Importance of deep water uptake in tropical eucalypt forest

Summary Climate models predict that the frequency, intensity and duration of drought events will increase in tropical regions. Although water withdrawal from deep soil layers is generally considered to be an efficient adaptation to drought, there is little information on the role played by deep root...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 31; no. 2; pp. 509 - 519
Main Authors Christina, Mathias, Nouvellon, Yann, Laclau, Jean-Paul, Stape, Jose L., Bouillet, Jean-Pierre, Lambais, George R., le Maire, Guerric
Format Journal Article
LanguageEnglish
Published London Wiley 01.02.2017
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0269-8463
1365-2435
DOI10.1111/1365-2435.12727

Cover

Loading…
Abstract Summary Climate models predict that the frequency, intensity and duration of drought events will increase in tropical regions. Although water withdrawal from deep soil layers is generally considered to be an efficient adaptation to drought, there is little information on the role played by deep roots in tropical forests. Tropical Eucalyptus plantations managed in short rotation cycles are simple forest ecosystems that may provide an insight into the water use by trees in tropical forests. The contribution made by water withdrawn from deep soil layers to the water required for evapotranspiration was quantified daily from planting to harvesting age for a Eucalyptus grandis stand using a soil water transfer model coupled with an ecophysiological forest model (MAESPA). The model was parameterized using an extensive data set and validated using time series of the soil water content down to a depth of 10 m and water‐table level, as well as evapotranspiration measured using eddy covariance. Fast root growth after planting provided access to large quantities of water stored in deep soil layers over the first 2 years. Eucalyptus roots reached the water‐table at a depth of 12 m after 2 years. Although the mean water withdrawal from depths of over 10 m amounted to only 5% of canopy transpiration from planting to a harvesting age of 5 years, the proportion of water taken up near the water‐table was much higher during dry periods. The water‐table rose from 18 to 12 m below‐ground over 2 years after the harvest of the previous stand and then fell until harvesting age as evapotranspiration rates exceeded the annual rainfall. Deep rooting is an efficient strategy to increase the amount of water available for the trees, allowing the uptake of transient gravitational water and possibly giving access to a deep water‐table. Deep soil layers have an important buffer role for large amounts of water stored during the wet season that is taken up by trees during dry periods. Our study confirms that deep rooting could be a major mechanism explaining high transpiration rates throughout the year in many tropical forests. Lay Summary
AbstractList Climate models predict that the frequency, intensity and duration of drought events will increase in tropical regions. Although water withdrawal from deep soil layers is generally considered to be an efficient adaptation to drought, there is little information on the role played by deep roots in tropical forests. Tropical Eucalyptus plantations managed in short rotation cycles are simple forest ecosystems that may provide an insight into the water use by trees in tropical forests. The contribution made by water withdrawn from deep soil layers to the water required for evapotranspiration was quantified daily from planting to harvesting age for a Eucalyptus grandis stand using a soil water transfer model coupled with an ecophysiological forest model (MAESPA). The model was parameterized using an extensive data set and validated using time series of the soil water content down to a depth of 10 m and water‐table level, as well as evapotranspiration measured using eddy covariance. Fast root growth after planting provided access to large quantities of water stored in deep soil layers over the first 2 years. Eucalyptus roots reached the water‐table at a depth of 12 m after 2 years. Although the mean water withdrawal from depths of over 10 m amounted to only 5% of canopy transpiration from planting to a harvesting age of 5 years, the proportion of water taken up near the water‐table was much higher during dry periods. The water‐table rose from 18 to 12 m below‐ground over 2 years after the harvest of the previous stand and then fell until harvesting age as evapotranspiration rates exceeded the annual rainfall. Deep rooting is an efficient strategy to increase the amount of water available for the trees, allowing the uptake of transient gravitational water and possibly giving access to a deep water‐table. Deep soil layers have an important buffer role for large amounts of water stored during the wet season that is taken up by trees during dry periods. Our study confirms that deep rooting could be a major mechanism explaining high transpiration rates throughout the year in many tropical forests.
Summary Climate models predict that the frequency, intensity and duration of drought events will increase in tropical regions. Although water withdrawal from deep soil layers is generally considered to be an efficient adaptation to drought, there is little information on the role played by deep roots in tropical forests. Tropical Eucalyptus plantations managed in short rotation cycles are simple forest ecosystems that may provide an insight into the water use by trees in tropical forests. The contribution made by water withdrawn from deep soil layers to the water required for evapotranspiration was quantified daily from planting to harvesting age for a Eucalyptus grandis stand using a soil water transfer model coupled with an ecophysiological forest model (MAESPA). The model was parameterized using an extensive data set and validated using time series of the soil water content down to a depth of 10 m and water‐table level, as well as evapotranspiration measured using eddy covariance. Fast root growth after planting provided access to large quantities of water stored in deep soil layers over the first 2 years. Eucalyptus roots reached the water‐table at a depth of 12 m after 2 years. Although the mean water withdrawal from depths of over 10 m amounted to only 5% of canopy transpiration from planting to a harvesting age of 5 years, the proportion of water taken up near the water‐table was much higher during dry periods. The water‐table rose from 18 to 12 m below‐ground over 2 years after the harvest of the previous stand and then fell until harvesting age as evapotranspiration rates exceeded the annual rainfall. Deep rooting is an efficient strategy to increase the amount of water available for the trees, allowing the uptake of transient gravitational water and possibly giving access to a deep water‐table. Deep soil layers have an important buffer role for large amounts of water stored during the wet season that is taken up by trees during dry periods. Our study confirms that deep rooting could be a major mechanism explaining high transpiration rates throughout the year in many tropical forests. Lay Summary
Summary Climate models predict that the frequency, intensity and duration of drought events will increase in tropical regions. Although water withdrawal from deep soil layers is generally considered to be an efficient adaptation to drought, there is little information on the role played by deep roots in tropical forests. Tropical Eucalyptus plantations managed in short rotation cycles are simple forest ecosystems that may provide an insight into the water use by trees in tropical forests. The contribution made by water withdrawn from deep soil layers to the water required for evapotranspiration was quantified daily from planting to harvesting age for a Eucalyptus grandis stand using a soil water transfer model coupled with an ecophysiological forest model ( MAESPA ). The model was parameterized using an extensive data set and validated using time series of the soil water content down to a depth of 10 m and water‐table level, as well as evapotranspiration measured using eddy covariance. Fast root growth after planting provided access to large quantities of water stored in deep soil layers over the first 2 years. Eucalyptus roots reached the water‐table at a depth of 12 m after 2 years. Although the mean water withdrawal from depths of over 10 m amounted to only 5% of canopy transpiration from planting to a harvesting age of 5 years, the proportion of water taken up near the water‐table was much higher during dry periods. The water‐table rose from 18 to 12 m below‐ground over 2 years after the harvest of the previous stand and then fell until harvesting age as evapotranspiration rates exceeded the annual rainfall. Deep rooting is an efficient strategy to increase the amount of water available for the trees, allowing the uptake of transient gravitational water and possibly giving access to a deep water‐table. Deep soil layers have an important buffer role for large amounts of water stored during the wet season that is taken up by trees during dry periods. Our study confirms that deep rooting could be a major mechanism explaining high transpiration rates throughout the year in many tropical forests.
Summary Climate models predict that the frequency, intensity and duration of drought events will increase in tropical regions. Although water withdrawal from deep soil layers is generally considered to be an efficient adaptation to drought, there is little information on the role played by deep roots in tropical forests. Tropical Eucalyptus plantations managed in short rotation cycles are simple forest ecosystems that may provide an insight into the water use by trees in tropical forests. The contribution made by water withdrawn from deep soil layers to the water required for evapotranspiration was quantified daily from planting to harvesting age for a Eucalyptus grandis stand using a soil water transfer model coupled with an ecophysiological forest model (MAESPA). The model was parameterized using an extensive data set and validated using time series of the soil water content down to a depth of 10 m and water-table level, as well as evapotranspiration measured using eddy covariance. Fast root growth after planting provided access to large quantities of water stored in deep soil layers over the first 2 years. Eucalyptus roots reached the water-table at a depth of 12 m after 2 years. Although the mean water withdrawal from depths of over 10 m amounted to only 5% of canopy transpiration from planting to a harvesting age of 5 years, the proportion of water taken up near the water-table was much higher during dry periods. The water-table rose from 18 to 12 m below-ground over 2 years after the harvest of the previous stand and then fell until harvesting age as evapotranspiration rates exceeded the annual rainfall. Deep rooting is an efficient strategy to increase the amount of water available for the trees, allowing the uptake of transient gravitational water and possibly giving access to a deep water-table. Deep soil layers have an important buffer role for large amounts of water stored during the wet season that is taken up by trees during dry periods. Our study confirms that deep rooting could be a major mechanism explaining high transpiration rates throughout the year in many tropical forests.
1. Climate models predict that the frequency, intensity and duration of drought events will increase in tropical regions. Although water withdrawal from deep soil layers is generally considered to be an efficient adaptation to drought, there is little information on the role played by deep roots in tropical forests. Tropical Eucalyptus plantations managed in short rotation cycles are simple forest ecosystems that may provide an insight into the water use by trees in tropical forests. 2. The contribution made by water withdrawn from deep soil layers to the water required for evapotranspiration was quantified daily from planting to harvesting age for a Eucalyptus grandis stand using a soil water transfer model coupled with an ecophysiological forest model (MAESPA). The model was parameterized using an extensive data set and validated using time series of the soil water content down to a depth of 10 m and water-table level, as well as evapotranspiration measured using eddy covariance. 3. Fast root growth after planting provided access to large quantities of water stored in deep soil layers over the first 2 years. Eucalyptus roots reached the water-table at a depth of 12 m after 2 years. Although the mean water withdrawal from depths of over 10 m amounted to only 5% of canopy transpiration from planting to a harvesting age of 5 years, the proportion of water taken up near the water-table was much higher during dry periods. The water-table rose from 18 to 12 m below-ground over 2 years after the harvest of the previous stand and then fell until harvesting age as evapotranspiration rates exceeded the annual rainfall. 4. Deep rooting is an efficient strategy to increase the amount of water available for the trees, allowing the uptake of transient gravitational water and possibly giving access to a deep water-table. Deep soil layers have an important buffer role for large amounts of water stored during the wet season that is taken up by trees during dry periods. Our study confirms that deep rooting could be a major mechanism explaining high transpiration rates throughout the year in many tropical forests. Lay Summary
Climate models predict that the frequency, intensity and duration of drought events will increase in tropical regions. Although water withdrawal from deep soil layers is generally considered to be an efficient adaptation to drought, there is little information on the role played by deep roots in tropical forests. Tropical Eucalyptus plantations managed in short rotation cycles are simple forest ecosystems that may provide an insight into the water use by trees in tropical forests. The contribution made by water withdrawn from deep soil layers to the water required for evapotranspiration was quantified daily from planting to harvesting age for a Eucalyptus grandis stand using a soil water transfer model coupled with an ecophysiological forest model ( MAESPA ). The model was parameterized using an extensive data set and validated using time series of the soil water content down to a depth of 10 m and water‐table level, as well as evapotranspiration measured using eddy covariance. Fast root growth after planting provided access to large quantities of water stored in deep soil layers over the first 2 years. Eucalyptus roots reached the water‐table at a depth of 12 m after 2 years. Although the mean water withdrawal from depths of over 10 m amounted to only 5% of canopy transpiration from planting to a harvesting age of 5 years, the proportion of water taken up near the water‐table was much higher during dry periods. The water‐table rose from 18 to 12 m below‐ground over 2 years after the harvest of the previous stand and then fell until harvesting age as evapotranspiration rates exceeded the annual rainfall. Deep rooting is an efficient strategy to increase the amount of water available for the trees, allowing the uptake of transient gravitational water and possibly giving access to a deep water‐table. Deep soil layers have an important buffer role for large amounts of water stored during the wet season that is taken up by trees during dry periods. Our study confirms that deep rooting could be a major mechanism explaining high transpiration rates throughout the year in many tropical forests.
Author Stape, Jose L.
Laclau, Jean-Paul
Lambais, George R.
le Maire, Guerric
Christina, Mathias
Nouvellon, Yann
Bouillet, Jean-Pierre
Author_xml – sequence: 1
  givenname: Mathias
  surname: Christina
  fullname: Christina, Mathias
– sequence: 2
  givenname: Yann
  surname: Nouvellon
  fullname: Nouvellon, Yann
– sequence: 3
  givenname: Jean-Paul
  surname: Laclau
  fullname: Laclau, Jean-Paul
– sequence: 4
  givenname: Jose L.
  surname: Stape
  fullname: Stape, Jose L.
– sequence: 5
  givenname: Jean-Pierre
  surname: Bouillet
  fullname: Bouillet, Jean-Pierre
– sequence: 6
  givenname: George R.
  surname: Lambais
  fullname: Lambais, George R.
– sequence: 7
  givenname: Guerric
  surname: le Maire
  fullname: le Maire, Guerric
BackLink https://hal.science/hal-04225125$$DView record in HAL
BookMark eNqFkc1rGzEQxUVJoE7Sc0-FhV6awyb6lpaegskXGHJJzkJZj6jc9WoraWv830cbJz7kEOsgwfB7mnnzTtBRH3pA6DvBF6ScS8KkqCln4oJQRdUXNNtXjtAMU9nUmkv2FZ2ktMIYN4LSGfp9vx5CzLZvoQquWgIM1cZmiNU4ZPsXKt9XOYbBt7arYCz3dsiVCxFSPkPHznYJvr29p-jp5vpxflcvHm7v51eLuhVlkBqWVCpLtGwtoW2ZjWPJKV02TgFI5izHXAoG8hljJzVoKpQmTj6DE2xpLTtF57t__9jODNGvbdyaYL25u1qYqYbLd4JQ8Z8U9teOHWL4N5YhzdqnFrrO9hDGZGhxzsteODuIEq2oZlJSXNCfH9BVGGNfTBvKFGcNxrL5jCruJcZKq6nt5Y5qY0gpgttbIthMSZopNzPlZl6TLArxQdH6bLMPfY7Wd4d1G9_B9lAbc3M9f9f92OlWKYe413EtNC0bYS8VOLdi
CODEN FECOE5
CitedBy_id crossref_primary_10_1111_nph_19762
crossref_primary_10_3390_land13020221
crossref_primary_10_5194_gmd_14_3269_2021
crossref_primary_10_1016_j_jhydrol_2023_129299
crossref_primary_10_1016_j_jhydrol_2020_125651
crossref_primary_10_1016_j_foreco_2017_11_022
crossref_primary_10_1007_s42729_024_01716_x
crossref_primary_10_5194_hess_26_17_2022
crossref_primary_10_1038_s41598_018_30850_7
crossref_primary_10_1007_s00468_021_02235_3
crossref_primary_10_1016_j_agrformet_2024_110089
crossref_primary_10_1016_j_foreco_2023_120940
crossref_primary_10_1016_j_foreco_2023_120941
crossref_primary_10_1016_j_jhydrol_2022_128923
crossref_primary_10_1016_j_agrformet_2018_02_005
crossref_primary_10_1016_j_scitotenv_2020_138748
crossref_primary_10_1016_j_agrformet_2022_108958
crossref_primary_10_1016_j_ejrh_2023_101446
crossref_primary_10_1016_j_foreco_2019_117493
crossref_primary_10_1016_j_scitotenv_2022_155981
crossref_primary_10_1109_JSTARS_2017_2690000
crossref_primary_10_3389_fpls_2023_1149760
crossref_primary_10_3390_w16233350
crossref_primary_10_1016_j_foreco_2021_119334
crossref_primary_10_1016_j_jhydrol_2024_131944
crossref_primary_10_1016_j_jhydrol_2023_129161
crossref_primary_10_3390_land12010185
crossref_primary_10_1002_hyp_14317
crossref_primary_10_1016_j_jhydrol_2020_124851
crossref_primary_10_17221_121_2019_JFS
crossref_primary_10_1002_ldr_3687
crossref_primary_10_1007_s11104_017_3428_1
crossref_primary_10_1016_j_foreco_2022_120656
crossref_primary_10_3390_f16030423
crossref_primary_10_1016_j_agwat_2021_107207
crossref_primary_10_1016_j_foreco_2018_03_018
crossref_primary_10_1111_1365_2435_12727
crossref_primary_10_1016_j_foreco_2019_117464
crossref_primary_10_1016_j_envexpbot_2020_104085
crossref_primary_10_1016_j_foreco_2017_12_006
crossref_primary_10_1016_j_foreco_2019_117460
crossref_primary_10_1016_j_ejrh_2023_101594
crossref_primary_10_1007_s00468_016_1483_5
crossref_primary_10_1111_gcb_15590
crossref_primary_10_1016_j_foreco_2019_05_011
crossref_primary_10_1002_pei3_10102
crossref_primary_10_1016_j_foreco_2019_05_010
crossref_primary_10_1016_j_jhydrol_2023_130260
crossref_primary_10_1007_s11104_016_3107_7
crossref_primary_10_54033_cadpedv21n1_018
crossref_primary_10_1007_s00468_017_1619_2
crossref_primary_10_1016_j_agrformet_2021_108636
crossref_primary_10_1016_j_scitotenv_2022_153820
crossref_primary_10_1007_s11104_020_04696_w
crossref_primary_10_5194_hess_29_613_2025
crossref_primary_10_1016_j_jhydrol_2022_128831
crossref_primary_10_3390_plants13111503
crossref_primary_10_1016_j_foreco_2021_119473
crossref_primary_10_1007_s11056_019_09763_4
crossref_primary_10_1038_s41467_024_44734_0
crossref_primary_10_1007_s12517_023_11322_3
crossref_primary_10_1016_j_foreco_2020_118365
crossref_primary_10_1016_j_foreco_2023_121507
crossref_primary_10_1111_ppl_13228
crossref_primary_10_1007_s11104_023_06349_0
crossref_primary_10_1016_j_foreco_2019_06_040
crossref_primary_10_1111_nph_18129
crossref_primary_10_1016_j_biombioe_2021_106264
crossref_primary_10_1016_j_foreco_2024_122050
crossref_primary_10_1007_s00572_019_00917_y
crossref_primary_10_1016_j_soilbio_2021_108282
crossref_primary_10_1016_j_jenvman_2024_122306
crossref_primary_10_1016_j_jhydrol_2023_130127
crossref_primary_10_1016_j_jsames_2021_103600
crossref_primary_10_1038_s41893_018_0099_8
crossref_primary_10_1016_j_agrformet_2020_108244
crossref_primary_10_1088_2515_7620_ab178a
crossref_primary_10_1016_j_ecolmodel_2020_108959
crossref_primary_10_1016_j_jhydrol_2022_127471
crossref_primary_10_1016_j_foreco_2020_118552
crossref_primary_10_1007_s10457_023_00936_x
crossref_primary_10_1016_j_ecolind_2020_106325
crossref_primary_10_1016_j_foreco_2020_118149
crossref_primary_10_5194_bg_20_3119_2023
crossref_primary_10_1016_j_foreco_2023_120866
crossref_primary_10_1088_1748_9326_ac1135
crossref_primary_10_3390_w16152191
crossref_primary_10_1002_eco_2055
crossref_primary_10_1016_j_foreco_2023_121555
crossref_primary_10_1016_j_foreco_2019_05_060
crossref_primary_10_1088_1748_9326_ad69aa
crossref_primary_10_1016_j_foreco_2019_117450
crossref_primary_10_1002_ldr_3921
crossref_primary_10_1029_2019JG005239
crossref_primary_10_1016_j_forpol_2021_102459
crossref_primary_10_1016_j_foreco_2020_118135
crossref_primary_10_1016_j_foreco_2021_119249
crossref_primary_10_1590_1678_992x_2021_0148
crossref_primary_10_1016_j_indcrop_2024_118157
crossref_primary_10_1515_fsmu_2017_0014
crossref_primary_10_1007_s11104_017_3460_1
crossref_primary_10_1016_j_foreco_2017_12_048
crossref_primary_10_1111_nph_17242
crossref_primary_10_3390_f12081049
crossref_primary_10_1007_s11056_020_09773_7
crossref_primary_10_5194_hess_23_125_2019
crossref_primary_10_1016_j_foreco_2019_05_053
crossref_primary_10_1016_j_foreco_2020_118290
crossref_primary_10_1088_1757_899X_1003_1_012040
crossref_primary_10_1007_s10342_020_01283_7
crossref_primary_10_1002_ldr_4602
crossref_primary_10_5194_bg_20_3093_2023
crossref_primary_10_1016_j_foreco_2020_118444
crossref_primary_10_1016_j_foreco_2020_118445
crossref_primary_10_5194_hess_27_4467_2023
crossref_primary_10_1016_j_agrformet_2022_109043
crossref_primary_10_1016_j_indcrop_2022_115538
crossref_primary_10_1029_2019MS001846
crossref_primary_10_1016_j_foreco_2019_117673
crossref_primary_10_1016_j_foreco_2021_119271
crossref_primary_10_1016_j_scitotenv_2024_174346
crossref_primary_10_3390_w13223218
crossref_primary_10_1016_j_agrformet_2018_10_004
crossref_primary_10_1016_j_biombioe_2020_105900
crossref_primary_10_1016_j_foreco_2021_119275
crossref_primary_10_1002_hyp_14539
crossref_primary_10_1016_j_scitotenv_2023_164763
crossref_primary_10_1029_2022WR034246
crossref_primary_10_1111_pce_14102
crossref_primary_10_3390_agronomy14040841
crossref_primary_10_31285_AGRO_26_508
crossref_primary_10_1093_insilicoplants_diaa003
crossref_primary_10_2139_ssrn_3987734
crossref_primary_10_1016_j_foreco_2023_121663
crossref_primary_10_1016_j_scitotenv_2022_159837
Cites_doi 10.1111/j.1744-7429.2003.tb00586.x
10.1046/j.1365-3040.2003.01035.x
10.1093/treephys/16.1-2.233
10.1007/BF00333714
10.1111/j.1365-2745.2012.01975.x
10.1175/1520-0442(2000)013<1593:VCFITC>2.0.CO;2
10.1071/BT05046
10.1111/j.1469-8137.2010.03391.x
10.1111/j.1365-2435.2007.01267.x
10.1023/A:1004773217189
10.1016/j.ejrh.2014.11.002
10.1016/j.tree.2007.10.008
10.1111/1365-2745.12211
10.1073/pnas.0804619106
10.1016/0378-1127(91)90245-Q
10.1016/j.agrformet.2014.11.020
10.1016/j.foreco.2007.06.010
10.1029/2007WR006781
10.1175/2007JCLI1304.1
10.1016/j.actao.2014.01.003
10.1016/j.foreco.2012.04.004
10.14295/ras.v28i1.27381
10.1007/s00442-013-2724-6
10.1016/j.foreco.2010.01.012
10.1111/j.1365-2486.2009.01984.x
10.1093/treephys/tpr107
10.1126/science.1146663
10.3389/fpls.2013.00243
10.1111/j.1365-2486.2007.01439.x
10.1111/j.1365-2435.2005.01003.x
10.1111/1365-2435.12727
10.1111/j.1469-8137.2008.02427.x
10.1890/ES10-00158.1
10.1016/j.foreco.2016.02.012
10.5194/hess-19-1107-2015
10.1007/s00442-015-3359-6
10.1002/2015WR017037
10.1890/06-1046.1
10.5194/hess-19-4547-2015
10.1016/j.foreco.2012.10.039
10.1038/372666a0
10.1111/gcb.12817
10.1016/j.foreco.2010.01.013
10.1126/science.aac8083
10.1046/j.1365-2745.2002.00682.x
10.1029/2012WR011972
10.1016/j.agrformet.2014.02.008
10.1038/nature11390
10.1890/0012-9658(2003)084[1115:PPAIAP]2.0.CO;2
10.1016/S0378-3774(98)00073-0
10.1007/978-1-4612-2490-7_8
10.1111/j.1365-2745.2006.01124.x
10.1007/s11104-006-9032-4
10.1093/treephys/28.11.1675
10.1139/x87-131
10.1007/s00442-010-1725-y
10.1016/j.agrformet.2015.07.006
10.1111/j.1600-0889.2007.00251.x
10.1029/2011RG000383
10.1016/0168-1923(90)90112-J
10.1111/j.1469-8137.2012.04359.x
10.1029/2000JD000266
10.1111/j.1744-7429.2007.00380.x
10.1111/j.1365-3040.1996.tb00456.x
10.1139/cjfr-2015-0173
10.1046/j.1365-2699.1999.00150.x
10.1126/science.1119282
10.1016/j.foreco.2007.06.009
10.1016/j.agee.2004.01.015
10.5194/gmd-5-919-2012
10.1111/pce.12646
10.1175/JCLI-D-13-00361.1
10.1016/j.agrformet.2014.08.019
10.1017/S0266467414000595
10.5194/hess-19-4229-2015
10.1016/S0168-1923(02)00136-3
10.1017/S0266467400001292
10.1126/science.1146961
10.1093/treephys/tps041
10.1038/nclimate2430
10.1046/j.0016-8025.2001.00799.x
10.1016/j.jhydrol.2011.12.047
10.1007/s003820050012
10.1111/j.1365-2745.2008.01466.x
10.1111/nph.12810
10.1111/j.1469-8137.2010.03309.x
10.1093/treephys/19.11.717
10.1002/hyp.6211
10.1029/2009WR008874
ContentType Journal Article
Copyright 2016 The Authors. © 2016 British Ecological Society
2016 The Authors. Functional Ecology © 2016 British Ecological Society
Functional Ecology © 2017 British Ecological Society
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 The Authors. © 2016 British Ecological Society
– notice: 2016 The Authors. Functional Ecology © 2016 British Ecological Society
– notice: Functional Ecology © 2017 British Ecological Society
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
1XC
DOI 10.1111/1365-2435.12727
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Entomology Abstracts
Ecology Abstracts
CrossRef
Entomology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 519
ExternalDocumentID oai_HAL_hal_04225125v1
4312817821
10_1111_1365_2435_12727
FEC12727
48582283
Genre article
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  funderid: ANR‐13‐AGRO‐0005
– fundername: Copener
– fundername: FAPESP
  funderid: ANR‐13‐AGRO‐0005
– fundername: Duratex
– fundername: Arcelor Mittal
– fundername: International Paper
– fundername: Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)
– fundername: Suzano and Vallourec Florestal
– fundername: Fibria
– fundername: USP‐COFECUB
GroupedDBID .3N
.GA
05W
0R~
10A
1OC
24P
29H
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAISJ
AAKGQ
AAMMB
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AHBTC
AHXOZ
AIAGR
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
ZCA
ZZTAW
~02
~IA
~KM
~WT
.Y3
31~
42X
53G
AAHHS
ABEFU
ABTAH
ACCFJ
ACCMX
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
JSODD
MVM
VOH
WRC
ZY4
AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
1XC
ID FETCH-LOGICAL-c5727-ed267a186ca12c272406422d9f7ee63fa404653e6b00f68e825781f6bef53daa3
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Fri Jun 13 07:01:54 EDT 2025
Fri Jul 11 18:27:01 EDT 2025
Fri Jul 11 10:17:56 EDT 2025
Sun Jul 13 03:37:53 EDT 2025
Fri Jul 25 08:44:44 EDT 2025
Thu Apr 24 23:04:23 EDT 2025
Tue Jul 01 01:15:45 EDT 2025
Wed Jan 22 16:21:44 EST 2025
Thu Jul 03 22:08:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5727-ed267a186ca12c272406422d9f7ee63fa404653e6b00f68e825781f6bef53daa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2506-214X
0000-0003-1920-3847
0000-0002-5227-958X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2435.12727
PQID 1866007873
PQPubID 1066355
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_04225125v1
proquest_miscellaneous_2000436543
proquest_miscellaneous_1872836620
proquest_journals_2374390069
proquest_journals_1866007873
crossref_primary_10_1111_1365_2435_12727
crossref_citationtrail_10_1111_1365_2435_12727
wiley_primary_10_1111_1365_2435_12727_FEC12727
jstor_primary_48582283
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2017
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: February 2017
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2017
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 1990; 51
2010; 16
2015; 39
2013; 4
2016a
2014; 198–199
2015; 31
1994; 372
2002; 114
2014; 27
2010; 187
2011; 57
2014; 28
2012; 489
1996; 108
2006; 20
2000; 16
2009; 97
1991; 46
1999; 19
2015; 179
2016b; 46
2000; 13
2007; 251
2008; 28
2008; 319
2002; 107
2008; 23
2006; 286
2008; 21
2002; 90
2007; 21
2016; 351
2014; 56
2014; 203
2012; 462‐463
2004; 104
2015; 5
2012; 100
2015; 19
2011; 2
2006; 94
2015; 3
1996; 19
2006; 54
2015; 51
2005; 310
2015; 201
2003; 35
2016; 366
2014; 191
2013; 301
1995
2010; 164
2003
1999; 8
1996; 16
2012; 32
1987; 17
2007; 13
2007; 59
2012; 50
2002; 25
2015; 214–215
2012; 196
2005; 19
2010; 46
2010; 259
1999; 39
2015; 21
2003; 26
2008; 44
2013; 173
2014
2012; 48
2000; 222
2008; 178
2008; 40
2007; 88
2007; 318
2012; 5
2009; 106
2014; 102
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_32_1
e_1_2_8_55_1
R Development Core Team (e_1_2_8_70_1) 2014
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
Davidson E. (e_1_2_8_25_1) 2011; 57
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_93_1
e_1_2_8_29_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_92_1
e_1_2_8_90_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
Cossalter C. (e_1_2_8_22_1) 2003
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 46
  start-page: W06202
  year: 2010
  article-title: Groundwater‐dependent vegetation: quantifying the groundwater subsidy
  publication-title: Water Resources Research
– volume: 259
  start-page: 1684
  year: 2010
  end-page: 1694
  article-title: The Brazil Potential Productivity Project: influence of water, nutrients and stand uniformity on wood production
  publication-title: Forest Ecology and Management
– volume: 372
  start-page: 666
  year: 1994
  end-page: 669
  article-title: The role of deep roots in the hydrological and carbon cycles of amazonian forests and pastures
  publication-title: Nature
– volume: 187
  start-page: 579
  year: 2010
  end-page: 591
  article-title: Effect of 7 year of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest
  publication-title: New Phytologist
– volume: 19
  start-page: 1107
  year: 2015
  end-page: 1123
  article-title: A groundwater recharge perspective on locating tree plantations within low‐rainfall catchments to limit water resource losses
  publication-title: Hydrology and Earth System Sciences
– volume: 462‐463
  start-page: 15
  year: 2012
  end-page: 27
  article-title: Distributed hydrological modeling of a micro‐scale rainforest watershed in Amazonia: model evaluation and advances in calibration using the new HAND terrain model
  publication-title: Journal of Hydrology
– volume: 16
  start-page: 101
  year: 2000
  end-page: 116
  article-title: Water relations and gas exchange of tropical saplings during a prolonged drought in a Bornean heath forest, with reference to root architecture
  publication-title: Journal of Tropical Ecology
– volume: 19
  start-page: 4229
  year: 2015
  end-page: 4256
  article-title: Groundwater‐dependent ecosystems: recent insights from satellite and field‐based studies
  publication-title: Hydrology and Earth System Sciences
– volume: 54
  start-page: 181
  year: 2006
  end-page: 192
  article-title: Impacts of tree plantations on groundwater in south‐eastern Australia
  publication-title: Australian Journal of Botany
– volume: 88
  start-page: 2259
  year: 2007
  end-page: 2269
  article-title: Mortality of large trees and lianas following experimental drought in an amazon forest
  publication-title: Ecology
– volume: 3
  start-page: 187
  year: 2015
  end-page: 198
  article-title: Stream flow unaffected by plantation harvesting implicates water use by the native forest streamside reserve
  publication-title: Journal of Hydrology: Regional Studies
– volume: 164
  start-page: 881
  year: 2010
  end-page: 890
  article-title: Water relations of evergreen and drought‐deciduous trees along a seasonally dry tropical forest chronosequence
  publication-title: Oecologia
– volume: 251
  start-page: 10
  year: 2007
  end-page: 21
  article-title: Growth and water balance of hybrid plantations in Brazil during a rotation for pulp production
  publication-title: Forest Ecology and Management
– volume: 8
  start-page: 397
  year: 1999
  end-page: 405
  article-title: Deep‐rooted vegetation, Amazonian deforestation, and climate: results from a modelling study
  publication-title: Global Ecology and Biogeography
– volume: 100
  start-page: 1113
  year: 2012
  end-page: 1121
  article-title: Biomass partitioning and root morphology of savanna trees across a water gradient
  publication-title: Journal of Ecology
– volume: 51
  start-page: 257
  year: 1990
  end-page: 280
  article-title: Description and validation of an array model – MAESTRO
  publication-title: Agricultural and Forest Meteorology
– volume: 16
  start-page: 599
  year: 2010
  end-page: 604
  article-title: Carbon sequestration in tropical forests and water: a critical look at the basis for commonly used generalizations
  publication-title: Global Change Biology
– volume: 318
  start-page: 612
  year: 2007
  article-title: Amazon forests green‐up during 2005 drought
  publication-title: Science
– volume: 310
  start-page: 1944
  year: 2005
  end-page: 1947
  article-title: Trading water for carbon with biological carbon sequestration
  publication-title: Science
– volume: 40
  start-page: 321
  year: 2008
  end-page: 331
  article-title: Seedling traits determine drought dolerance of dropical dree species
  publication-title: Biotropica
– volume: 35
  start-page: 318
  year: 2003
  end-page: 332
  article-title: Root/shoot allocation and root architecture in seedlings: variation among forest sites, microhabitats, and ecological groups1
  publication-title: Biotropica
– volume: 214–215
  start-page: 12
  year: 2015
  end-page: 24
  article-title: Future deforestation in the Amazon and consequences for South American climate
  publication-title: Agricultural and Forest Meteorology
– volume: 198–199
  start-page: 309
  year: 2014
  end-page: 319
  article-title: Reconciling simulations of seasonal carbon flux and soil water with observations using tap roots and hydraulic redistribution: a multi‐biome FLUXNET study
  publication-title: Agricultural and Forest Meteorology
– volume: 50
  start-page: RG3003
  year: 2012
  article-title: Monitoring and modeling water‐vegetation interactions in groundwater‐dependent ecosystems
  publication-title: Reviews of Geophysics
– volume: 57
  start-page: 51
  year: 2011
  end-page: 58
  article-title: Carbon inputs and water uptake in deep soils of an eastern amazon forest
  publication-title: Forest Science
– volume: 25
  start-page: 251
  year: 2002
  end-page: 263
  article-title: Water deficits and hydraulic limits to leaf water supply
  publication-title: Plant, Cell and Environment
– volume: 44
  start-page: W00A08
  year: 2008
  article-title: Longer‐term effects of pine and eucalypt plantations on streamflow
  publication-title: Water Resources Research
– volume: 102
  start-page: 275
  year: 2014
  end-page: 301
  article-title: The world‐wide “fast–slow” plant economics spectrum: a traits manifesto
  publication-title: Journal of Ecology
– volume: 32
  start-page: 667
  year: 2012
  end-page: 679
  article-title: Do changes in carbon allocation account for the growth response to potassium and sodium applications in tropical plantations?
  publication-title: Tree Physiology
– year: 2014
– volume: 19
  start-page: 574
  year: 2005
  end-page: 581
  article-title: Deep root function in soil water dynamics in cerrado savannas of central Brazil
  publication-title: Functional Ecology
– year: 2016a
– volume: 56
  start-page: 10
  year: 2014
  end-page: 18
  article-title: Functional traits predict drought performance and distribution of Mediterranean woody species
  publication-title: Acta Oecologica
– volume: 178
  start-page: 223
  year: 2008
  end-page: 225
  article-title: Soil depth, plant rooting strategies and species’ niches
  publication-title: New Phytologist
– volume: 5
  start-page: 27
  year: 2015
  end-page: 36
  article-title: Effects of tropical deforestation on climate and agriculture
  publication-title: Nature Climate Change
– volume: 106
  start-page: 20610
  year: 2009
  end-page: 20615
  article-title: Exploring the likelihood and mechanism of a climate‐change‐induced dieback of the Amazon rainforest
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 351
  start-page: 600
  year: 2016
  end-page: 604
  article-title: Biophysical climate impacts of recent changes in global forest cover
  publication-title: Science
– volume: 173
  start-page: 1191
  year: 2013
  end-page: 1201
  article-title: Depth of soil water uptake by tropical rainforest trees during dry periods: does tree dimension matter?
  publication-title: Oecologia
– volume: 23
  start-page: 95
  year: 2008
  end-page: 103
  article-title: Plant nutrient‐acquisition strategies change with soil age
  publication-title: Trends in Ecology & Evolution
– volume: 251
  start-page: 1
  year: 2007
  end-page: 9
  article-title: Planted forests and water in perspective
  publication-title: Forest Ecology and Management
– volume: 28
  start-page: 1
  year: 2014
  end-page: 13
  article-title: Relação entre a resposta espectral da vegetação em diferentes cultivos e níveis freáticos em área de recarga do Sistema Aquifero Guarani
  publication-title: Águas Subterrâneas
– start-page: 177
  year: 1995
  end-page: 210
– volume: 48
  start-page: W12507
  year: 2012
  article-title: Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest
  publication-title: Water Resources Research
– volume: 107
  start-page: 8037
  year: 2002
  article-title: Impact of land use/land cover change on regional hydrometeorology in Amazonia
  publication-title: Journal of Geophysical Research
– volume: 104
  start-page: 185
  year: 2004
  end-page: 228
  article-title: Hydrological functions of tropical forests: not seeing the soil for the trees?
  publication-title: Agriculture, Ecosystems & Environment
– volume: 114
  start-page: 45
  year: 2002
  end-page: 57
  article-title: Measurement and modeling of the transpiration of a temperate red maple container nursery
  publication-title: Agricultural and Forest Meteorology
– volume: 59
  start-page: 587
  year: 2007
  end-page: 601
  article-title: An overview of regional land‐use and land‐cover impacts on rainfall
  publication-title: Tellus B
– volume: 16
  start-page: 183
  year: 2000
  end-page: 199
  article-title: Assessing the role of deep rooted vegetation in the climate system with model simulations: mechanism, comparison to observations and implications for Amazonian deforestation
  publication-title: Climate Dynamics
– volume: 108
  start-page: 389
  year: 1996
  end-page: 411
  article-title: A global analysis of root distributions for terrestrial biomes
  publication-title: Oecologia
– volume: 191
  start-page: 33
  year: 2014
  end-page: 50
  article-title: Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado
  publication-title: Agricultural and Forest Meteorology
– volume: 2
  start-page: 1
  year: 2011
  end-page: 10
  article-title: Almost symmetrical vertical growth rates above and below ground in one of the world's most productive forests
  publication-title: Ecosphere
– volume: 222
  start-page: 95
  year: 2000
  end-page: 107
  article-title: Vertical patterns of soil water uptake by plants in a primary forest and an abandoned pasture in the eastern Amazon: an isotopic approach
  publication-title: Plant and Soil
– volume: 46
  start-page: 59
  year: 1991
  end-page: 102
  article-title: On the maximum extent of tree roots
  publication-title: Forest Ecology and Management
– volume: 46
  start-page: 297
  year: 2016b
  end-page: 309
  article-title: Sensitivity and uncertainty analysis of the carbon and water fluxes at the tree scale in plantations using a metamodeling approach
  publication-title: Canadian Journal of Forest Research
– volume: 286
  start-page: 141
  year: 2006
  end-page: 151
  article-title: Soil water depletion by spp. integrated into dryland agricultural systems
  publication-title: Plant and Soil
– volume: 19
  start-page: 911
  year: 1996
  end-page: 927
  article-title: Modelling the soil‐plant‐atmosphere continuum in a stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties
  publication-title: Plant, Cell & Environment
– year: 2003
– volume: 259
  start-page: 1695
  year: 2010
  end-page: 1703
  article-title: Factors controlling productivity: how water availability and stand structure alter production and carbon allocation
  publication-title: Forest Ecology and Management
– volume: 13
  start-page: 1593
  year: 2000
  end-page: 1602
  article-title: Vegetation‐climate feedbacks in the conversion of tropical savanna to grassland
  publication-title: Journal of Climate
– volume: 39
  start-page: 91
  year: 1999
  end-page: 113
  article-title: Interactions between trees and groundwaters in recharge and discharge areas – A survey of Western Australian sites
  publication-title: Agricultural Water Management
– volume: 301
  start-page: 112
  year: 2013
  end-page: 128
  article-title: Modifying the G'DAY process‐based model to simulate the spatial variability of plantation growth on deep tropical soils
  publication-title: Forest Ecology and Management
– volume: 13
  start-page: 2509
  year: 2007
  end-page: 2537
  article-title: CO balance of boreal, temperate, and tropical forests derived from a global database
  publication-title: Global Change Biology
– volume: 196
  start-page: 1001
  year: 2012
  end-page: 1014
  article-title: Giant eucalypts – globally unique fire‐adapted rain‐forest trees?
  publication-title: New Phytologist
– volume: 31
  start-page: 13
  year: 2015
  end-page: 23
  article-title: Tree roots can penetrate deeply in African semi‐deciduous rain forests: evidence from two common soil types
  publication-title: Journal of Tropical Ecology
– volume: 28
  start-page: 1675
  year: 2008
  end-page: 1683
  article-title: Measuring and modeling the variation in species‐specific transpiration in temperate deciduous hardwoods
  publication-title: Tree Physiology
– volume: 94
  start-page: 725
  year: 2006
  end-page: 739
  article-title: Root competition: beyond resource depletion
  publication-title: Journal of Ecology
– volume: 108
  start-page: 583
  year: 1996
  end-page: 595
  article-title: Maximum rooting depth of vegetation types at the global scale
  publication-title: Oecologia
– volume: 32
  start-page: 680
  year: 2012
  end-page: 695
  article-title: Production and carbon allocation in monocultures and mixed‐species plantations of and in Brazil
  publication-title: Tree Physiology
– volume: 51
  start-page: 3052
  year: 2015
  end-page: 3069
  article-title: Groundwater in the Earth's critical zone: relevance to large‐scale patterns and processes
  publication-title: Water Resources Research
– volume: 19
  start-page: 717
  year: 1999
  end-page: 724
  article-title: Partitioning of soil water among tree species in a Brazilian Cerrado ecosystem
  publication-title: Tree Physiology
– volume: 201
  start-page: 218
  year: 2015
  end-page: 228
  article-title: Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region
  publication-title: Agricultural and Forest Meteorology
– volume: 21
  start-page: 1153
  year: 2008
  end-page: 1170
  article-title: Regional impacts of future land‐cover changes on the Amazon basin wet‐season climate
  publication-title: Journal of Climate
– volume: 203
  start-page: 401
  year: 2014
  end-page: 413
  article-title: Effects of potassium and sodium supply on drought‐adaptive mechanisms in plantations
  publication-title: New Phytologist
– volume: 301
  start-page: 28
  year: 2013
  end-page: 34
  article-title: Eucalypt plantations and climate change
  publication-title: Forest Ecology and Management
– volume: 21
  start-page: 489
  year: 2007
  end-page: 495
  article-title: Rooting depth and soil moisture control Mediterranean woody seedling survival during drought
  publication-title: Functional Ecology
– volume: 489
  start-page: 282
  year: 2012
  end-page: 285
  article-title: Observations of increased tropical rainfall preceded by air passage over forests
  publication-title: Nature
– volume: 27
  start-page: 2714
  year: 2014
  end-page: 2734
  article-title: The regional climate impact of a realistic future deforestation scenario in the Congo Basin
  publication-title: Journal of Climate
– volume: 17
  start-page: 829
  year: 1987
  end-page: 834
  article-title: Vertical root distributions of northern tree species in relation to successional status
  publication-title: Canadian Journal of Forest Research
– volume: 16
  start-page: 233
  year: 1996
  end-page: 238
  article-title: Response of trees to soil water deficits
  publication-title: Tree Physiology
– volume: 319
  start-page: 169
  year: 2008
  end-page: 172
  article-title: Climate change, deforestation, and the fate of the Amazon
  publication-title: Science
– volume: 366
  start-page: 143
  year: 2016
  end-page: 152
  article-title: A fast exploration of very deep soil layers by seedlings and clones in Brazil
  publication-title: Forest Ecology and Management
– volume: 19
  start-page: 4547
  year: 2015
  end-page: 4557
  article-title: Climate response to Amazon forest replacement by heterogeneous crop cover
  publication-title: Hydrology and Earth System Sciences
– volume: 21
  start-page: 2022
  year: 2015
  end-page: 2039
  article-title: Measured and modeled interactive effects of potassium deficiency and water deficit on gross primary productivity and light use efficiency in plantations
  publication-title: Global Change Biology
– volume: 5
  start-page: 919
  year: 2012
  end-page: 940
  article-title: MAESPA: a model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to [CO ] × drought interactions
  publication-title: Geoscientific Model Development
– volume: 179
  start-page: 551
  year: 2015
  end-page: 561
  article-title: Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest
  publication-title: Oecologia
– volume: 26
  start-page: 1097
  year: 2003
  end-page: 1116
  article-title: A coupled model of stomatal conductance, photosynthesis and transpiration
  publication-title: Plant, Cell & Environment
– volume: 39
  start-page: 618
  year: 2015
  end-page: 627
  article-title: Rooting depth, water relations and non‐structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought
  publication-title: Plant, Cell & Environment
– volume: 20
  start-page: 2477
  year: 2006
  end-page: 2489
  article-title: Soil moisture dynamics in an eastern Amazonian tropical forest
  publication-title: Hydrological Processes
– volume: 4
  start-page: 1
  year: 2013
  end-page: 12
  article-title: Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in plantations
  publication-title: Frontiers in Plant Science
– volume: 187
  start-page: 592
  year: 2010
  end-page: 607
  article-title: Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake
  publication-title: New Phytologist
– volume: 97
  start-page: 311
  year: 2009
  end-page: 325
  article-title: Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought‐ and shade‐tolerance
  publication-title: Journal of Ecology
– volume: 90
  start-page: 480
  year: 2002
  end-page: 494
  article-title: Rooting depths, lateral root spreads and below‐ground/above‐ground allometries of plants in water‐limited ecosystems
  publication-title: Journal of Ecology
– ident: e_1_2_8_65_1
  doi: 10.1111/j.1744-7429.2003.tb00586.x
– ident: e_1_2_8_90_1
  doi: 10.1046/j.1365-3040.2003.01035.x
– ident: e_1_2_8_29_1
  doi: 10.1093/treephys/16.1-2.233
– ident: e_1_2_8_39_1
  doi: 10.1007/BF00333714
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2014
  ident: e_1_2_8_70_1
– ident: e_1_2_8_89_1
  doi: 10.1111/j.1365-2745.2012.01975.x
– ident: e_1_2_8_37_1
  doi: 10.1175/1520-0442(2000)013<1593:VCFITC>2.0.CO;2
– ident: e_1_2_8_9_1
  doi: 10.1071/BT05046
– ident: e_1_2_8_55_1
  doi: 10.1111/j.1469-8137.2010.03391.x
– ident: e_1_2_8_64_1
  doi: 10.1111/j.1365-2435.2007.01267.x
– ident: e_1_2_8_57_1
  doi: 10.1023/A:1004773217189
– ident: e_1_2_8_81_1
  doi: 10.1016/j.ejrh.2014.11.002
– ident: e_1_2_8_45_1
  doi: 10.1016/j.tree.2007.10.008
– ident: e_1_2_8_72_1
  doi: 10.1111/1365-2745.12211
– ident: e_1_2_8_51_1
  doi: 10.1073/pnas.0804619106
– ident: e_1_2_8_86_1
  doi: 10.1016/0378-1127(91)90245-Q
– ident: e_1_2_8_93_1
  doi: 10.1016/j.agrformet.2014.11.020
– ident: e_1_2_8_27_1
  doi: 10.1016/j.foreco.2007.06.010
– ident: e_1_2_8_80_1
  doi: 10.1029/2007WR006781
– ident: e_1_2_8_71_1
  doi: 10.1175/2007JCLI1304.1
– ident: e_1_2_8_47_1
  doi: 10.1016/j.actao.2014.01.003
– ident: e_1_2_8_10_1
  doi: 10.1016/j.foreco.2012.04.004
– ident: e_1_2_8_53_1
  doi: 10.14295/ras.v28i1.27381
– ident: e_1_2_8_84_1
  doi: 10.1007/s00442-013-2724-6
– ident: e_1_2_8_85_1
  doi: 10.1016/j.foreco.2010.01.012
– ident: e_1_2_8_52_1
  doi: 10.1111/j.1365-2486.2009.01984.x
– ident: e_1_2_8_31_1
  doi: 10.1093/treephys/tpr107
– ident: e_1_2_8_76_1
  doi: 10.1126/science.1146663
– ident: e_1_2_8_44_1
  doi: 10.3389/fpls.2013.00243
– ident: e_1_2_8_49_1
  doi: 10.1111/j.1365-2486.2007.01439.x
– volume: 57
  start-page: 51
  year: 2011
  ident: e_1_2_8_25_1
  article-title: Carbon inputs and water uptake in deep soils of an eastern amazon forest
  publication-title: Forest Science
– ident: e_1_2_8_62_1
  doi: 10.1111/j.1365-2435.2005.01003.x
– ident: e_1_2_8_19_1
  doi: 10.1111/1365-2435.12727
– ident: e_1_2_8_78_1
  doi: 10.1111/j.1469-8137.2008.02427.x
– ident: e_1_2_8_17_1
  doi: 10.1890/ES10-00158.1
– ident: e_1_2_8_68_1
  doi: 10.1016/j.foreco.2016.02.012
– ident: e_1_2_8_26_1
  doi: 10.5194/hess-19-1107-2015
– ident: e_1_2_8_66_1
  doi: 10.1007/s00442-015-3359-6
– ident: e_1_2_8_32_1
  doi: 10.1002/2015WR017037
– ident: e_1_2_8_60_1
  doi: 10.1890/06-1046.1
– ident: e_1_2_8_6_1
  doi: 10.5194/hess-19-4547-2015
– ident: e_1_2_8_56_1
  doi: 10.1016/j.foreco.2012.10.039
– ident: e_1_2_8_59_1
  doi: 10.1038/372666a0
– ident: e_1_2_8_18_1
  doi: 10.1111/gcb.12817
– ident: e_1_2_8_75_1
  doi: 10.1016/j.foreco.2010.01.013
– ident: e_1_2_8_3_1
  doi: 10.1126/science.aac8083
– ident: e_1_2_8_79_1
  doi: 10.1046/j.1365-2745.2002.00682.x
– ident: e_1_2_8_38_1
  doi: 10.1029/2012WR011972
– ident: e_1_2_8_21_1
  doi: 10.1016/j.agrformet.2014.02.008
– ident: e_1_2_8_83_1
  doi: 10.1038/nature11390
– ident: e_1_2_8_15_1
  doi: 10.1890/0012-9658(2003)084[1115:PPAIAP]2.0.CO;2
– ident: e_1_2_8_35_1
  doi: 10.1016/S0378-3774(98)00073-0
– ident: e_1_2_8_14_1
  doi: 10.1007/978-1-4612-2490-7_8
– ident: e_1_2_8_77_1
  doi: 10.1111/j.1365-2745.2006.01124.x
– ident: e_1_2_8_73_1
  doi: 10.1007/s11104-006-9032-4
– ident: e_1_2_8_11_1
  doi: 10.1093/treephys/28.11.1675
– ident: e_1_2_8_34_1
  doi: 10.1139/x87-131
– ident: e_1_2_8_36_1
  doi: 10.1007/s00442-010-1725-y
– ident: e_1_2_8_87_1
  doi: 10.1016/j.agrformet.2015.07.006
– ident: e_1_2_8_67_1
  doi: 10.1111/j.1600-0889.2007.00251.x
– ident: e_1_2_8_63_1
  doi: 10.1029/2011RG000383
– ident: e_1_2_8_91_1
  doi: 10.1016/0168-1923(90)90112-J
– ident: e_1_2_8_88_1
  doi: 10.1111/j.1469-8137.2012.04359.x
– volume-title: Fast‐Wood Forestry: Myths and Realities
  year: 2003
  ident: e_1_2_8_22_1
– ident: e_1_2_8_74_1
  doi: 10.1029/2000JD000266
– ident: e_1_2_8_69_1
  doi: 10.1111/j.1744-7429.2007.00380.x
– ident: e_1_2_8_92_1
  doi: 10.1111/j.1365-3040.1996.tb00456.x
– ident: e_1_2_8_20_1
  doi: 10.1139/cjfr-2015-0173
– ident: e_1_2_8_42_1
  doi: 10.1046/j.1365-2699.1999.00150.x
– ident: e_1_2_8_41_1
  doi: 10.1126/science.1119282
– ident: e_1_2_8_4_1
  doi: 10.1016/j.foreco.2007.06.009
– ident: e_1_2_8_12_1
  doi: 10.1016/j.agee.2004.01.015
– ident: e_1_2_8_28_1
  doi: 10.5194/gmd-5-919-2012
– ident: e_1_2_8_58_1
  doi: 10.1111/pce.12646
– ident: e_1_2_8_2_1
  doi: 10.1175/JCLI-D-13-00361.1
– ident: e_1_2_8_5_1
  doi: 10.1016/j.agrformet.2014.08.019
– ident: e_1_2_8_33_1
  doi: 10.1017/S0266467414000595
– ident: e_1_2_8_30_1
  doi: 10.5194/hess-19-4229-2015
– ident: e_1_2_8_8_1
  doi: 10.1016/S0168-1923(02)00136-3
– ident: e_1_2_8_16_1
  doi: 10.1017/S0266467400001292
– ident: e_1_2_8_50_1
  doi: 10.1126/science.1146961
– ident: e_1_2_8_61_1
  doi: 10.1093/treephys/tps041
– ident: e_1_2_8_46_1
  doi: 10.1038/nclimate2430
– ident: e_1_2_8_82_1
  doi: 10.1046/j.0016-8025.2001.00799.x
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jhydrol.2011.12.047
– ident: e_1_2_8_43_1
  doi: 10.1007/s003820050012
– ident: e_1_2_8_54_1
  doi: 10.1111/j.1365-2745.2008.01466.x
– ident: e_1_2_8_7_1
  doi: 10.1111/nph.12810
– ident: e_1_2_8_23_1
  doi: 10.1111/j.1469-8137.2010.03309.x
– ident: e_1_2_8_40_1
  doi: 10.1093/treephys/19.11.717
– ident: e_1_2_8_13_1
  doi: 10.1002/hyp.6211
– ident: e_1_2_8_48_1
  doi: 10.1029/2009WR008874
SSID ssj0009522
Score 2.5522242
Snippet Summary Climate models predict that the frequency, intensity and duration of drought events will increase in tropical regions. Although water withdrawal from...
Climate models predict that the frequency, intensity and duration of drought events will increase in tropical regions. Although water withdrawal from deep soil...
Summary Climate models predict that the frequency, intensity and duration of drought events will increase in tropical regions. Although water withdrawal from...
1. Climate models predict that the frequency, intensity and duration of drought events will increase in tropical regions. Although water withdrawal from deep...
SourceID hal
proquest
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 509
SubjectTerms Age
Agricultural sciences
Annual rainfall
canopy
Climate models
Climate prediction
Covariance
data collection
deep rooting
Deep water
Drought
Earth Sciences
ecophysiology
ecosystem services
Ecosystems ecology
eddy covariance
Eucalyptus
Eucalyptus grandis
Evapotranspiration
Forest ecosystems
Forest management
Forests
Gravity
groundwater
Harvesting
Hydrology
Life Sciences
Moisture content
plantations
Planting
process‐based model
rain
Rainfall
Rainy season
root growth
Rooting
Roots
Sciences of the Universe
Silviculture, forestry
Soil layers
Soil water
soil water content
Soil water storage
Soils
Terrestrial ecosystems
time series analysis
Transpiration
Trees
Tropical environment
Tropical environments
tropical forest
Tropical forests
tropics
Water content
Water depth
Water table
Water transfer
Water uptake
Water use
wet season
Title Importance of deep water uptake in tropical eucalypt forest
URI https://www.jstor.org/stable/48582283
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12727
https://www.proquest.com/docview/1866007873
https://www.proquest.com/docview/2374390069
https://www.proquest.com/docview/1872836620
https://www.proquest.com/docview/2000436543
https://hal.science/hal-04225125
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKpUpcoFBWBFpkEAcuWSWO7STiVFW7Wqq2B0Sl3iLHGQtUyEa7WVD59cw4D7YVFULcnNiO_JjH53j8mbG3aYkTazMTyrTMQlmVUWiUQ1l2kQEZV0oBHU4-v9CLS3l6pYZoQjoL0_FDjD_cSDO8vSYFN-V6S8m7-Cz09tNYoBNGK0xvCBZ9FFu0u90-gtB5iJ426cl9KJbnTv1bfunBZ4qK7AIUb0HPbQDrPdD8MSuHtneBJ9fTTVtO7c87tI7_1bl99qjHp_y4E6gnbAfqp2yvu7HyBlMz26cms99H5LBCbyPWB-z9h28e0-MTXzpeATT8ByLaFd80rbkG_qXm7WrZkHRwICLcm6bliJ2x68_Y5Xz26WQR9lc0hFZhu0KohE5NnGlrYmGxqZIWNKLKXQqgE2dkRARuoFG7nc4gIwsRO12CU0llTDJhu_WyhueMq0pZEYFJ8iiTCaR55HKjccUV2whRlAzYdJigwvb85XSNxtdiWMfQoBU0aIUftIC9Gys0HXXH_UXf4IyPpYhye3F8VtA74khDUKS-xwGbeIEYi8lMZcQeFLDDQUKK3gKsCyISJPyV_jlbJLQSJJ7ogL0es1G1ab_G1LDc0CdS_LrWIrq_jPB7uXRAGMfHS9Tf-lrMZyc-8eJfK7xkDwWBGh-zfsh229UGjhCSteUrr3W_AIWpJEM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIkQvvFcNFDCIA5esEsd2EnGqyq62sO0BtVJvluM4AhWy0TYLKr-eGScbthUVQtycxLb8mPF8jsffALxJC5xYm5lQpEUWirKIQiMrlOUqMk7EpZSOLicfHavZqfhwJs827sJ0_BDDDzfSDL9ek4LTD-kNLe8ctNDcj2OOVngLblNcb4pi8P4T3yDe7U4SuMpDtLVJT-9D3jzXKrhimbY-k19k56J4BXxuQlhvg6b3wa5b37menI9XbTG2P68RO_5f9x7AvR6isv1Oph7CLVc_gjtd0MpLTE1snxpNft-SwwL9MnHxGN4dfvOwHp_YomKlcw37gaB2yVZNa84d-1KzdrloSECYIy7cy6ZlCJ-x70_gdDo5OZiFfZSG0EpsV-hKrlITZ8qamFtsqqA9DS_zKnVOJZUREXG4OYUKXqnMZbRIxJUqXCWT0phkBNv1ona7wGQpLY-cSfIoE4lL86jKjcJNV2wjBFIigPF6hrTtKcwpksZXvd7K0KBpGjTtBy2At0OBpmPvuDnra5zyIRexbs_255reEU0aCpb8Hgcw8hIxZBOZzIhAKIC9tYjofhG40MQlSBAs_fNnntBmkKiiA3g1fEbtpiMbU7vFiqpIsXaleHRzHu6Pc-mOMI6PF6m_9VVPJwc-8fRfC7yEu7OTo7meHx5_fAY7nDCOd2Hfg-12uXLPEaG1xQuvgr8A1mUoXQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIlAvvFcNFDCIA5esEsd2EnGqyq62UCqEqMTNchJboEI22mZB5dcz4zzYVlQIcXMS27I9M57P8fgzwIu0QMGWmQlFWmShqIooNNKhLrvIWBFXUlo6nPzuWC1OxJtPcogmpLMwHT_E-MONLMPP12TgTeU2jLyLz0JvP405OuEtuC4Umgzhog98g3e320jgKg_R1SY9uw8F81yq4IJj2vpMYZFdhOIF7LmJYL0Lmt-GYmh8F3lyOl23xbT8eYnX8b96dwdu9QCV7XcadReu2foe3OiurDzH1KzsU5PZ7zNyWKCfJM7uw6vDbx7U4xNbOlZZ27AfCGlXbN205tSyLzVrV8uG1INZYsI9b1qG4Bm7_gBO5rOPB4uwv6MhLCW2K7QVV6mJM1WamJfYVEErGl7lLrVWJc6IiBjcrELzdiqzGU0RsVOFdTKpjEkmsF0va7sLTFay5JE1SR5lIrFpHrncoEhVXEYIo0QA00FAuuwJzOkeja96WMjQoGkaNO0HLYCXY4Gm4-64OutzlPiYizi3F_tHmt4RSRqiIvk9DmDiFWLMJjKZEX1QAHuDhuh-CjjTxCRIACz982ee0FKQiKIDeDZ-RtumDRtT2-WaqkixdqV4dHUe7jdz6YQwjo_XqL_1Vc9nBz7x8F8LPIWb71_P9dHh8dtHsMMJ4Pj49T3Ybldr-xjhWVs88Qb4Cz4GJxU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Importance+of+deep+water+uptake+in+tropical+eucalypt+forest&rft.jtitle=Functional+ecology&rft.au=Christina%2C+Mathias&rft.au=Nouvellon%2C+Yann&rft.au=Laclau%2C+Jean%E2%80%90Paul&rft.au=Stape%2C+Jose+L&rft.date=2017-02-01&rft.issn=0269-8463&rft.volume=31&rft.issue=2+p.509-519&rft.spage=509&rft.epage=519&rft_id=info:doi/10.1111%2F1365-2435.12727&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon