Micro–Nano Hierarchical Structure Enhanced Strong Wet Friction Surface Inspired by Tree Frogs

Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad, is highly essential for biomedical engineering, wearable flexible electronics, etc. Although various pillar surfaces are proposed to enhance wet a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 7; no. 20; pp. 2001125 - n/a
Main Authors Zhang, Liwen, Chen, Huawei, Guo, Yurun, Wang, Yan, Jiang, Yonggang, Zhang, Deyuan, Ma, Liran, Luo, Jianbin, Jiang, Lei
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.10.2020
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad, is highly essential for biomedical engineering, wearable flexible electronics, etc. Although various pillar surfaces are proposed to enhance wet adhesion or friction, their mechanisms remain on micropillar arrays to extrude interfacial liquid via an external force. Here, two‐level micropillar arrays with nanocavities on top are discovered on the toe pads of a tree frog, and they exhibit strong boundary friction ≈20 times higher than dry and wet friction without the need of a special external or preloaded normal force. Microscale in situ observations show that the specific micro–nano hierarchical pillars in turn trigger three‐level liquid adjusting phenomena, including two‐level liquid self‐splitting and liquid self‐sucking effects. Under these effects, uniform nanometer‐thick liquid bridges form spontaneously on all pillars to generate strong boundary friction, which can be ≈2 times higher than for single‐level pillar surfaces and ≈3.5 times higher than for smooth surfaces. Finally, theoretical models of boundary friction in terms of self‐splitting and self‐sucking are built to reveal the importance of liquid behavior induced by micro–nano hierarchical structure. A strong wet attachment bioinspired surface with hierarchical pillars and nanocavities is introduced based on the unique interfacial liquid adjusting effects on the tree frog toe pad, where robust interfacial capillarity from nanometer‐thick liquid film generates a boundary friction ≈20 times its wet and dry friction. Such bioinspired surfaces demonstrate potential applications in fields including medical devices and wearable sensors.
AbstractList Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad, is highly essential for biomedical engineering, wearable flexible electronics, etc. Although various pillar surfaces are proposed to enhance wet adhesion or friction, their mechanisms remain on micropillar arrays to extrude interfacial liquid via an external force. Here, two‐level micropillar arrays with nanocavities on top are discovered on the toe pads of a tree frog, and they exhibit strong boundary friction ≈20 times higher than dry and wet friction without the need of a special external or preloaded normal force. Microscale in situ observations show that the specific micro–nano hierarchical pillars in turn trigger three‐level liquid adjusting phenomena, including two‐level liquid self‐splitting and liquid self‐sucking effects. Under these effects, uniform nanometer‐thick liquid bridges form spontaneously on all pillars to generate strong boundary friction, which can be ≈2 times higher than for single‐level pillar surfaces and ≈3.5 times higher than for smooth surfaces. Finally, theoretical models of boundary friction in terms of self‐splitting and self‐sucking are built to reveal the importance of liquid behavior induced by micro–nano hierarchical structure.
Abstract Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad, is highly essential for biomedical engineering, wearable flexible electronics, etc. Although various pillar surfaces are proposed to enhance wet adhesion or friction, their mechanisms remain on micropillar arrays to extrude interfacial liquid via an external force. Here, two‐level micropillar arrays with nanocavities on top are discovered on the toe pads of a tree frog, and they exhibit strong boundary friction ≈20 times higher than dry and wet friction without the need of a special external or preloaded normal force. Microscale in situ observations show that the specific micro–nano hierarchical pillars in turn trigger three‐level liquid adjusting phenomena, including two‐level liquid self‐splitting and liquid self‐sucking effects. Under these effects, uniform nanometer‐thick liquid bridges form spontaneously on all pillars to generate strong boundary friction, which can be ≈2 times higher than for single‐level pillar surfaces and ≈3.5 times higher than for smooth surfaces. Finally, theoretical models of boundary friction in terms of self‐splitting and self‐sucking are built to reveal the importance of liquid behavior induced by micro–nano hierarchical structure.
Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad, is highly essential for biomedical engineering, wearable flexible electronics, etc. Although various pillar surfaces are proposed to enhance wet adhesion or friction, their mechanisms remain on micropillar arrays to extrude interfacial liquid via an external force. Here, two-level micropillar arrays with nanocavities on top are discovered on the toe pads of a tree frog, and they exhibit strong boundary friction ≈20 times higher than dry and wet friction without the need of a special external or preloaded normal force. Microscale in situ observations show that the specific micro-nano hierarchical pillars in turn trigger three-level liquid adjusting phenomena, including two-level liquid self-splitting and liquid self-sucking effects. Under these effects, uniform nanometer-thick liquid bridges form spontaneously on all pillars to generate strong boundary friction, which can be ≈2 times higher than for single-level pillar surfaces and ≈3.5 times higher than for smooth surfaces. Finally, theoretical models of boundary friction in terms of self-splitting and self-sucking are built to reveal the importance of liquid behavior induced by micro-nano hierarchical structure.Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad, is highly essential for biomedical engineering, wearable flexible electronics, etc. Although various pillar surfaces are proposed to enhance wet adhesion or friction, their mechanisms remain on micropillar arrays to extrude interfacial liquid via an external force. Here, two-level micropillar arrays with nanocavities on top are discovered on the toe pads of a tree frog, and they exhibit strong boundary friction ≈20 times higher than dry and wet friction without the need of a special external or preloaded normal force. Microscale in situ observations show that the specific micro-nano hierarchical pillars in turn trigger three-level liquid adjusting phenomena, including two-level liquid self-splitting and liquid self-sucking effects. Under these effects, uniform nanometer-thick liquid bridges form spontaneously on all pillars to generate strong boundary friction, which can be ≈2 times higher than for single-level pillar surfaces and ≈3.5 times higher than for smooth surfaces. Finally, theoretical models of boundary friction in terms of self-splitting and self-sucking are built to reveal the importance of liquid behavior induced by micro-nano hierarchical structure.
Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad, is highly essential for biomedical engineering, wearable flexible electronics, etc. Although various pillar surfaces are proposed to enhance wet adhesion or friction, their mechanisms remain on micropillar arrays to extrude interfacial liquid via an external force. Here, two‐level micropillar arrays with nanocavities on top are discovered on the toe pads of a tree frog, and they exhibit strong boundary friction ≈20 times higher than dry and wet friction without the need of a special external or preloaded normal force. Microscale in situ observations show that the specific micro–nano hierarchical pillars in turn trigger three‐level liquid adjusting phenomena, including two‐level liquid self‐splitting and liquid self‐sucking effects. Under these effects, uniform nanometer‐thick liquid bridges form spontaneously on all pillars to generate strong boundary friction, which can be ≈2 times higher than for single‐level pillar surfaces and ≈3.5 times higher than for smooth surfaces. Finally, theoretical models of boundary friction in terms of self‐splitting and self‐sucking are built to reveal the importance of liquid behavior induced by micro–nano hierarchical structure. A strong wet attachment bioinspired surface with hierarchical pillars and nanocavities is introduced based on the unique interfacial liquid adjusting effects on the tree frog toe pad, where robust interfacial capillarity from nanometer‐thick liquid film generates a boundary friction ≈20 times its wet and dry friction. Such bioinspired surfaces demonstrate potential applications in fields including medical devices and wearable sensors.
