Options for biochemical production of 4-hydroxybutyrate and its lactone as a substitute for petrochemical production
Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4-HB are analyzed. The calculations reve...
Saved in:
Published in | Biotechnology and bioengineering Vol. 99; no. 6; pp. 1392 - 1406 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
15.04.2008
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0006-3592 1097-0290 1097-0290 |
DOI | 10.1002/bit.21709 |
Cover
Abstract | Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4-HB are analyzed. The calculations reveal that when the pathways are NAD⁺ dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4-HB yields at equilibrium. For NADP⁺ dependent pathways the calculated yield of 4-HB improves, up to almost 100%. In the second part of this study, continuous removal of 4-HB from the solution is considered to shift SSA conversion into 4-HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4-HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in-vivo during 4-HB production because of the neutral intracellular pH. Biotechnol. Bioeng. 2008;99: 1392-1406. |
---|---|
AbstractList | Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4-HB are analyzed. The calculations reveal that when the pathways are NAD(+) dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4-HB yields at equilibrium. For NADP(+) dependent pathways the calculated yield of 4-HB improves, up to almost 100%. In the second part of this study, continuous removal of 4-HB from the solution is considered to shift SSA conversion into 4-HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4-HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in-vivo during 4-HB production because of the neutral intracellular pH.Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4-HB are analyzed. The calculations reveal that when the pathways are NAD(+) dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4-HB yields at equilibrium. For NADP(+) dependent pathways the calculated yield of 4-HB improves, up to almost 100%. In the second part of this study, continuous removal of 4-HB from the solution is considered to shift SSA conversion into 4-HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4-HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in-vivo during 4-HB production because of the neutral intracellular pH. Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4-HB are analyzed. The calculations reveal that when the pathways are NAD⁺ dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4-HB yields at equilibrium. For NADP⁺ dependent pathways the calculated yield of 4-HB improves, up to almost 100%. In the second part of this study, continuous removal of 4-HB from the solution is considered to shift SSA conversion into 4-HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4-HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in-vivo during 4-HB production because of the neutral intracellular pH. Biotechnol. Bioeng. 2008;99: 1392-1406. Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4-HB are analyzed. The calculations reveal that when the pathways are NAD(+) dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4-HB yields at equilibrium. For NADP(+) dependent pathways the calculated yield of 4-HB improves, up to almost 100%. In the second part of this study, continuous removal of 4-HB from the solution is considered to shift SSA conversion into 4-HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4-HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in-vivo during 4-HB production because of the neutral intracellular pH. Options are discussed for biochemical production of 4‐hydroxybutyrate (4‐HB) and its lactone, gamma‐butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4‐HB are analyzed. The calculations reveal that when the pathways are NAD+ dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4‐HB yields at equilibrium. For NADP+ dependent pathways the calculated yield of 4‐HB improves, up to almost 100%. In the second part of this study, continuous removal of 4‐HB from the solution is considered to shift SSA conversion into 4‐HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4‐HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in‐vivo during 4‐HB production because of the neutral intracellular pH. Biotechnol. Bioeng. 2008;99: 1392–1406. © 2007 Wiley Periodicals, Inc. Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4-HB are analyzed. The calculations reveal that when the pathways are NAD+ dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4-HB yields at equilibrium. For NADP+ dependent pathways the calculated yield of 4-HB improves, up to almost 100%. In the second part of this study, continuous removal of 4-HB from the solution is considered to shift SSA conversion into 4-HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4-HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in-vivo during 4-HB production because of the neutral intracellular pH. Biotechnol. Bioeng. 2008;99: 1392-1406. Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4-HB are analyzed. The calculations reveal that when the pathways are NAD... dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4-HB yields at equilibrium. For NADP... dependent pathways the calculated yield of 4-HB improves, up to almost 100%. In the second part of this study, continuous removal of 4-HB from the solution is considered to shift SSA conversion into 4-HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4-HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in-vivo during 4-HB production because of the neutral intracellular pH. (ProQuest: ... denotes formulae/symbols omitted.) Options are discussed for biochemical production of 4‐hydroxybutyrate (4‐HB) and its lactone, gamma‐butyrolactone (GBL), from renewable sources. In the first part of the study, the thermodynamic feasibility of four potential metabolic pathways from glucose to 4‐HB are analyzed. The calculations reveal that when the pathways are NAD + dependent the intermediate succinate semialdehyde (SSA) accumulates leading to low 4‐HB yields at equilibrium. For NADP + dependent pathways the calculated yield of 4‐HB improves, up to almost 100%. In the second part of this study, continuous removal of 4‐HB from the solution is considered to shift SSA conversion into 4‐HB so that SSA accumulation is minimized. One option is the enzymatic production of GBL from 4‐HB. Candida antarctica Lipase B shows good lactonization rates at pH 4, but unfortunately this conversion cannot be performed in‐vivo during 4‐HB production because of the neutral intracellular pH. Biotechnol. Bioeng. 2008;99: 1392–1406. © 2007 Wiley Periodicals, Inc. |
Author | Straathof, Adrie J.J. Efe, C. van der Wielen, Luuk A.M. |
Author_xml | – sequence: 1 fullname: Efe, C – sequence: 2 fullname: Straathof, Adrie J.J – sequence: 3 fullname: van der Wielen, Luuk A.M |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20228187$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18023038$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl9PFDEUxRuDkQV98AvoxEQTHwZu25n-eUSCQNwIUYiJL02n05Hi7HRtO4H99nbZBROi7lPT3N85vT337qCtwQ8WoZcY9jAA2W9c2iOYg3yCJhgkL4FI2EITAGAlrSXZRjsxXucrF4w9Q9tYAKFAxQSls3lyfohF50PROG-u7MwZ3Rfz4NvRLGuF74qqvFq0wd8umjEtgk620ENbuBSLXpuUuyl0LHQRxyYml8ZcX_rNbQp_c3yOnna6j_bF-txFlx-PLg5PyunZ8enhwbQ0NSeyrGrSQmO55J01gtjaSNaKxjRQgzCkY6SSxuYqNUa0vDLSVJgwzrUwDWcV3UXvVr756V-jjUnNXDS27_Vg_RgVB8qIIJvBijPAvIaNIMUVUC7xRpAArgihMoNvHoHXfgxDjkURTDkj_K6_V2tobGa2VfPgZjos1P0cM_B2DeiYs-6CHoyLDxwBQgQWPHPvV5wJPsZguz9WoJa7pPIuqbtdyuz-I9a4pJfzS0G7_n-KG9fbxb-t1YfTi3tFuVK4mOztg0KHn4pxymv17fOx-nLOTvin71N1nvnXK77TXukfIf_x8mvOkgIIJgTG9DeVnPJj |
CODEN | BIBIAU |
CitedBy_id | crossref_primary_10_1021_cr400309c crossref_primary_10_1007_s00449_013_1020_5 crossref_primary_10_1021_cs400535c crossref_primary_10_1021_acs_oprd_7b00078 crossref_primary_10_1134_S0003683815080037 crossref_primary_10_1016_j_biortech_2021_125263 crossref_primary_10_1016_j_ymben_2016_09_004 crossref_primary_10_1002_cctc_201000030 crossref_primary_10_1111_nph_16094 crossref_primary_10_1016_j_procbio_2013_10_002 crossref_primary_10_1016_j_seta_2012_12_002 crossref_primary_10_1021_acssynbio_4c00603 crossref_primary_10_1016_j_ymben_2013_09_001 crossref_primary_10_1007_s00253_009_2023_7 crossref_primary_10_1016_j_indcrop_2024_118878 crossref_primary_10_3389_fpls_2022_853309 crossref_primary_10_1002_cctc_201500603 crossref_primary_10_1016_j_foodres_2021_110483 |
Cites_doi | 10.1016/S0021-9258(18)93551-9 10.1016/j.bej.2005.01.016 10.1093/bioinformatics/14.10.869 10.1016/S1381-1177(01)00037-6 10.1111/j.1749-6632.1984.tb29893.x 10.1021/bp9900965 10.1016/S0968-0004(97)01103-1 10.1016/0141-0229(94)90060-4 10.1128/JB.182.10.2838-2844.2000 10.1016/S0021-9258(18)69459-1 10.1006/abbi.1997.0403 10.1128/MMBR.41.1.100-180.1977 10.1016/0005-2760(95)00084-P 10.1002/(SICI)1097-0290(20000205)67:3<291::AID-BIT5>3.0.CO;2-J 10.1007/s002030000195 10.1021/jp020764w 10.1081/DIS-120017946 10.1016/0141-0229(91)90095-R 10.1016/S1389-1723(00)88963-X 10.1520/JFS15152J 10.1016/S0021-9258(18)98705-3 10.1016/0009-2509(95)00308-8 10.1021/ja00214a073 10.1111/j.1574-6968.1997.tb12604.x 10.1007/BF00255361 10.1016/S0168-1656(97)00127-2 10.1016/j.apcatb.2004.11.004 10.1021/ja00824a073 10.1002/bit.20572 10.1111/j.1432-1033.1993.tb17641.x |
ContentType | Journal Article |
Copyright | Copyright © 2007 Wiley Periodicals, Inc. 2008 INIST-CNRS Copyright 2007 Wiley Periodicals, Inc. Copyright John Wiley and Sons, Limited Apr 15, 2008 |
Copyright_xml | – notice: Copyright © 2007 Wiley Periodicals, Inc. – notice: 2008 INIST-CNRS – notice: Copyright 2007 Wiley Periodicals, Inc. – notice: Copyright John Wiley and Sons, Limited Apr 15, 2008 |
DBID | FBQ BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 M7N 7S9 L.6 7X8 |
DOI | 10.1002/bit.21709 |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Solid State and Superconductivity Abstracts Materials Research Database Engineering Research Database CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology |
EISSN | 1097-0290 |
EndPage | 1406 |
ExternalDocumentID | 1455591831 18023038 20228187 10_1002_bit_21709 BIT21709 ark_67375_WNG_RP6H7KZL_P US201300868811 |
Genre | article Comparative Study Evaluation Studies Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: B‐Basic and NW0‐ACTS, Netherlands |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AI. AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FBQ FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WSB WXSBR WYISQ XFK XG1 XPP XSW XV2 Y6R ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION AGHNM IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 M7N 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5729-452d0be797fec82e5c96d8bcb0508c2f6249ce97f3cc8d74c9c412677a8cb7643 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 1097-0290 |
IngestDate | Thu Jul 10 19:20:01 EDT 2025 Fri Jul 11 06:25:42 EDT 2025 Thu Jul 10 17:44:18 EDT 2025 Fri Jul 11 11:44:47 EDT 2025 Fri Jul 25 10:47:47 EDT 2025 Wed Feb 19 01:48:02 EST 2025 Mon Jul 21 09:15:56 EDT 2025 Thu Apr 24 23:06:54 EDT 2025 Tue Jul 01 03:28:22 EDT 2025 Wed Aug 20 07:27:25 EDT 2025 Wed Oct 30 09:50:31 EDT 2024 Wed Dec 27 19:20:10 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | 4-hydroxybutyrate candida antarctica Enzyme Triacylglycerol lipase Lactone Esterases Carboxylic ester hydrolases Fungi Thermodynamics Production Hydrolases lactonization pathway gamma-butyrolactone Fungi Imperfecti Candida antarctica lipase |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright 2007 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5729-452d0be797fec82e5c96d8bcb0508c2f6249ce97f3cc8d74c9c412677a8cb7643 |
Notes | http://dx.doi.org/10.1002/bit.21709 ArticleID:BIT21709 ark:/67375/WNG-RP6H7KZL-P istex:588448EB6B0EFAD39D40F8DEDD9441B2802C1966 B-Basic and NW0-ACTS, Netherlands SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Undefined-3 |
PMID | 18023038 |
PQID | 213762724 |
PQPubID | 48814 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_70362824 proquest_miscellaneous_47601750 proquest_miscellaneous_31403791 proquest_miscellaneous_20142239 proquest_journals_213762724 pubmed_primary_18023038 pascalfrancis_primary_20228187 crossref_primary_10_1002_bit_21709 crossref_citationtrail_10_1002_bit_21709 wiley_primary_10_1002_bit_21709_BIT21709 istex_primary_ark_67375_WNG_RP6H7KZL_P fao_agris_US201300868811 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 April 2008 |
PublicationDateYYYYMMDD | 2008-04-15 |
PublicationDate_xml | – month: 04 year: 2008 text: 15 April 2008 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States – name: New York |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol. Bioeng |
PublicationYear | 2008 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley – name: Wiley Subscription Services, Inc |
References | Rees GD, Robinson BH, Stephenson GR. 1995. Macrocyclic lactone synthesis by lipases in water-in-oil microemulsions. Biochim Biophys Acta Lipids Lipid Metabolism 1257: 239-248. Thauer RK, Jungermann K, Decker K. 1977. Energy-conservation in chemotropic anaerobic bacteria. Bacteriol Rev 41: 100-180. Green LS, Li Y, Emerich DW, Bergersen FJ, Day DA. 2000. Catabolism of alpha-Ketoglutarate by a sucA Mutant of Bradyrhizobium japonicum: Evidence for an alternative tricarboxylic acid cycle. J Bacteriol 182: 2838-2844. Mendes P, Kell DB. 1998. Non-linear optimization of biochemical pathways: Applications to metabolic engineering and parameter estimation. Bioinformatics 14: 869-883. Gerhardt A, Cinkaya I, Linder D, Huisman G, Buckel W. 2000. Fermentation of 4-aminobutyrate by Clostridium aminobutyricum: Cloning of two genes involved in the formation and dehydration of 4-hydroxybutyryl-CoA. Arch Microbiol 174: 189-199. Valentin HE, Reiser S, Gruys KJ. 2000. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) formation from gamma-aminobutyrate and glutamate. Biotechnol Bioeng 67: 291-299. Corey EJ, Nicolaou KC. 1974. Efficient and mild lactonization method for synthesis of macrolides. J Am Chem Soc 96: 5614-5616. Bonini C, Cazzato C, Cernia E, Palocci C, Soro S, Viggiani L. 2001. Lipase enhanced catalytic efficiency in lactonisation reactions. J Mol Catal B Enzym 16: 1-5. Maskow T, von Stockar U. 2005. How reliable are thermodynamic feasibility statements of biochemical pathways? Biotechnol Bioeng 92: 223-230. Mavrovouniotis ML. 1991. Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem 266: 14440-14445. Alberty RA. 2002. Inverse Legendre transform in biochemical thermodynamics: Illustrated with the last five reactions of glycolysis. J Phys Chem B 106: 6594-6599. Lee YH, Kang MS, Jung YM. 2000. Regulating the molar fraction of 4-hydroxybutyrate in poly(3-hydroxybutyrate-4-hydroxybutyrate) biosynthesis by Ralstonia eutropha using propionate as a stimulator. J Biosci Bioeng 89: 380-383. Nirenberg MW, Jakoby WB. 1960. Enzymatic utilization of γ-hydroxybutyric acid. J Biol Chem 235: 954-960. Antczak U, Gora J, Antczak T, Galas E. 1991. Enzymatic lactonization of 15-hydroxypentadecanoic and 16-hydroxyhexadecanoic acids to macrocyclic lactones. Enzyme Microb Technol 13: 589-593. Mendes P. 1997. Biochemistry by numbers: Simulation of biochemical pathways with Gepasi 3. Trends Biochem Sci 22: 361-363. Robinson GK, Alston MJ, Knowles CJ, Cheetham PSJ, Motion KR. 1994. An investigation into the factors influencing lipase-catalyzed intramolecular lactonization in microaqueous systems. Enzyme Microb Technol 16: 855-863. Valentin HE, Dennis D. 1997. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol 58: 33-38. Varadarajan S, Miller DJ. 1999. Catalytic upgrading of fermentation-derived organic acids. Biotechnol Prog 15: 845-854. Hein S, Söhling B, Gottschalk G, Steinbüchel A. 1997. Biosynthesis of poly(4-hydroxybutyric acid) by recombinant strains of Escherichia coli. FEMS Microbiol Lett 153: 411-418. Ciolino LA, Mesmer MZ, Satzger RD, Machal AC, McCauley HA, Mohrhaus AS. 2001. The chemical interconversion of GHB and GBL: Forensic issues and implications. J Forensic Sci 46: 1315-1323. Lide DR. 2006. CRC Handbook of Chemistry and Physics, (http://www. hbcpnetbase.com). Boca Raton: CRC Press, LCC. Alberty RA. 1968. Effect of pH and metal ion concentration on equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate. J Biol Chem 243: 1337-1343. Kim JS, Lee BH, Kim BS. 2005. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha. Biochem Eng J 23: 169-174. Moren AK, Kumar A, Stenhagen G, Holmberg HK. 2003. Synthesis of a macrocyclic lactone. I. Reaction in homogeneous media. J Disper Sci Technol 24: 79-87. Kunioka M, Kawaguchi Y, Doi Y. 1989. Production of biodegradable copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate by Ralstonia eutropha. Appl Microbiol Biotechnol 30: 569-573. Guo ZW, Sih CJ. 1988. Enzymatic synthesis of macrocyclic lactones. J Am Chem Soc 110: 1999-2001. Söhling B, Gottschalk G. 1993. Purification and characterization of a coenzyme-A-dependent succinate-semialdehyde dehydrogenase from Clostridium kluyveri. Eur J Biochem 212: 121-127. Mendes P. 1993. GEPASI: A software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci 9: 563-571. Goldberg RN, Tewari YB, Bhat TN. 2004. Thermodynamics of enzyme-catalyzed reactions-A database for quantitative biochemistry. Comput Appl Biosci 20: 2874-2877. Steinbüchel A. 2003. Biopolymers. Weinheim: Wiley-VCH. Gatfield IL. 1984. The enzymatic synthesis of esters in non-aqueous systems. Ann NY Acad Sci 434: 569-572. Zhu YL, Yang J, Dong GQ, Zheng HY, Zhang HH, Xiang HW, Li YW. 2005. An environmentally benign route to gamma-butyrolactone through the coupling of hydrogenation and dehydrogenation. Appl Catal B Environ 57: 183-190. Mavrovouniotis ML. 1996. Duality theory for thermodynamic bottlenecks in bioreaction pathways. Chem Eng Sci 51: 1495-1507. Alberty RA. 1997. Apparent equilibrium constants and standard transformed Gibbs energies of biochemical reactions involving carbon dioxide. Arch Biochem Biophys 348: 116-124. 1993; 9 2004; 20 1968; 243 1974; 96 1997; 22 1991; 13 1960; 235 2000; 89 2000; 67 1997; 153 2000; 174 2006 1996; 51 1977; 41 2005 2003 2001; 46 2005; 23 1989; 30 1997; 348 1991; 266 1995; 1257 1997; 58 1999; 15 1984; 434 2002; 106 2000; 182 2003; 24 1988; 110 1994; 16 2001; 16 2005; 92 1993; 212 1998; 14 2005; 57 Goldberg RN (e_1_2_1_11_1) 2004; 20 e_1_2_1_20_1 e_1_2_1_23_1 e_1_2_1_24_1 Lide DR (e_1_2_1_18_1) 2006 e_1_2_1_21_1 e_1_2_1_27_1 e_1_2_1_28_1 Schwarz W (e_1_2_1_29_1) 2005 e_1_2_1_25_1 Nirenberg MW (e_1_2_1_26_1) 1960; 235 Steinbüchel A (e_1_2_1_31_1) 2003 Mendes P (e_1_2_1_22_1) 1993; 9 e_1_2_1_7_1 e_1_2_1_8_1 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_4_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_32_1 Alberty RA (e_1_2_1_2_1) 1968; 243 e_1_2_1_16_1 e_1_2_1_17_1 e_1_2_1_14_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – reference: Kim JS, Lee BH, Kim BS. 2005. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha. Biochem Eng J 23: 169-174. – reference: Mavrovouniotis ML. 1996. Duality theory for thermodynamic bottlenecks in bioreaction pathways. Chem Eng Sci 51: 1495-1507. – reference: Gatfield IL. 1984. The enzymatic synthesis of esters in non-aqueous systems. Ann NY Acad Sci 434: 569-572. – reference: Alberty RA. 1997. Apparent equilibrium constants and standard transformed Gibbs energies of biochemical reactions involving carbon dioxide. Arch Biochem Biophys 348: 116-124. – reference: Guo ZW, Sih CJ. 1988. Enzymatic synthesis of macrocyclic lactones. J Am Chem Soc 110: 1999-2001. – reference: Lide DR. 2006. CRC Handbook of Chemistry and Physics, (http://www. hbcpnetbase.com). Boca Raton: CRC Press, LCC. – reference: Moren AK, Kumar A, Stenhagen G, Holmberg HK. 2003. Synthesis of a macrocyclic lactone. I. Reaction in homogeneous media. J Disper Sci Technol 24: 79-87. – reference: Rees GD, Robinson BH, Stephenson GR. 1995. Macrocyclic lactone synthesis by lipases in water-in-oil microemulsions. Biochim Biophys Acta Lipids Lipid Metabolism 1257: 239-248. – reference: Alberty RA. 1968. Effect of pH and metal ion concentration on equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate. J Biol Chem 243: 1337-1343. – reference: Mavrovouniotis ML. 1991. Estimation of standard Gibbs energy changes of biotransformations. J Biol Chem 266: 14440-14445. – reference: Antczak U, Gora J, Antczak T, Galas E. 1991. Enzymatic lactonization of 15-hydroxypentadecanoic and 16-hydroxyhexadecanoic acids to macrocyclic lactones. Enzyme Microb Technol 13: 589-593. – reference: Mendes P. 1993. GEPASI: A software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci 9: 563-571. – reference: Gerhardt A, Cinkaya I, Linder D, Huisman G, Buckel W. 2000. Fermentation of 4-aminobutyrate by Clostridium aminobutyricum: Cloning of two genes involved in the formation and dehydration of 4-hydroxybutyryl-CoA. Arch Microbiol 174: 189-199. – reference: Maskow T, von Stockar U. 2005. How reliable are thermodynamic feasibility statements of biochemical pathways? Biotechnol Bioeng 92: 223-230. – reference: Mendes P, Kell DB. 1998. Non-linear optimization of biochemical pathways: Applications to metabolic engineering and parameter estimation. Bioinformatics 14: 869-883. – reference: Bonini C, Cazzato C, Cernia E, Palocci C, Soro S, Viggiani L. 2001. Lipase enhanced catalytic efficiency in lactonisation reactions. J Mol Catal B Enzym 16: 1-5. – reference: Varadarajan S, Miller DJ. 1999. Catalytic upgrading of fermentation-derived organic acids. Biotechnol Prog 15: 845-854. – reference: Lee YH, Kang MS, Jung YM. 2000. Regulating the molar fraction of 4-hydroxybutyrate in poly(3-hydroxybutyrate-4-hydroxybutyrate) biosynthesis by Ralstonia eutropha using propionate as a stimulator. J Biosci Bioeng 89: 380-383. – reference: Zhu YL, Yang J, Dong GQ, Zheng HY, Zhang HH, Xiang HW, Li YW. 2005. An environmentally benign route to gamma-butyrolactone through the coupling of hydrogenation and dehydrogenation. Appl Catal B Environ 57: 183-190. – reference: Goldberg RN, Tewari YB, Bhat TN. 2004. Thermodynamics of enzyme-catalyzed reactions-A database for quantitative biochemistry. Comput Appl Biosci 20: 2874-2877. – reference: Kunioka M, Kawaguchi Y, Doi Y. 1989. Production of biodegradable copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate by Ralstonia eutropha. Appl Microbiol Biotechnol 30: 569-573. – reference: Söhling B, Gottschalk G. 1993. Purification and characterization of a coenzyme-A-dependent succinate-semialdehyde dehydrogenase from Clostridium kluyveri. Eur J Biochem 212: 121-127. – reference: Nirenberg MW, Jakoby WB. 1960. Enzymatic utilization of γ-hydroxybutyric acid. J Biol Chem 235: 954-960. – reference: Ciolino LA, Mesmer MZ, Satzger RD, Machal AC, McCauley HA, Mohrhaus AS. 2001. The chemical interconversion of GHB and GBL: Forensic issues and implications. J Forensic Sci 46: 1315-1323. – reference: Valentin HE, Reiser S, Gruys KJ. 2000. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) formation from gamma-aminobutyrate and glutamate. Biotechnol Bioeng 67: 291-299. – reference: Corey EJ, Nicolaou KC. 1974. Efficient and mild lactonization method for synthesis of macrolides. J Am Chem Soc 96: 5614-5616. – reference: Mendes P. 1997. Biochemistry by numbers: Simulation of biochemical pathways with Gepasi 3. Trends Biochem Sci 22: 361-363. – reference: Steinbüchel A. 2003. Biopolymers. Weinheim: Wiley-VCH. – reference: Hein S, Söhling B, Gottschalk G, Steinbüchel A. 1997. Biosynthesis of poly(4-hydroxybutyric acid) by recombinant strains of Escherichia coli. FEMS Microbiol Lett 153: 411-418. – reference: Thauer RK, Jungermann K, Decker K. 1977. Energy-conservation in chemotropic anaerobic bacteria. Bacteriol Rev 41: 100-180. – reference: Green LS, Li Y, Emerich DW, Bergersen FJ, Day DA. 2000. Catabolism of alpha-Ketoglutarate by a sucA Mutant of Bradyrhizobium japonicum: Evidence for an alternative tricarboxylic acid cycle. J Bacteriol 182: 2838-2844. – reference: Alberty RA. 2002. Inverse Legendre transform in biochemical thermodynamics: Illustrated with the last five reactions of glycolysis. J Phys Chem B 106: 6594-6599. – reference: Valentin HE, Dennis D. 1997. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol 58: 33-38. – reference: Robinson GK, Alston MJ, Knowles CJ, Cheetham PSJ, Motion KR. 1994. An investigation into the factors influencing lipase-catalyzed intramolecular lactonization in microaqueous systems. Enzyme Microb Technol 16: 855-863. – volume: 16 start-page: 1 year: 2001 end-page: 5 article-title: Lipase enhanced catalytic efficiency in lactonisation reactions publication-title: J Mol Catal B Enzym – volume: 89 start-page: 380 year: 2000 end-page: 383 article-title: Regulating the molar fraction of 4‐hydroxybutyrate in poly(3‐hydroxybutyrate‐4‐hydroxybutyrate) biosynthesis by using propionate as a stimulator publication-title: J Biosci Bioeng – volume: 51 start-page: 1495 year: 1996 end-page: 1507 article-title: Duality theory for thermodynamic bottlenecks in bioreaction pathways publication-title: Chem Eng Sci – year: 2005 – volume: 235 start-page: 954 year: 1960 end-page: 960 article-title: Enzymatic utilization of γ‐hydroxybutyric acid publication-title: J Biol Chem – volume: 58 start-page: 33 year: 1997 end-page: 38 article-title: Production of poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) in recombinant Escherichia coli grown on glucose publication-title: J Biotechnol – volume: 96 start-page: 5614 year: 1974 end-page: 5616 article-title: Efficient and mild lactonization method for synthesis of macrolides publication-title: J Am Chem Soc – year: 2003 – volume: 14 start-page: 869 year: 1998 end-page: 883 article-title: Non‐linear optimization of biochemical pathways: Applications to metabolic engineering and parameter estimation publication-title: Bioinformatics – volume: 110 start-page: 1999 year: 1988 end-page: 2001 article-title: Enzymatic synthesis of macrocyclic lactones publication-title: J Am Chem Soc – volume: 41 start-page: 100 year: 1977 end-page: 180 article-title: Energy‐conservation in chemotropic anaerobic bacteria publication-title: Bacteriol Rev – volume: 153 start-page: 411 year: 1997 end-page: 418 article-title: Biosynthesis of poly(4‐hydroxybutyric acid) by recombinant strains of publication-title: FEMS Microbiol Lett – volume: 13 start-page: 589 year: 1991 end-page: 593 article-title: Enzymatic lactonization of 15‐hydroxypentadecanoic and 16‐hydroxyhexadecanoic acids to macrocyclic lactones publication-title: Enzyme Microb Technol – volume: 15 start-page: 845 year: 1999 end-page: 854 article-title: Catalytic upgrading of fermentation‐derived organic acids publication-title: Biotechnol Prog – volume: 243 start-page: 1337 year: 1968 end-page: 1343 article-title: Effect of pH and metal ion concentration on equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate publication-title: J Biol Chem – volume: 9 start-page: 563 year: 1993 end-page: 571 article-title: GEPASI: A software package for modelling the dynamics, steady states and control of biochemical and other systems publication-title: Comput Appl Biosci – volume: 16 start-page: 855 year: 1994 end-page: 863 article-title: An investigation into the factors influencing lipase‐catalyzed intramolecular lactonization in microaqueous systems publication-title: Enzyme Microb Technol – volume: 434 start-page: 569 year: 1984 end-page: 572 article-title: The enzymatic synthesis of esters in non‐aqueous systems publication-title: Ann NY Acad Sci – volume: 92 start-page: 223 year: 2005 end-page: 230 article-title: How reliable are thermodynamic feasibility statements of biochemical pathways? publication-title: Biotechnol Bioeng – volume: 212 start-page: 121 year: 1993 end-page: 127 article-title: Purification and characterization of a coenzyme‐A‐dependent succinate‐semialdehyde dehydrogenase from publication-title: Eur J Biochem – year: 2006 – volume: 67 start-page: 291 year: 2000 end-page: 299 article-title: Poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) formation from gamma‐aminobutyrate and glutamate publication-title: Biotechnol Bioeng – volume: 348 start-page: 116 year: 1997 end-page: 124 article-title: Apparent equilibrium constants and standard transformed Gibbs energies of biochemical reactions involving carbon dioxide publication-title: Arch Biochem Biophys – volume: 174 start-page: 189 year: 2000 end-page: 199 article-title: Fermentation of 4‐aminobutyrate by : Cloning of two genes involved in the formation and dehydration of 4‐hydroxybutyryl‐CoA publication-title: Arch Microbiol – volume: 24 start-page: 79 year: 2003 end-page: 87 article-title: Synthesis of a macrocyclic lactone. I. Reaction in homogeneous media publication-title: J Disper Sci Technol – volume: 182 start-page: 2838 year: 2000 end-page: 2844 article-title: Catabolism of alpha—Ketoglutarate by a sucA Mutant of : Evidence for an alternative tricarboxylic acid cycle publication-title: J Bacteriol – volume: 30 start-page: 569 year: 1989 end-page: 573 article-title: Production of biodegradable copolyesters of 3‐hydroxybutyrate and 4‐hydroxybutyrate by publication-title: Appl Microbiol Biotechnol – volume: 266 start-page: 14440 year: 1991 end-page: 14445 article-title: Estimation of standard Gibbs energy changes of biotransformations publication-title: J Biol Chem – volume: 106 start-page: 6594 year: 2002 end-page: 6599 article-title: Inverse Legendre transform in biochemical thermodynamics: Illustrated with the last five reactions of glycolysis publication-title: J Phys Chem B – volume: 46 start-page: 1315 year: 2001 end-page: 1323 article-title: The chemical interconversion of GHB and GBL: Forensic issues and implications publication-title: J Forensic Sci – volume: 20 start-page: 2874 year: 2004 end-page: 2877 article-title: Thermodynamics of enzyme‐catalyzed reactions—A database for quantitative biochemistry publication-title: Comput Appl Biosci – volume: 23 start-page: 169 year: 2005 end-page: 174 article-title: Production of poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) by publication-title: Biochem Eng J – volume: 22 start-page: 361 year: 1997 end-page: 363 article-title: Biochemistry by numbers: Simulation of biochemical pathways with Gepasi 3 publication-title: Trends Biochem Sci – volume: 1257 start-page: 239 year: 1995 end-page: 248 article-title: Macrocyclic lactone synthesis by lipases in water‐in‐oil microemulsions publication-title: Biochim Biophys Acta Lipids Lipid Metabolism – volume: 57 start-page: 183 year: 2005 end-page: 190 article-title: An environmentally benign route to gamma‐butyrolactone through the coupling of hydrogenation and dehydrogenation publication-title: Appl Catal B Environ – volume: 243 start-page: 1337 year: 1968 ident: e_1_2_1_2_1 article-title: Effect of pH and metal ion concentration on equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)93551-9 – ident: e_1_2_1_15_1 doi: 10.1016/j.bej.2005.01.016 – ident: e_1_2_1_24_1 doi: 10.1093/bioinformatics/14.10.869 – ident: e_1_2_1_6_1 doi: 10.1016/S1381-1177(01)00037-6 – ident: e_1_2_1_9_1 doi: 10.1111/j.1749-6632.1984.tb29893.x – volume: 9 start-page: 563 year: 1993 ident: e_1_2_1_22_1 article-title: GEPASI: A software package for modelling the dynamics, steady states and control of biochemical and other systems publication-title: Comput Appl Biosci – ident: e_1_2_1_35_1 doi: 10.1021/bp9900965 – ident: e_1_2_1_23_1 doi: 10.1016/S0968-0004(97)01103-1 – ident: e_1_2_1_28_1 doi: 10.1016/0141-0229(94)90060-4 – ident: e_1_2_1_12_1 doi: 10.1128/JB.182.10.2838-2844.2000 – volume: 235 start-page: 954 year: 1960 ident: e_1_2_1_26_1 article-title: Enzymatic utilization of γ‐hydroxybutyric acid publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)69459-1 – ident: e_1_2_1_3_1 doi: 10.1006/abbi.1997.0403 – volume-title: CRC Handbook of Chemistry and Physics year: 2006 ident: e_1_2_1_18_1 – ident: e_1_2_1_32_1 doi: 10.1128/MMBR.41.1.100-180.1977 – ident: e_1_2_1_27_1 doi: 10.1016/0005-2760(95)00084-P – ident: e_1_2_1_34_1 doi: 10.1002/(SICI)1097-0290(20000205)67:3<291::AID-BIT5>3.0.CO;2-J – ident: e_1_2_1_10_1 doi: 10.1007/s002030000195 – ident: e_1_2_1_4_1 doi: 10.1021/jp020764w – ident: e_1_2_1_25_1 doi: 10.1081/DIS-120017946 – ident: e_1_2_1_5_1 doi: 10.1016/0141-0229(91)90095-R – ident: e_1_2_1_17_1 doi: 10.1016/S1389-1723(00)88963-X – ident: e_1_2_1_7_1 doi: 10.1520/JFS15152J – volume-title: Biopolymers year: 2003 ident: e_1_2_1_31_1 – volume: 20 start-page: 2874 year: 2004 ident: e_1_2_1_11_1 article-title: Thermodynamics of enzyme‐catalyzed reactions—A database for quantitative biochemistry publication-title: Comput Appl Biosci – ident: e_1_2_1_20_1 doi: 10.1016/S0021-9258(18)98705-3 – ident: e_1_2_1_21_1 doi: 10.1016/0009-2509(95)00308-8 – ident: e_1_2_1_13_1 doi: 10.1021/ja00214a073 – ident: e_1_2_1_14_1 doi: 10.1111/j.1574-6968.1997.tb12604.x – ident: e_1_2_1_16_1 doi: 10.1007/BF00255361 – ident: e_1_2_1_33_1 doi: 10.1016/S0168-1656(97)00127-2 – ident: e_1_2_1_36_1 doi: 10.1016/j.apcatb.2004.11.004 – ident: e_1_2_1_8_1 doi: 10.1021/ja00824a073 – ident: e_1_2_1_19_1 doi: 10.1002/bit.20572 – volume-title: Ullmann's encyclopedia of industrial chemistry year: 2005 ident: e_1_2_1_29_1 – ident: e_1_2_1_30_1 doi: 10.1111/j.1432-1033.1993.tb17641.x |
SSID | ssj0007866 |
Score | 1.9964978 |
Snippet | Options are discussed for biochemical production of 4-hydroxybutyrate (4-HB) and its lactone, gamma-butyrolactone (GBL), from renewable sources. In the first... Options are discussed for biochemical production of 4‐hydroxybutyrate (4‐HB) and its lactone, gamma‐butyrolactone (GBL), from renewable sources. In the first... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1392 |
SubjectTerms | 4-Butyrolactone - chemistry 4-hydroxybutyrate Aldehydes Biochemistry Biochemistry - methods Biological and medical sciences Bioreactors - microbiology Biotechnology Candida - metabolism Candida antarctica Candida antarctica lipase Computer Simulation Fundamental and applied biological sciences. Psychology gamma-butyrolactone Glucose Glucose - metabolism Hydroxybutyrates - metabolism Lactones - chemistry lactonization Models, Biological pathway Petrochemicals Petroleum production Signal Transduction - physiology Studies thermodynamics |
Title | Options for biochemical production of 4-hydroxybutyrate and its lactone as a substitute for petrochemical production |
URI | https://api.istex.fr/ark:/67375/WNG-RP6H7KZL-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.21709 https://www.ncbi.nlm.nih.gov/pubmed/18023038 https://www.proquest.com/docview/213762724 https://www.proquest.com/docview/20142239 https://www.proquest.com/docview/31403791 https://www.proquest.com/docview/47601750 https://www.proquest.com/docview/70362824 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbGJARc8NMBC4NhITRxky5x4tgRV9tglL8xjVWbEFJkOw5UG-nUpIhyxSPwjDwJx3aTUtRKiLtEPk7ik2P7O_bxdxB6zFOqEhoKPyK5AAclp74AR8SPlc4jWeRBRMzZ4bcHSa8fvzqlpyvoaXMWxvFDtAtupmfY8dp0cCGr7RlpqBzUXcDT9vBeGCWGN__Z0Yw6inG3T2k85oimpGEVCsh2W3NuLrpUiCEgVKPcbyZCUlSgpMJlt1gEP-fRrJ2O9m-gj01DXBTKWXdcy676_hfH43-29Ca6PoWpeMfZ1S20ossOWtspwUX_MsFb2AaO2hX5Drq821xd2WvSx3XQtT-YDtfQ13cueAYDRsZyYNJ0WZ4CfOEYZ6EMDwsc__rx8_MkN42S43piaCywKHM8qCt8bjIDlXBfYYErGO9ckIN9IkD_0aJn3kb9_efHez1_mvLBVxRgvh9TkgdSs5QVWnGiqUqTnEslAwCSihQJeItKQ2mkFM9ZrFIVhyRhTHAlGaCrO2i1hG9ZR5hSkehAqUhp8LGSImVRXHBKYh5opUPpoSfNz8_UlA_dpOU4zxyTM8lA75nVu4cetaIXjgRkkdA6WFAmPsHgnPXfE7MlDP4i52HooS1rVm1lMTozAXWMZicHL7Kjw6THXn94kx16aHPO7toKxNAUhZx5aKMxxGw62FTwepglCCOxhx62pfC3zdaPKPVwDCKBWeuL0uUSkSFuZGm4XCI24VMAMJdLGDI3cOHhO-66PjLTluEZDCIOSreWvlyN2e7LY3tx799FN9BVF8YT-yG9j1br0Vg_AKxYy007KPwGjRRlAQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfGEBo88KcDFgabhdDES7rEiWNH4mUbjI51ZRqtmJCQ5TgOVBvp1KaI8sRH4DPySTjHTUpRKyHeEvmcxJez_Tv7_DuEnvGYqoj60g1IKsFBSakrwRFxQ6XTIMlSLyDm7PBJJ2r1wjfn9HwFvajOwlh-iHrBzfSMcrw2HdwsSO_OWEOTftEEQG1O710PAWgY1-vl2Yw8inG7U2l85oDGpOIV8shuXXVuNrqWyQFgVKPebyZGUo5ATZnNb7EIgM7j2XJCOryDPlZNsXEoF81xkTTV979YHv-3rXfR7SlSxXvWtO6hFZ030PpeDl76lwnewWXsaLko30A39qurtYMqg1wD3fqD7HAdfX1r42cwwGSc9E2mrpKqAF9Z0lkow4MMh79-_Pw8SU2rknExMUwWWOYp7hcjfGmSA-VwP8ISj2DIs3EO5RMB_Q8XPfM-6h2-6h603GnWB1dRQPpuSEnqJZrFLNOKE01VHKU8UYkHWFKRLAKHUWkoDZTiKQtVrEKfRIxJrhIGAOsBWs3hWzYQplRG2lMqUBrcrCiLWRBmnJKQe1ppP3HQ8-rvCzWlRDeZOS6FJXMmAvQuSr076GktemV5QBYJbYAJCfkJxmfRe0fMrjC4jJz7voN2SruqK8vhhYmpY1S877wWZ6dRix1_aItTB23NGV5dgRimIp8zB21Wliim480IXg8TBWEkdNB2XQp_2-z-yFwPxiDimeW-IF4uERjuRhb7yyVCE0EFGHO5hOFzAy8evuOh7SQzbRmqQS_goPTS1JerUewfdcuLR_8uuo3WWt2TtmgfdY430U0b1RO6Pn2MVovhWD8B6FgkW-UI8Ruxe2kg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbGEH8X_HTAwmCzEJq4SZc4duyIq21QOjbKtK1iQkiW4zhQbaRVmyLKFY_AM_IkHCdNSlErIe4S-TiJT47t79jH30HomYiYDpmv3IAkChyUhLkKHBGXapMEcZp4AbFnh992wnaXvjln5yvoRXUWpuSHqBfcbM8oxmvbwQdJujMjDY17eRPwtD28d5WGgCQsIjqZcUdxUW5UWpc5YBGpaIU8slNXnZuMrqSqDxDVavebDZFUI9BSWqa3WIQ_5-FsMR-17qCPVUvKMJSL5jiPm_r7XySP_9nUu-j2FKfi3dKw7qEVkzXQ2m4GPvqXCd7GReRosSTfQNf2qqsb-1X-uAa69QfV4Rr6-q6MnsEAknHcs3m6CqICPCgpZ6EM91NMf_34-XmS2EbF43xieSywyhLcy0f40qYGyuB-hBUewYBXRjkUTwTsP1z0zPuo23p1tt92pzkfXM0A57uUkcSLDY94arQghukoTESsYw-QpCZpCO6iNlAaaC0STnWkqU9CzpXQMQd49QCtZvAt6wgzpkLjaR1oA05WmEY8oKlghArPaOPHDnpe_Xypp4ToNi_HpSypnIkEvctC7w56WosOShaQRULrYEFSfYLRWXZPid0TBodRCN930HZhVnVlNbywEXWcyfed1_LkOGzzww9H8thBm3N2V1cglqfIF9xBG5UhyuloM4LXwzRBOKEO2qpL4W_bvR-Vmf4YRDy72BdEyyUCy9zII3-5BLXxU4Awl0tYNjfw4eE7HpZ9ZKYtSzToBQKUXlj6cjXKvYOz4uLRv4tuoevHL1vy6KBzuIFuliE91PXZY7SaD8fmCeDGPN4sxoffJe1nzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Options+for+Biochemical+Production+of+4-Hydroxybutyrate+and+Its+Lactone+as+a+Substitute+for+Petrochemical+Production&rft.jtitle=Biotechnology+and+bioengineering&rft.au=EFE%2C+C&rft.au=STRAATHOF%2C+Adrie+J.+J&rft.au=VAN+DER+WIELEN%2C+Luuk+A.+M&rft.date=2008-04-15&rft.pub=Wiley&rft.issn=0006-3592&rft.volume=99&rft.issue=6&rft.spage=1392&rft.epage=1406&rft_id=info:doi/10.1002%2Fbit.21709&rft.externalDBID=n%2Fa&rft.externalDocID=20228187 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |