Options for biochemical production of 4-hydroxybutyrate and its lactone as a substitute for petrochemical production

Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4-HB are analyzed. The calculations reve...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 99; no. 6; pp. 1392 - 1406
Main Authors Efe, C, Straathof, Adrie J.J, van der Wielen, Luuk A.M
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 15.04.2008
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0006-3592
1097-0290
1097-0290
DOI10.1002/bit.21709

Cover

Abstract Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4-HB are analyzed. The calculations reveal that when the pathways are NAD⁺ dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4-HB yields at equilibrium. For NADP⁺ dependent pathways the calculated yield of 4-HB improves, up to almost 100%. In the second part of this study, continuous removal of 4-HB from the solution is considered to shift SSA conversion into 4-HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4-HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in-vivo during 4-HB production because of the neutral intracellular pH. Biotechnol. Bioeng. 2008;99: 1392-1406.
AbstractList Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4-HB are analyzed. The calculations reveal that when the pathways are NAD(+) dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4-HB yields at equilibrium. For NADP(+) dependent pathways the calculated yield of 4-HB improves, up to almost 100%. In the second part of this study, continuous removal of 4-HB from the solution is considered to shift SSA conversion into 4-HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4-HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in-vivo during 4-HB production because of the neutral intracellular pH.Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4-HB are analyzed. The calculations reveal that when the pathways are NAD(+) dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4-HB yields at equilibrium. For NADP(+) dependent pathways the calculated yield of 4-HB improves, up to almost 100%. In the second part of this study, continuous removal of 4-HB from the solution is considered to shift SSA conversion into 4-HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4-HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in-vivo during 4-HB production because of the neutral intracellular pH.
Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4-HB are analyzed. The calculations reveal that when the pathways are NAD⁺ dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4-HB yields at equilibrium. For NADP⁺ dependent pathways the calculated yield of 4-HB improves, up to almost 100%. In the second part of this study, continuous removal of 4-HB from the solution is considered to shift SSA conversion into 4-HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4-HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in-vivo during 4-HB production because of the neutral intracellular pH. Biotechnol. Bioeng. 2008;99: 1392-1406.
Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4-HB are analyzed. The calculations reveal that when the pathways are NAD(+) dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4-HB yields at equilibrium. For NADP(+) dependent pathways the calculated yield of 4-HB improves, up to almost 100%. In the second part of this study, continuous removal of 4-HB from the solution is considered to shift SSA conversion into 4-HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4-HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in-vivo during 4-HB production because of the neutral intracellular pH.
Options are discussed for biochemical production of 4‐hydroxybutyrate (4‐HB) and its lactone, gamma‐butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4‐HB are analyzed. The calculations reveal that when the pathways are NAD+ dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4‐HB yields at equilibrium. For NADP+ dependent pathways the calculated yield of 4‐HB improves, up to almost 100%. In the second part of this study, continuous removal of 4‐HB from the solution is considered to shift SSA conversion into 4‐HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4‐HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in‐vivo during 4‐HB production because of the neutral intracellular pH. Biotechnol. Bioeng. 2008;99: 1392–1406. © 2007 Wiley Periodicals, Inc.
Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4-HB are analyzed. The calculations reveal that when the pathways are NAD+ dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4-HB yields at equilibrium. For NADP+ dependent pathways the calculated yield of 4-HB improves, up to almost 100%. In the second part of this study, continuous removal of 4-HB from the solution is considered to shift SSA conversion into 4-HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4-HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in-vivo during 4-HB production because of the neutral intracellular pH. Biotechnol. Bioeng. 2008;99: 1392-1406.
Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4-HB are analyzed. The calculations reveal that when the pathways are NAD... dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4-HB yields at equilibrium. For NADP... dependent pathways the calculated yield of 4-HB improves, up to almost 100%. In the second part of this study, continuous removal of 4-HB from the solution is considered to shift SSA conversion into 4-HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4-HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in-vivo during 4-HB production because of the neutral intracellular pH. (ProQuest: ... denotes formulae/symbols omitted.)
Options are discussed for biochemical production of 4‐hydroxybutyrate (4‐HB) and its lactone, gamma‐butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4‐HB are analyzed. The calculations reveal that when the pathways are NAD + dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4‐HB yields at equilibrium. For NADP + dependent pathways the calculated yield of 4‐HB improves, up to almost 100%. In the second part of this study, continuous removal of 4‐HB from the solution is considered to shift SSA conversion into 4‐HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4‐HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in‐vivo during 4‐HB production because of the neutral intracellular pH. Biotechnol. Bioeng. 2008;99: 1392–1406. © 2007 Wiley Periodicals, Inc.
Author Straathof, Adrie J.J.
Efe, C.
van der Wielen, Luuk A.M.
Author_xml – sequence: 1
  fullname: Efe, C
– sequence: 2
  fullname: Straathof, Adrie J.J
– sequence: 3
  fullname: van der Wielen, Luuk A.M
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20228187$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18023038$$D View this record in MEDLINE/PubMed
BookMark eNqFkl9PFDEUxRuDkQV98AvoxEQTHwZu25n-eUSCQNwIUYiJL02n05Hi7HRtO4H99nbZBROi7lPT3N85vT337qCtwQ8WoZcY9jAA2W9c2iOYg3yCJhgkL4FI2EITAGAlrSXZRjsxXucrF4w9Q9tYAKFAxQSls3lyfohF50PROG-u7MwZ3Rfz4NvRLGuF74qqvFq0wd8umjEtgk620ENbuBSLXpuUuyl0LHQRxyYml8ZcX_rNbQp_c3yOnna6j_bF-txFlx-PLg5PyunZ8enhwbQ0NSeyrGrSQmO55J01gtjaSNaKxjRQgzCkY6SSxuYqNUa0vDLSVJgwzrUwDWcV3UXvVr756V-jjUnNXDS27_Vg_RgVB8qIIJvBijPAvIaNIMUVUC7xRpAArgihMoNvHoHXfgxDjkURTDkj_K6_V2tobGa2VfPgZjos1P0cM_B2DeiYs-6CHoyLDxwBQgQWPHPvV5wJPsZguz9WoJa7pPIuqbtdyuz-I9a4pJfzS0G7_n-KG9fbxb-t1YfTi3tFuVK4mOztg0KHn4pxymv17fOx-nLOTvin71N1nvnXK77TXukfIf_x8mvOkgIIJgTG9DeVnPJj
CODEN BIBIAU
CitedBy_id crossref_primary_10_1021_cr400309c
crossref_primary_10_1007_s00449_013_1020_5
crossref_primary_10_1021_cs400535c
crossref_primary_10_1021_acs_oprd_7b00078
crossref_primary_10_1134_S0003683815080037
crossref_primary_10_1016_j_biortech_2021_125263
crossref_primary_10_1016_j_ymben_2016_09_004
crossref_primary_10_1002_cctc_201000030
crossref_primary_10_1111_nph_16094
crossref_primary_10_1016_j_procbio_2013_10_002
crossref_primary_10_1016_j_seta_2012_12_002
crossref_primary_10_1021_acssynbio_4c00603
crossref_primary_10_1016_j_ymben_2013_09_001
crossref_primary_10_1007_s00253_009_2023_7
crossref_primary_10_1016_j_indcrop_2024_118878
crossref_primary_10_3389_fpls_2022_853309
crossref_primary_10_1002_cctc_201500603
crossref_primary_10_1016_j_foodres_2021_110483
Cites_doi 10.1016/S0021-9258(18)93551-9
10.1016/j.bej.2005.01.016
10.1093/bioinformatics/14.10.869
10.1016/S1381-1177(01)00037-6
10.1111/j.1749-6632.1984.tb29893.x
10.1021/bp9900965
10.1016/S0968-0004(97)01103-1
10.1016/0141-0229(94)90060-4
10.1128/JB.182.10.2838-2844.2000
10.1016/S0021-9258(18)69459-1
10.1006/abbi.1997.0403
10.1128/MMBR.41.1.100-180.1977
10.1016/0005-2760(95)00084-P
10.1002/(SICI)1097-0290(20000205)67:3<291::AID-BIT5>3.0.CO;2-J
10.1007/s002030000195
10.1021/jp020764w
10.1081/DIS-120017946
10.1016/0141-0229(91)90095-R
10.1016/S1389-1723(00)88963-X
10.1520/JFS15152J
10.1016/S0021-9258(18)98705-3
10.1016/0009-2509(95)00308-8
10.1021/ja00214a073
10.1111/j.1574-6968.1997.tb12604.x
10.1007/BF00255361
10.1016/S0168-1656(97)00127-2
10.1016/j.apcatb.2004.11.004
10.1021/ja00824a073
10.1002/bit.20572
10.1111/j.1432-1033.1993.tb17641.x
ContentType Journal Article
Copyright Copyright © 2007 Wiley Periodicals, Inc.
2008 INIST-CNRS
Copyright 2007 Wiley Periodicals, Inc.
Copyright John Wiley and Sons, Limited Apr 15, 2008
Copyright_xml – notice: Copyright © 2007 Wiley Periodicals, Inc.
– notice: 2008 INIST-CNRS
– notice: Copyright 2007 Wiley Periodicals, Inc.
– notice: Copyright John Wiley and Sons, Limited Apr 15, 2008
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
M7N
7S9
L.6
7X8
DOI 10.1002/bit.21709
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Solid State and Superconductivity Abstracts
Materials Research Database
Engineering Research Database
CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 1406
ExternalDocumentID 1455591831
18023038
20228187
10_1002_bit_21709
BIT21709
ark_67375_WNG_RP6H7KZL_P
US201300868811
Genre article
Comparative Study
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: B‐Basic and NW0‐ACTS, Netherlands
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AI.
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XFK
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
AGHNM
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
M7N
7S9
L.6
7X8
ID FETCH-LOGICAL-c5729-452d0be797fec82e5c96d8bcb0508c2f6249ce97f3cc8d74c9c412677a8cb7643
IEDL.DBID DR2
ISSN 0006-3592
1097-0290
IngestDate Thu Jul 10 19:20:01 EDT 2025
Fri Jul 11 06:25:42 EDT 2025
Thu Jul 10 17:44:18 EDT 2025
Fri Jul 11 11:44:47 EDT 2025
Fri Jul 25 10:47:47 EDT 2025
Wed Feb 19 01:48:02 EST 2025
Mon Jul 21 09:15:56 EDT 2025
Thu Apr 24 23:06:54 EDT 2025
Tue Jul 01 03:28:22 EDT 2025
Wed Aug 20 07:27:25 EDT 2025
Wed Oct 30 09:50:31 EDT 2024
Wed Dec 27 19:20:10 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords 4-hydroxybutyrate
candida antarctica
Enzyme
Triacylglycerol lipase
Lactone
Esterases
Carboxylic ester hydrolases
Fungi
Thermodynamics
Production
Hydrolases
lactonization
pathway
gamma-butyrolactone
Fungi Imperfecti
Candida antarctica lipase
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright 2007 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5729-452d0be797fec82e5c96d8bcb0508c2f6249ce97f3cc8d74c9c412677a8cb7643
Notes http://dx.doi.org/10.1002/bit.21709
ArticleID:BIT21709
ark:/67375/WNG-RP6H7KZL-P
istex:588448EB6B0EFAD39D40F8DEDD9441B2802C1966
B-Basic and NW0-ACTS, Netherlands
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Undefined-3
PMID 18023038
PQID 213762724
PQPubID 48814
PageCount 15
ParticipantIDs proquest_miscellaneous_70362824
proquest_miscellaneous_47601750
proquest_miscellaneous_31403791
proquest_miscellaneous_20142239
proquest_journals_213762724
pubmed_primary_18023038
pascalfrancis_primary_20228187
crossref_primary_10_1002_bit_21709
crossref_citationtrail_10_1002_bit_21709
wiley_primary_10_1002_bit_21709_BIT21709
istex_primary_ark_67375_WNG_RP6H7KZL_P
fao_agris_US201300868811
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 April 2008
PublicationDateYYYYMMDD 2008-04-15
PublicationDate_xml – month: 04
  year: 2008
  text: 15 April 2008
  day: 15
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: Wiley Subscription Services, Inc
References Rees GD, Robinson BH, Stephenson GR. 1995. Macrocyclic lactone synthesis by lipases in water-in-oil microemulsions. Biochim Biophys Acta Lipids Lipid Metabolism 1257: 239-248.
Thauer RK, Jungermann K, Decker K. 1977. Energy-conservation in chemotropic anaerobic bacteria. Bacteriol Rev 41: 100-180.
Green LS, Li Y, Emerich DW, Bergersen FJ, Day DA. 2000. Catabolism of alpha-Ketoglutarate by a sucA Mutant of Bradyrhizobium japonicum: Evidence for an alternative tricarboxylic acid cycle. J Bacteriol 182: 2838-2844.
Mendes P, Kell DB. 1998. Non-linear optimization of biochemical pathways: Applications to metabolic engineering and parameter estimation. Bioinformatics 14: 869-883.
Gerhardt A, Cinkaya I, Linder D, Huisman G, Buckel W. 2000. Fermentation of 4-aminobutyrate by Clostridium aminobutyricum: Cloning of two genes involved in the formation and dehydration of 4-hydroxybutyryl-CoA. Arch Microbiol 174: 189-199.
Valentin HE, Reiser S, Gruys KJ. 2000. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) formation from gamma-aminobutyrate and glutamate. Biotechnol Bioeng 67: 291-299.
Corey EJ, Nicolaou KC. 1974. Efficient and mild lactonization method for synthesis of macrolides. J Am Chem Soc 96: 5614-5616.
Bonini C, Cazzato C, Cernia E, Palocci C, Soro S, Viggiani L. 2001. Lipase enhanced catalytic efficiency in lactonisation reactions. J Mol Catal B Enzym 16: 1-5.
Maskow T, von Stockar U. 2005. How reliable are thermodynamic feasibility statements of biochemical pathways? Biotechnol Bioeng 92: 223-230.
Mavrovouniotis ML. 1991. Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem 266: 14440-14445.
Alberty RA. 2002. Inverse Legendre transform in biochemical thermodynamics: Illustrated with the last five reactions of glycolysis. J Phys Chem B 106: 6594-6599.
Lee YH, Kang MS, Jung YM. 2000. Regulating the molar fraction of 4-hydroxybutyrate in poly(3-hydroxybutyrate-4-hydroxybutyrate) biosynthesis by Ralstonia eutropha using propionate as a stimulator. J Biosci Bioeng 89: 380-383.
Nirenberg MW, Jakoby WB. 1960. Enzymatic utilization of γ-hydroxybutyric acid. J Biol Chem 235: 954-960.
Antczak U, Gora J, Antczak T, Galas E. 1991. Enzymatic lactonization of 15-hydroxypentadecanoic and 16-hydroxyhexadecanoic acids to macrocyclic lactones. Enzyme Microb Technol 13: 589-593.
Mendes P. 1997. Biochemistry by numbers: Simulation of biochemical pathways with Gepasi 3. Trends Biochem Sci 22: 361-363.
Robinson GK, Alston MJ, Knowles CJ, Cheetham PSJ, Motion KR. 1994. An investigation into the factors influencing lipase-catalyzed intramolecular lactonization in microaqueous systems. Enzyme Microb Technol 16: 855-863.
Valentin HE, Dennis D. 1997. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol 58: 33-38.
Varadarajan S, Miller DJ. 1999. Catalytic upgrading of fermentation-derived organic acids. Biotechnol Prog 15: 845-854.
Hein S, Söhling B, Gottschalk G, Steinbüchel A. 1997. Biosynthesis of poly(4-hydroxybutyric acid) by recombinant strains of Escherichia coli. FEMS Microbiol Lett 153: 411-418.
Ciolino LA, Mesmer MZ, Satzger RD, Machal AC, McCauley HA, Mohrhaus AS. 2001. The chemical interconversion of GHB and GBL: Forensic issues and implications. J Forensic Sci 46: 1315-1323.
Lide DR. 2006. CRC Handbook of Chemistry and Physics, (http://www. hbcpnetbase.com). Boca Raton: CRC Press, LCC.
Alberty RA. 1968. Effect of pH and metal ion concentration on equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate. J Biol Chem 243: 1337-1343.
Kim JS, Lee BH, Kim BS. 2005. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha. Biochem Eng J 23: 169-174.
Moren AK, Kumar A, Stenhagen G, Holmberg HK. 2003. Synthesis of a macrocyclic lactone. I. Reaction in homogeneous media. J Disper Sci Technol 24: 79-87.
Kunioka M, Kawaguchi Y, Doi Y. 1989. Production of biodegradable copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate by Ralstonia eutropha. Appl Microbiol Biotechnol 30: 569-573.
Guo ZW, Sih CJ. 1988. Enzymatic synthesis of macrocyclic lactones. J Am Chem Soc 110: 1999-2001.
Söhling B, Gottschalk G. 1993. Purification and characterization of a coenzyme-A-dependent succinate-semialdehyde dehydrogenase from Clostridium kluyveri. Eur J Biochem 212: 121-127.
Mendes P. 1993. GEPASI: A software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci 9: 563-571.
Goldberg RN, Tewari YB, Bhat TN. 2004. Thermodynamics of enzyme-catalyzed reactions-A database for quantitative biochemistry. Comput Appl Biosci 20: 2874-2877.
Steinbüchel A. 2003. Biopolymers. Weinheim: Wiley-VCH.
Gatfield IL. 1984. The enzymatic synthesis of esters in non-aqueous systems. Ann NY Acad Sci 434: 569-572.
Zhu YL, Yang J, Dong GQ, Zheng HY, Zhang HH, Xiang HW, Li YW. 2005. An environmentally benign route to gamma-butyrolactone through the coupling of hydrogenation and dehydrogenation. Appl Catal B Environ 57: 183-190.
Mavrovouniotis ML. 1996. Duality theory for thermodynamic bottlenecks in bioreaction pathways. Chem Eng Sci 51: 1495-1507.
Alberty RA. 1997. Apparent equilibrium constants and standard transformed Gibbs energies of biochemical reactions involving carbon dioxide. Arch Biochem Biophys 348: 116-124.
1993; 9
2004; 20
1968; 243
1974; 96
1997; 22
1991; 13
1960; 235
2000; 89
2000; 67
1997; 153
2000; 174
2006
1996; 51
1977; 41
2005
2003
2001; 46
2005; 23
1989; 30
1997; 348
1991; 266
1995; 1257
1997; 58
1999; 15
1984; 434
2002; 106
2000; 182
2003; 24
1988; 110
1994; 16
2001; 16
2005; 92
1993; 212
1998; 14
2005; 57
Goldberg RN (e_1_2_1_11_1) 2004; 20
e_1_2_1_20_1
e_1_2_1_23_1
e_1_2_1_24_1
Lide DR (e_1_2_1_18_1) 2006
e_1_2_1_21_1
e_1_2_1_27_1
e_1_2_1_28_1
Schwarz W (e_1_2_1_29_1) 2005
e_1_2_1_25_1
Nirenberg MW (e_1_2_1_26_1) 1960; 235
Steinbüchel A (e_1_2_1_31_1) 2003
Mendes P (e_1_2_1_22_1) 1993; 9
e_1_2_1_7_1
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_32_1
Alberty RA (e_1_2_1_2_1) 1968; 243
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_14_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – reference: Kim JS, Lee BH, Kim BS. 2005. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha. Biochem Eng J 23: 169-174.
– reference: Mavrovouniotis ML. 1996. Duality theory for thermodynamic bottlenecks in bioreaction pathways. Chem Eng Sci 51: 1495-1507.
– reference: Gatfield IL. 1984. The enzymatic synthesis of esters in non-aqueous systems. Ann NY Acad Sci 434: 569-572.
– reference: Alberty RA. 1997. Apparent equilibrium constants and standard transformed Gibbs energies of biochemical reactions involving carbon dioxide. Arch Biochem Biophys 348: 116-124.
– reference: Guo ZW, Sih CJ. 1988. Enzymatic synthesis of macrocyclic lactones. J Am Chem Soc 110: 1999-2001.
– reference: Lide DR. 2006. CRC Handbook of Chemistry and Physics, (http://www. hbcpnetbase.com). Boca Raton: CRC Press, LCC.
– reference: Moren AK, Kumar A, Stenhagen G, Holmberg HK. 2003. Synthesis of a macrocyclic lactone. I. Reaction in homogeneous media. J Disper Sci Technol 24: 79-87.
– reference: Rees GD, Robinson BH, Stephenson GR. 1995. Macrocyclic lactone synthesis by lipases in water-in-oil microemulsions. Biochim Biophys Acta Lipids Lipid Metabolism 1257: 239-248.
– reference: Alberty RA. 1968. Effect of pH and metal ion concentration on equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate. J Biol Chem 243: 1337-1343.
– reference: Mavrovouniotis ML. 1991. Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem 266: 14440-14445.
– reference: Antczak U, Gora J, Antczak T, Galas E. 1991. Enzymatic lactonization of 15-hydroxypentadecanoic and 16-hydroxyhexadecanoic acids to macrocyclic lactones. Enzyme Microb Technol 13: 589-593.
– reference: Mendes P. 1993. GEPASI: A software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci 9: 563-571.
– reference: Gerhardt A, Cinkaya I, Linder D, Huisman G, Buckel W. 2000. Fermentation of 4-aminobutyrate by Clostridium aminobutyricum: Cloning of two genes involved in the formation and dehydration of 4-hydroxybutyryl-CoA. Arch Microbiol 174: 189-199.
– reference: Maskow T, von Stockar U. 2005. How reliable are thermodynamic feasibility statements of biochemical pathways? Biotechnol Bioeng 92: 223-230.
– reference: Mendes P, Kell DB. 1998. Non-linear optimization of biochemical pathways: Applications to metabolic engineering and parameter estimation. Bioinformatics 14: 869-883.
– reference: Bonini C, Cazzato C, Cernia E, Palocci C, Soro S, Viggiani L. 2001. Lipase enhanced catalytic efficiency in lactonisation reactions. J Mol Catal B Enzym 16: 1-5.
– reference: Varadarajan S, Miller DJ. 1999. Catalytic upgrading of fermentation-derived organic acids. Biotechnol Prog 15: 845-854.
– reference: Lee YH, Kang MS, Jung YM. 2000. Regulating the molar fraction of 4-hydroxybutyrate in poly(3-hydroxybutyrate-4-hydroxybutyrate) biosynthesis by Ralstonia eutropha using propionate as a stimulator. J Biosci Bioeng 89: 380-383.
– reference: Zhu YL, Yang J, Dong GQ, Zheng HY, Zhang HH, Xiang HW, Li YW. 2005. An environmentally benign route to gamma-butyrolactone through the coupling of hydrogenation and dehydrogenation. Appl Catal B Environ 57: 183-190.
– reference: Goldberg RN, Tewari YB, Bhat TN. 2004. Thermodynamics of enzyme-catalyzed reactions-A database for quantitative biochemistry. Comput Appl Biosci 20: 2874-2877.
– reference: Kunioka M, Kawaguchi Y, Doi Y. 1989. Production of biodegradable copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate by Ralstonia eutropha. Appl Microbiol Biotechnol 30: 569-573.
– reference: Söhling B, Gottschalk G. 1993. Purification and characterization of a coenzyme-A-dependent succinate-semialdehyde dehydrogenase from Clostridium kluyveri. Eur J Biochem 212: 121-127.
– reference: Nirenberg MW, Jakoby WB. 1960. Enzymatic utilization of γ-hydroxybutyric acid. J Biol Chem 235: 954-960.
– reference: Ciolino LA, Mesmer MZ, Satzger RD, Machal AC, McCauley HA, Mohrhaus AS. 2001. The chemical interconversion of GHB and GBL: Forensic issues and implications. J Forensic Sci 46: 1315-1323.
– reference: Valentin HE, Reiser S, Gruys KJ. 2000. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) formation from gamma-aminobutyrate and glutamate. Biotechnol Bioeng 67: 291-299.
– reference: Corey EJ, Nicolaou KC. 1974. Efficient and mild lactonization method for synthesis of macrolides. J Am Chem Soc 96: 5614-5616.
– reference: Mendes P. 1997. Biochemistry by numbers: Simulation of biochemical pathways with Gepasi 3. Trends Biochem Sci 22: 361-363.
– reference: Steinbüchel A. 2003. Biopolymers. Weinheim: Wiley-VCH.
– reference: Hein S, Söhling B, Gottschalk G, Steinbüchel A. 1997. Biosynthesis of poly(4-hydroxybutyric acid) by recombinant strains of Escherichia coli. FEMS Microbiol Lett 153: 411-418.
– reference: Thauer RK, Jungermann K, Decker K. 1977. Energy-conservation in chemotropic anaerobic bacteria. Bacteriol Rev 41: 100-180.
– reference: Green LS, Li Y, Emerich DW, Bergersen FJ, Day DA. 2000. Catabolism of alpha-Ketoglutarate by a sucA Mutant of Bradyrhizobium japonicum: Evidence for an alternative tricarboxylic acid cycle. J Bacteriol 182: 2838-2844.
– reference: Alberty RA. 2002. Inverse Legendre transform in biochemical thermodynamics: Illustrated with the last five reactions of glycolysis. J Phys Chem B 106: 6594-6599.
– reference: Valentin HE, Dennis D. 1997. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol 58: 33-38.
– reference: Robinson GK, Alston MJ, Knowles CJ, Cheetham PSJ, Motion KR. 1994. An investigation into the factors influencing lipase-catalyzed intramolecular lactonization in microaqueous systems. Enzyme Microb Technol 16: 855-863.
– volume: 16
  start-page: 1
  year: 2001
  end-page: 5
  article-title: Lipase enhanced catalytic efficiency in lactonisation reactions
  publication-title: J Mol Catal B Enzym
– volume: 89
  start-page: 380
  year: 2000
  end-page: 383
  article-title: Regulating the molar fraction of 4‐hydroxybutyrate in poly(3‐hydroxybutyrate‐4‐hydroxybutyrate) biosynthesis by using propionate as a stimulator
  publication-title: J Biosci Bioeng
– volume: 51
  start-page: 1495
  year: 1996
  end-page: 1507
  article-title: Duality theory for thermodynamic bottlenecks in bioreaction pathways
  publication-title: Chem Eng Sci
– year: 2005
– volume: 235
  start-page: 954
  year: 1960
  end-page: 960
  article-title: Enzymatic utilization of γ‐hydroxybutyric acid
  publication-title: J Biol Chem
– volume: 58
  start-page: 33
  year: 1997
  end-page: 38
  article-title: Production of poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) in recombinant Escherichia coli grown on glucose
  publication-title: J Biotechnol
– volume: 96
  start-page: 5614
  year: 1974
  end-page: 5616
  article-title: Efficient and mild lactonization method for synthesis of macrolides
  publication-title: J Am Chem Soc
– year: 2003
– volume: 14
  start-page: 869
  year: 1998
  end-page: 883
  article-title: Non‐linear optimization of biochemical pathways: Applications to metabolic engineering and parameter estimation
  publication-title: Bioinformatics
– volume: 110
  start-page: 1999
  year: 1988
  end-page: 2001
  article-title: Enzymatic synthesis of macrocyclic lactones
  publication-title: J Am Chem Soc
– volume: 41
  start-page: 100
  year: 1977
  end-page: 180
  article-title: Energy‐conservation in chemotropic anaerobic bacteria
  publication-title: Bacteriol Rev
– volume: 153
  start-page: 411
  year: 1997
  end-page: 418
  article-title: Biosynthesis of poly(4‐hydroxybutyric acid) by recombinant strains of
  publication-title: FEMS Microbiol Lett
– volume: 13
  start-page: 589
  year: 1991
  end-page: 593
  article-title: Enzymatic lactonization of 15‐hydroxypentadecanoic and 16‐hydroxyhexadecanoic acids to macrocyclic lactones
  publication-title: Enzyme Microb Technol
– volume: 15
  start-page: 845
  year: 1999
  end-page: 854
  article-title: Catalytic upgrading of fermentation‐derived organic acids
  publication-title: Biotechnol Prog
– volume: 243
  start-page: 1337
  year: 1968
  end-page: 1343
  article-title: Effect of pH and metal ion concentration on equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate
  publication-title: J Biol Chem
– volume: 9
  start-page: 563
  year: 1993
  end-page: 571
  article-title: GEPASI: A software package for modelling the dynamics, steady states and control of biochemical and other systems
  publication-title: Comput Appl Biosci
– volume: 16
  start-page: 855
  year: 1994
  end-page: 863
  article-title: An investigation into the factors influencing lipase‐catalyzed intramolecular lactonization in microaqueous systems
  publication-title: Enzyme Microb Technol
– volume: 434
  start-page: 569
  year: 1984
  end-page: 572
  article-title: The enzymatic synthesis of esters in non‐aqueous systems
  publication-title: Ann NY Acad Sci
– volume: 92
  start-page: 223
  year: 2005
  end-page: 230
  article-title: How reliable are thermodynamic feasibility statements of biochemical pathways?
  publication-title: Biotechnol Bioeng
– volume: 212
  start-page: 121
  year: 1993
  end-page: 127
  article-title: Purification and characterization of a coenzyme‐A‐dependent succinate‐semialdehyde dehydrogenase from
  publication-title: Eur J Biochem
– year: 2006
– volume: 67
  start-page: 291
  year: 2000
  end-page: 299
  article-title: Poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) formation from gamma‐aminobutyrate and glutamate
  publication-title: Biotechnol Bioeng
– volume: 348
  start-page: 116
  year: 1997
  end-page: 124
  article-title: Apparent equilibrium constants and standard transformed Gibbs energies of biochemical reactions involving carbon dioxide
  publication-title: Arch Biochem Biophys
– volume: 174
  start-page: 189
  year: 2000
  end-page: 199
  article-title: Fermentation of 4‐aminobutyrate by : Cloning of two genes involved in the formation and dehydration of 4‐hydroxybutyryl‐CoA
  publication-title: Arch Microbiol
– volume: 24
  start-page: 79
  year: 2003
  end-page: 87
  article-title: Synthesis of a macrocyclic lactone. I. Reaction in homogeneous media
  publication-title: J Disper Sci Technol
– volume: 182
  start-page: 2838
  year: 2000
  end-page: 2844
  article-title: Catabolism of alpha—Ketoglutarate by a sucA Mutant of : Evidence for an alternative tricarboxylic acid cycle
  publication-title: J Bacteriol
– volume: 30
  start-page: 569
  year: 1989
  end-page: 573
  article-title: Production of biodegradable copolyesters of 3‐hydroxybutyrate and 4‐hydroxybutyrate by
  publication-title: Appl Microbiol Biotechnol
– volume: 266
  start-page: 14440
  year: 1991
  end-page: 14445
  article-title: Estimation of standard Gibbs energy changes of biotransformations
  publication-title: J Biol Chem
– volume: 106
  start-page: 6594
  year: 2002
  end-page: 6599
  article-title: Inverse Legendre transform in biochemical thermodynamics: Illustrated with the last five reactions of glycolysis
  publication-title: J Phys Chem B
– volume: 46
  start-page: 1315
  year: 2001
  end-page: 1323
  article-title: The chemical interconversion of GHB and GBL: Forensic issues and implications
  publication-title: J Forensic Sci
– volume: 20
  start-page: 2874
  year: 2004
  end-page: 2877
  article-title: Thermodynamics of enzyme‐catalyzed reactions—A database for quantitative biochemistry
  publication-title: Comput Appl Biosci
– volume: 23
  start-page: 169
  year: 2005
  end-page: 174
  article-title: Production of poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) by
  publication-title: Biochem Eng J
– volume: 22
  start-page: 361
  year: 1997
  end-page: 363
  article-title: Biochemistry by numbers: Simulation of biochemical pathways with Gepasi 3
  publication-title: Trends Biochem Sci
– volume: 1257
  start-page: 239
  year: 1995
  end-page: 248
  article-title: Macrocyclic lactone synthesis by lipases in water‐in‐oil microemulsions
  publication-title: Biochim Biophys Acta Lipids Lipid Metabolism
– volume: 57
  start-page: 183
  year: 2005
  end-page: 190
  article-title: An environmentally benign route to gamma‐butyrolactone through the coupling of hydrogenation and dehydrogenation
  publication-title: Appl Catal B Environ
– volume: 243
  start-page: 1337
  year: 1968
  ident: e_1_2_1_2_1
  article-title: Effect of pH and metal ion concentration on equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)93551-9
– ident: e_1_2_1_15_1
  doi: 10.1016/j.bej.2005.01.016
– ident: e_1_2_1_24_1
  doi: 10.1093/bioinformatics/14.10.869
– ident: e_1_2_1_6_1
  doi: 10.1016/S1381-1177(01)00037-6
– ident: e_1_2_1_9_1
  doi: 10.1111/j.1749-6632.1984.tb29893.x
– volume: 9
  start-page: 563
  year: 1993
  ident: e_1_2_1_22_1
  article-title: GEPASI: A software package for modelling the dynamics, steady states and control of biochemical and other systems
  publication-title: Comput Appl Biosci
– ident: e_1_2_1_35_1
  doi: 10.1021/bp9900965
– ident: e_1_2_1_23_1
  doi: 10.1016/S0968-0004(97)01103-1
– ident: e_1_2_1_28_1
  doi: 10.1016/0141-0229(94)90060-4
– ident: e_1_2_1_12_1
  doi: 10.1128/JB.182.10.2838-2844.2000
– volume: 235
  start-page: 954
  year: 1960
  ident: e_1_2_1_26_1
  article-title: Enzymatic utilization of γ‐hydroxybutyric acid
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)69459-1
– ident: e_1_2_1_3_1
  doi: 10.1006/abbi.1997.0403
– volume-title: CRC Handbook of Chemistry and Physics
  year: 2006
  ident: e_1_2_1_18_1
– ident: e_1_2_1_32_1
  doi: 10.1128/MMBR.41.1.100-180.1977
– ident: e_1_2_1_27_1
  doi: 10.1016/0005-2760(95)00084-P
– ident: e_1_2_1_34_1
  doi: 10.1002/(SICI)1097-0290(20000205)67:3<291::AID-BIT5>3.0.CO;2-J
– ident: e_1_2_1_10_1
  doi: 10.1007/s002030000195
– ident: e_1_2_1_4_1
  doi: 10.1021/jp020764w
– ident: e_1_2_1_25_1
  doi: 10.1081/DIS-120017946
– ident: e_1_2_1_5_1
  doi: 10.1016/0141-0229(91)90095-R
– ident: e_1_2_1_17_1
  doi: 10.1016/S1389-1723(00)88963-X
– ident: e_1_2_1_7_1
  doi: 10.1520/JFS15152J
– volume-title: Biopolymers
  year: 2003
  ident: e_1_2_1_31_1
– volume: 20
  start-page: 2874
  year: 2004
  ident: e_1_2_1_11_1
  article-title: Thermodynamics of enzyme‐catalyzed reactions—A database for quantitative biochemistry
  publication-title: Comput Appl Biosci
– ident: e_1_2_1_20_1
  doi: 10.1016/S0021-9258(18)98705-3
– ident: e_1_2_1_21_1
  doi: 10.1016/0009-2509(95)00308-8
– ident: e_1_2_1_13_1
  doi: 10.1021/ja00214a073
– ident: e_1_2_1_14_1
  doi: 10.1111/j.1574-6968.1997.tb12604.x
– ident: e_1_2_1_16_1
  doi: 10.1007/BF00255361
– ident: e_1_2_1_33_1
  doi: 10.1016/S0168-1656(97)00127-2
– ident: e_1_2_1_36_1
  doi: 10.1016/j.apcatb.2004.11.004
– ident: e_1_2_1_8_1
  doi: 10.1021/ja00824a073
– ident: e_1_2_1_19_1
  doi: 10.1002/bit.20572
– volume-title: Ullmann's encyclopedia of industrial chemistry
  year: 2005
  ident: e_1_2_1_29_1
– ident: e_1_2_1_30_1
  doi: 10.1111/j.1432-1033.1993.tb17641.x
SSID ssj0007866
Score 1.9964978
Snippet Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first...
Options are discussed for biochemical production of 4‐hydroxybutyrate (4‐HB) and its lactone, gamma‐butyrolactone (GBL), from renewable sources. In the first...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1392
SubjectTerms 4-Butyrolactone - chemistry
4-hydroxybutyrate
Aldehydes
Biochemistry
Biochemistry - methods
Biological and medical sciences
Bioreactors - microbiology
Biotechnology
Candida - metabolism
Candida antarctica
Candida antarctica lipase
Computer Simulation
Fundamental and applied biological sciences. Psychology
gamma-butyrolactone
Glucose
Glucose - metabolism
Hydroxybutyrates - metabolism
Lactones - chemistry
lactonization
Models, Biological
pathway
Petrochemicals
Petroleum production
Signal Transduction - physiology
Studies
thermodynamics
Title Options for biochemical production of 4-hydroxybutyrate and its lactone as a substitute for petrochemical production
URI https://api.istex.fr/ark:/67375/WNG-RP6H7KZL-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.21709
https://www.ncbi.nlm.nih.gov/pubmed/18023038
https://www.proquest.com/docview/213762724
https://www.proquest.com/docview/20142239
https://www.proquest.com/docview/31403791
https://www.proquest.com/docview/47601750
https://www.proquest.com/docview/70362824
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbGJARc8NMBC4NhITRxky5x4tgRV9tglL8xjVWbEFJkOw5UG-nUpIhyxSPwjDwJx3aTUtRKiLtEPk7ik2P7O_bxdxB6zFOqEhoKPyK5AAclp74AR8SPlc4jWeRBRMzZ4bcHSa8fvzqlpyvoaXMWxvFDtAtupmfY8dp0cCGr7RlpqBzUXcDT9vBeGCWGN__Z0Yw6inG3T2k85oimpGEVCsh2W3NuLrpUiCEgVKPcbyZCUlSgpMJlt1gEP-fRrJ2O9m-gj01DXBTKWXdcy676_hfH43-29Ca6PoWpeMfZ1S20ossOWtspwUX_MsFb2AaO2hX5Drq821xd2WvSx3XQtT-YDtfQ13cueAYDRsZyYNJ0WZ4CfOEYZ6EMDwsc__rx8_MkN42S43piaCywKHM8qCt8bjIDlXBfYYErGO9ckIN9IkD_0aJn3kb9_efHez1_mvLBVxRgvh9TkgdSs5QVWnGiqUqTnEslAwCSihQJeItKQ2mkFM9ZrFIVhyRhTHAlGaCrO2i1hG9ZR5hSkehAqUhp8LGSImVRXHBKYh5opUPpoSfNz8_UlA_dpOU4zxyTM8lA75nVu4cetaIXjgRkkdA6WFAmPsHgnPXfE7MlDP4i52HooS1rVm1lMTozAXWMZicHL7Kjw6THXn94kx16aHPO7toKxNAUhZx5aKMxxGw62FTwepglCCOxhx62pfC3zdaPKPVwDCKBWeuL0uUSkSFuZGm4XCI24VMAMJdLGDI3cOHhO-66PjLTluEZDCIOSreWvlyN2e7LY3tx799FN9BVF8YT-yG9j1br0Vg_AKxYy007KPwGjRRlAQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfGEBo88KcDFgabhdDES7rEiWNH4mUbjI51ZRqtmJCQ5TgOVBvp1KaI8sRH4DPySTjHTUpRKyHeEvmcxJez_Tv7_DuEnvGYqoj60g1IKsFBSakrwRFxQ6XTIMlSLyDm7PBJJ2r1wjfn9HwFvajOwlh-iHrBzfSMcrw2HdwsSO_OWEOTftEEQG1O710PAWgY1-vl2Yw8inG7U2l85oDGpOIV8shuXXVuNrqWyQFgVKPebyZGUo5ATZnNb7EIgM7j2XJCOryDPlZNsXEoF81xkTTV979YHv-3rXfR7SlSxXvWtO6hFZ030PpeDl76lwnewWXsaLko30A39qurtYMqg1wD3fqD7HAdfX1r42cwwGSc9E2mrpKqAF9Z0lkow4MMh79-_Pw8SU2rknExMUwWWOYp7hcjfGmSA-VwP8ISj2DIs3EO5RMB_Q8XPfM-6h2-6h603GnWB1dRQPpuSEnqJZrFLNOKE01VHKU8UYkHWFKRLAKHUWkoDZTiKQtVrEKfRIxJrhIGAOsBWs3hWzYQplRG2lMqUBrcrCiLWRBmnJKQe1ppP3HQ8-rvCzWlRDeZOS6FJXMmAvQuSr076GktemV5QBYJbYAJCfkJxmfRe0fMrjC4jJz7voN2SruqK8vhhYmpY1S877wWZ6dRix1_aItTB23NGV5dgRimIp8zB21Wliim480IXg8TBWEkdNB2XQp_2-z-yFwPxiDimeW-IF4uERjuRhb7yyVCE0EFGHO5hOFzAy8evuOh7SQzbRmqQS_goPTS1JerUewfdcuLR_8uuo3WWt2TtmgfdY430U0b1RO6Pn2MVovhWD8B6FgkW-UI8Ruxe2kg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbGEH8X_HTAwmCzEJq4SZc4duyIq21QOjbKtK1iQkiW4zhQbaRVmyLKFY_AM_IkHCdNSlErIe4S-TiJT47t79jH30HomYiYDpmv3IAkChyUhLkKHBGXapMEcZp4AbFnh992wnaXvjln5yvoRXUWpuSHqBfcbM8oxmvbwQdJujMjDY17eRPwtD28d5WGgCQsIjqZcUdxUW5UWpc5YBGpaIU8slNXnZuMrqSqDxDVavebDZFUI9BSWqa3WIQ_5-FsMR-17qCPVUvKMJSL5jiPm_r7XySP_9nUu-j2FKfi3dKw7qEVkzXQ2m4GPvqXCd7GReRosSTfQNf2qqsb-1X-uAa69QfV4Rr6-q6MnsEAknHcs3m6CqICPCgpZ6EM91NMf_34-XmS2EbF43xieSywyhLcy0f40qYGyuB-hBUewYBXRjkUTwTsP1z0zPuo23p1tt92pzkfXM0A57uUkcSLDY94arQghukoTESsYw-QpCZpCO6iNlAaaC0STnWkqU9CzpXQMQd49QCtZvAt6wgzpkLjaR1oA05WmEY8oKlghArPaOPHDnpe_Xypp4ToNi_HpSypnIkEvctC7w56WosOShaQRULrYEFSfYLRWXZPid0TBodRCN930HZhVnVlNbywEXWcyfed1_LkOGzzww9H8thBm3N2V1cglqfIF9xBG5UhyuloM4LXwzRBOKEO2qpL4W_bvR-Vmf4YRDy72BdEyyUCy9zII3-5BLXxU4Awl0tYNjfw4eE7HpZ9ZKYtSzToBQKUXlj6cjXKvYOz4uLRv4tuoevHL1vy6KBzuIFuliE91PXZY7SaD8fmCeDGPN4sxoffJe1nzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Options+for+Biochemical+Production+of+4-Hydroxybutyrate+and+Its+Lactone+as+a+Substitute+for+Petrochemical+Production&rft.jtitle=Biotechnology+and+bioengineering&rft.au=EFE%2C+C&rft.au=STRAATHOF%2C+Adrie+J.+J&rft.au=VAN+DER+WIELEN%2C+Luuk+A.+M&rft.date=2008-04-15&rft.pub=Wiley&rft.issn=0006-3592&rft.volume=99&rft.issue=6&rft.spage=1392&rft.epage=1406&rft_id=info:doi/10.1002%2Fbit.21709&rft.externalDBID=n%2Fa&rft.externalDocID=20228187
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon