A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis

Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3(FHY3)and FAR-RED IMPAIRED RESPONSE 1(FAR1), regulate chlorophyll biosynthesis and...

Full description

Saved in:
Bibliographic Details
Published inJournal of integrative plant biology Vol. 58; no. 1; pp. 91 - 103
Main Authors Wang, Wanqing, Tang, Weijiang, Ma, Tingting, Niu, De, Jin, Jing Bo, Wang, Haiyang, Lin, Rongcheng
Format Journal Article
LanguageEnglish
Published China (Republic : 1949- ) Blackwell Pub 01.01.2016
Blackwell Publishing Ltd
Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China%Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China%Biotechnology Research Institute, the Chinese Academy of Agricultural Sciences, Beijing 100081, China%Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
National Center for Plant Gene Research, Beijing 100093, China
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1672-9072
1744-7909
1744-7909
DOI10.1111/jipb.12369

Cover

Abstract Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3(FHY3)and FAR-RED IMPAIRED RESPONSE 1(FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid(SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway.Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1.Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.
AbstractList Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR‐RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR‐RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen‐related genes, particularly genes encoding nucleotide‐binding and leucine‐rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5‐aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway. This study reveals that two light signaling transcription factors modulate plant immune response through regulating chlorophyll biosynthesis and the salicylic acid biosynthetic and signaling pathways.
Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR-RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.
Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR-RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR-RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.
Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3(FHY3)and FAR-RED IMPAIRED RESPONSE 1(FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid(SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway.Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1.Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.
Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR‐RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR‐RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana . In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen‐related genes, particularly genes encoding nucleotide‐binding and leucine‐rich repeat domain resistant proteins, are highly induced in fhy3 far1 . Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1 , which encodes a 5‐aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1 . Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.
Author Wang, Wanqing
Niu, De
Jin, Jing Bo
Lin, Rongcheng
Tang, Weijiang
Wang, Haiyang
Ma, Tingting
AuthorAffiliation Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China Biotechnology Research Institute, the Chinese Academy of Agricultural Sciences, Beijing 100081, China National Center for Plant Gene Research, Beijing 100093, China
AuthorAffiliation_xml – name: Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China%Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China%Biotechnology Research Institute, the Chinese Academy of Agricultural Sciences, Beijing 100081, China%Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China;National Center for Plant Gene Research, Beijing 100093, China
– name: 2 Key Laboratory of Plant Molecular Physiology Institute of Botany the Chinese Academy of Sciences Beijing 100093 China
– name: 4 National Center for Plant Gene Research Beijing 100093 China
– name: 3 Biotechnology Research Institute the Chinese Academy of Agricultural Sciences Beijing 100081 China
– name: 1 Key Laboratory of Photobiology Institute of Botany the Chinese Academy of Sciences Beijing 100093 China
Author_xml – sequence: 1
  fullname: Wang, Wanqing
– sequence: 2
  fullname: Tang, Weijiang
– sequence: 3
  fullname: Ma, Tingting
– sequence: 4
  fullname: Niu, De
– sequence: 5
  fullname: Jin, Jing Bo
– sequence: 6
  fullname: Wang, Haiyang
– sequence: 7
  fullname: Lin, Rongcheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25989254$$D View this record in MEDLINE/PubMed
BookMark eNqFkt1r1TAYxotM3Ife-AdoEAQROvPVprkRzob7YqhMh-hNSHuSnpy1SZe0bvWvN905O6iI5iaB9_c8efPm2U22rLMqSZ4iuI_ierM0XbmPMMn5g2QHMUpTxiHfiuec4ZRDhreT3RCWEJIC5vhRso0zXnCc0Z3EzUAnjQdOg8bUix4EU1vZGFsDLave-QCOTr4SIO0cHM0uEPCqHhrZqwC6RtoemLYdrOlHUI6gdfOpNomrReO86xZj04DSuDDafqGCCY-Th1o2QT1Z73vJ5dG7z4cn6fmH49PD2XlaZQzztCSoYhzJrFJIKUrnFUa00BBRxjguKlShXHNNaUZQyaXSRa6ohopKgnFZarKXvF35dkPZqnmlbO9lIzpvWulH4aQRv1esWYjafReUkTznMBq8XBncSKulrcXSDT5OJogfN7clhiiHCEIWuVfri7y7HlToRWtCpZo4HOWGIFABCeQI8uL_KMtohgliE_rs1_Y3fd9_XARer4DKuxC80hsEQTGlQkypEHepiDD8A65MH__JTU83zd8laP1806jxH-bi7PTjwb0mXWlM6NXtRiP9lcgZYZn48v5YnJEDTL5hKi4i_3zFa-mErL0J4vLT3WTjaHlOUSRerBtfOFtfx2BtXPOcFZDHOJCf8qbuCQ
CitedBy_id crossref_primary_10_3390_plants10030570
crossref_primary_10_3390_ijms241713201
crossref_primary_10_1186_s12864_023_09629_2
crossref_primary_10_1038_s41598_024_79474_0
crossref_primary_10_3390_ijms23063279
crossref_primary_10_3389_fpls_2018_00692
crossref_primary_10_1186_s12284_017_0168_z
crossref_primary_10_1016_j_envexpbot_2018_07_006
crossref_primary_10_1016_j_tplants_2021_11_008
crossref_primary_10_3389_fpls_2021_770060
crossref_primary_10_1186_s12864_019_6161_8
crossref_primary_10_3390_agronomy14010202
crossref_primary_10_1007_s11103_024_01533_x
crossref_primary_10_1016_j_pld_2020_11_002
crossref_primary_10_1371_journal_pone_0222940
crossref_primary_10_1093_pcp_pcad068
crossref_primary_10_3389_fpls_2019_01002
crossref_primary_10_1111_nph_14300
crossref_primary_10_3390_ijms252212048
crossref_primary_10_3389_fpls_2022_893278
crossref_primary_10_3390_horticulturae8010014
crossref_primary_10_1186_s12870_020_02393_5
crossref_primary_10_1007_s00122_017_2914_4
crossref_primary_10_1007_s00122_023_04392_0
crossref_primary_10_1111_pce_14044
crossref_primary_10_5586_asbp_8924
crossref_primary_10_1038_s41598_019_49915_2
crossref_primary_10_1016_j_molp_2015_12_013
crossref_primary_10_1111_nph_17934
crossref_primary_10_24072_pcjournal_225
crossref_primary_10_1093_plphys_kiac576
crossref_primary_10_3390_ijms23136907
crossref_primary_10_3390_ijms21217966
crossref_primary_10_3389_fmicb_2022_809940
crossref_primary_10_1111_jipb_13837
crossref_primary_10_3390_plants12112156
crossref_primary_10_3389_fpls_2021_659712
crossref_primary_10_1016_j_stress_2022_100098
crossref_primary_10_1071_FP21129
crossref_primary_10_3390_f12101385
crossref_primary_10_3389_fgene_2023_1023433
crossref_primary_10_1094_PHYTO_12_22_0454_FI
crossref_primary_10_1038_srep26160
crossref_primary_10_3389_fpls_2016_00175
crossref_primary_10_1007_s11105_020_01277_0
crossref_primary_10_3389_fpls_2022_823372
crossref_primary_10_1016_j_apradiso_2024_111597
crossref_primary_10_1016_j_xplc_2021_100247
crossref_primary_10_1093_pcp_pcz129
crossref_primary_10_1007_s00299_025_03462_5
crossref_primary_10_3390_plants12132575
crossref_primary_10_3389_fpls_2024_1347842
crossref_primary_10_1111_pbr_13079
crossref_primary_10_1016_j_plantsci_2025_112410
crossref_primary_10_1016_j_plaphy_2023_108169
crossref_primary_10_2139_ssrn_3981559
crossref_primary_10_3389_fpls_2021_736797
Cites_doi 10.3389/fpls.2012.00236
10.1111/j.1365-313X.2012.05038.x
10.1101/gad.952102
10.1074/jbc.M605193200
10.1073/pnas.95.17.10300
10.1111/j.1365-313X.2010.04387.x
10.1038/ncb2219
10.1016/j.pbi.2010.04.007
10.1105/tpc.105.039982
10.1046/j.1365-313X.2002.01338.x
10.1016/j.pbi.2012.03.015
10.1105/tpc.009308
10.1105/tpc.106.044149
10.1104/pp.104.043646
10.1126/science.278.5345.1963
10.1038/ncomms1926
10.1199/tab.0145
10.1016/j.cub.2011.04.004
10.1016/j.tplants.2010.05.012
10.1016/j.chom.2008.02.010
10.1093/emboj/20.19.5400
10.1038/nature01588
10.1111/j.1462-5822.2007.00962.x
10.1016/S1369-5266(03)00058-X
10.1146/annurev.arplant.57.032905.105448
10.1046/j.1365-313X.1999.00420.x
10.1126/science.1146281
10.1094/MPMI-9-0055
10.1093/mp/ssp107
10.1105/tpc.112.097022
10.1016/j.cub.2005.10.042
10.1074/jbc.274.7.4231
10.1046/j.1365-313x.2001.01058.x
10.1105/tpc.111.085126
10.1038/35107108
10.1105/tpc.110.075788
10.1093/emboj/21.6.1339
10.1093/nar/gkn276
10.1105/tpc.005348
10.1126/science.261.5122.754
10.1105/tpc.105.037523
10.1046/j.1365-313x.1998.00343.x
10.1016/j.pbi.2013.06.017
10.1038/nature05286
10.1038/nature09083
10.1146/annurev.phyto.050908.135202
10.1073/pnas.1002828107
10.1046/j.1365-313X.2001.01126.x
10.1105/tpc.10.7.1095
10.1093/jxb/err142
10.1046/j.1365-313X.2003.01741.x
10.1093/mp/ssr005
10.1101/gad.13.15.2017
10.1104/pp.113.224386
10.1105/tpc.105.037358
10.1105/tpc.015842
10.1016/S0092-8674(00)80144-0
10.1146/annurev-arplant-042811-105606
10.1126/science.8091210
10.1007/s11103-009-9458-1
10.1038/nature01204
10.1111/j.1365-313X.2006.02793.x
10.1105/tpc.112.104869
10.1073/pnas.151258398
10.1007/s00425-002-0866-6
10.1016/S1369-5266(03)00061-X
10.1371/journal.ppat.1000970
10.1016/j.cell.2012.04.038
ContentType Journal Article
Copyright The Authors. published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
The Authors. Journal of Integrative Plant Biology published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: The Authors. published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
– notice: The Authors. Journal of Integrative Plant Biology published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
WU4
~WA
FBQ
BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
2B.
4A8
92I
93N
PSX
TCJ
5PM
DOI 10.1111/jipb.12369
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库-自然科学-生物科学
中文科技期刊数据库- 镜像站点
AGRIS
Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic


AGRICOLA

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
DocumentTitleAlternate A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis
FHY3/FAR1 regulate plant immunity
EISSN 1744-7909
EndPage 103
ExternalDocumentID PMC4736690
zwxb201601007
25989254
10_1111_jipb_12369
JIPB12369
ark_67375_WNG_J3B23Z24_R
US201600109641
667809477
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: grants from the National Natural Science Foundation of China; the Ministry of Agriculture of China
  funderid: (31170221,31325002 and 31300206); (2014ZX08009-003)
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29K
2B.
2C.
2RA
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VR
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
92E
92I
92L
92Q
930
93N
A03
A8Z
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABHUG
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFUIB
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CCEZO
CCVFK
CHBEP
CHDYS
COF
CQIGP
CS3
CW9
D-E
D-F
D-I
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
ESTFP
ESX
F00
F01
F04
F5P
FA0
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SJN
SUPJJ
SV3
TCJ
TGP
TUS
UB1
W8V
W94
W99
WBKPD
WFFXF
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WU4
WXSBR
WYISQ
XG1
ZZTAW
~IA
~KM
~WA
~WT
ABMYL
FBQ
-SA
-S~
5XA
5XB
AAHBH
AAXDM
AITYG
BSCLL
CAJEA
HGLYW
OIG
Q--
U1G
U5K
24P
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7S9
L.6
4A8
PSX
5PM
ID FETCH-LOGICAL-c5729-b31c791a5ce1ee44dc2148f01477928c1c16f9f44531b9aef86e4f0e4a322bbf3
IEDL.DBID DR2
ISSN 1672-9072
1744-7909
IngestDate Thu Aug 21 18:26:34 EDT 2025
Thu May 29 04:01:05 EDT 2025
Fri Sep 05 17:32:01 EDT 2025
Mon Sep 08 10:18:46 EDT 2025
Thu Apr 03 06:52:56 EDT 2025
Thu Apr 24 22:57:50 EDT 2025
Tue Jul 01 03:06:06 EDT 2025
Wed Jan 22 16:46:56 EST 2025
Wed Oct 30 09:47:46 EDT 2024
Wed Mar 13 07:57:12 EDT 2024
Wed Feb 14 10:22:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords chlorophyll biosynthesis
light signaling
Arabidopsis
FAR1
salicylic acid
FHY3
plant immunity
Language English
License Attribution-NonCommercial-NoDerivs
http://creativecommons.org/licenses/by-nc-nd/4.0
The Authors. Journal of Integrative Plant Biology published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5729-b31c791a5ce1ee44dc2148f01477928c1c16f9f44531b9aef86e4f0e4a322bbf3
Notes Wanqing Wang, Weijiang Tang, Tingting Ma, De Niu, Jing Bo Jin, Haiyang Wang and Rongcheng Lin(1 Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; 2 Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China; 3 Biotechnology Research Institute, the Chinese Academy of Agricultural Sciences, Beijing 100081, China; 4 National Center for Plant Gene Research, Beijing 100093, China. )
Arabidopsis; chlorophyll biosynthesis; FAR1; FHY3; lightsignaling; plant immunity; salicylic acid
11-5067/Q
Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3(FHY3)and FAR-RED IMPAIRED RESPONSE 1(FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid(SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway.Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1.Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.
http://dx.doi.org/10.1111/jipb.12369
istex:3C782CCC8269DDFB514E32ED0D2FC3D06B863A61
ark:/67375/WNG-J3B23Z24-R
ArticleID:JIPB12369
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Available online on May 18, 2015 at www.wileyonlinelibrary.com/journal/jipb
Current address: College of Biochemical Engineering, Beijing Union University, Beijing 100023, China.
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.12369
PMID 25989254
PQID 1754523178
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4736690
wanfang_journals_zwxb201601007
proquest_miscellaneous_1803091098
proquest_miscellaneous_1754523178
pubmed_primary_25989254
crossref_primary_10_1111_jipb_12369
crossref_citationtrail_10_1111_jipb_12369
wiley_primary_10_1111_jipb_12369_JIPB12369
istex_primary_ark_67375_WNG_J3B23Z24_R
fao_agris_US201600109641
chongqing_primary_667809477
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationPlace China (Republic : 1949- )
PublicationPlace_xml – name: China (Republic : 1949- )
– name: Hoboken
PublicationTitle Journal of integrative plant biology
PublicationTitleAlternate Journal of Integrative Plant Biology
PublicationTitle_FL Journal of Integrative Plant Biology
PublicationYear 2016
Publisher Blackwell Pub
Blackwell Publishing Ltd
Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China%Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China%Biotechnology Research Institute, the Chinese Academy of Agricultural Sciences, Beijing 100081, China%Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
National Center for Plant Gene Research, Beijing 100093, China
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Pub
– name: Blackwell Publishing Ltd
– name: National Center for Plant Gene Research, Beijing 100093, China
– name: Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China%Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China%Biotechnology Research Institute, the Chinese Academy of Agricultural Sciences, Beijing 100081, China%Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
– name: John Wiley and Sons Inc
References Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF ( 2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci USA 98: 9448-9453
Li J, Li G, Gao S, Martinez C, He G, Zhou Z, Huang X, Lee JH, Zhang H, Shen Y, Wang H, Deng XW ( 2010) Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling. Plant Cell 22: 3634-3649
Journot-Catalino N, Somssich IE, Roby D, Kroj T ( 2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18: 3289-3302
Pandey SP, Roccaro M, Schon M, Logemann E, Somssich IE ( 2010) Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J 64: 912-923
Karpinski S, Gabrys H, Mateo A, Karpinska B, Mullineaux PM ( 2003) Light perception in plant disease defense signaling. Curr Opin Plant Biol 6: 390-396
Bartsch M, Gobbato E, Bednarek P, Debey S, Schultze JL, Bautor J, Parker JE ( 2006) Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the nudix hydrolase NUDT7. Plant Cell 18: 1038-1051
Feys BJ, Moisan LJ, Newman MA, Parker JE ( 2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20: 5400-5411
Müller A, Düchting P, Weiler E ( 2002) A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216: 44-56
Wang H, Deng XW ( 2002) Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J 21: 1339-1349
Kazan K, Manners JM ( 2011) The interplay between light and jasmonate signaling during defense and development. J Exp Bot 62: 4087-4100
Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J ( 2003) Fitness costs of R gene-mediated resistance in Arabidopsis thaliana. Nature 423: 74-77
Shah J ( 2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6: 365-371
Chen D, Xu G, Tang W, Jing Y, Ji Q, Fei Z, Lin R ( 2013) Antagonistic bHLH/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. Plant Cell 25: 1657-1673
Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M, Smith AG, Tanaka A, Terry MJ ( 2010) The cell biology of tetrapyrroles: A life and death struggle. Trends Plant Sci 15: 488-498
Fu ZQ, Dong X ( 2013) Systemic acquired resistance: Turning local infection into global defense. Annu Rev Plant Biol 64: 839-863
Wiermer M, Palma K, Zhang Y, Li X ( 2007) Should I stay or should I go? Nucleocy to plasmic trafficking in plant innate immunity. Cell Microbiol 9: 1880-1890
Papenbroack J, Mishra S, Mock HP, Kruse E, Schmidt EK, Petersmann A, Braun HP, Grimm B ( 2001) Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants. Plant J 28: 41-50
Czarnecki O, Glaber C, Chen JG, Mayer KFX, Grimm B ( 2012) Evidence for a contribution of ALA synthesis to plastid-to-nucleus signaling. Front Plant Sci 3: 236
Hudson ME, Lisch DR, Quail PH ( 2003) The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J 34: 453-471
Xie XZ, Xue YJ, Zhou B, Chang H, Takano M ( 2011) Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea. Mol Plant 4: 688-696
Caplan J, Padmanabhan M, Dinesh-Kumar SP ( 2008) Plant NB-LRR immune receptors: From recognition to transcriptional reprogramming. Cell Host Microbe 3: 126-135
Jones JDG, Dangl JL ( 2006) The plant immune system. Nature 444: 323-329
Todesco M, Balasubramanian S, Hu TT, Traw MB, Horton M, Epple P, Kuhns C, Sureshkumar S, Schwartz C, Lanz C, Laitinen RAE, Huang Y, Chory J, Lipka V, Borevitz JO, Dangl JL, Bergelson J, Nordborg M, Weigel D ( 2010) Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465: 632-636
Mateo A, Muhlenbock P, Resterucci C, Chang CC, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S ( 2004) Lesion Simulating Disease 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136: 2818-2830
Blanco F, Salinas P, Cecchini NM, Jordana X, Van Hummelen PV, Alvarez ME, Holuigue L ( 2009) Early genomic responses to salicylic acid in Arabidopsis. Plant Mol Biol 70: 79-102
Woodson JD, Perez-Ruiz JM, Chory J ( 2011) Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Curr Biol 21: 897-903
Reinbothe S, Reinbothe C, Apel K, Lebedev N ( 1996) Evolution of chlorophyll biosynthesis - the challenge to survive photooxidation. Cell 86: 703-705
Vlot AC, Dempsey DA, Klessig DF ( 2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47: 177-206
Tanaka R, Kobayashi K, Masuda T ( 2011) Tetrapyrrole metabolism in Arabidopsis thaliana. The Arabidopsis Book: e0145. doi:10.1199/tab.0145
Strand A, Asami T, Alonso J, Ecker JR, Chory J ( 2003) Chloroplast nucleus communication triggered by accumulation of Mg-protoporphyrin IX. Nature 421: 79-83
Allen T, Koustenis A, Theodorou G, Somers DE, Kay SA, Whitelam GC, Devlin DF ( 2006) Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock. Plant Cell 18: 2506-2516
Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H ( 2007) Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318: 1302-1305
Shirano Y, Kachroo P, Shah J, Klessig DF ( 2002) A gain-of-function mutation in an Arabidopsis toll interleukin 1 receptor-nucleotide binding site-leucine-rich-repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14: 3149-3162
Zhang Y, Goritschnig S, Dong X, Li X ( 2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15: 2636-2646
Clough SJ, Bent AF ( 1998) Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743
Tang W, Ji Q, Huang Y, Jiang Z, Bao M, Wang H, Lin R ( 2013) FHY3 and FAR1 transcription factors integrate light and abscisic acid signaling in Arabidopsis. Plant Physiol 163: 857-866
Li G, Siddiqui H, Teng Y, Lin R, Wan XY, Li J, Lau NS, Ouyang X, Dai M, Wan J, Devlin PF, Deng XW, Wang H ( 2011) Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol 13: 616-624
Strawn MA, Marr SK, Inoue K, Inada N, Zubieta C, Wildermuth MC ( 2007) Arabidopsis isochorimate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem 282: 5919-5933
Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J ( 1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754-756
Hu G, Yalpani N, Briggs SP, Johal GS ( 1998) A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant in maize. Plant Cell 10: 1095-1105
Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, Furichi T, Kohsuke Takebayashi K, Sugimoto T, Sano S, Suwastika N, Fukusaki E, Yoshioka H, Nakahira Y, Shiina T ( 2012) Chloroplast-mediated activation of plant immune signaling in Arabidopsis. Nat Commu 3:926
Hua J ( 2013) Modulation of plant immunity by light, circadian rhythm, and temperature. Curr Opin Plant Biol 16: 406-413
Genoud T, Buchala AJ, Chua NH, Metraux JP ( 2002) Phytochrome signaling modulates the SA-perceptive pathway in Arabidopsis. Plant J 31: 87-95
Hudson M, Ringli C, Boylan MT, Quail PH ( 1999) The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev 13: 2017-2027
Wu L, Yang HQ ( 2010) Cryptochrome 1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis. Mol Plant 3: 539-548
Hiltbrunner A, Viczian A, Bury E, Tscheuschler A, Kircher S, Toth R, Honsberger A, Nagy F, Fankhauser C, Schafer E ( 2005) Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr Biol 15: 2125-2130
Xu X, Chen C, Fan B, Chen Z ( 2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18: 1310-1326
Garcia AV, Blanvillain-Baufume S, Huibers RP, Wiermer M, Li G, Gobbato E, Rietz S, Parker JE ( 2010) Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response. PLoS Pathog 6: e1000970
Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Holub E ( 1997) NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278: 1963-1965
Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ ( 1994) RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes. Science 265: 1856-1860
Zheng Q, Wang XJ ( 2008) GOEAST: A web-based software toolkit for gene ontology enrichment analysis. Nucleic Acids Res 36:W358-W363
Heidrich K, Blanvillain-Baufume S, Parker JE ( 2012) Molecular and spatial constraints on NB-LRR receptor signaling. Curr Opin Plant Biol 15: 385-391
Stirnberg P, Zhan S, Williamson L, Ward S, Leyser O ( 2012) FHY3 promotes shoot branching and stress tolerance in Arabidopsis in an AXR1-dependent manner. Plant J 71: 907-920
Tanaka R, Tanaka A ( 2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58: 321-346
Oldroyd GE, Staskawicz BJ ( 1998) Genetically engineered broad-spectrum disease re
1997; 278
2002; 16
2002; 14
2009; 47
2013; 25
2010; 15
2010; 13
2010; 107
2013; 64
2011; 62
2010; 465
2008; 36
2003; 15
2011; 13
2013; 163
2008; 3
2012; 15
1998; 16
2010; 22
2012; 71
1994; 265
2010; 64
2004; 136
2013; 16
2000
2003; 6
1999; 17
1999; 13
2007; 9
2011; 21
2011; 23
2010; 3
1998; 95
2012; 24
1998; 10
1996; 8
2010; 6
1996; 9
2006; 444
2001; 414
2001; 98
2007; 282
2002; 31
2011
2002; 216
2006; 18
1993; 261
2001; 27
2001; 28
2011; 4
2012; 149
2007; 58
2001; 20
2003; 34
2012; 3
2009; 70
2006; 47
2002; 21
2005; 15
2003; 423
2007; 318
2003; 421
1990; 274
1996; 86
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Hammond‐Kosack KE (e_1_2_7_18_1) 1996; 8
e_1_2_7_4_1
e_1_2_7_8_1
Bray EA (e_1_2_7_6_1) 2000
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – reference: Clough SJ, Bent AF ( 1998) Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743
– reference: Mock HP, Heller W, Molina A, Neubohn B, Sandermann H, Grimm B ( 1990) Expression of uroporphyrinogen decarboxylase or coproporphyrinogen oxidase antisense RNA in tobacco induces pathogen defense responses conferring increased resistance to tobacco mosaic virus. J Biol Chem 274: 4231-4238
– reference: Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M, Smith AG, Tanaka A, Terry MJ ( 2010) The cell biology of tetrapyrroles: A life and death struggle. Trends Plant Sci 15: 488-498
– reference: Zheng Q, Wang XJ ( 2008) GOEAST: A web-based software toolkit for gene ontology enrichment analysis. Nucleic Acids Res 36:W358-W363
– reference: Reinbothe S, Reinbothe C, Apel K, Lebedev N ( 1996) Evolution of chlorophyll biosynthesis - the challenge to survive photooxidation. Cell 86: 703-705
– reference: Vlot AC, Dempsey DA, Klessig DF ( 2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47: 177-206
– reference: Ouyang X, Li J, Li G, Li B, Chen B, Shen H, Huang X, Mo X, Wan X, Lin R, Li S, Wang H, Deng XW ( 2011) Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development. Plant Cell 23: 2514-2535
– reference: Li G, Siddiqui H, Teng Y, Lin R, Wan XY, Li J, Lau NS, Ouyang X, Dai M, Wan J, Devlin PF, Deng XW, Wang H ( 2011) Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol 13: 616-624
– reference: Hudson ME, Lisch DR, Quail PH ( 2003) The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J 34: 453-471
– reference: Ishikawa A, Okamoto H, Iwasaki Y, Asahi T ( 2001) A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. Plant J 27: 89-99
– reference: Müller A, Düchting P, Weiler E ( 2002) A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216: 44-56
– reference: Oldroyd GE, Staskawicz BJ ( 1998) Genetically engineered broad-spectrum disease resistance in tomato. Proc Natl Acad Sci USA 95: 10300-10305
– reference: Fu ZQ, Dong X ( 2013) Systemic acquired resistance: Turning local infection into global defense. Annu Rev Plant Biol 64: 839-863
– reference: Lin R, Ding L, Casola C, Ripoll DR, Feschotte C, Wang H ( 2007) Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science 318: 1302-1305
– reference: Kazan K, Manners JM ( 2011) The interplay between light and jasmonate signaling during defense and development. J Exp Bot 62: 4087-4100
– reference: Xie XZ, Xue YJ, Zhou B, Chang H, Takano M ( 2011) Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea. Mol Plant 4: 688-696
– reference: Blanco F, Salinas P, Cecchini NM, Jordana X, Van Hummelen PV, Alvarez ME, Holuigue L ( 2009) Early genomic responses to salicylic acid in Arabidopsis. Plant Mol Biol 70: 79-102
– reference: Ochsenbein C, Przybyla D, Danon A, Landgraf F, Gobel C, Imboden A, Feussner I, Apel K ( 2006) The role of EDS1 (enhanced disease susceptibility) during singlet oxygen-mediated stress responses of Arabidopsis. Plant J 47: 445-456
– reference: Zhang Y, Goritschnig S, Dong X, Li X ( 2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15: 2636-2646
– reference: Hinsch M, Staskawicz B ( 1996) Identification of a new Arabidopsis disease resistance locus, RPS4, and cloning of the corresponding avirulence gene, avrRps4, from Pseudomonas syringae pv. pisi. Mol Plant Microbe Interact 9: 55-61
– reference: Stirnberg P, Zhan S, Williamson L, Ward S, Leyser O ( 2012) FHY3 promotes shoot branching and stress tolerance in Arabidopsis in an AXR1-dependent manner. Plant J 71: 907-920
– reference: Xu X, Chen C, Fan B, Chen Z ( 2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18: 1310-1326
– reference: Wang H, Deng XW ( 2002) Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J 21: 1339-1349
– reference: Strawn MA, Marr SK, Inoue K, Inada N, Zubieta C, Wildermuth MC ( 2007) Arabidopsis isochorimate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem 282: 5919-5933
– reference: Todesco M, Balasubramanian S, Hu TT, Traw MB, Horton M, Epple P, Kuhns C, Sureshkumar S, Schwartz C, Lanz C, Laitinen RAE, Huang Y, Chory J, Lipka V, Borevitz JO, Dangl JL, Bergelson J, Nordborg M, Weigel D ( 2010) Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465: 632-636
– reference: Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ ( 1994) RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes. Science 265: 1856-1860
– reference: Mateo A, Muhlenbock P, Resterucci C, Chang CC, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S ( 2004) Lesion Simulating Disease 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136: 2818-2830
– reference: Hudson M, Ringli C, Boylan MT, Quail PH ( 1999) The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Dev 13: 2017-2027
– reference: Karpinski S, Gabrys H, Mateo A, Karpinska B, Mullineaux PM ( 2003) Light perception in plant disease defense signaling. Curr Opin Plant Biol 6: 390-396
– reference: Tanaka R, Tanaka A ( 2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58: 321-346
– reference: Heidrich K, Blanvillain-Baufume S, Parker JE ( 2012) Molecular and spatial constraints on NB-LRR receptor signaling. Curr Opin Plant Biol 15: 385-391
– reference: Papenbroack J, Mishra S, Mock HP, Kruse E, Schmidt EK, Petersmann A, Braun HP, Grimm B ( 2001) Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants. Plant J 28: 41-50
– reference: Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, Furichi T, Kohsuke Takebayashi K, Sugimoto T, Sano S, Suwastika N, Fukusaki E, Yoshioka H, Nakahira Y, Shiina T ( 2012) Chloroplast-mediated activation of plant immune signaling in Arabidopsis. Nat Commu 3:926
– reference: Wiermer M, Palma K, Zhang Y, Li X ( 2007) Should I stay or should I go? Nucleocy to plasmic trafficking in plant innate immunity. Cell Microbiol 9: 1880-1890
– reference: Woodson JD, Perez-Ruiz JM, Chory J ( 2011) Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Curr Biol 21: 897-903
– reference: Xiao Y, Savchenko T, Baidoo EEK, Chenhab WE, Hayden DM, Tolstikov V, Corwin JA, Kliebenstein DJ, Keasling JD, Dehesh K ( 2012) Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell 149: 1525-1535
– reference: Jones JDG, Dangl JL ( 2006) The plant immune system. Nature 444: 323-329
– reference: Shah J ( 2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6: 365-371
– reference: Hua J ( 2013) Modulation of plant immunity by light, circadian rhythm, and temperature. Curr Opin Plant Biol 16: 406-413
– reference: Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF ( 2001) A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci USA 98: 9448-9453
– reference: Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW ( 2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15: 809-834
– reference: Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Holub E ( 1997) NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278: 1963-1965
– reference: Czarnecki O, Glaber C, Chen JG, Mayer KFX, Grimm B ( 2012) Evidence for a contribution of ALA synthesis to plastid-to-nucleus signaling. Front Plant Sci 3: 236
– reference: Eitas TK, Dangl JL ( 2010) NB-LRR proteins: Pairs, pieces, perception, partners, and pathways. Curr Opin Plant Biol 13: 472-477
– reference: Hu G, Yalpani N, Briggs SP, Johal GS ( 1998) A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant in maize. Plant Cell 10: 1095-1105
– reference: Li J, Li G, Gao S, Martinez C, He G, Zhou Z, Huang X, Lee JH, Zhang H, Shen Y, Wang H, Deng XW ( 2010) Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling. Plant Cell 22: 3634-3649
– reference: Wu L, Yang HQ ( 2010) Cryptochrome 1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis. Mol Plant 3: 539-548
– reference: Stokes TL, Kunkel BN, Richards EJ ( 2002) Epigenetic variation in Arabidopsis disease resistance. Genes Dev 16: 171-182
– reference: Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J ( 1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754-756
– reference: Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J ( 2003) Fitness costs of R gene-mediated resistance in Arabidopsis thaliana. Nature 423: 74-77
– reference: Feys BJ, Moisan LJ, Newman MA, Parker JE ( 2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20: 5400-5411
– reference: Strand A, Asami T, Alonso J, Ecker JR, Chory J ( 2003) Chloroplast nucleus communication triggered by accumulation of Mg-protoporphyrin IX. Nature 421: 79-83
– reference: Garcia AV, Blanvillain-Baufume S, Huibers RP, Wiermer M, Li G, Gobbato E, Rietz S, Parker JE ( 2010) Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response. PLoS Pathog 6: e1000970
– reference: Journot-Catalino N, Somssich IE, Roby D, Kroj T ( 2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18: 3289-3302
– reference: Chen D, Xu G, Tang W, Jing Y, Ji Q, Fei Z, Lin R ( 2013) Antagonistic bHLH/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. Plant Cell 25: 1657-1673
– reference: Wildermuth MC, Dewdney J, Wu G, Ausubel FM ( 2001) Isochorismate synthease is required to synthesize salicylic acid for plant defense. Nature 414: 562-565
– reference: Genoud T, Buchala AJ, Chua NH, Metraux JP ( 2002) Phytochrome signaling modulates the SA-perceptive pathway in Arabidopsis. Plant J 31: 87-95
– reference: Tanaka R, Kobayashi K, Masuda T ( 2011) Tetrapyrrole metabolism in Arabidopsis thaliana. The Arabidopsis Book: e0145. doi:10.1199/tab.0145
– reference: Allen T, Koustenis A, Theodorou G, Somers DE, Kay SA, Whitelam GC, Devlin DF ( 2006) Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock. Plant Cell 18: 2506-2516
– reference: Shirano Y, Kachroo P, Shah J, Klessig DF ( 2002) A gain-of-function mutation in an Arabidopsis toll interleukin 1 receptor-nucleotide binding site-leucine-rich-repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14: 3149-3162
– reference: Tang W, Wang W, Chen D, Ji Q, Jing Y, Wang H, Lin R ( 2012) Transposase-derived proteins FHY3/FAR1 interact with PHYTOCHROME-INTERACTING FACTOR 1 to regulate chlorophyll biosynthesis by modulating HEMB1 during deetiolation in Arabidopsis. Plant Cell 24: 1984-2000
– reference: Hiltbrunner A, Viczian A, Bury E, Tscheuschler A, Kircher S, Toth R, Honsberger A, Nagy F, Fankhauser C, Schafer E ( 2005) Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr Biol 15: 2125-2130
– reference: Molina A, Volrath S, Guyer D, Maleck K, Ryals J, Ward E ( 1999) Inhibition of protoporphyrinogen oxidase expression in Arabidopsis causes a lesion-mimic phenotype that induces systemic acquired resistance. Plant J 17: 667-678
– reference: Caplan J, Padmanabhan M, Dinesh-Kumar SP ( 2008) Plant NB-LRR immune receptors: From recognition to transcriptional reprogramming. Cell Host Microbe 3: 126-135
– reference: Tang W, Ji Q, Huang Y, Jiang Z, Bao M, Wang H, Lin R ( 2013) FHY3 and FAR1 transcription factors integrate light and abscisic acid signaling in Arabidopsis. Plant Physiol 163: 857-866
– reference: Bartsch M, Gobbato E, Bednarek P, Debey S, Schultze JL, Bautor J, Parker JE ( 2006) Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the nudix hydrolase NUDT7. Plant Cell 18: 1038-1051
– reference: Pandey SP, Roccaro M, Schon M, Logemann E, Somssich IE ( 2010) Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J 64: 912-923
– reference: Hammond-Kosack KE, Jones JD ( 1996) Resistance gene-dependent plant defense responses. Plant Cell 8: 1773-1791
– reference: Zhu Z, Xu F, Zhang Y, Cheng YT, Wiermer M, Li X, Zhang Y ( 2010) Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor. Proc Natl Acad Sci USA 107: 13960-13965
– volume: 18
  start-page: 1038
  year: 2006
  end-page: 1051
  article-title: Salicylic acid‐independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in immunity and cell death is regulated by the monooxygenase and the nudix hydrolase
  publication-title: Plant Cell
– volume: 27
  start-page: 89
  year: 2001
  end-page: 99
  article-title: A deficiency of coproporphyrinogen III oxidase causes lesion formation in
  publication-title: Plant J
– volume: 47
  start-page: 445
  year: 2006
  end-page: 456
  article-title: The role of EDS1 (enhanced disease susceptibility) during singlet oxygen‐mediated stress responses of
  publication-title: Plant J
– volume: 95
  start-page: 10300
  year: 1998
  end-page: 10305
  article-title: Genetically engineered broad‐spectrum disease resistance in tomato
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 1773
  year: 1996
  end-page: 1791
  article-title: Resistance gene‐dependent plant defense responses
  publication-title: Plant Cell
– volume: 444
  start-page: 323
  year: 2006
  end-page: 329
  article-title: The plant immune system
  publication-title: Nature
– volume: 107
  start-page: 13960
  year: 2010
  end-page: 13965
  article-title: resistance protein SNC1 activates immune responses through association with a transcriptional corepressor
  publication-title: Proc Natl Acad Sci USA
– volume: 3
  start-page: 236
  year: 2012
  article-title: Evidence for a contribution of ALA synthesis to plastid‐to‐nucleus signaling
  publication-title: Front Plant Sci
– volume: 15
  start-page: 488
  year: 2010
  end-page: 498
  article-title: The cell biology of tetrapyrroles: A life and death struggle
  publication-title: Trends Plant Sci
– volume: 465
  start-page: 632
  year: 2010
  end-page: 636
  article-title: Natural allelic variation underlying a major fitness trade‐off in
  publication-title: Nature
– volume: 47
  start-page: 177
  year: 2009
  end-page: 206
  article-title: Salicylic acid, a multifaceted hormone to combat disease
  publication-title: Annu Rev Phytopathol
– volume: 31
  start-page: 87
  year: 2002
  end-page: 95
  article-title: Phytochrome signaling modulates the SA‐perceptive pathway in
  publication-title: Plant J
– volume: 21
  start-page: 1339
  year: 2002
  end-page: 1349
  article-title: FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1
  publication-title: EMBO J
– volume: 278
  start-page: 1963
  year: 1997
  end-page: 1965
  article-title: NDR1, a pathogen‐induced component required for disease resistance
  publication-title: Science
– volume: 86
  start-page: 703
  year: 1996
  end-page: 705
  article-title: Evolution of chlorophyll biosynthesis — the challenge to survive photooxidation
  publication-title: Cell
– volume: 149
  start-page: 1525
  year: 2012
  end-page: 1535
  article-title: Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress‐response genes
  publication-title: Cell
– volume: 163
  start-page: 857
  year: 2013
  end-page: 866
  article-title: FHY3 and FAR1 transcription factors integrate light and abscisic acid signaling in
  publication-title: Plant Physiol
– volume: 3
  start-page: 926
  year: 2012
  article-title: Chloroplast‐mediated activation of plant immune signaling in
  publication-title: Nat Commu
– volume: 4
  start-page: 688
  year: 2011
  end-page: 696
  article-title: Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to
  publication-title: Mol Plant
– volume: 15
  start-page: 2125
  year: 2005
  end-page: 2130
  article-title: Nuclear accumulation of the phytochrome A photoreceptor requires FHY1
  publication-title: Curr Biol
– volume: 14
  start-page: 3149
  year: 2002
  end-page: 3162
  article-title: A gain‐of‐function mutation in an toll interleukin 1 receptor‐nucleotide binding site‐leucine‐rich‐repeat type R gene triggers defense responses and results in enhanced disease resistance
  publication-title: Plant Cell
– volume: 15
  start-page: 385
  year: 2012
  end-page: 391
  article-title: Molecular and spatial constraints on NB‐LRR receptor signaling
  publication-title: Curr Opin Plant Biol
– volume: 6
  start-page: e1000970
  year: 2010
  article-title: Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response
  publication-title: PLoS Pathog
– volume: 216
  start-page: 44
  year: 2002
  end-page: 56
  article-title: A multiplex GC‐MS/MS technique for the sensitive and quantitative single‐run analysis of acidic phytohormones and related compounds, and its application to
  publication-title: Planta
– volume: 274
  start-page: 4231
  year: 1990
  end-page: 4238
  article-title: Expression of uroporphyrinogen decarboxylase or coproporphyrinogen oxidase antisense RNA in tobacco induces pathogen defense responses conferring increased resistance to tobacco mosaic virus
  publication-title: J Biol Chem
– volume: 13
  start-page: 472
  year: 2010
  end-page: 477
  article-title: NB‐LRR proteins: Pairs, pieces, perception, partners, and pathways
  publication-title: Curr Opin Plant Biol
– volume: 34
  start-page: 453
  year: 2003
  end-page: 471
  article-title: The and genes encode transposase‐related proteins involved in regulation of gene expression by the phytochrome A‐signaling pathway
  publication-title: Plant J
– volume: 15
  start-page: 809
  year: 2003
  end-page: 834
  article-title: Genome‐wide analysis of NBS‐LRR‐encoding genes in
  publication-title: Plant Cell
– volume: 36
  start-page: W358
  year: 2008
  end-page: W363
  article-title: GOEAST: A web‐based software toolkit for gene ontology enrichment analysis
  publication-title: Nucleic Acids Res
– start-page: 1158
  year: 2000
  end-page: 1203
– volume: 58
  start-page: 321
  year: 2007
  end-page: 346
  article-title: Tetrapyrrole biosynthesis in higher plants
  publication-title: Annu Rev Plant Biol
– volume: 261
  start-page: 754
  year: 1993
  end-page: 756
  article-title: Requirement of salicylic acid for the induction of systemic acquired resistance
  publication-title: Science
– volume: 28
  start-page: 41
  year: 2001
  end-page: 50
  article-title: Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants
  publication-title: Plant J
– volume: 16
  start-page: 171
  year: 2002
  end-page: 182
  article-title: Epigenetic variation in disease resistance
  publication-title: Genes Dev
– volume: 98
  start-page: 9448
  year: 2001
  end-page: 9453
  article-title: A fatty acid desaturase modulates the activation of defense signaling pathways in plants
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 406
  year: 2013
  end-page: 413
  article-title: Modulation of plant immunity by light, circadian rhythm, and temperature
  publication-title: Curr Opin Plant Biol
– volume: 282
  start-page: 5919
  year: 2007
  end-page: 5933
  article-title: isochorimate synthase functional in pathogen‐induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses
  publication-title: J Biol Chem
– volume: 64
  start-page: 839
  year: 2013
  end-page: 863
  article-title: Systemic acquired resistance: Turning local infection into global defense
  publication-title: Annu Rev Plant Biol
– volume: 20
  start-page: 5400
  year: 2001
  end-page: 5411
  article-title: Direct interaction between the disease resistance signaling proteins, EDS1 and PAD4
  publication-title: EMBO J
– volume: 18
  start-page: 3289
  year: 2006
  end-page: 3302
  article-title: The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in
  publication-title: Plant Cell
– volume: 25
  start-page: 1657
  year: 2013
  end-page: 1673
  article-title: Antagonistic bHLH/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in
  publication-title: Plant Cell
– volume: 23
  start-page: 2514
  year: 2011
  end-page: 2535
  article-title: Genome‐wide binding site analysis of FAR‐RED ELONGATED HYPOCOTYL3 reveals its novel function in development
  publication-title: Plant Cell
– volume: 15
  start-page: 2636
  year: 2003
  end-page: 2646
  article-title: A gain‐of‐function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in ,
  publication-title: Plant Cell
– volume: 64
  start-page: 912
  year: 2010
  end-page: 923
  article-title: Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of
  publication-title: Plant J
– volume: 70
  start-page: 79
  year: 2009
  end-page: 102
  article-title: Early genomic responses to salicylic acid in
  publication-title: Plant Mol Biol
– volume: 6
  start-page: 365
  year: 2003
  end-page: 371
  article-title: The salicylic acid loop in plant defense
  publication-title: Curr Opin Plant Biol
– volume: 24
  start-page: 1984
  year: 2012
  end-page: 2000
  article-title: Transposase‐derived proteins FHY3/FAR1 interact with PHYTOCHROME‐INTERACTING FACTOR 1 to regulate chlorophyll biosynthesis by modulating during deetiolation in
  publication-title: Plant Cell
– volume: 17
  start-page: 667
  year: 1999
  end-page: 678
  article-title: Inhibition of protoporphyrinogen oxidase expression in causes a lesion‐mimic phenotype that induces systemic acquired resistance
  publication-title: Plant J
– volume: 21
  start-page: 897
  year: 2011
  end-page: 903
  article-title: Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants
  publication-title: Curr Biol
– volume: 423
  start-page: 74
  year: 2003
  end-page: 77
  article-title: Fitness costs of R gene‐mediated resistance in
  publication-title: Nature
– start-page: e0145
  year: 2011
  article-title: Tetrapyrrole metabolism in
  publication-title: The Arabidopsis Book
– volume: 18
  start-page: 1310
  year: 2006
  end-page: 1326
  article-title: Physical and functional interactions between pathogen‐induced WRKY18, WRKY40, and WRKY60 transcription factors
  publication-title: Plant Cell
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  article-title: Floral dip: A simplified method for ‐mediated transformation of
  publication-title: Plant J
– volume: 10
  start-page: 1095
  year: 1998
  end-page: 1105
  article-title: A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant in maize
  publication-title: Plant Cell
– volume: 18
  start-page: 2506
  year: 2006
  end-page: 2516
  article-title: FHY3 specifically gates phytochrome signaling to the circadian clock
  publication-title: Plant Cell
– volume: 3
  start-page: 126
  year: 2008
  end-page: 135
  article-title: Plant NB‐LRR immune receptors: From recognition to transcriptional reprogramming
  publication-title: Cell Host Microbe
– volume: 414
  start-page: 562
  year: 2001
  end-page: 565
  article-title: Isochorismate synthease is required to synthesize salicylic acid for plant defense
  publication-title: Nature
– volume: 265
  start-page: 1856
  year: 1994
  end-page: 1860
  article-title: RPS2 of : A leucine‐rich repeat class of plant disease resistance genes
  publication-title: Science
– volume: 9
  start-page: 55
  year: 1996
  end-page: 61
  article-title: Identification of a new disease resistance locus, RPS4, and cloning of the corresponding avirulence gene, , from pv.
  publication-title: Mol Plant Microbe Interact
– volume: 13
  start-page: 2017
  year: 1999
  end-page: 2027
  article-title: The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling
  publication-title: Genes Dev
– volume: 62
  start-page: 4087
  year: 2011
  end-page: 4100
  article-title: The interplay between light and jasmonate signaling during defense and development
  publication-title: J Exp Bot
– volume: 6
  start-page: 390
  year: 2003
  end-page: 396
  article-title: Light perception in plant disease defense signaling
  publication-title: Curr Opin Plant Biol
– volume: 136
  start-page: 2818
  year: 2004
  end-page: 2830
  article-title: is required for acclimation to conditions that promote excess excitation energy
  publication-title: Plant Physiol
– volume: 22
  start-page: 3634
  year: 2010
  end-page: 3649
  article-title: transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling
  publication-title: Plant Cell
– volume: 421
  start-page: 79
  year: 2003
  end-page: 83
  article-title: Chloroplast nucleus communication triggered by accumulation of Mg‐protoporphyrin IX
  publication-title: Nature
– volume: 318
  start-page: 1302
  year: 2007
  end-page: 1305
  article-title: Transposase‐derived transcription factors regulate light signaling in
  publication-title: Science
– volume: 71
  start-page: 907
  year: 2012
  end-page: 920
  article-title: FHY3 promotes shoot branching and stress tolerance in in an AXR1‐dependent manner
  publication-title: Plant J
– volume: 9
  start-page: 1880
  year: 2007
  end-page: 1890
  article-title: Should I stay or should I go? Nucleocy to plasmic trafficking in plant innate immunity
  publication-title: Cell Microbiol
– volume: 3
  start-page: 539
  year: 2010
  end-page: 548
  article-title: Cryptochrome 1 is implicated in promoting R protein‐mediated plant resistance to in
  publication-title: Mol Plant
– volume: 13
  start-page: 616
  year: 2011
  end-page: 624
  article-title: Coordinated transcriptional regulation underlying the circadian clock in
  publication-title: Nat Cell Biol
– ident: e_1_2_7_11_1
  doi: 10.3389/fpls.2012.00236
– ident: e_1_2_7_50_1
  doi: 10.1111/j.1365-313X.2012.05038.x
– ident: e_1_2_7_51_1
  doi: 10.1101/gad.952102
– ident: e_1_2_7_53_1
  doi: 10.1074/jbc.M605193200
– ident: e_1_2_7_43_1
  doi: 10.1073/pnas.95.17.10300
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1365-313X.2010.04387.x
– ident: e_1_2_7_32_1
  doi: 10.1038/ncb2219
– ident: e_1_2_7_12_1
  doi: 10.1016/j.pbi.2010.04.007
– ident: e_1_2_7_3_1
  doi: 10.1105/tpc.105.039982
– ident: e_1_2_7_17_1
  doi: 10.1046/j.1365-313X.2002.01338.x
– ident: e_1_2_7_19_1
  doi: 10.1016/j.pbi.2012.03.015
– ident: e_1_2_7_36_1
  doi: 10.1105/tpc.009308
– ident: e_1_2_7_28_1
  doi: 10.1105/tpc.106.044149
– ident: e_1_2_7_35_1
  doi: 10.1104/pp.104.043646
– ident: e_1_2_7_8_1
  doi: 10.1126/science.278.5345.1963
– ident: e_1_2_7_41_1
  doi: 10.1038/ncomms1926
– ident: e_1_2_7_54_1
  doi: 10.1199/tab.0145
– ident: e_1_2_7_64_1
  doi: 10.1016/j.cub.2011.04.004
– ident: e_1_2_7_37_1
  doi: 10.1016/j.tplants.2010.05.012
– ident: e_1_2_7_7_1
  doi: 10.1016/j.chom.2008.02.010
– ident: e_1_2_7_13_1
  doi: 10.1093/emboj/20.19.5400
– ident: e_1_2_7_58_1
  doi: 10.1038/nature01588
– ident: e_1_2_7_62_1
  doi: 10.1111/j.1462-5822.2007.00962.x
– ident: e_1_2_7_48_1
  doi: 10.1016/S1369-5266(03)00058-X
– ident: e_1_2_7_55_1
  doi: 10.1146/annurev.arplant.57.032905.105448
– ident: e_1_2_7_38_1
  doi: 10.1046/j.1365-313X.1999.00420.x
– ident: e_1_2_7_34_1
  doi: 10.1126/science.1146281
– ident: e_1_2_7_20_1
  doi: 10.1094/MPMI-9-0055
– ident: e_1_2_7_65_1
  doi: 10.1093/mp/ssp107
– ident: e_1_2_7_57_1
  doi: 10.1105/tpc.112.097022
– ident: e_1_2_7_25_1
  doi: 10.1016/j.cub.2005.10.042
– ident: e_1_2_7_39_1
  doi: 10.1074/jbc.274.7.4231
– ident: e_1_2_7_26_1
  doi: 10.1046/j.1365-313x.2001.01058.x
– ident: e_1_2_7_44_1
  doi: 10.1105/tpc.111.085126
– ident: e_1_2_7_63_1
  doi: 10.1038/35107108
– ident: e_1_2_7_33_1
  doi: 10.1105/tpc.110.075788
– ident: e_1_2_7_61_1
  doi: 10.1093/emboj/21.6.1339
– ident: e_1_2_7_70_1
  doi: 10.1093/nar/gkn276
– ident: e_1_2_7_49_1
  doi: 10.1105/tpc.005348
– ident: e_1_2_7_15_1
  doi: 10.1126/science.261.5122.754
– ident: e_1_2_7_68_1
  doi: 10.1105/tpc.105.037523
– ident: e_1_2_7_10_1
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: e_1_2_7_22_1
  doi: 10.1016/j.pbi.2013.06.017
– ident: e_1_2_7_27_1
  doi: 10.1038/nature05286
– ident: e_1_2_7_59_1
  doi: 10.1038/nature09083
– volume: 8
  start-page: 1773
  year: 1996
  ident: e_1_2_7_18_1
  article-title: Resistance gene‐dependent plant defense responses
  publication-title: Plant Cell
– start-page: 1158
  volume-title: Biochemistry and Molecular Biology of Plants
  year: 2000
  ident: e_1_2_7_6_1
– ident: e_1_2_7_60_1
  doi: 10.1146/annurev.phyto.050908.135202
– ident: e_1_2_7_71_1
  doi: 10.1073/pnas.1002828107
– ident: e_1_2_7_46_1
  doi: 10.1046/j.1365-313X.2001.01126.x
– ident: e_1_2_7_21_1
  doi: 10.1105/tpc.10.7.1095
– ident: e_1_2_7_31_1
  doi: 10.1093/jxb/err142
– ident: e_1_2_7_24_1
  doi: 10.1046/j.1365-313X.2003.01741.x
– ident: e_1_2_7_67_1
  doi: 10.1093/mp/ssr005
– ident: e_1_2_7_23_1
  doi: 10.1101/gad.13.15.2017
– ident: e_1_2_7_56_1
  doi: 10.1104/pp.113.224386
– ident: e_1_2_7_2_1
  doi: 10.1105/tpc.105.037358
– ident: e_1_2_7_69_1
  doi: 10.1105/tpc.015842
– ident: e_1_2_7_47_1
  doi: 10.1016/S0092-8674(00)80144-0
– ident: e_1_2_7_14_1
  doi: 10.1146/annurev-arplant-042811-105606
– ident: e_1_2_7_4_1
  doi: 10.1126/science.8091210
– ident: e_1_2_7_5_1
  doi: 10.1007/s11103-009-9458-1
– ident: e_1_2_7_52_1
  doi: 10.1038/nature01204
– ident: e_1_2_7_42_1
  doi: 10.1111/j.1365-313X.2006.02793.x
– ident: e_1_2_7_9_1
  doi: 10.1105/tpc.112.104869
– ident: e_1_2_7_29_1
  doi: 10.1073/pnas.151258398
– ident: e_1_2_7_40_1
  doi: 10.1007/s00425-002-0866-6
– ident: e_1_2_7_30_1
  doi: 10.1016/S1369-5266(03)00061-X
– ident: e_1_2_7_16_1
  doi: 10.1371/journal.ppat.1000970
– ident: e_1_2_7_66_1
  doi: 10.1016/j.cell.2012.04.038
SSID ssj0038062
Score 2.35717
Snippet Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that...
SourceID pubmedcentral
wanfang
proquest
pubmed
crossref
wiley
istex
fao
chongqing
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 91
SubjectTerms 5-氨基乙酰丙酸
aminolevulinic acid
Arabidopsis
Arabidopsis - genetics
Arabidopsis - immunology
Arabidopsis - metabolism
Arabidopsis - radiation effects
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
biochemical pathways
biosynthesis
Cell Death - radiation effects
chlorophyll
Chlorophyll - biosynthesis
chloroplasts
Disease Resistance - immunology
FAR1
FHY3
Gene Expression Regulation, Plant - radiation effects
gene overexpression
genes
Genes, Plant
hypocotyls
immune response
Light Signal Transduction - genetics
Light Signal Transduction - radiation effects
light signaling
microarray technology
Models, Biological
mutants
Mutation - genetics
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
pathogens
Phenotype
Phytochrome - genetics
Phytochrome - metabolism
Plant Diseases - genetics
Plant Diseases - immunology
plant immunity
Plant Immunity - genetics
Plant Immunity - radiation effects
proteins
Pseudomonas syringae
Pseudomonas syringae - drug effects
Pseudomonas syringae - physiology
reactive oxygen species
salicylic acid
Salicylic Acid - metabolism
seedling growth
signal transduction
transgenic plants
Up-Regulation - genetics
Up-Regulation - radiation effects
信号因子
叶绿素
合成调控
富含亮氨酸重复序列
对光
植物免疫
生物合成途径
Title A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis
URI http://lib.cqvip.com/qk/94176A/201601/667809477.html
https://api.istex.fr/ark:/67375/WNG-J3B23Z24-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjipb.12369
https://www.ncbi.nlm.nih.gov/pubmed/25989254
https://www.proquest.com/docview/1754523178
https://www.proquest.com/docview/1803091098
https://d.wanfangdata.com.cn/periodical/zwxb201601007
https://pubmed.ncbi.nlm.nih.gov/PMC4736690
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELa2CSS-8A4Lg8oIhARSqtpx3iS-tEAplZimQsWYhCw7tdtoISlNq6379ZydNFphmgTfKvUcK-ez77n47jmEXpKkozUhE1f6gkKAIokbizhwWUS9BGwIPKCpRv58GAzGbHjsH--gt5tamIofovngZnaGPa_NBheyvLzJ07lsG-4QU71HvMAQ578fNdxRXtSx3URJEFIXIkBac5PaNJ5mqGFUmBX59Bf4iS3PtKtFAXjVqPr8KvD5dw7lzTORa2EecxnlWjfVv4N-bF6wyk45ba-Wsp1c_MH9-L8auItu1_gVdyuDu4d2VH4f3egVgDHXD1DRxXORLnChcWaifmzSQ4SpeMd1Yx_cH3z3sMgnuN8dEbxQU9M_TJV4nsEa49SWqyzXWK7xz2Jie4vB4GSWFYsCLCLLsEyLcp0Dbi3T8iEa9z98fTdw65YObuIDjHelR5IwJsJPFFGKsUlCIR7TEKeFYUyjhCQk0LFmDI4GGQulo0Ax3VFMwMEjpfYeob28yNU-wpJoLX1GqRCCeSEA0Q54ZF9TqhIVSOagg2Zp-byi7uAB-GYIaMPQQa83i82Tmg3dNOXIeBMVgXa51a6DXjSymwddJbUPNsPFFA5nPv5CDXWfuXcMGHHQK2tIzWixODUJdaHPvx1-5EOvR70TyvjIQc83lsZhm5u7G5GrYlVyQHnMByweRtfIROa-DKYEmceVdTYzQpQbxdQHrYRbdtsIGJrx7X_ydGbpxlnoBUHccVCrtnBeH3Mlvzg7l_ZFTa6Ng95Ya71GR3z46ahnfz35F-EDdMvMUn35eor2louVegZYcClbaJeyo5bd-b8BRTFYog
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbYAMEL4vfCYBiBkEAKqh0nTh5bROnKVk1jE4MXy3btNaIkpem0lb-es5NGq5gm8VYp50T13fm-zz7fIfSG6I61hIxDFUsKBEWRMJNZErKURhpsCCKgu428P0oGx2x4Ep80uTnuLkxdH6LdcHOe4ddr5-BuQ_qyl-cz9cEVD8k20E0GwNxl9FF2sFqIo7Tj-4mShNMQOCBtqpP6RJ52rKupMCmL098QKdZi04aVJSBWN9kXV8HPf7Mob5_Lwkr3mss41weq_n10r0GYuFubxAN0wxQP0a1eCShw-QiVXTyT-RyXFk8dL8cugUO6O-m4ab2D-4PvEZbFGPe7hwTP62b1psKzKWgB5_5CyWKJ1RL_Kse--xcM1hMg_iXobDrFKi-rZQHIssqrx-i4_-no4yBsmi6EOgagHaqIaJ4RGWtDjGFsrCkwJgtMivOMpppoktjMMgbOqzJpbJoYZjuGSVgalLLRE7RZlIXZQlgRa1XMKJVSsogDVOxAzIwtpUabRLEAbbdTL2Z1cQ2RQPQEysl5gN6tlCF0U6_ctc2Yipa3gBKFV2KAXreyqxddJbUFOhXyFJZPcfyVuuJ67mQwYSRAb72i29Fy_tOlvPFYfBt9FsOoR6MflInDAL1aWYIAR3SnK7Iw5VklAIcxYPWEp9fIpO5ECz4JMk9r62m_CDw0zYCuB4iv2VUr4AqBrz8p8okvCM54lCRZJ0A7jQWKZiGqxJ_zC-X_qMuGCdB7b5jXzJEY7h70_K9n_yP8Et0ZHO3vib3d0ZdtdNd9sd6neo42F_Mz8wKQ20LteP_8CwnnOso
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELe28RBfeMPCYBiBkEBKVTvOS-JLC5SuQDWNVQwkZNmp3UYLSelDW_fXc3bSaIVpEnyr1HOsnO98v4vPv0PoBUmaWhMydKUvKCQokrixiAOXRdRLwIYgAprbyJ_7QXfAekf-0QZ6s7oLU_JD1B_cjGfY_do4-GSozzt5OpENwx0Sb6IrLAAoYSDRQU0e5UVN206UBCF1IQWkFTmpreOpxxpKhXGRj35BoFgLTZtaFABYja5PL0KffxdRXjsRuRbmMedhro1TnVvox-oNy_KU48ZiLhvJ2R_kj_-rgtvoZgVgcau0uDtoQ-V30dV2ASBzeQ8VLTwR6RQXGmcm7cemPkSYK--46uyDO91vHhb5EHdaBwRP1cg0EFMzPMlgkXFq76vMl1gu8c9iaJuLweBknBXTAkwiy7BMi9kyB-A6S2f30aDz_vBt1616OriJDzjelR5JwpgIP1FEKcaGCYWETEOiFoYxjRKSkEDHmjHYG2QslI4CxXRTMQE7j5Tae4C28iJX2whLorX0GaVCCOaFgESbEJJ9TalKVCCZg3bqpeWTkruDBxCcIaMNQwe9Wi02Tyo6dNOVI-N1WgTa5Va7Dnpey64edJHUNtgMFyPYnfngCzXcfebgMWDEQS-tIdWjxfTYVNSFPv_a_8B7Xpt63ynjBw56trI0Dn5uDm9ErorFjAPMYz6A8TC6RCYyB2YwJcg8LK2znhHS3CimPmglXLPbWsDwjK__k6djyzfOQi8I4qaDdisL59U-N-NnJ6fSvqgptnHQa2utl-iI9_b22_bXo38Rfoqu77_r8E97_Y876IaZsPwK9hhtzacL9QRw4VzuWvf_DTPSWpk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pair+of+light+signaling+factors+FHY3+and+FAR1+regulates+plant+immunity+by+modulating+chlorophyll+biosynthesis&rft.jtitle=%E6%A4%8D%E7%89%A9%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Wanqing+Wang&rft.au=Weijiang+Tang&rft.au=Tingting+Ma&rft.au=De+Niu&rft.date=2016-01-01&rft.pub=Key+Laboratory+of+Photobiology%2C+Institute+of+Botany%2C+the+Chinese+Academy+of+Sciences%2C+Beijing+100093%2C+China%25Key+Laboratory+of+Plant+Molecular+Physiology%2C+Institute+of+Botany%2C+the+Chinese+Academy+of+Sciences%2C+Beijing+100093%2C+China%25Biotechnology+Research+Institute%2C+the+Chinese+Academy+of+Agricultural+Sciences%2C+Beijing+100081%2C+China%25Key+Laboratory+of+Photobiology%2C+Institute+of+Botany%2C+the+Chinese+Academy+of+Sciences%2C+Beijing+100093%2C+China&rft.issn=1672-9072&rft.volume=58&rft.issue=1&rft.spage=91&rft.epage=103&rft_id=info:doi/10.1111%2Fjipb.12369&rft.externalDocID=zwxb201601007
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F94176A%2F94176A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzwxb%2Fzwxb.jpg