Author Luo, Jianbin
Chen, Huawei
Guo, Yurun
Jiang, Lei
Zhang, Liwen
Jiang, Yonggang
Zhang, Deyuan
Wang, Yan
Ma, Liran
AuthorAffiliation 4 Laboratory of Bioinspired Smart Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
1 School of Mechanical Engineering and Automation Beihang University Beijing 100191 China
2 Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 China
3 State Key Laboratory of Tribology Tsinghua University Beijing 100091 China
AuthorAffiliation_xml – name: 1 School of Mechanical Engineering and Automation Beihang University Beijing 100191 China
– name: 2 Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 China
– name: 3 State Key Laboratory of Tribology Tsinghua University Beijing 100091 China
– name: 4 Laboratory of Bioinspired Smart Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
Author_xml – sequence: 1
  givenname: Liwen
  orcidid: 0000-0003-3250-9867
  surname: Zhang
  fullname: Zhang, Liwen
  organization: Beihang University
– sequence: 2
  givenname: Huawei
  orcidid: 0000-0003-1766-421X
  surname: Chen
  fullname: Chen, Huawei
  email: chenhw75@buaa.edu.cn
  organization: Beihang University
– sequence: 3
  givenname: Yurun
  surname: Guo
  fullname: Guo, Yurun
  organization: Beihang University
– sequence: 4
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
  organization: Beihang University
– sequence: 5
  givenname: Yonggang
  surname: Jiang
  fullname: Jiang, Yonggang
  organization: Beihang University
– sequence: 6
  givenname: Deyuan
  surname: Zhang
  fullname: Zhang, Deyuan
  organization: Beihang University
– sequence: 7
  givenname: Liran
  surname: Ma
  fullname: Ma, Liran
  organization: Tsinghua University
– sequence: 8
  givenname: Jianbin
  surname: Luo
  fullname: Luo, Jianbin
  organization: Tsinghua University
– sequence: 9
  givenname: Lei
  surname: Jiang
  fullname: Jiang, Lei
  organization: Chinese Academy of Sciences
BookMark eNqFks1uEzEUhS1URH_olvVIbNgk-Df2bJCq0tJIBRYpsLRsz53E0cQO9kxRdrxD35AnwUOqinbTla3r75x75XuO0UGIARB6Q_CUYEzfm-Y2TymmGBNCxQt0REmtJkxxfvDf_RCd5rzGBRJMcqJeoUPGCCZKsCOkP3uX4p_fd19MiNWVh2SSW3lnumrRp8H1Q4LqIqxMcNCMpRiW1Q_oq8vkXe9jqBZDao2Dah7y1qcC2V11kwAKEZf5NXrZmi7D6f15gr5dXtycX02uv36an59dT5yQVE6stNYwMhO1YE4p24BTTgiBG8mBUsxqbIltnHHCKGqbFvjM4haUEQ4sb9kJmu99m2jWepv8xqSdjsbrf4WYltqk3rsONKaiBsnrVhDM8WymjCSUSUMUbZkAXLw-7L22g91A4yD0yXSPTB-_BL_Sy3irpZCqxqwYvLs3SPHnALnXG58ddJ0JEIesKRecE8rViL59gq7jkEL5qpGiaqYUo4Wa7qmyq5wTtA_DEKzHKOgxCvohCkXAnwic7824rzKw756V_fId7J5pos8-fl-Qmkr2F8ATyUQ
CitedBy_id crossref_primary_10_1039_D4TB02517B
crossref_primary_10_1002_adfm_202422552
crossref_primary_10_1002_smtd_202402123
crossref_primary_10_1002_admt_202301387
crossref_primary_10_1108_ILT_07_2021_0247
crossref_primary_10_1016_j_porgcoat_2022_107303
crossref_primary_10_1021_acsami_5c02890
crossref_primary_10_1021_acsapm_4c00147
crossref_primary_10_1002_celc_202400086
crossref_primary_10_26599_FRICT_2025_9441027
crossref_primary_10_1021_acsami_3c05095
crossref_primary_10_1088_1361_665X_ac262f
crossref_primary_10_1186_s10033_022_00708_1
crossref_primary_10_1002_smll_202305511
crossref_primary_10_1111_1749_4877_12821
crossref_primary_10_1002_adfm_202311167
crossref_primary_10_1016_j_triboint_2023_108904
crossref_primary_10_1016_j_cis_2023_102862
crossref_primary_10_1063_5_0160377
crossref_primary_10_1002_admi_202200532
crossref_primary_10_1007_s12274_023_6016_0
crossref_primary_10_1016_j_cej_2023_143792
crossref_primary_10_1021_acsami_0c17518
crossref_primary_10_1021_acsapm_2c00309
crossref_primary_10_1103_PhysRevApplied_19_054078
crossref_primary_10_1021_acsami_4c01914
crossref_primary_10_1080_19475411_2024_2439954
crossref_primary_10_1007_s42114_024_01006_1
crossref_primary_10_1007_s00339_022_05921_2
crossref_primary_10_1177_02783649241238765
crossref_primary_10_1002_smll_202103423
crossref_primary_10_3389_fmech_2021_668262
crossref_primary_10_1002_admi_202100528
crossref_primary_10_1039_D3CS00764B
crossref_primary_10_1098_rsif_2024_0636
crossref_primary_10_1002_adfm_202210562
crossref_primary_10_3390_biomimetics7030134
crossref_primary_10_1039_D4MH00331D
crossref_primary_10_1002_admi_202201270
crossref_primary_10_1016_j_cej_2024_156477
crossref_primary_10_1002_advs_202303264
crossref_primary_10_1016_j_cej_2022_140227
crossref_primary_10_1016_j_cej_2021_132467
crossref_primary_10_1016_j_molliq_2024_125194
crossref_primary_10_1002_smll_202306510
crossref_primary_10_1016_j_cej_2021_132749
crossref_primary_10_1098_rsfs_2023_0081
crossref_primary_10_1002_smll_202401859
crossref_primary_10_1016_j_triboint_2021_107395
crossref_primary_10_1088_2051_672X_adad8b
crossref_primary_10_1126_sciadv_adi4843
crossref_primary_10_1016_j_cis_2024_103097
crossref_primary_10_1021_acsami_1c12505
crossref_primary_10_1021_acsnano_4c17864
crossref_primary_10_1021_acsami_0c21847
crossref_primary_10_1002_smtd_202101076
crossref_primary_10_3390_biomimetics7040209
crossref_primary_10_1088_1361_665X_ad6cbb
crossref_primary_10_1007_s40544_023_0743_0
crossref_primary_10_1007_s40544_022_0617_6
crossref_primary_10_1007_s44251_023_00022_5
crossref_primary_10_1063_5_0102883
crossref_primary_10_1063_5_0211007
crossref_primary_10_1002_smtd_202201435
crossref_primary_10_1021_acsanm_3c03548
crossref_primary_10_1016_j_matt_2023_12_030
crossref_primary_10_3390_coatings15030302
crossref_primary_10_1002_smtd_202301726
crossref_primary_10_1007_s42235_023_00420_3
crossref_primary_10_1021_acsami_4c06428
crossref_primary_10_1002_adma_202300871
crossref_primary_10_1007_s42242_020_00103_6
crossref_primary_10_1016_j_xcrp_2023_101597
crossref_primary_10_1002_adma_202404761
crossref_primary_10_1016_j_cej_2022_136581
crossref_primary_10_3389_fcell_2024_1499766
crossref_primary_10_1002_advs_202407501
crossref_primary_10_1002_smll_202101220
crossref_primary_10_1021_acsami_2c22378
crossref_primary_10_1002_inf2_12603
crossref_primary_10_1007_s42235_021_00128_2
crossref_primary_10_1016_j_cej_2021_130194
crossref_primary_10_1002_adfm_202009217
crossref_primary_10_1002_advs_202202978
crossref_primary_10_1016_j_colcom_2024_100770
crossref_primary_10_1002_adfm_202205804
crossref_primary_10_1002_adfm_202302666
crossref_primary_10_1002_inf2_12640
crossref_primary_10_1126_sciadv_abf5695
crossref_primary_10_1109_LRA_2023_3273512
crossref_primary_10_1116_6_0000747
crossref_primary_10_1002_adma_202105338
Cites_doi 10.1002/adhm.201700994
10.1098/rsfs.2014.0036
10.1186/s12983-018-0273-x
10.1021/acsami.5b03039
10.1073/pnas.1620344114
10.1016/0002-9610(94)90108-2
10.1016/S0022-5347(01)61797-X
10.1126/science.1149994
10.1002/adfm.201603146
10.1088/0953-8984/23/35/355005
10.1126/science.1154367
10.1016/S0016-5107(96)70193-1
10.1038/nature05968
10.1063/1.1388626
10.1007/978-0-387-21656-0
10.1016/0043-1648(95)06799-X
10.1016/j.triboint.2014.08.013
10.1038/nmat1255
10.1002/adma.200802734
10.1103/PhysRevB.71.035428
10.1016/0021-9797(77)90052-2
10.1126/sciadv.aar3921
10.1002/adhm.201601355
10.1002/adfm.201202024
10.1126/science.aah6362
10.1021/acsnano.6b01355
10.1242/jeb.019232
10.1002/adfm.201807614
10.1038/s41467-017-02387-2
10.1002/adfm.201403751
10.1073/pnas.1701740114
10.1103/PhysRevLett.112.066102
10.1038/nature22382
ContentType Journal Article
Copyright 2020 The Authors. Published by Wiley‐VCH GmbH
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 The Authors. Published by Wiley‐VCH GmbH.
Copyright_xml – notice: 2020 The Authors. Published by Wiley‐VCH GmbH
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 The Authors. Published by Wiley‐VCH GmbH.
DBID 24P
AAYXX
CITATION
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202001125
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_0259e749f51040668a71237a182f35e0
PMC7578903
10_1002_advs_202001125
ADVS1927
Genre article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: BX20180025; 2018M640038
– fundername: National Natural Science Foundation of China
  funderid: 51725501; 51935001; 51905022
– fundername: National Key R&D Program of China
  funderid: 2019YFB1309702
– fundername: ;
  grantid: BX20180025; 2018M640038
– fundername: ;
  grantid: 51725501; 51935001; 51905022
– fundername: National Key R&D Program of China
  grantid: 2019YFB1309702
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
ITC
PHGZM
PHGZT
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5727-b7bba3165953c88bdec8c5550d74e220390b1bdcac5a82bdfe46b0fe8a5ceb4f3
IEDL.DBID DOA
ISSN 2198-3844
IngestDate Wed Aug 27 01:21:43 EDT 2025
Thu Aug 21 18:20:06 EDT 2025
Fri Jul 11 06:36:31 EDT 2025
Fri Jul 25 04:37:03 EDT 2025
Tue Jul 01 03:59:24 EDT 2025
Thu Apr 24 23:10:33 EDT 2025
Wed Jan 22 16:59:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5727-b7bba3165953c88bdec8c5550d74e220390b1bdcac5a82bdfe46b0fe8a5ceb4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3250-9867
0000-0003-1766-421X
OpenAccessLink https://doaj.org/article/0259e749f51040668a71237a182f35e0
PMID 33101853
PQID 2452868832
PQPubID 4365299
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_0259e749f51040668a71237a182f35e0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7578903
proquest_miscellaneous_2454412483
proquest_journals_2452868832
crossref_primary_10_1002_advs_202001125
crossref_citationtrail_10_1002_advs_202001125
wiley_primary_10_1002_advs_202001125_ADVS1927
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 1991; 110
2017; 6
1991; 1
2017; 8
2007; 448
2015; 5
2009; 21
2013; 23
2016; 10
2004; 3
2009; 212
2004
2008; 320
2017; 114
2015; 7
2017; 357
2014; 112
1994; 167
2018; 7
2015; 25
2018; 4
1977; 59
2015; 81
1999; 161
1996; 194
2019; 29
2011; 23
2005; 71
2007; 318
2016; 26
1996; 43
2001; 115
2018; 15
2017; 546
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Peters J. H. (e_1_2_7_1_1) 1991; 110
Soper N. J. (e_1_2_7_2_1) 1991; 1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
References_xml – volume: 43
  start-page: 572
  year: 1996
  publication-title: Gastrointest. Endosc.
– volume: 357
  start-page: 378
  year: 2017
  publication-title: Science
– volume: 81
  start-page: 190
  year: 2015
  publication-title: Tribol. Int.
– volume: 161
  start-page: 887
  year: 1999
  publication-title: J. Urol.
– volume: 23
  year: 2011
  publication-title: J. Phys.: Condens. Matter
– volume: 110
  start-page: 769
  year: 1991
  publication-title: Surgery
– volume: 167
  start-page: 608
  year: 1994
  publication-title: Am. J. Surg.
– volume: 1
  start-page: 156
  year: 1991
  publication-title: Surg. Laparosc. Endosc. Percutaneous Tech.
– volume: 71
  year: 2005
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 882
  year: 2004
  publication-title: Nat. Mater.
– volume: 6
  year: 2017
  publication-title: Adv. Healthcare Mater.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 8
  start-page: 2218
  year: 2017
  publication-title: Nat. Commun.
– volume: 194
  start-page: 107
  year: 1996
  publication-title: Wear
– volume: 7
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 10
  start-page: 4770
  year: 2016
  publication-title: ACS Nano
– volume: 23
  start-page: 1137
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 112
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 32
  year: 2018
  publication-title: Front. Zool.
– volume: 320
  start-page: 507
  year: 2008
  publication-title: Science
– volume: 114
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 212
  start-page: 155
  year: 2009
  publication-title: J. Exp. Biol.
– volume: 5
  year: 2015
  publication-title: Interface Focus
– year: 2004
– volume: 115
  start-page: 3840
  year: 2001
  publication-title: J. Chem. Phys.
– volume: 114
  start-page: 4625
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 26
  start-page: 7281
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 21
  start-page: 483
  year: 2009
  publication-title: Adv. Mater.
– volume: 59
  start-page: 568
  year: 1977
  publication-title: J. Colloid Interface Sci.
– volume: 546
  start-page: 396
  year: 2017
  publication-title: Nature
– volume: 25
  start-page: 1499
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 448
  start-page: 338
  year: 2007
  publication-title: Nature
– volume: 318
  start-page: 203
  year: 2007
  publication-title: Science
– ident: e_1_2_7_13_1
  doi: 10.1002/adhm.201700994
– ident: e_1_2_7_34_1
  doi: 10.1098/rsfs.2014.0036
– ident: e_1_2_7_22_1
  doi: 10.1186/s12983-018-0273-x
– ident: e_1_2_7_26_1
  doi: 10.1021/acsami.5b03039
– ident: e_1_2_7_20_1
  doi: 10.1073/pnas.1620344114
– ident: e_1_2_7_3_1
  doi: 10.1016/0002-9610(94)90108-2
– ident: e_1_2_7_5_1
  doi: 10.1016/S0022-5347(01)61797-X
– ident: e_1_2_7_21_1
  doi: 10.1126/science.1149994
– ident: e_1_2_7_10_1
  doi: 10.1002/adfm.201603146
– ident: e_1_2_7_8_1
  doi: 10.1088/0953-8984/23/35/355005
– ident: e_1_2_7_9_1
  doi: 10.1126/science.1154367
– ident: e_1_2_7_4_1
  doi: 10.1016/S0016-5107(96)70193-1
– ident: e_1_2_7_17_1
  doi: 10.1038/nature05968
– ident: e_1_2_7_32_1
  doi: 10.1063/1.1388626
– ident: e_1_2_7_27_1
  doi: 10.1007/978-0-387-21656-0
– ident: e_1_2_7_29_1
  doi: 10.1016/0043-1648(95)06799-X
– ident: e_1_2_7_35_1
  doi: 10.1016/j.triboint.2014.08.013
– ident: e_1_2_7_7_1
  doi: 10.1038/nmat1255
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.200802734
– ident: e_1_2_7_6_1
  doi: 10.1103/PhysRevB.71.035428
– ident: e_1_2_7_28_1
  doi: 10.1016/0021-9797(77)90052-2
– ident: e_1_2_7_12_1
  doi: 10.1126/sciadv.aar3921
– ident: e_1_2_7_11_1
  doi: 10.1002/adhm.201601355
– ident: e_1_2_7_24_1
  doi: 10.1002/adfm.201202024
– ident: e_1_2_7_16_1
  doi: 10.1126/science.aah6362
– ident: e_1_2_7_18_1
  doi: 10.1021/acsnano.6b01355
– ident: e_1_2_7_33_1
  doi: 10.1242/jeb.019232
– volume: 110
  start-page: 769
  year: 1991
  ident: e_1_2_7_1_1
  publication-title: Surgery
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.201807614
– ident: e_1_2_7_31_1
  doi: 10.1038/s41467-017-02387-2
– ident: e_1_2_7_23_1
  doi: 10.1002/adfm.201403751
– ident: e_1_2_7_14_1
  doi: 10.1073/pnas.1701740114
– ident: e_1_2_7_30_1
  doi: 10.1103/PhysRevLett.112.066102
– volume: 1
  start-page: 156
  year: 1991
  ident: e_1_2_7_2_1
  publication-title: Surg. Laparosc. Endosc. Percutaneous Tech.
– ident: e_1_2_7_19_1
  doi: 10.1038/nature22382
SSID ssj0001537418
Score 2.5146644
Snippet Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad, is highly...
Abstract Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad,...
SourceID doaj
pubmedcentral
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2001125
SubjectTerms Adhesives
bio‐interfaces
Friction
Frogs
interfacial liquid adjustment
tree frogs
wearable sensors
wet friction
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagvXBBtIBIKchISMDBahI7sXOqKNrVgtQKsa3oLfIr25WqpGS7SNz4D_2H_BJmvN60iwRcnbHymIc_eybfEPK6UakwWWmYkVozwcuMVVoXLIcxnjrlRDjTPT4pJ2fi03lxHg_cFrGsch0TQ6B2ncUz8gPMEKpSgQEeXn1j2DUKs6uxhcZ9sg0hWMHma_todPL5y-0pS8GRnmXN1pjmB9p9R5ZuLCXKsD_2ndUokPZvIM0_6yTv4tewAI0fkYcROdL3K1XvkHu-3SU70TcX9G0kkH73mNTHWGX36-cNhM6OTub4j3FoeXJJp4Eudtl7OmovQvIfh7p2Rr_6azru5-E3Bzpd9o22nn5sMREPQuYHPe29B4lutnhCzsaj0w8TFhspMFsAPgE9GKN5htSB3CplnLfKFrA3cVL4PE95lZrMOKttoVVuXONFadLGK11Yb0TDn5Kttmv9M0Irq6TTLhNSWJFarrmpSuMyW2U6F41KCFt_0NpGlnFsdnFZr_iR8xoVUA8KSMibQf5qxa_xV8kj1M8ghbzYYaDrZ3V0sxoQXOWlqBoINQBVSqUlLM1Swy6q4YVPE7K_1m4dnRVuMZhWQl4Nl8HNMHeiW98tg4zARt2KJ0RuWMXGA21eaecXgbAbewZUKcxkwX7-86I1AJIpAG-59--HfU4e4JxVZeE-2QID8i8AIV2bl9ENfgPWmBFW
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access (Activated by CARLI)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXLggykOklMpISMAhahLbsXOEqqsFqQhpW9Gb5Ve2K1UJynaRuPEf-g_7S5hxsmmDhBDX8eQ5Hs9ne_wNIW9qlXGblza10piUszJPK2NEWoCMZV55Htd0T76U8zP--Vyc3znF3_NDjAtu6BlxvEYHN3Z9eEsaavwPpNvGnCAI0vfJAzxfi-z5Bf96u8oiGNKzYIU5mF2nTHG-ZW7MisPpLSaRKRL4T1DnnzmTd7FsDEazx-TRgCLph97su-ReaJ6Q3cFP1_TdQCb9_inRJ5hxd_PrGobRls5XeN44lj-5pItIHbvpAj1uLmIiAIraZkm_hSs661bxyANdbLrauEA_NbgpD0r2Jz3tQgCNdrl-Rs5mx6dH83QoqpA6AVgFbGKtYTnSCDKnlPXBKSdgnuIlD0WRsSqzufXOOGFUYX0deGmzOigjXLC8Zs_JTtM24QWhlVPSG59zyR3PHDPMVqX1uatyU_BaJSTd_lDtBsZxLHxxqXuu5EKjAfRogIS8HfW_91wbf9X8iPYZtZAjOwrabqkHl9OA5qogeVXDsAOwpVRGQpiWBmZUNRMhS8j-1rp6cFx4BBeFKhWMcwl5PTaDy-E-imlCu4k6HIt2K5YQOekVkxeatjSri0jejfUDqgyuTGP_-ceHagAnCwDhcu8_9V-Shyjs0w73yQ70qPAK4NOVPYge8hvzfRRQ
  priority: 102
  providerName: Wiley-Blackwell
Title Micro–Nano Hierarchical Structure Enhanced Strong Wet Friction Surface Inspired by Tree Frogs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202001125
https://www.proquest.com/docview/2452868832
https://www.proquest.com/docview/2454412483
https://pubmed.ncbi.nlm.nih.gov/PMC7578903
https://doaj.org/article/0259e749f51040668a71237a182f35e0
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagXLiglh8RWlZGQgIOURPbiZ1jW3a1ILaq2Fb0Zvkv7UpVgrbdSr3xDrwhT9IZJ7vaRUK9cIrkTBLbM_Z8jsffEPK-VpmweWlTK41JBS_ztDKmSBmU8cwrL-I_3clxOT4TX8-L87VUXxgT1tEDdx23Dz65ClJUNRgPOJ9SGQmTrTSAi2tehLhaB5-3tpjqzgdzpGVZsjRmbN_4W2TnxhCiHPNir3mhSNa_gTD_jo9cx63R8Yy2ybMeMdKDrqY75FFonpOdfkxe0489cfSnF0RPMLruz6_fMGW2dDzDs8Ux1ckVnUaa2MU80GFzGTf9sahtLuiPcENH81k83kCni3ltXKBfGtyAByF7R0_nIYBEe3H9kpyNhqdH47RPoJC6AnAJ9L-1hudIGcidUtYHp1wBaxIvRWAs41Vmc-udcYVRzPo6iNJmdVCmcMGKmr8iW03bhNeEVk5Jb3wupHAic9xwW5XW567KDRO1Ski67FDtenZxTHJxpTteZKZRAXqlgIR8WMn_7Hg1_il5iPpZSSEfdiwAK9G9leiHrCQhe0vt6n6QwidEwVSpYE5LyLvVbRheuGdimtAuoozABN2KJ0RuWMVGhTbvNLPLSNSNuQKqDJ5Mo_080FANQGQKgFu--R8t3iVP8c1d3OEe2QIzC28BP93YAXnMxMmAPDn4PPk2hevh8Pjk-yAOoHsnFRpA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6V9gAXRPkRhgKLBAIOVm3v2l4fEKKQKKFNhEgqejP75zRSZRenAfXGO_AePBRPwszaDg0ScOp1PU7WntnZz7uz30fIk0IEXIWJ8lUqpc9ZEvqZlLEfQRsLjDDcremOxsngkL87io82yI_uLAyWVXY50SVqU2lcI9_FHUKRCAjAV6effVSNwt3VTkKjCYt9e_4VPtkWL4dvwb9Po6jfm74Z-K2qgK9jmKyhU0pJFiKPHtNCKGO10DEAdZNyG0UBywIVKqOljqWIlCksT1RQWCFjbRUvGPzuFbIFjxVAItja643ff_i9qhMzpIPp2CGDaFeaL8gKjqVLIepxX5j9nEjAGrL9sy7zIl52E17_BrneIlX6ugmtbbJhy5tku80FC_q8Jax-cYvkI6zq-_ntO6Tqig7meKbZSayc0Imjp13WlvbKY1dsgE1VOaMf7Rnt13N3rIJOlnUhtaXDEjf-wUid02ltLVhUs8Vtcngpr_gO2Syr0t4lNNMiNdKEPOWaB5pJprJEmVBnoYx4ITzidy801y2rOYprnOQNH3OUowPylQM88mxlf9rwefzVcg_9s7JCHm7XUNWzvB3WOSDGzKY8KyC1ATRKhEwBCqQSvtoKFtvAIzudd_M2OcBfrELZI49Xl2FY416NLG21dDYchcEF80i6FhVrHVq_Us6PHUE4ahRkAdzpu_j5z4PmAIAmAPTTe__u7CNydTAdHeQHw_H-fXIN72-qGnfIJgSTfQDo7Ew9bIcEJZ8uexT-AoHUUAc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEOMiCgOMBAIeoiaxkzgPCG2sVctYNdFN7C3zLV2lKRntCtob_4F_w8_ZL-Ec58KKBDzt1TlJnJyLP9vH3yHkRS58roJYeSqR0uMsDrxUysgLoY35Rhju1nT3xvHwkH84io7WyM_mLAymVTYx0QVqU2pcI-_hDqGIBRhgL6_TIvZ3Bu_OvnhYQQp3WptyGpWJ7NqLbzB9W7wd7YCuX4bhoH_wfujVFQY8HcHADR1USrIAOfWYFkIZq4WOALSbhNsw9Fnqq0AZLXUkRahMbnms_NwKGWmreM7guTfIegKzIr9D1rf74_1Pv1d4IobUMA1TpB_2pPmKDOGYxhRgbe4rI6ErGLCCcv_M0byKnd3gN7hDbteolW5VZrZB1mxxl2zUcWFBX9fk1W_ukWwPM_wuv_-AsF3S4QzPN7tyK6d04qhql3NL-8WJSzzAprKY0s_2nA7mM3fEgk6W81xqS0cFJgGAkLqgB3NrQaKcLu6Tw2v5xQ9IpygL-5DQVIvESBPwhGvuayaZSmNlAp0GMuS56BKv-aGZrhnOsdDGaVZxM4cZKiBrFdAlr1r5s4rb46-S26ifVgo5uV1DOZ9mtYtngB5Tm_A0hzAHMCkWMgFYkEiYweUssn6XbDbazepAAa9ozbpLnreXwcVx30YWtlw6GY5FwgXrkmTFKlY6tHqlmJ04snCsV5D6cKfn7Oc_H5oBGJoA6E8e_buzz8hN8L7s42i8-5jcwturBMdN0gFbsk8AqJ2rp7VHUHJ83U74C_Y-VDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micro%E2%80%93Nano+Hierarchical+Structure+Enhanced+Strong+Wet+Friction+Surface+Inspired+by+Tree+Frogs&rft.jtitle=Advanced+science&rft.au=Liwen+Zhang&rft.au=Huawei+Chen&rft.au=Yurun+Guo&rft.au=Yan+Wang&rft.date=2020-10-01&rft.pub=Wiley&rft.eissn=2198-3844&rft.volume=7&rft.issue=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202001125&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0259e749f51040668a71237a182f35e0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon