo4HOWGIFABCeQI8uL_KMtohgliE_rs1_Y3fd9_XARer4DKuxC80hsEQTGlQkypEHepiDD8A65MH__JTU83zd8laP1806jxH-bi7PTjwb0mXWlM6NXtRiP9lcgZYZn48v5YnJEDTL5hKi4i_3zFa-mErL0J4vLT3WTjaHlOUSRerBtfOFtfx2BtXPOcFZDHOJCf8qbuCQ |
CitedBy_id | crossref_primary_10_3390_plants10030570 crossref_primary_10_3390_ijms241713201 crossref_primary_10_1186_s12864_023_09629_2 crossref_primary_10_1038_s41598_024_79474_0 crossref_primary_10_3390_ijms23063279 crossref_primary_10_3389_fpls_2018_00692 crossref_primary_10_1186_s12284_017_0168_z crossref_primary_10_1016_j_envexpbot_2018_07_006 crossref_primary_10_1016_j_tplants_2021_11_008 crossref_primary_10_3389_fpls_2021_770060 crossref_primary_10_1186_s12864_019_6161_8 crossref_primary_10_3390_agronomy14010202 crossref_primary_10_1007_s11103_024_01533_x crossref_primary_10_1016_j_pld_2020_11_002 crossref_primary_10_1371_journal_pone_0222940 crossref_primary_10_1093_pcp_pcad068 crossref_primary_10_3389_fpls_2019_01002 crossref_primary_10_1111_nph_14300 crossref_primary_10_3390_ijms252212048 crossref_primary_10_3389_fpls_2022_893278 crossref_primary_10_3390_horticulturae8010014 crossref_primary_10_1186_s12870_020_02393_5 crossref_primary_10_1007_s00122_017_2914_4 crossref_primary_10_1007_s00122_023_04392_0 crossref_primary_10_1111_pce_14044 crossref_primary_10_5586_asbp_8924 crossref_primary_10_1038_s41598_019_49915_2 crossref_primary_10_1016_j_molp_2015_12_013 crossref_primary_10_1111_nph_17934 crossref_primary_10_24072_pcjournal_225 crossref_primary_10_1093_plphys_kiac576 crossref_primary_10_3390_ijms23136907 crossref_primary_10_3390_ijms21217966 crossref_primary_10_3389_fmicb_2022_809940 crossref_primary_10_1111_jipb_13837 crossref_primary_10_3390_plants12112156 crossref_primary_10_3389_fpls_2021_659712 crossref_primary_10_1016_j_stress_2022_100098 crossref_primary_10_1071_FP21129 crossref_primary_10_3390_f12101385 crossref_primary_10_3389_fgene_2023_1023433 crossref_primary_10_1094_PHYTO_12_22_0454_FI crossref_primary_10_1038_srep26160 crossref_primary_10_3389_fpls_2016_00175 crossref_primary_10_1007_s11105_020_01277_0 crossref_primary_10_3389_fpls_2022_823372 crossref_primary_10_1016_j_apradiso_2024_111597 crossref_primary_10_1016_j_xplc_2021_100247 crossref_primary_10_1093_pcp_pcz129 crossref_primary_10_1007_s00299_025_03462_5 crossref_primary_10_3390_plants12132575 crossref_primary_10_3389_fpls_2024_1347842 crossref_primary_10_1111_pbr_13079 crossref_primary_10_1016_j_plantsci_2025_112410 crossref_primary_10_1016_j_plaphy_2023_108169 crossref_primary_10_2139_ssrn_3981559 crossref_primary_10_3389_fpls_2021_736797 |
Cites_doi | 10.3389/fpls.2012.00236 10.1111/j.1365-313X.2012.05038.x 10.1101/gad.952102 10.1074/jbc.M605193200 10.1073/pnas.95.17.10300 10.1111/j.1365-313X.2010.04387.x 10.1038/ncb2219 10.1016/j.pbi.2010.04.007 10.1105/tpc.105.039982 10.1046/j.1365-313X.2002.01338.x 10.1016/j.pbi.2012.03.015 10.1105/tpc.009308 10.1105/tpc.106.044149 10.1104/pp.104.043646 10.1126/science.278.5345.1963 10.1038/ncomms1926 10.1199/tab.0145 10.1016/j.cub.2011.04.004 10.1016/j.tplants.2010.05.012 10.1016/j.chom.2008.02.010 10.1093/emboj/20.19.5400 10.1038/nature01588 10.1111/j.1462-5822.2007.00962.x 10.1016/S1369-5266(03)00058-X 10.1146/annurev.arplant.57.032905.105448 10.1046/j.1365-313X.1999.00420.x 10.1126/science.1146281 10.1094/MPMI-9-0055 10.1093/mp/ssp107 10.1105/tpc.112.097022 10.1016/j.cub.2005.10.042 10.1074/jbc.274.7.4231 10.1046/j.1365-313x.2001.01058.x 10.1105/tpc.111.085126 10.1038/35107108 10.1105/tpc.110.075788 10.1093/emboj/21.6.1339 10.1093/nar/gkn276 10.1105/tpc.005348 10.1126/science.261.5122.754 10.1105/tpc.105.037523 10.1046/j.1365-313x.1998.00343.x 10.1016/j.pbi.2013.06.017 10.1038/nature05286 10.1038/nature09083 10.1146/annurev.phyto.050908.135202 10.1073/pnas.1002828107 10.1046/j.1365-313X.2001.01126.x 10.1105/tpc.10.7.1095 10.1093/jxb/err142 10.1046/j.1365-313X.2003.01741.x 10.1093/mp/ssr005 10.1101/gad.13.15.2017 10.1104/pp.113.224386 10.1105/tpc.105.037358 10.1105/tpc.015842 10.1016/S0092-8674(00)80144-0 10.1146/annurev-arplant-042811-105606 10.1126/science.8091210 10.1007/s11103-009-9458-1 10.1038/nature01204 10.1111/j.1365-313X.2006.02793.x 10.1105/tpc.112.104869 10.1073/pnas.151258398 10.1007/s00425-002-0866-6 10.1016/S1369-5266(03)00061-X 10.1371/journal.ppat.1000970 10.1016/j.cell.2012.04.038 |
ContentType | Journal Article |
Copyright | The Authors. published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences. The Authors. Journal of Integrative Plant Biology published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences. Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: The Authors. published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences. – notice: The Authors. Journal of Integrative Plant Biology published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W94 WU4 ~WA FBQ BSCLL 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 2B. 4A8 92I 93N PSX TCJ 5PM |
DOI | 10.1111/jipb.12369 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库-自然科学-生物科学 中文科技期刊数据库- 镜像站点 AGRIS Istex Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
DocumentTitleAlternate | A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis FHY3/FAR1 regulate plant immunity |
EISSN | 1744-7909 |
EndPage | 103 |
ExternalDocumentID | PMC4736690 zwxb201601007 25989254 10_1111_jipb_12369 JIPB12369 ark_67375_WNG_J3B23Z24_R US201600109641 667809477 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: grants from the National Natural Science Foundation of China; the Ministry of Agriculture of China funderid: (31170221,31325002 and 31300206); (2014ZX08009-003) |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29K 2B. 2C. 2RA 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VR 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 92E 92I 92L 92Q 930 93N A03 A8Z AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABHUG ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFUIB AFVGU AFZJQ AGJLS AHBTC AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CCEZO CCVFK CHBEP CHDYS COF CQIGP CS3 CW9 D-E D-F D-I DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN ESTFP ESX F00 F01 F04 F5P FA0 FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SJN SUPJJ SV3 TCJ TGP TUS UB1 W8V W94 W99 WBKPD WFFXF WIH WIK WNSPC WOHZO WQJ WRC WU4 WXSBR WYISQ XG1 ZZTAW ~IA ~KM ~WA ~WT ABMYL FBQ -SA -S~ 5XA 5XB AAHBH AAXDM AITYG BSCLL CAJEA HGLYW OIG Q-- U1G U5K 24P AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7S9 L.6 4A8 PSX 5PM |
ID | FETCH-LOGICAL-c5729-b31c791a5ce1ee44dc2148f01477928c1c16f9f44531b9aef86e4f0e4a322bbf3 |
IEDL.DBID | DR2 |
ISSN | 1672-9072 1744-7909 |
IngestDate | Thu Aug 21 18:26:34 EDT 2025 Thu May 29 04:01:05 EDT 2025 Fri Sep 05 17:32:01 EDT 2025 Mon Sep 08 10:18:46 EDT 2025 Thu Apr 03 06:52:56 EDT 2025 Thu Apr 24 22:57:50 EDT 2025 Tue Jul 01 03:06:06 EDT 2025 Wed Jan 22 16:46:56 EST 2025 Wed Oct 30 09:47:46 EDT 2024 Wed Mar 13 07:57:12 EDT 2024 Wed Feb 14 10:22:57 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | chlorophyll biosynthesis light signaling Arabidopsis FAR1 salicylic acid FHY3 plant immunity |
Language | English |
License | Attribution-NonCommercial-NoDerivs http://creativecommons.org/licenses/by-nc-nd/4.0 The Authors. Journal of Integrative Plant Biology published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5729-b31c791a5ce1ee44dc2148f01477928c1c16f9f44531b9aef86e4f0e4a322bbf3 |
Notes | Wanqing Wang, Weijiang Tang, Tingting Ma, De Niu, Jing Bo Jin, Haiyang Wang and Rongcheng Lin(1 Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; 2 Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; 3 Biotechnology Research Institute, the Chinese Academy of Agricultural Sciences, Beijing 100081, China; 4 National Center for Plant Gene Research, Beijing 100093, China. ) Arabidopsis; chlorophyll biosynthesis; FAR1; FHY3; lightsignaling; plant immunity; salicylic acid 11-5067/Q Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3(FHY3)and FAR-RED IMPAIRED RESPONSE 1(FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid(SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway.Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1.Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway. http://dx.doi.org/10.1111/jipb.12369 istex:3C782CCC8269DDFB514E32ED0D2FC3D06B863A61 ark:/67375/WNG-J3B23Z24-R ArticleID:JIPB12369 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Available online on May 18, 2015 at www.wileyonlinelibrary.com/journal/jipb Current address: College of Biochemical Engineering, Beijing Union University, Beijing 100023, China. |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.12369 |
PMID | 25989254 |
PQID | 1754523178 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4736690 wanfang_journals_zwxb201601007 proquest_miscellaneous_1803091098 proquest_miscellaneous_1754523178 pubmed_primary_25989254 crossref_primary_10_1111_jipb_12369 crossref_citationtrail_10_1111_jipb_12369 wiley_primary_10_1111_jipb_12369_JIPB12369 istex_primary_ark_67375_WNG_J3B23Z24_R fao_agris_US201600109641 chongqing_primary_667809477 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: January 2016 |
PublicationDecade | 2010 |
PublicationPlace | China (Republic : 1949- ) |
PublicationPlace_xml | – name: China (Republic : 1949- ) – name: Hoboken |
PublicationTitle | Journal of integrative plant biology |
PublicationTitleAlternate | Journal of Integrative Plant Biology |
PublicationTitle_FL | Journal of Integrative Plant Biology |
PublicationYear | 2016 |
Publisher | Blackwell Pub Blackwell Publishing Ltd Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China%Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China%Biotechnology Research Institute, the Chinese Academy of Agricultural Sciences, Beijing 100081, China%Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China National Center for Plant Gene Research, Beijing 100093, China John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Pub – name: Blackwell Publishing Ltd – name: National Center for Plant Gene Research, Beijing 100093, China – name: Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China%Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China%Biotechnology Research Institute, the Chinese Academy of Agricultural Sciences, Beijing 100081, China%Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China – name: John Wiley and Sons Inc |
References | Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF ( 2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci USA 98: 9448-9453 Li J, Li G, Gao S, Martinez C, He G, Zhou Z, Huang X, Lee JH, Zhang H, Shen Y, Wang H, Deng XW ( 2010) Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling. Plant Cell 22: 3634-3649 Journot-Catalino N, Somssich IE, Roby D, Kroj T ( 2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18: 3289-3302 Pandey SP, Roccaro M, Schon M, Logemann E, Somssich IE ( 2010) Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J 64: 912-923 Karpinski S, Gabrys H, Mateo A, Karpinska B, Mullineaux PM ( 2003) Light perception in plant disease defense signaling. Curr Opin Plant Biol 6: 390-396 Bartsch M, Gobbato E, Bednarek P, Debey S, Schultze JL, Bautor J, Parker JE ( 2006) Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the nudix hydrolase NUDT7. Plant Cell 18: 1038-1051 Feys BJ, Moisan LJ, Newman MA, Parker JE ( 2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20: 5400-5411 Müller A, Düchting P, Weiler E ( 2002) A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216: 44-56 Wang H, Deng XW ( 2002) Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J 21: 1339-1349 Kazan K, Manners JM ( 2011) The interplay between light and jasmonate signaling during defense and development. J Exp Bot 62: 4087-4100 Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J ( 2003) Fitness costs of R gene-mediated resistance in Arabidopsis thaliana. Nature 423: 74-77 Shah J ( 2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6: 365-371 Chen D, Xu G, Tang W, Jing Y, Ji Q, Fei Z, Lin R ( 2013) Antagonistic bHLH/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. Plant Cell 25: 1657-1673 Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M, Smith AG, Tanaka A, Terry MJ ( 2010) The cell biology of tetrapyrroles: A life and death struggle. Trends Plant Sci 15: 488-498 Fu ZQ, Dong X ( 2013) Systemic acquired resistance: Turning local infection into global defense. Annu Rev Plant Biol 64: 839-863 Wiermer M, Palma K, Zhang Y, Li X ( 2007) Should I stay or should I go? Nucleocy to plasmic trafficking in plant innate immunity. Cell Microbiol 9: 1880-1890 Papenbroack J, Mishra S, Mock HP, Kruse E, Schmidt EK, Petersmann A, Braun HP, Grimm B ( 2001) Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants. Plant J 28: 41-50 Czarnecki O, Glaber C, Chen JG, Mayer KFX, Grimm B ( 2012) Evidence for a contribution of ALA synthesis to plastid-to-nucleus signaling. Front Plant Sci 3: 236 Hudson ME, Lisch DR, Quail PH ( 2003) The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J 34: 453-471 Xie XZ, Xue YJ, Zhou B, Chang H, Takano M ( 2011) Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea. Mol Plant 4: 688-696 Caplan J, Padmanabhan M, Dinesh-Kumar SP ( 2008) Plant NB-LRR immune receptors: From recognition to transcriptional reprogramming. Cell Host Microbe 3: 126-135 Jones JDG, Dangl JL ( 2006) The plant immune system. Nature 444: 323-329 Todesco M, Balasubramanian S, Hu TT, Traw MB, Horton M, Epple P, Kuhns C, Sureshkumar S, Schwartz C, Lanz C, Laitinen RAE, Huang Y, Chory J, Lipka V, Borevitz JO, Dangl JL, Bergelson J, Nordborg M, Weigel D ( 2010) Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465: 632-636 Mateo A, Muhlenbock P, Resterucci C, Chang CC, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S ( 2004) Lesion Simulating Disease 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136: 2818-2830 Blanco F, Salinas P, Cecchini NM, Jordana X, Van Hummelen PV, Alvarez ME, Holuigue L ( 2009) Early genomic responses to salicylic acid in Arabidopsis. Plant Mol Biol 70: 79-102 Woodson JD, Perez-Ruiz JM, Chory J ( 2011) Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Curr Biol 21: 897-903 Reinbothe S, Reinbothe C, Apel K, Lebedev N ( 1996) Evolution of chlorophyll biosynthesis - the challenge to survive photooxidation. Cell 86: 703-705 Vlot AC, Dempsey DA, Klessig DF ( 2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47: 177-206 Tanaka R, Kobayashi K, Masuda T ( 2011) Tetrapyrrole metabolism in Arabidopsis thaliana. The Arabidopsis Book: e0145. doi:10.1199/tab.0145 Strand A, Asami T, Alonso J, Ecker JR, Chory J ( 2003) Chloroplast nucleus communication triggered by accumulation of Mg-protoporphyrin IX. Nature 421: 79-83 Allen T, Koustenis A, Theodorou G, Somers DE, Kay SA, Whitelam GC, Devlin DF ( 2006) Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock. Plant Cell 18: 2506-2516 Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H ( 2007) Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318: 1302-1305 Shirano Y, Kachroo P, Shah J, Klessig DF ( 2002) A gain-of-function mutation in an Arabidopsis toll interleukin 1 receptor-nucleotide binding site-leucine-rich-repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14: 3149-3162 Zhang Y, Goritschnig S, Dong X, Li X ( 2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15: 2636-2646 Clough SJ, Bent AF ( 1998) Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743 Tang W, Ji Q, Huang Y, Jiang Z, Bao M, Wang H, Lin R ( 2013) FHY3 and FAR1 transcription factors integrate light and abscisic acid signaling in Arabidopsis. Plant Physiol 163: 857-866 Li G, Siddiqui H, Teng Y, Lin R, Wan XY, Li J, Lau NS, Ouyang X, Dai M, Wan J, Devlin PF, Deng XW, Wang H ( 2011) Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol 13: 616-624 Strawn MA, Marr SK, Inoue K, Inada N, Zubieta C, Wildermuth MC ( 2007) Arabidopsis isochorimate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem 282: 5919-5933 Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J ( 1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754-756 Hu G, Yalpani N, Briggs SP, Johal GS ( 1998) A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant in maize. Plant Cell 10: 1095-1105 Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, Furichi T, Kohsuke Takebayashi K, Sugimoto T, Sano S, Suwastika N, Fukusaki E, Yoshioka H, Nakahira Y, Shiina T ( 2012) Chloroplast-mediated activation of plant immune signaling in Arabidopsis. Nat Commu 3:926 Hua J ( 2013) Modulation of plant immunity by light, circadian rhythm, and temperature. Curr Opin Plant Biol 16: 406-413 Genoud T, Buchala AJ, Chua NH, Metraux JP ( 2002) Phytochrome signaling modulates the SA-perceptive pathway in Arabidopsis. Plant J 31: 87-95 Hudson M, Ringli C, Boylan MT, Quail PH ( 1999) The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev 13: 2017-2027 Wu L, Yang HQ ( 2010) Cryptochrome 1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis. Mol Plant 3: 539-548 Hiltbrunner A, Viczian A, Bury E, Tscheuschler A, Kircher S, Toth R, Honsberger A, Nagy F, Fankhauser C, Schafer E ( 2005) Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr Biol 15: 2125-2130 Xu X, Chen C, Fan B, Chen Z ( 2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18: 1310-1326 Garcia AV, Blanvillain-Baufume S, Huibers RP, Wiermer M, Li G, Gobbato E, Rietz S, Parker JE ( 2010) Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response. PLoS Pathog 6: e1000970 Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Holub E ( 1997) NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278: 1963-1965 Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ ( 1994) RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes. Science 265: 1856-1860 Zheng Q, Wang XJ ( 2008) GOEAST: A web-based software toolkit for gene ontology enrichment analysis. Nucleic Acids Res 36:W358-W363 Heidrich K, Blanvillain-Baufume S, Parker JE ( 2012) Molecular and spatial constraints on NB-LRR receptor signaling. Curr Opin Plant Biol 15: 385-391 Stirnberg P, Zhan S, Williamson L, Ward S, Leyser O ( 2012) FHY3 promotes shoot branching and stress tolerance in Arabidopsis in an AXR1-dependent manner. Plant J 71: 907-920 Tanaka R, Tanaka A ( 2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58: 321-346 Oldroyd GE, Staskawicz BJ ( 1998) Genetically engineered broad-spectrum disease re 1997; 278 2002; 16 2002; 14 2009; 47 2013; 25 2010; 15 2010; 13 2010; 107 2013; 64 2011; 62 2010; 465 2008; 36 2003; 15 2011; 13 2013; 163 2008; 3 2012; 15 1998; 16 2010; 22 2012; 71 1994; 265 2010; 64 2004; 136 2013; 16 2000 2003; 6 1999; 17 1999; 13 2007; 9 2011; 21 2011; 23 2010; 3 1998; 95 2012; 24 1998; 10 1996; 8 2010; 6 1996; 9 2006; 444 2001; 414 2001; 98 2007; 282 2002; 31 2011 2002; 216 2006; 18 1993; 261 2001; 27 2001; 28 2011; 4 2012; 149 2007; 58 2001; 20 2003; 34 2012; 3 2009; 70 2006; 47 2002; 21 2005; 15 2003; 423 2007; 318 2003; 421 1990; 274 1996; 86 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Hammond‐Kosack KE (e_1_2_7_18_1) 1996; 8 e_1_2_7_4_1 e_1_2_7_8_1 Bray EA (e_1_2_7_6_1) 2000 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – reference: Clough SJ, Bent AF ( 1998) Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743 – reference: Mock HP, Heller W, Molina A, Neubohn B, Sandermann H, Grimm B ( 1990) Expression of uroporphyrinogen decarboxylase or coproporphyrinogen oxidase antisense RNA in tobacco induces pathogen defense responses conferring increased resistance to tobacco mosaic virus. J Biol Chem 274: 4231-4238 – reference: Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M, Smith AG, Tanaka A, Terry MJ ( 2010) The cell biology of tetrapyrroles: A life and death struggle. Trends Plant Sci 15: 488-498 – reference: Zheng Q, Wang XJ ( 2008) GOEAST: A web-based software toolkit for gene ontology enrichment analysis. Nucleic Acids Res 36:W358-W363 – reference: Reinbothe S, Reinbothe C, Apel K, Lebedev N ( 1996) Evolution of chlorophyll biosynthesis - the challenge to survive photooxidation. Cell 86: 703-705 – reference: Vlot AC, Dempsey DA, Klessig DF ( 2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47: 177-206 – reference: Ouyang X, Li J, Li G, Li B, Chen B, Shen H, Huang X, Mo X, Wan X, Lin R, Li S, Wang H, Deng XW ( 2011) Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development. Plant Cell 23: 2514-2535 – reference: Li G, Siddiqui H, Teng Y, Lin R, Wan XY, Li J, Lau NS, Ouyang X, Dai M, Wan J, Devlin PF, Deng XW, Wang H ( 2011) Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol 13: 616-624 – reference: Hudson ME, Lisch DR, Quail PH ( 2003) The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J 34: 453-471 – reference: Ishikawa A, Okamoto H, Iwasaki Y, Asahi T ( 2001) A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J 27: 89-99 – reference: Müller A, Düchting P, Weiler E ( 2002) A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216: 44-56 – reference: Oldroyd GE, Staskawicz BJ ( 1998) Genetically engineered broad-spectrum disease resistance in tomato. Proc Natl Acad Sci USA 95: 10300-10305 – reference: Fu ZQ, Dong X ( 2013) Systemic acquired resistance: Turning local infection into global defense. Annu Rev Plant Biol 64: 839-863 – reference: Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H ( 2007) Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318: 1302-1305 – reference: Kazan K, Manners JM ( 2011) The interplay between light and jasmonate signaling during defense and development. J Exp Bot 62: 4087-4100 – reference: Xie XZ, Xue YJ, Zhou B, Chang H, Takano M ( 2011) Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea. Mol Plant 4: 688-696 – reference: Blanco F, Salinas P, Cecchini NM, Jordana X, Van Hummelen PV, Alvarez ME, Holuigue L ( 2009) Early genomic responses to salicylic acid in Arabidopsis. Plant Mol Biol 70: 79-102 – reference: Ochsenbein C, Przybyla D, Danon A, Landgraf F, Gobel C, Imboden A, Feussner I, Apel K ( 2006) The role of EDS1 (enhanced disease susceptibility) during singlet oxygen-mediated stress responses of Arabidopsis. Plant J 47: 445-456 – reference: Zhang Y, Goritschnig S, Dong X, Li X ( 2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15: 2636-2646 – reference: Hinsch M, Staskawicz B ( 1996) Identification of a new Arabidopsis disease resistance locus, RPS4, and cloning of the corresponding avirulence gene, avrRps4, from Pseudomonas syringae pv. pisi. Mol Plant Microbe Interact 9: 55-61 – reference: Stirnberg P, Zhan S, Williamson L, Ward S, Leyser O ( 2012) FHY3 promotes shoot branching and stress tolerance in Arabidopsis in an AXR1-dependent manner. Plant J 71: 907-920 – reference: Xu X, Chen C, Fan B, Chen Z ( 2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18: 1310-1326 – reference: Wang H, Deng XW ( 2002) Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J 21: 1339-1349 – reference: Strawn MA, Marr SK, Inoue K, Inada N, Zubieta C, Wildermuth MC ( 2007) Arabidopsis isochorimate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem 282: 5919-5933 – reference: Todesco M, Balasubramanian S, Hu TT, Traw MB, Horton M, Epple P, Kuhns C, Sureshkumar S, Schwartz C, Lanz C, Laitinen RAE, Huang Y, Chory J, Lipka V, Borevitz JO, Dangl JL, Bergelson J, Nordborg M, Weigel D ( 2010) Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465: 632-636 – reference: Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ ( 1994) RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes. Science 265: 1856-1860 – reference: Mateo A, Muhlenbock P, Resterucci C, Chang CC, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S ( 2004) Lesion Simulating Disease 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136: 2818-2830 – reference: Hudson M, Ringli C, Boylan MT, Quail PH ( 1999) The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev 13: 2017-2027 – reference: Karpinski S, Gabrys H, Mateo A, Karpinska B, Mullineaux PM ( 2003) Light perception in plant disease defense signaling. Curr Opin Plant Biol 6: 390-396 – reference: Tanaka R, Tanaka A ( 2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58: 321-346 – reference: Heidrich K, Blanvillain-Baufume S, Parker JE ( 2012) Molecular and spatial constraints on NB-LRR receptor signaling. Curr Opin Plant Biol 15: 385-391 – reference: Papenbroack J, Mishra S, Mock HP, Kruse E, Schmidt EK, Petersmann A, Braun HP, Grimm B ( 2001) Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants. Plant J 28: 41-50 – reference: Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, Furichi T, Kohsuke Takebayashi K, Sugimoto T, Sano S, Suwastika N, Fukusaki E, Yoshioka H, Nakahira Y, Shiina T ( 2012) Chloroplast-mediated activation of plant immune signaling in Arabidopsis. Nat Commu 3:926 – reference: Wiermer M, Palma K, Zhang Y, Li X ( 2007) Should I stay or should I go? Nucleocy to plasmic trafficking in plant innate immunity. Cell Microbiol 9: 1880-1890 – reference: Woodson JD, Perez-Ruiz JM, Chory J ( 2011) Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Curr Biol 21: 897-903 – reference: Xiao Y, Savchenko T, Baidoo EEK, Chenhab WE, Hayden DM, Tolstikov V, Corwin JA, Kliebenstein DJ, Keasling JD, Dehesh K ( 2012) Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell 149: 1525-1535 – reference: Jones JDG, Dangl JL ( 2006) The plant immune system. Nature 444: 323-329 – reference: Shah J ( 2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6: 365-371 – reference: Hua J ( 2013) Modulation of plant immunity by light, circadian rhythm, and temperature. Curr Opin Plant Biol 16: 406-413 – reference: Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF ( 2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci USA 98: 9448-9453 – reference: Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW ( 2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15: 809-834 – reference: Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Holub E ( 1997) NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278: 1963-1965 – reference: Czarnecki O, Glaber C, Chen JG, Mayer KFX, Grimm B ( 2012) Evidence for a contribution of ALA synthesis to plastid-to-nucleus signaling. Front Plant Sci 3: 236 – reference: Eitas TK, Dangl JL ( 2010) NB-LRR proteins: Pairs, pieces, perception, partners, and pathways. Curr Opin Plant Biol 13: 472-477 – reference: Hu G, Yalpani N, Briggs SP, Johal GS ( 1998) A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant in maize. Plant Cell 10: 1095-1105 – reference: Li J, Li G, Gao S, Martinez C, He G, Zhou Z, Huang X, Lee JH, Zhang H, Shen Y, Wang H, Deng XW ( 2010) Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling. Plant Cell 22: 3634-3649 – reference: Wu L, Yang HQ ( 2010) Cryptochrome 1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis. Mol Plant 3: 539-548 – reference: Stokes TL, Kunkel BN, Richards EJ ( 2002) Epigenetic variation in Arabidopsis disease resistance. Genes Dev 16: 171-182 – reference: Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J ( 1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754-756 – reference: Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J ( 2003) Fitness costs of R gene-mediated resistance in Arabidopsis thaliana. Nature 423: 74-77 – reference: Feys BJ, Moisan LJ, Newman MA, Parker JE ( 2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20: 5400-5411 – reference: Strand A, Asami T, Alonso J, Ecker JR, Chory J ( 2003) Chloroplast nucleus communication triggered by accumulation of Mg-protoporphyrin IX. Nature 421: 79-83 – reference: Garcia AV, Blanvillain-Baufume S, Huibers RP, Wiermer M, Li G, Gobbato E, Rietz S, Parker JE ( 2010) Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response. PLoS Pathog 6: e1000970 – reference: Journot-Catalino N, Somssich IE, Roby D, Kroj T ( 2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18: 3289-3302 – reference: Chen D, Xu G, Tang W, Jing Y, Ji Q, Fei Z, Lin R ( 2013) Antagonistic bHLH/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. Plant Cell 25: 1657-1673 – reference: Wildermuth MC, Dewdney J, Wu G, Ausubel FM ( 2001) Isochorismate synthease is required to synthesize salicylic acid for plant defense. Nature 414: 562-565 – reference: Genoud T, Buchala AJ, Chua NH, Metraux JP ( 2002) Phytochrome signaling modulates the SA-perceptive pathway in Arabidopsis. Plant J 31: 87-95 – reference: Tanaka R, Kobayashi K, Masuda T ( 2011) Tetrapyrrole metabolism in Arabidopsis thaliana. The Arabidopsis Book: e0145. doi:10.1199/tab.0145 – reference: Allen T, Koustenis A, Theodorou G, Somers DE, Kay SA, Whitelam GC, Devlin DF ( 2006) Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock. Plant Cell 18: 2506-2516 – reference: Shirano Y, Kachroo P, Shah J, Klessig DF ( 2002) A gain-of-function mutation in an Arabidopsis toll interleukin 1 receptor-nucleotide binding site-leucine-rich-repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14: 3149-3162 – reference: Tang W, Wang W, Chen D, Ji Q, Jing Y, Wang H, Lin R ( 2012) Transposase-derived proteins FHY3/FAR1 interact with PHYTOCHROME-INTERACTING FACTOR 1 to regulate chlorophyll biosynthesis by modulating HEMB1 during deetiolation in Arabidopsis. Plant Cell 24: 1984-2000 – reference: Hiltbrunner A, Viczian A, Bury E, Tscheuschler A, Kircher S, Toth R, Honsberger A, Nagy F, Fankhauser C, Schafer E ( 2005) Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr Biol 15: 2125-2130 – reference: Molina A, Volrath S, Guyer D, Maleck K, Ryals J, Ward E ( 1999) Inhibition of protoporphyrinogen oxidase expression in Arabidopsis causes a lesion-mimic phenotype that induces systemic acquired resistance. Plant J 17: 667-678 – reference: Caplan J, Padmanabhan M, Dinesh-Kumar SP ( 2008) Plant NB-LRR immune receptors: From recognition to transcriptional reprogramming. Cell Host Microbe 3: 126-135 – reference: Tang W, Ji Q, Huang Y, Jiang Z, Bao M, Wang H, Lin R ( 2013) FHY3 and FAR1 transcription factors integrate light and abscisic acid signaling in Arabidopsis. Plant Physiol 163: 857-866 – reference: Bartsch M, Gobbato E, Bednarek P, Debey S, Schultze JL, Bautor J, Parker JE ( 2006) Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the nudix hydrolase NUDT7. Plant Cell 18: 1038-1051 – reference: Pandey SP, Roccaro M, Schon M, Logemann E, Somssich IE ( 2010) Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J 64: 912-923 – reference: Hammond-Kosack KE, Jones JD ( 1996) Resistance gene-dependent plant defense responses. Plant Cell 8: 1773-1791 – reference: Zhu Z, Xu F, Zhang Y, Cheng YT, Wiermer M, Li X, Zhang Y ( 2010) Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proc Natl Acad Sci USA 107: 13960-13965 – volume: 18 start-page: 1038 year: 2006 end-page: 1051 article-title: Salicylic acid‐independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in immunity and cell death is regulated by the monooxygenase and the nudix hydrolase publication-title: Plant Cell – volume: 27 start-page: 89 year: 2001 end-page: 99 article-title: A deficiency of coproporphyrinogen III oxidase causes lesion formation in publication-title: Plant J – volume: 47 start-page: 445 year: 2006 end-page: 456 article-title: The role of EDS1 (enhanced disease susceptibility) during singlet oxygen‐mediated stress responses of publication-title: Plant J – volume: 95 start-page: 10300 year: 1998 end-page: 10305 article-title: Genetically engineered broad‐spectrum disease resistance in tomato publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 1773 year: 1996 end-page: 1791 article-title: Resistance gene‐dependent plant defense responses publication-title: Plant Cell – volume: 444 start-page: 323 year: 2006 end-page: 329 article-title: The plant immune system publication-title: Nature – volume: 107 start-page: 13960 year: 2010 end-page: 13965 article-title: resistance protein SNC1 activates immune responses through association with a transcriptional corepressor publication-title: Proc Natl Acad Sci USA – volume: 3 start-page: 236 year: 2012 article-title: Evidence for a contribution of ALA synthesis to plastid‐to‐nucleus signaling publication-title: Front Plant Sci – volume: 15 start-page: 488 year: 2010 end-page: 498 article-title: The cell biology of tetrapyrroles: A life and death struggle publication-title: Trends Plant Sci – volume: 465 start-page: 632 year: 2010 end-page: 636 article-title: Natural allelic variation underlying a major fitness trade‐off in publication-title: Nature – volume: 47 start-page: 177 year: 2009 end-page: 206 article-title: Salicylic acid, a multifaceted hormone to combat disease publication-title: Annu Rev Phytopathol – volume: 31 start-page: 87 year: 2002 end-page: 95 article-title: Phytochrome signaling modulates the SA‐perceptive pathway in publication-title: Plant J – volume: 21 start-page: 1339 year: 2002 end-page: 1349 article-title: FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1 publication-title: EMBO J – volume: 278 start-page: 1963 year: 1997 end-page: 1965 article-title: NDR1, a pathogen‐induced component required for disease resistance publication-title: Science – volume: 86 start-page: 703 year: 1996 end-page: 705 article-title: Evolution of chlorophyll biosynthesis — the challenge to survive photooxidation publication-title: Cell – volume: 149 start-page: 1525 year: 2012 end-page: 1535 article-title: Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress‐response genes publication-title: Cell – volume: 163 start-page: 857 year: 2013 end-page: 866 article-title: FHY3 and FAR1 transcription factors integrate light and abscisic acid signaling in publication-title: Plant Physiol – volume: 3 start-page: 926 year: 2012 article-title: Chloroplast‐mediated activation of plant immune signaling in publication-title: Nat Commu – volume: 4 start-page: 688 year: 2011 end-page: 696 article-title: Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to publication-title: Mol Plant – volume: 15 start-page: 2125 year: 2005 end-page: 2130 article-title: Nuclear accumulation of the phytochrome A photoreceptor requires FHY1 publication-title: Curr Biol – volume: 14 start-page: 3149 year: 2002 end-page: 3162 article-title: A gain‐of‐function mutation in an toll interleukin 1 receptor‐nucleotide binding site‐leucine‐rich‐repeat type R gene triggers defense responses and results in enhanced disease resistance publication-title: Plant Cell – volume: 15 start-page: 385 year: 2012 end-page: 391 article-title: Molecular and spatial constraints on NB‐LRR receptor signaling publication-title: Curr Opin Plant Biol – volume: 6 start-page: e1000970 year: 2010 article-title: Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response publication-title: PLoS Pathog – volume: 216 start-page: 44 year: 2002 end-page: 56 article-title: A multiplex GC‐MS/MS technique for the sensitive and quantitative single‐run analysis of acidic phytohormones and related compounds, and its application to publication-title: Planta – volume: 274 start-page: 4231 year: 1990 end-page: 4238 article-title: Expression of uroporphyrinogen decarboxylase or coproporphyrinogen oxidase antisense RNA in tobacco induces pathogen defense responses conferring increased resistance to tobacco mosaic virus publication-title: J Biol Chem – volume: 13 start-page: 472 year: 2010 end-page: 477 article-title: NB‐LRR proteins: Pairs, pieces, perception, partners, and pathways publication-title: Curr Opin Plant Biol – volume: 34 start-page: 453 year: 2003 end-page: 471 article-title: The and genes encode transposase‐related proteins involved in regulation of gene expression by the phytochrome A‐signaling pathway publication-title: Plant J – volume: 15 start-page: 809 year: 2003 end-page: 834 article-title: Genome‐wide analysis of NBS‐LRR‐encoding genes in publication-title: Plant Cell – volume: 36 start-page: W358 year: 2008 end-page: W363 article-title: GOEAST: A web‐based software toolkit for gene ontology enrichment analysis publication-title: Nucleic Acids Res – start-page: 1158 year: 2000 end-page: 1203 – volume: 58 start-page: 321 year: 2007 end-page: 346 article-title: Tetrapyrrole biosynthesis in higher plants publication-title: Annu Rev Plant Biol – volume: 261 start-page: 754 year: 1993 end-page: 756 article-title: Requirement of salicylic acid for the induction of systemic acquired resistance publication-title: Science – volume: 28 start-page: 41 year: 2001 end-page: 50 article-title: Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants publication-title: Plant J – volume: 16 start-page: 171 year: 2002 end-page: 182 article-title: Epigenetic variation in disease resistance publication-title: Genes Dev – volume: 98 start-page: 9448 year: 2001 end-page: 9453 article-title: A fatty acid desaturase modulates the activation of defense signaling pathways in plants publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 406 year: 2013 end-page: 413 article-title: Modulation of plant immunity by light, circadian rhythm, and temperature publication-title: Curr Opin Plant Biol – volume: 282 start-page: 5919 year: 2007 end-page: 5933 article-title: isochorimate synthase functional in pathogen‐induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses publication-title: J Biol Chem – volume: 64 start-page: 839 year: 2013 end-page: 863 article-title: Systemic acquired resistance: Turning local infection into global defense publication-title: Annu Rev Plant Biol – volume: 20 start-page: 5400 year: 2001 end-page: 5411 article-title: Direct interaction between the disease resistance signaling proteins, EDS1 and PAD4 publication-title: EMBO J – volume: 18 start-page: 3289 year: 2006 end-page: 3302 article-title: The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in publication-title: Plant Cell – volume: 25 start-page: 1657 year: 2013 end-page: 1673 article-title: Antagonistic bHLH/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in publication-title: Plant Cell – volume: 23 start-page: 2514 year: 2011 end-page: 2535 article-title: Genome‐wide binding site analysis of FAR‐RED ELONGATED HYPOCOTYL3 reveals its novel function in development publication-title: Plant Cell – volume: 15 start-page: 2636 year: 2003 end-page: 2646 article-title: A gain‐of‐function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in , publication-title: Plant Cell – volume: 64 start-page: 912 year: 2010 end-page: 923 article-title: Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of publication-title: Plant J – volume: 70 start-page: 79 year: 2009 end-page: 102 article-title: Early genomic responses to salicylic acid in publication-title: Plant Mol Biol – volume: 6 start-page: 365 year: 2003 end-page: 371 article-title: The salicylic acid loop in plant defense publication-title: Curr Opin Plant Biol – volume: 24 start-page: 1984 year: 2012 end-page: 2000 article-title: Transposase‐derived proteins FHY3/FAR1 interact with PHYTOCHROME‐INTERACTING FACTOR 1 to regulate chlorophyll biosynthesis by modulating during deetiolation in publication-title: Plant Cell – volume: 17 start-page: 667 year: 1999 end-page: 678 article-title: Inhibition of protoporphyrinogen oxidase expression in causes a lesion‐mimic phenotype that induces systemic acquired resistance publication-title: Plant J – volume: 21 start-page: 897 year: 2011 end-page: 903 article-title: Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants publication-title: Curr Biol – volume: 423 start-page: 74 year: 2003 end-page: 77 article-title: Fitness costs of R gene‐mediated resistance in publication-title: Nature – start-page: e0145 year: 2011 article-title: Tetrapyrrole metabolism in publication-title: The Arabidopsis Book – volume: 18 start-page: 1310 year: 2006 end-page: 1326 article-title: Physical and functional interactions between pathogen‐induced WRKY18, WRKY40, and WRKY60 transcription factors publication-title: Plant Cell – volume: 16 start-page: 735 year: 1998 end-page: 743 article-title: Floral dip: A simplified method for ‐mediated transformation of publication-title: Plant J – volume: 10 start-page: 1095 year: 1998 end-page: 1105 article-title: A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant in maize publication-title: Plant Cell – volume: 18 start-page: 2506 year: 2006 end-page: 2516 article-title: FHY3 specifically gates phytochrome signaling to the circadian clock publication-title: Plant Cell – volume: 3 start-page: 126 year: 2008 end-page: 135 article-title: Plant NB‐LRR immune receptors: From recognition to transcriptional reprogramming publication-title: Cell Host Microbe – volume: 414 start-page: 562 year: 2001 end-page: 565 article-title: Isochorismate synthease is required to synthesize salicylic acid for plant defense publication-title: Nature – volume: 265 start-page: 1856 year: 1994 end-page: 1860 article-title: RPS2 of : A leucine‐rich repeat class of plant disease resistance genes publication-title: Science – volume: 9 start-page: 55 year: 1996 end-page: 61 article-title: Identification of a new disease resistance locus, RPS4, and cloning of the corresponding avirulence gene, , from pv. publication-title: Mol Plant Microbe Interact – volume: 13 start-page: 2017 year: 1999 end-page: 2027 article-title: The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling publication-title: Genes Dev – volume: 62 start-page: 4087 year: 2011 end-page: 4100 article-title: The interplay between light and jasmonate signaling during defense and development publication-title: J Exp Bot – volume: 6 start-page: 390 year: 2003 end-page: 396 article-title: Light perception in plant disease defense signaling publication-title: Curr Opin Plant Biol – volume: 136 start-page: 2818 year: 2004 end-page: 2830 article-title: is required for acclimation to conditions that promote excess excitation energy publication-title: Plant Physiol – volume: 22 start-page: 3634 year: 2010 end-page: 3649 article-title: transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling publication-title: Plant Cell – volume: 421 start-page: 79 year: 2003 end-page: 83 article-title: Chloroplast nucleus communication triggered by accumulation of Mg‐protoporphyrin IX publication-title: Nature – volume: 318 start-page: 1302 year: 2007 end-page: 1305 article-title: Transposase‐derived transcription factors regulate light signaling in publication-title: Science – volume: 71 start-page: 907 year: 2012 end-page: 920 article-title: FHY3 promotes shoot branching and stress tolerance in in an AXR1‐dependent manner publication-title: Plant J – volume: 9 start-page: 1880 year: 2007 end-page: 1890 article-title: Should I stay or should I go? Nucleocy to plasmic trafficking in plant innate immunity publication-title: Cell Microbiol – volume: 3 start-page: 539 year: 2010 end-page: 548 article-title: Cryptochrome 1 is implicated in promoting R protein‐mediated plant resistance to in publication-title: Mol Plant – volume: 13 start-page: 616 year: 2011 end-page: 624 article-title: Coordinated transcriptional regulation underlying the circadian clock in publication-title: Nat Cell Biol – ident: e_1_2_7_11_1 doi: 10.3389/fpls.2012.00236 – ident: e_1_2_7_50_1 doi: 10.1111/j.1365-313X.2012.05038.x – ident: e_1_2_7_51_1 doi: 10.1101/gad.952102 – ident: e_1_2_7_53_1 doi: 10.1074/jbc.M605193200 – ident: e_1_2_7_43_1 doi: 10.1073/pnas.95.17.10300 – ident: e_1_2_7_45_1 doi: 10.1111/j.1365-313X.2010.04387.x – ident: e_1_2_7_32_1 doi: 10.1038/ncb2219 – ident: e_1_2_7_12_1 doi: 10.1016/j.pbi.2010.04.007 – ident: e_1_2_7_3_1 doi: 10.1105/tpc.105.039982 – ident: e_1_2_7_17_1 doi: 10.1046/j.1365-313X.2002.01338.x – ident: e_1_2_7_19_1 doi: 10.1016/j.pbi.2012.03.015 – ident: e_1_2_7_36_1 doi: 10.1105/tpc.009308 – ident: e_1_2_7_28_1 doi: 10.1105/tpc.106.044149 – ident: e_1_2_7_35_1 doi: 10.1104/pp.104.043646 – ident: e_1_2_7_8_1 doi: 10.1126/science.278.5345.1963 – ident: e_1_2_7_41_1 doi: 10.1038/ncomms1926 – ident: e_1_2_7_54_1 doi: 10.1199/tab.0145 – ident: e_1_2_7_64_1 doi: 10.1016/j.cub.2011.04.004 – ident: e_1_2_7_37_1 doi: 10.1016/j.tplants.2010.05.012 – ident: e_1_2_7_7_1 doi: 10.1016/j.chom.2008.02.010 – ident: e_1_2_7_13_1 doi: 10.1093/emboj/20.19.5400 – ident: e_1_2_7_58_1 doi: 10.1038/nature01588 – ident: e_1_2_7_62_1 doi: 10.1111/j.1462-5822.2007.00962.x – ident: e_1_2_7_48_1 doi: 10.1016/S1369-5266(03)00058-X – ident: e_1_2_7_55_1 doi: 10.1146/annurev.arplant.57.032905.105448 – ident: e_1_2_7_38_1 doi: 10.1046/j.1365-313X.1999.00420.x – ident: e_1_2_7_34_1 doi: 10.1126/science.1146281 – ident: e_1_2_7_20_1 doi: 10.1094/MPMI-9-0055 – ident: e_1_2_7_65_1 doi: 10.1093/mp/ssp107 – ident: e_1_2_7_57_1 doi: 10.1105/tpc.112.097022 – ident: e_1_2_7_25_1 doi: 10.1016/j.cub.2005.10.042 – ident: e_1_2_7_39_1 doi: 10.1074/jbc.274.7.4231 – ident: e_1_2_7_26_1 doi: 10.1046/j.1365-313x.2001.01058.x – ident: e_1_2_7_44_1 doi: 10.1105/tpc.111.085126 – ident: e_1_2_7_63_1 doi: 10.1038/35107108 – ident: e_1_2_7_33_1 doi: 10.1105/tpc.110.075788 – ident: e_1_2_7_61_1 doi: 10.1093/emboj/21.6.1339 – ident: e_1_2_7_70_1 doi: 10.1093/nar/gkn276 – ident: e_1_2_7_49_1 doi: 10.1105/tpc.005348 – ident: e_1_2_7_15_1 doi: 10.1126/science.261.5122.754 – ident: e_1_2_7_68_1 doi: 10.1105/tpc.105.037523 – ident: e_1_2_7_10_1 doi: 10.1046/j.1365-313x.1998.00343.x – ident: e_1_2_7_22_1 doi: 10.1016/j.pbi.2013.06.017 – ident: e_1_2_7_27_1 doi: 10.1038/nature05286 – ident: e_1_2_7_59_1 doi: 10.1038/nature09083 – volume: 8 start-page: 1773 year: 1996 ident: e_1_2_7_18_1 article-title: Resistance gene‐dependent plant defense responses publication-title: Plant Cell – start-page: 1158 volume-title: Biochemistry and Molecular Biology of Plants year: 2000 ident: e_1_2_7_6_1 – ident: e_1_2_7_60_1 doi: 10.1146/annurev.phyto.050908.135202 – ident: e_1_2_7_71_1 doi: 10.1073/pnas.1002828107 – ident: e_1_2_7_46_1 doi: 10.1046/j.1365-313X.2001.01126.x – ident: e_1_2_7_21_1 doi: 10.1105/tpc.10.7.1095 – ident: e_1_2_7_31_1 doi: 10.1093/jxb/err142 – ident: e_1_2_7_24_1 doi: 10.1046/j.1365-313X.2003.01741.x – ident: e_1_2_7_67_1 doi: 10.1093/mp/ssr005 – ident: e_1_2_7_23_1 doi: 10.1101/gad.13.15.2017 – ident: e_1_2_7_56_1 doi: 10.1104/pp.113.224386 – ident: e_1_2_7_2_1 doi: 10.1105/tpc.105.037358 – ident: e_1_2_7_69_1 doi: 10.1105/tpc.015842 – ident: e_1_2_7_47_1 doi: 10.1016/S0092-8674(00)80144-0 – ident: e_1_2_7_14_1 doi: 10.1146/annurev-arplant-042811-105606 – ident: e_1_2_7_4_1 doi: 10.1126/science.8091210 – ident: e_1_2_7_5_1 doi: 10.1007/s11103-009-9458-1 – ident: e_1_2_7_52_1 doi: 10.1038/nature01204 – ident: e_1_2_7_42_1 doi: 10.1111/j.1365-313X.2006.02793.x – ident: e_1_2_7_9_1 doi: 10.1105/tpc.112.104869 – ident: e_1_2_7_29_1 doi: 10.1073/pnas.151258398 – ident: e_1_2_7_40_1 doi: 10.1007/s00425-002-0866-6 – ident: e_1_2_7_30_1 doi: 10.1016/S1369-5266(03)00061-X – ident: e_1_2_7_16_1 doi: 10.1371/journal.ppat.1000970 – ident: e_1_2_7_66_1 doi: 10.1016/j.cell.2012.04.038 |
SSID | ssj0038062 |
Score | 2.35717 |
Snippet | Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that... |
SourceID | pubmedcentral wanfang proquest pubmed crossref wiley istex fao chongqing |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 91 |
SubjectTerms | 5-氨基乙酰丙酸 aminolevulinic acid Arabidopsis Arabidopsis - genetics Arabidopsis - immunology Arabidopsis - metabolism Arabidopsis - radiation effects Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana biochemical pathways biosynthesis Cell Death - radiation effects chlorophyll Chlorophyll - biosynthesis chloroplasts Disease Resistance - immunology FAR1 FHY3 Gene Expression Regulation, Plant - radiation effects gene overexpression genes Genes, Plant hypocotyls immune response Light Signal Transduction - genetics Light Signal Transduction - radiation effects light signaling microarray technology Models, Biological mutants Mutation - genetics Nuclear Proteins - genetics Nuclear Proteins - metabolism pathogens Phenotype Phytochrome - genetics Phytochrome - metabolism Plant Diseases - genetics Plant Diseases - immunology plant immunity Plant Immunity - genetics Plant Immunity - radiation effects proteins Pseudomonas syringae Pseudomonas syringae - drug effects Pseudomonas syringae - physiology reactive oxygen species salicylic acid Salicylic Acid - metabolism seedling growth signal transduction transgenic plants Up-Regulation - genetics Up-Regulation - radiation effects 信号因子 叶绿素 合成调控 富含亮氨酸重复序列 对光 植物免疫 生物合成途径 |
Title | A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis |
URI | http://lib.cqvip.com/qk/94176A/201601/667809477.html https://api.istex.fr/ark:/67375/WNG-J3B23Z24-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.12369 https://www.ncbi.nlm.nih.gov/pubmed/25989254 https://www.proquest.com/docview/1754523178 https://www.proquest.com/docview/1803091098 https://d.wanfangdata.com.cn/periodical/zwxb201601007 https://pubmed.ncbi.nlm.nih.gov/PMC4736690 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELa2CSS-8A4Lg8oIhARSqtpx3iS-tEAplZimQsWYhCw7tdtoISlNq6379ZydNFphmgTfKvUcK-ez77n47jmEXpKkozUhE1f6gkKAIokbizhwWUS9BGwIPKCpRv58GAzGbHjsH--gt5tamIofovngZnaGPa_NBheyvLzJ07lsG-4QU71HvMAQ578fNdxRXtSx3URJEFIXIkBac5PaNJ5mqGFUmBX59Bf4iS3PtKtFAXjVqPr8KvD5dw7lzTORa2EecxnlWjfVv4N-bF6wyk45ba-Wsp1c_MH9-L8auItu1_gVdyuDu4d2VH4f3egVgDHXD1DRxXORLnChcWaifmzSQ4SpeMd1Yx_cH3z3sMgnuN8dEbxQU9M_TJV4nsEa49SWqyzXWK7xz2Jie4vB4GSWFYsCLCLLsEyLcp0Dbi3T8iEa9z98fTdw65YObuIDjHelR5IwJsJPFFGKsUlCIR7TEKeFYUyjhCQk0LFmDI4GGQulo0Ax3VFMwMEjpfYeob28yNU-wpJoLX1GqRCCeSEA0Q54ZF9TqhIVSOagg2Zp-byi7uAB-GYIaMPQQa83i82Tmg3dNOXIeBMVgXa51a6DXjSymwddJbUPNsPFFA5nPv5CDXWfuXcMGHHQK2tIzWixODUJdaHPvx1-5EOvR70TyvjIQc83lsZhm5u7G5GrYlVyQHnMByweRtfIROa-DKYEmceVdTYzQpQbxdQHrYRbdtsIGJrx7X_ydGbpxlnoBUHccVCrtnBeH3Mlvzg7l_ZFTa6Ng95Ya71GR3z46ahnfz35F-EDdMvMUn35eor2louVegZYcClbaJeyo5bd-b8BRTFYog |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbYAMEL4vfCYBiBkEAKqh0nTh5bROnKVk1jE4MXy3btNaIkpem0lb-es5NGq5gm8VYp50T13fm-zz7fIfSG6I61hIxDFUsKBEWRMJNZErKURhpsCCKgu428P0oGx2x4Ep80uTnuLkxdH6LdcHOe4ddr5-BuQ_qyl-cz9cEVD8k20E0GwNxl9FF2sFqIo7Tj-4mShNMQOCBtqpP6RJ52rKupMCmL098QKdZi04aVJSBWN9kXV8HPf7Mob5_Lwkr3mss41weq_n10r0GYuFubxAN0wxQP0a1eCShw-QiVXTyT-RyXFk8dL8cugUO6O-m4ab2D-4PvEZbFGPe7hwTP62b1psKzKWgB5_5CyWKJ1RL_Kse--xcM1hMg_iXobDrFKi-rZQHIssqrx-i4_-no4yBsmi6EOgagHaqIaJ4RGWtDjGFsrCkwJgtMivOMpppoktjMMgbOqzJpbJoYZjuGSVgalLLRE7RZlIXZQlgRa1XMKJVSsogDVOxAzIwtpUabRLEAbbdTL2Z1cQ2RQPQEysl5gN6tlCF0U6_ctc2Yipa3gBKFV2KAXreyqxddJbUFOhXyFJZPcfyVuuJ67mQwYSRAb72i29Fy_tOlvPFYfBt9FsOoR6MflInDAL1aWYIAR3SnK7Iw5VklAIcxYPWEp9fIpO5ECz4JMk9r62m_CDw0zYCuB4iv2VUr4AqBrz8p8okvCM54lCRZJ0A7jQWKZiGqxJ_zC-X_qMuGCdB7b5jXzJEY7h70_K9n_yP8Et0ZHO3vib3d0ZdtdNd9sd6neo42F_Mz8wKQ20LteP_8CwnnOso |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELe28RBfeMPCYBiBkEBKVTvOS-JLC5SuQDWNVQwkZNmp3UYLSelDW_fXc3bSaIVpEnyr1HOsnO98v4vPv0PoBUmaWhMydKUvKCQokrixiAOXRdRLwIYgAprbyJ_7QXfAekf-0QZ6s7oLU_JD1B_cjGfY_do4-GSozzt5OpENwx0Sb6IrLAAoYSDRQU0e5UVN206UBCF1IQWkFTmpreOpxxpKhXGRj35BoFgLTZtaFABYja5PL0KffxdRXjsRuRbmMedhro1TnVvox-oNy_KU48ZiLhvJ2R_kj_-rgtvoZgVgcau0uDtoQ-V30dV2ASBzeQ8VLTwR6RQXGmcm7cemPkSYK--46uyDO91vHhb5EHdaBwRP1cg0EFMzPMlgkXFq76vMl1gu8c9iaJuLweBknBXTAkwiy7BMi9kyB-A6S2f30aDz_vBt1616OriJDzjelR5JwpgIP1FEKcaGCYWETEOiFoYxjRKSkEDHmjHYG2QslI4CxXRTMQE7j5Tae4C28iJX2whLorX0GaVCCOaFgESbEJJ9TalKVCCZg3bqpeWTkruDBxCcIaMNQwe9Wi02Tyo6dNOVI-N1WgTa5Va7Dnpey64edJHUNtgMFyPYnfngCzXcfebgMWDEQS-tIdWjxfTYVNSFPv_a_8B7Xpt63ynjBw56trI0Dn5uDm9ErorFjAPMYz6A8TC6RCYyB2YwJcg8LK2znhHS3CimPmglXLPbWsDwjK__k6djyzfOQi8I4qaDdisL59U-N-NnJ6fSvqgptnHQa2utl-iI9_b22_bXo38Rfoqu77_r8E97_Y876IaZsPwK9hhtzacL9QRw4VzuWvf_DTPSWpk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pair+of+light+signaling+factors+FHY3+and+FAR1+regulates+plant+immunity+by+modulating+chlorophyll+biosynthesis&rft.jtitle=%E6%A4%8D%E7%89%A9%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Wanqing+Wang&rft.au=Weijiang+Tang&rft.au=Tingting+Ma&rft.au=De+Niu&rft.date=2016-01-01&rft.pub=Key+Laboratory+of+Photobiology%2C+Institute+of+Botany%2C+the+Chinese+Academy+of+Sciences%2C+Beijing+100093%2C+China%25Key+Laboratory+of+Plant+Molecular+Physiology%2C+Institute+of+Botany%2C+the+Chinese+Academy+of+Sciences%2C+Beijing+100093%2C+China%25Biotechnology+Research+Institute%2C+the+Chinese+Academy+of+Agricultural+Sciences%2C+Beijing+100081%2C+China%25Key+Laboratory+of+Photobiology%2C+Institute+of+Botany%2C+the+Chinese+Academy+of+Sciences%2C+Beijing+100093%2C+China&rft.issn=1672-9072&rft.volume=58&rft.issue=1&rft.spage=91&rft.epage=103&rft_id=info:doi/10.1111%2Fjipb.12369&rft.externalDocID=zwxb201601007 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94176A%2F94176A.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzwxb%2Fzwxb.jpg |