Micro–Nano Hierarchical Structure Enhanced Strong Wet Friction Surface Inspired by Tree Frogs
Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad, is highly essential for biomedical engineering, wearable flexible electronics, etc. Although various pillar surfaces are proposed to enhance wet a...
Saved in:
Published in | Advanced science Vol. 7; no. 20; pp. 2001125 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.10.2020
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad, is highly essential for biomedical engineering, wearable flexible electronics, etc. Although various pillar surfaces are proposed to enhance wet adhesion or friction, their mechanisms remain on micropillar arrays to extrude interfacial liquid via an external force. Here, two‐level micropillar arrays with nanocavities on top are discovered on the toe pads of a tree frog, and they exhibit strong boundary friction ≈20 times higher than dry and wet friction without the need of a special external or preloaded normal force. Microscale in situ observations show that the specific micro–nano hierarchical pillars in turn trigger three‐level liquid adjusting phenomena, including two‐level liquid self‐splitting and liquid self‐sucking effects. Under these effects, uniform nanometer‐thick liquid bridges form spontaneously on all pillars to generate strong boundary friction, which can be ≈2 times higher than for single‐level pillar surfaces and ≈3.5 times higher than for smooth surfaces. Finally, theoretical models of boundary friction in terms of self‐splitting and self‐sucking are built to reveal the importance of liquid behavior induced by micro–nano hierarchical structure.
A strong wet attachment bioinspired surface with hierarchical pillars and nanocavities is introduced based on the unique interfacial liquid adjusting effects on the tree frog toe pad, where robust interfacial capillarity from nanometer‐thick liquid film generates a boundary friction ≈20 times its wet and dry friction. Such bioinspired surfaces demonstrate potential applications in fields including medical devices and wearable sensors. |
---|---|
AbstractList | Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad, is highly essential for biomedical engineering, wearable flexible electronics, etc. Although various pillar surfaces are proposed to enhance wet adhesion or friction, their mechanisms remain on micropillar arrays to extrude interfacial liquid via an external force. Here, two‐level micropillar arrays with nanocavities on top are discovered on the toe pads of a tree frog, and they exhibit strong boundary friction ≈20 times higher than dry and wet friction without the need of a special external or preloaded normal force. Microscale in situ observations show that the specific micro–nano hierarchical pillars in turn trigger three‐level liquid adjusting phenomena, including two‐level liquid self‐splitting and liquid self‐sucking effects. Under these effects, uniform nanometer‐thick liquid bridges form spontaneously on all pillars to generate strong boundary friction, which can be ≈2 times higher than for single‐level pillar surfaces and ≈3.5 times higher than for smooth surfaces. Finally, theoretical models of boundary friction in terms of self‐splitting and self‐sucking are built to reveal the importance of liquid behavior induced by micro–nano hierarchical structure. Abstract Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad, is highly essential for biomedical engineering, wearable flexible electronics, etc. Although various pillar surfaces are proposed to enhance wet adhesion or friction, their mechanisms remain on micropillar arrays to extrude interfacial liquid via an external force. Here, two‐level micropillar arrays with nanocavities on top are discovered on the toe pads of a tree frog, and they exhibit strong boundary friction ≈20 times higher than dry and wet friction without the need of a special external or preloaded normal force. Microscale in situ observations show that the specific micro–nano hierarchical pillars in turn trigger three‐level liquid adjusting phenomena, including two‐level liquid self‐splitting and liquid self‐sucking effects. Under these effects, uniform nanometer‐thick liquid bridges form spontaneously on all pillars to generate strong boundary friction, which can be ≈2 times higher than for single‐level pillar surfaces and ≈3.5 times higher than for smooth surfaces. Finally, theoretical models of boundary friction in terms of self‐splitting and self‐sucking are built to reveal the importance of liquid behavior induced by micro–nano hierarchical structure. Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad, is highly essential for biomedical engineering, wearable flexible electronics, etc. Although various pillar surfaces are proposed to enhance wet adhesion or friction, their mechanisms remain on micropillar arrays to extrude interfacial liquid via an external force. Here, two-level micropillar arrays with nanocavities on top are discovered on the toe pads of a tree frog, and they exhibit strong boundary friction ≈20 times higher than dry and wet friction without the need of a special external or preloaded normal force. Microscale in situ observations show that the specific micro-nano hierarchical pillars in turn trigger three-level liquid adjusting phenomena, including two-level liquid self-splitting and liquid self-sucking effects. Under these effects, uniform nanometer-thick liquid bridges form spontaneously on all pillars to generate strong boundary friction, which can be ≈2 times higher than for single-level pillar surfaces and ≈3.5 times higher than for smooth surfaces. Finally, theoretical models of boundary friction in terms of self-splitting and self-sucking are built to reveal the importance of liquid behavior induced by micro-nano hierarchical structure.Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad, is highly essential for biomedical engineering, wearable flexible electronics, etc. Although various pillar surfaces are proposed to enhance wet adhesion or friction, their mechanisms remain on micropillar arrays to extrude interfacial liquid via an external force. Here, two-level micropillar arrays with nanocavities on top are discovered on the toe pads of a tree frog, and they exhibit strong boundary friction ≈20 times higher than dry and wet friction without the need of a special external or preloaded normal force. Microscale in situ observations show that the specific micro-nano hierarchical pillars in turn trigger three-level liquid adjusting phenomena, including two-level liquid self-splitting and liquid self-sucking effects. Under these effects, uniform nanometer-thick liquid bridges form spontaneously on all pillars to generate strong boundary friction, which can be ≈2 times higher than for single-level pillar surfaces and ≈3.5 times higher than for smooth surfaces. Finally, theoretical models of boundary friction in terms of self-splitting and self-sucking are built to reveal the importance of liquid behavior induced by micro-nano hierarchical structure. Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad, is highly essential for biomedical engineering, wearable flexible electronics, etc. Although various pillar surfaces are proposed to enhance wet adhesion or friction, their mechanisms remain on micropillar arrays to extrude interfacial liquid via an external force. Here, two‐level micropillar arrays with nanocavities on top are discovered on the toe pads of a tree frog, and they exhibit strong boundary friction ≈20 times higher than dry and wet friction without the need of a special external or preloaded normal force. Microscale in situ observations show that the specific micro–nano hierarchical pillars in turn trigger three‐level liquid adjusting phenomena, including two‐level liquid self‐splitting and liquid self‐sucking effects. Under these effects, uniform nanometer‐thick liquid bridges form spontaneously on all pillars to generate strong boundary friction, which can be ≈2 times higher than for single‐level pillar surfaces and ≈3.5 times higher than for smooth surfaces. Finally, theoretical models of boundary friction in terms of self‐splitting and self‐sucking are built to reveal the importance of liquid behavior induced by micro–nano hierarchical structure. A strong wet attachment bioinspired surface with hierarchical pillars and nanocavities is introduced based on the unique interfacial liquid adjusting effects on the tree frog toe pad, where robust interfacial capillarity from nanometer‐thick liquid film generates a boundary friction ≈20 times its wet and dry friction. Such bioinspired surfaces demonstrate potential applications in fields including medical devices and wearable sensors. |
Author | Luo, Jianbin Chen, Huawei Guo, Yurun Jiang, Lei Zhang, Liwen Jiang, Yonggang Zhang, Deyuan Wang, Yan Ma, Liran |
AuthorAffiliation | 4 Laboratory of Bioinspired Smart Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China 1 School of Mechanical Engineering and Automation Beihang University Beijing 100191 China 2 Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 China 3 State Key Laboratory of Tribology Tsinghua University Beijing 100091 China |
AuthorAffiliation_xml | – name: 1 School of Mechanical Engineering and Automation Beihang University Beijing 100191 China – name: 2 Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 China – name: 3 State Key Laboratory of Tribology Tsinghua University Beijing 100091 China – name: 4 Laboratory of Bioinspired Smart Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China |
Author_xml | – sequence: 1 givenname: Liwen orcidid: 0000-0003-3250-9867 surname: Zhang fullname: Zhang, Liwen organization: Beihang University – sequence: 2 givenname: Huawei orcidid: 0000-0003-1766-421X surname: Chen fullname: Chen, Huawei email: chenhw75@buaa.edu.cn organization: Beihang University – sequence: 3 givenname: Yurun surname: Guo fullname: Guo, Yurun organization: Beihang University – sequence: 4 givenname: Yan surname: Wang fullname: Wang, Yan organization: Beihang University – sequence: 5 givenname: Yonggang surname: Jiang fullname: Jiang, Yonggang organization: Beihang University – sequence: 6 givenname: Deyuan surname: Zhang fullname: Zhang, Deyuan organization: Beihang University – sequence: 7 givenname: Liran surname: Ma fullname: Ma, Liran organization: Tsinghua University – sequence: 8 givenname: Jianbin surname: Luo fullname: Luo, Jianbin organization: Tsinghua University – sequence: 9 givenname: Lei surname: Jiang fullname: Jiang, Lei organization: Chinese Academy of Sciences |
BookMark | eNqFks1uEzEUhS1URH_olvVIbNgk-Df2bJCq0tJIBRYpsLRsz53E0cQO9kxRdrxD35AnwUOqinbTla3r75x75XuO0UGIARB6Q_CUYEzfm-Y2TymmGBNCxQt0REmtJkxxfvDf_RCd5rzGBRJMcqJeoUPGCCZKsCOkP3uX4p_fd19MiNWVh2SSW3lnumrRp8H1Q4LqIqxMcNCMpRiW1Q_oq8vkXe9jqBZDao2Dah7y1qcC2V11kwAKEZf5NXrZmi7D6f15gr5dXtycX02uv36an59dT5yQVE6stNYwMhO1YE4p24BTTgiBG8mBUsxqbIltnHHCKGqbFvjM4haUEQ4sb9kJmu99m2jWepv8xqSdjsbrf4WYltqk3rsONKaiBsnrVhDM8WymjCSUSUMUbZkAXLw-7L22g91A4yD0yXSPTB-_BL_Sy3irpZCqxqwYvLs3SPHnALnXG58ddJ0JEIesKRecE8rViL59gq7jkEL5qpGiaqYUo4Wa7qmyq5wTtA_DEKzHKOgxCvohCkXAnwic7824rzKw756V_fId7J5pos8-fl-Qmkr2F8ATyUQ |
CitedBy_id | crossref_primary_10_1039_D4TB02517B crossref_primary_10_1002_adfm_202422552 crossref_primary_10_1002_smtd_202402123 crossref_primary_10_1002_admt_202301387 crossref_primary_10_1108_ILT_07_2021_0247 crossref_primary_10_1016_j_porgcoat_2022_107303 crossref_primary_10_1021_acsami_5c02890 crossref_primary_10_1021_acsapm_4c00147 crossref_primary_10_1002_celc_202400086 crossref_primary_10_26599_FRICT_2025_9441027 crossref_primary_10_1021_acsami_3c05095 crossref_primary_10_1088_1361_665X_ac262f crossref_primary_10_1186_s10033_022_00708_1 crossref_primary_10_1002_smll_202305511 crossref_primary_10_1111_1749_4877_12821 crossref_primary_10_1002_adfm_202311167 crossref_primary_10_1016_j_triboint_2023_108904 crossref_primary_10_1016_j_cis_2023_102862 crossref_primary_10_1063_5_0160377 crossref_primary_10_1002_admi_202200532 crossref_primary_10_1007_s12274_023_6016_0 crossref_primary_10_1016_j_cej_2023_143792 crossref_primary_10_1021_acsami_0c17518 crossref_primary_10_1021_acsapm_2c00309 crossref_primary_10_1103_PhysRevApplied_19_054078 crossref_primary_10_1021_acsami_4c01914 crossref_primary_10_1080_19475411_2024_2439954 crossref_primary_10_1007_s42114_024_01006_1 crossref_primary_10_1007_s00339_022_05921_2 crossref_primary_10_1177_02783649241238765 crossref_primary_10_1002_smll_202103423 crossref_primary_10_3389_fmech_2021_668262 crossref_primary_10_1002_admi_202100528 crossref_primary_10_1039_D3CS00764B crossref_primary_10_1098_rsif_2024_0636 crossref_primary_10_1002_adfm_202210562 crossref_primary_10_3390_biomimetics7030134 crossref_primary_10_1039_D4MH00331D crossref_primary_10_1002_admi_202201270 crossref_primary_10_1016_j_cej_2024_156477 crossref_primary_10_1002_advs_202303264 crossref_primary_10_1016_j_cej_2022_140227 crossref_primary_10_1016_j_cej_2021_132467 crossref_primary_10_1016_j_molliq_2024_125194 crossref_primary_10_1002_smll_202306510 crossref_primary_10_1016_j_cej_2021_132749 crossref_primary_10_1098_rsfs_2023_0081 crossref_primary_10_1002_smll_202401859 crossref_primary_10_1016_j_triboint_2021_107395 crossref_primary_10_1088_2051_672X_adad8b crossref_primary_10_1126_sciadv_adi4843 crossref_primary_10_1016_j_cis_2024_103097 crossref_primary_10_1021_acsami_1c12505 crossref_primary_10_1021_acsnano_4c17864 crossref_primary_10_1021_acsami_0c21847 crossref_primary_10_1002_smtd_202101076 crossref_primary_10_3390_biomimetics7040209 crossref_primary_10_1088_1361_665X_ad6cbb crossref_primary_10_1007_s40544_023_0743_0 crossref_primary_10_1007_s40544_022_0617_6 crossref_primary_10_1007_s44251_023_00022_5 crossref_primary_10_1063_5_0102883 crossref_primary_10_1063_5_0211007 crossref_primary_10_1002_smtd_202201435 crossref_primary_10_1021_acsanm_3c03548 crossref_primary_10_1016_j_matt_2023_12_030 crossref_primary_10_3390_coatings15030302 crossref_primary_10_1002_smtd_202301726 crossref_primary_10_1007_s42235_023_00420_3 crossref_primary_10_1021_acsami_4c06428 crossref_primary_10_1002_adma_202300871 crossref_primary_10_1007_s42242_020_00103_6 crossref_primary_10_1016_j_xcrp_2023_101597 crossref_primary_10_1002_adma_202404761 crossref_primary_10_1016_j_cej_2022_136581 crossref_primary_10_3389_fcell_2024_1499766 crossref_primary_10_1002_advs_202407501 crossref_primary_10_1002_smll_202101220 crossref_primary_10_1021_acsami_2c22378 crossref_primary_10_1002_inf2_12603 crossref_primary_10_1007_s42235_021_00128_2 crossref_primary_10_1016_j_cej_2021_130194 crossref_primary_10_1002_adfm_202009217 crossref_primary_10_1002_advs_202202978 crossref_primary_10_1016_j_colcom_2024_100770 crossref_primary_10_1002_adfm_202205804 crossref_primary_10_1002_adfm_202302666 crossref_primary_10_1002_inf2_12640 crossref_primary_10_1126_sciadv_abf5695 crossref_primary_10_1109_LRA_2023_3273512 crossref_primary_10_1116_6_0000747 crossref_primary_10_1002_adma_202105338 |
Cites_doi | 10.1002/adhm.201700994 10.1098/rsfs.2014.0036 10.1186/s12983-018-0273-x 10.1021/acsami.5b03039 10.1073/pnas.1620344114 10.1016/0002-9610(94)90108-2 10.1016/S0022-5347(01)61797-X 10.1126/science.1149994 10.1002/adfm.201603146 10.1088/0953-8984/23/35/355005 10.1126/science.1154367 10.1016/S0016-5107(96)70193-1 10.1038/nature05968 10.1063/1.1388626 10.1007/978-0-387-21656-0 10.1016/0043-1648(95)06799-X 10.1016/j.triboint.2014.08.013 10.1038/nmat1255 10.1002/adma.200802734 10.1103/PhysRevB.71.035428 10.1016/0021-9797(77)90052-2 10.1126/sciadv.aar3921 10.1002/adhm.201601355 10.1002/adfm.201202024 10.1126/science.aah6362 10.1021/acsnano.6b01355 10.1242/jeb.019232 10.1002/adfm.201807614 10.1038/s41467-017-02387-2 10.1002/adfm.201403751 10.1073/pnas.1701740114 10.1103/PhysRevLett.112.066102 10.1038/nature22382 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by Wiley‐VCH GmbH 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 The Authors. Published by Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2020 The Authors. Published by Wiley‐VCH GmbH – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 The Authors. Published by Wiley‐VCH GmbH. |
DBID | 24P AAYXX CITATION 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202001125 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_0259e749f51040668a71237a182f35e0 PMC7578903 10_1002_advs_202001125 ADVS1927 |
Genre | article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: BX20180025; 2018M640038 – fundername: National Natural Science Foundation of China funderid: 51725501; 51935001; 51905022 – fundername: National Key R&D Program of China funderid: 2019YFB1309702 – fundername: ; grantid: BX20180025; 2018M640038 – fundername: ; grantid: 51725501; 51935001; 51905022 – fundername: National Key R&D Program of China grantid: 2019YFB1309702 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS ITC PHGZM PHGZT 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5727-b7bba3165953c88bdec8c5550d74e220390b1bdcac5a82bdfe46b0fe8a5ceb4f3 |
IEDL.DBID | DOA |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:21:43 EDT 2025 Thu Aug 21 18:20:06 EDT 2025 Fri Jul 11 06:36:31 EDT 2025 Fri Jul 25 04:37:03 EDT 2025 Tue Jul 01 03:59:24 EDT 2025 Thu Apr 24 23:10:33 EDT 2025 Wed Jan 22 16:59:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5727-b7bba3165953c88bdec8c5550d74e220390b1bdcac5a82bdfe46b0fe8a5ceb4f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3250-9867 0000-0003-1766-421X |
OpenAccessLink | https://doaj.org/article/0259e749f51040668a71237a182f35e0 |
PMID | 33101853 |
PQID | 2452868832 |
PQPubID | 4365299 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0259e749f51040668a71237a182f35e0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7578903 proquest_miscellaneous_2454412483 proquest_journals_2452868832 crossref_primary_10_1002_advs_202001125 crossref_citationtrail_10_1002_advs_202001125 wiley_primary_10_1002_advs_202001125_ADVS1927 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 1991; 110 2017; 6 1991; 1 2017; 8 2007; 448 2015; 5 2009; 21 2013; 23 2016; 10 2004; 3 2009; 212 2004 2008; 320 2017; 114 2015; 7 2017; 357 2014; 112 1994; 167 2018; 7 2015; 25 2018; 4 1977; 59 2015; 81 1999; 161 1996; 194 2019; 29 2011; 23 2005; 71 2007; 318 2016; 26 1996; 43 2001; 115 2018; 15 2017; 546 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Peters J. H. (e_1_2_7_1_1) 1991; 110 Soper N. J. (e_1_2_7_2_1) 1991; 1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 |
References_xml | – volume: 43 start-page: 572 year: 1996 publication-title: Gastrointest. Endosc. – volume: 357 start-page: 378 year: 2017 publication-title: Science – volume: 81 start-page: 190 year: 2015 publication-title: Tribol. Int. – volume: 161 start-page: 887 year: 1999 publication-title: J. Urol. – volume: 23 year: 2011 publication-title: J. Phys.: Condens. Matter – volume: 110 start-page: 769 year: 1991 publication-title: Surgery – volume: 167 start-page: 608 year: 1994 publication-title: Am. J. Surg. – volume: 1 start-page: 156 year: 1991 publication-title: Surg. Laparosc. Endosc. Percutaneous Tech. – volume: 71 year: 2005 publication-title: Phys. Rev. B – volume: 3 start-page: 882 year: 2004 publication-title: Nat. Mater. – volume: 6 year: 2017 publication-title: Adv. Healthcare Mater. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 8 start-page: 2218 year: 2017 publication-title: Nat. Commun. – volume: 194 start-page: 107 year: 1996 publication-title: Wear – volume: 7 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 10 start-page: 4770 year: 2016 publication-title: ACS Nano – volume: 23 start-page: 1137 year: 2013 publication-title: Adv. Funct. Mater. – volume: 112 year: 2014 publication-title: Phys. Rev. Lett. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 32 year: 2018 publication-title: Front. Zool. – volume: 320 start-page: 507 year: 2008 publication-title: Science – volume: 114 year: 2017 publication-title: Proc. Natl. Acad. Sci. USA – volume: 212 start-page: 155 year: 2009 publication-title: J. Exp. Biol. – volume: 5 year: 2015 publication-title: Interface Focus – year: 2004 – volume: 115 start-page: 3840 year: 2001 publication-title: J. Chem. Phys. – volume: 114 start-page: 4625 year: 2017 publication-title: Proc. Natl. Acad. Sci. USA – volume: 26 start-page: 7281 year: 2016 publication-title: Adv. Funct. Mater. – volume: 21 start-page: 483 year: 2009 publication-title: Adv. Mater. – volume: 59 start-page: 568 year: 1977 publication-title: J. Colloid Interface Sci. – volume: 546 start-page: 396 year: 2017 publication-title: Nature – volume: 25 start-page: 1499 year: 2015 publication-title: Adv. Funct. Mater. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 448 start-page: 338 year: 2007 publication-title: Nature – volume: 318 start-page: 203 year: 2007 publication-title: Science – ident: e_1_2_7_13_1 doi: 10.1002/adhm.201700994 – ident: e_1_2_7_34_1 doi: 10.1098/rsfs.2014.0036 – ident: e_1_2_7_22_1 doi: 10.1186/s12983-018-0273-x – ident: e_1_2_7_26_1 doi: 10.1021/acsami.5b03039 – ident: e_1_2_7_20_1 doi: 10.1073/pnas.1620344114 – ident: e_1_2_7_3_1 doi: 10.1016/0002-9610(94)90108-2 – ident: e_1_2_7_5_1 doi: 10.1016/S0022-5347(01)61797-X – ident: e_1_2_7_21_1 doi: 10.1126/science.1149994 – ident: e_1_2_7_10_1 doi: 10.1002/adfm.201603146 – ident: e_1_2_7_8_1 doi: 10.1088/0953-8984/23/35/355005 – ident: e_1_2_7_9_1 doi: 10.1126/science.1154367 – ident: e_1_2_7_4_1 doi: 10.1016/S0016-5107(96)70193-1 – ident: e_1_2_7_17_1 doi: 10.1038/nature05968 – ident: e_1_2_7_32_1 doi: 10.1063/1.1388626 – ident: e_1_2_7_27_1 doi: 10.1007/978-0-387-21656-0 – ident: e_1_2_7_29_1 doi: 10.1016/0043-1648(95)06799-X – ident: e_1_2_7_35_1 doi: 10.1016/j.triboint.2014.08.013 – ident: e_1_2_7_7_1 doi: 10.1038/nmat1255 – ident: e_1_2_7_25_1 doi: 10.1002/adma.200802734 – ident: e_1_2_7_6_1 doi: 10.1103/PhysRevB.71.035428 – ident: e_1_2_7_28_1 doi: 10.1016/0021-9797(77)90052-2 – ident: e_1_2_7_12_1 doi: 10.1126/sciadv.aar3921 – ident: e_1_2_7_11_1 doi: 10.1002/adhm.201601355 – ident: e_1_2_7_24_1 doi: 10.1002/adfm.201202024 – ident: e_1_2_7_16_1 doi: 10.1126/science.aah6362 – ident: e_1_2_7_18_1 doi: 10.1021/acsnano.6b01355 – ident: e_1_2_7_33_1 doi: 10.1242/jeb.019232 – volume: 110 start-page: 769 year: 1991 ident: e_1_2_7_1_1 publication-title: Surgery – ident: e_1_2_7_15_1 doi: 10.1002/adfm.201807614 – ident: e_1_2_7_31_1 doi: 10.1038/s41467-017-02387-2 – ident: e_1_2_7_23_1 doi: 10.1002/adfm.201403751 – ident: e_1_2_7_14_1 doi: 10.1073/pnas.1701740114 – ident: e_1_2_7_30_1 doi: 10.1103/PhysRevLett.112.066102 – volume: 1 start-page: 156 year: 1991 ident: e_1_2_7_2_1 publication-title: Surg. Laparosc. Endosc. Percutaneous Tech. – ident: e_1_2_7_19_1 doi: 10.1038/nature22382 |
SSID | ssj0001537418 |
Score | 2.5146644 |
Snippet | Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad, is highly... Abstract Superior wet attachment and friction performance without the need of special external or preloaded normal force, similar to the tree frog's toe pad,... |
SourceID | doaj pubmedcentral proquest crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2001125 |
SubjectTerms | Adhesives bio‐interfaces Friction Frogs interfacial liquid adjustment tree frogs wearable sensors wet friction |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagvXBBtIBIKchISMDBahI7sXOqKNrVgtQKsa3oLfIr25WqpGS7SNz4D_2H_BJmvN60iwRcnbHymIc_eybfEPK6UakwWWmYkVozwcuMVVoXLIcxnjrlRDjTPT4pJ2fi03lxHg_cFrGsch0TQ6B2ncUz8gPMEKpSgQEeXn1j2DUKs6uxhcZ9sg0hWMHma_todPL5y-0pS8GRnmXN1pjmB9p9R5ZuLCXKsD_2ndUokPZvIM0_6yTv4tewAI0fkYcROdL3K1XvkHu-3SU70TcX9G0kkH73mNTHWGX36-cNhM6OTub4j3FoeXJJp4Eudtl7OmovQvIfh7p2Rr_6azru5-E3Bzpd9o22nn5sMREPQuYHPe29B4lutnhCzsaj0w8TFhspMFsAPgE9GKN5htSB3CplnLfKFrA3cVL4PE95lZrMOKttoVVuXONFadLGK11Yb0TDn5Kttmv9M0Irq6TTLhNSWJFarrmpSuMyW2U6F41KCFt_0NpGlnFsdnFZr_iR8xoVUA8KSMibQf5qxa_xV8kj1M8ghbzYYaDrZ3V0sxoQXOWlqBoINQBVSqUlLM1Swy6q4YVPE7K_1m4dnRVuMZhWQl4Nl8HNMHeiW98tg4zARt2KJ0RuWMXGA21eaecXgbAbewZUKcxkwX7-86I1AJIpAG-59--HfU4e4JxVZeE-2QID8i8AIV2bl9ENfgPWmBFW priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access (Activated by CARLI) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXLggykOklMpISMAhahLbsXOEqqsFqQhpW9Gb5Ve2K1UJynaRuPEf-g_7S5hxsmmDhBDX8eQ5Hs9ne_wNIW9qlXGblza10piUszJPK2NEWoCMZV55Htd0T76U8zP--Vyc3znF3_NDjAtu6BlxvEYHN3Z9eEsaavwPpNvGnCAI0vfJAzxfi-z5Bf96u8oiGNKzYIU5mF2nTHG-ZW7MisPpLSaRKRL4T1DnnzmTd7FsDEazx-TRgCLph97su-ReaJ6Q3cFP1_TdQCb9_inRJ5hxd_PrGobRls5XeN44lj-5pItIHbvpAj1uLmIiAIraZkm_hSs661bxyANdbLrauEA_NbgpD0r2Jz3tQgCNdrl-Rs5mx6dH83QoqpA6AVgFbGKtYTnSCDKnlPXBKSdgnuIlD0WRsSqzufXOOGFUYX0deGmzOigjXLC8Zs_JTtM24QWhlVPSG59zyR3PHDPMVqX1uatyU_BaJSTd_lDtBsZxLHxxqXuu5EKjAfRogIS8HfW_91wbf9X8iPYZtZAjOwrabqkHl9OA5qogeVXDsAOwpVRGQpiWBmZUNRMhS8j-1rp6cFx4BBeFKhWMcwl5PTaDy-E-imlCu4k6HIt2K5YQOekVkxeatjSri0jejfUDqgyuTGP_-ceHagAnCwDhcu8_9V-Shyjs0w73yQ70qPAK4NOVPYge8hvzfRRQ priority: 102 providerName: Wiley-Blackwell |
Title | Micro–Nano Hierarchical Structure Enhanced Strong Wet Friction Surface Inspired by Tree Frogs |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202001125 https://www.proquest.com/docview/2452868832 https://www.proquest.com/docview/2454412483 https://pubmed.ncbi.nlm.nih.gov/PMC7578903 https://doaj.org/article/0259e749f51040668a71237a182f35e0 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagXLiglh8RWlZGQgIOURPbiZ1jW3a1ILaq2Fb0Zvkv7UpVgrbdSr3xDrwhT9IZJ7vaRUK9cIrkTBLbM_Z8jsffEPK-VpmweWlTK41JBS_ztDKmSBmU8cwrL-I_3clxOT4TX8-L87VUXxgT1tEDdx23Dz65ClJUNRgPOJ9SGQmTrTSAi2tehLhaB5-3tpjqzgdzpGVZsjRmbN_4W2TnxhCiHPNir3mhSNa_gTD_jo9cx63R8Yy2ybMeMdKDrqY75FFonpOdfkxe0489cfSnF0RPMLruz6_fMGW2dDzDs8Ux1ckVnUaa2MU80GFzGTf9sahtLuiPcENH81k83kCni3ltXKBfGtyAByF7R0_nIYBEe3H9kpyNhqdH47RPoJC6AnAJ9L-1hudIGcidUtYHp1wBaxIvRWAs41Vmc-udcYVRzPo6iNJmdVCmcMGKmr8iW03bhNeEVk5Jb3wupHAic9xwW5XW567KDRO1Ski67FDtenZxTHJxpTteZKZRAXqlgIR8WMn_7Hg1_il5iPpZSSEfdiwAK9G9leiHrCQhe0vt6n6QwidEwVSpYE5LyLvVbRheuGdimtAuoozABN2KJ0RuWMVGhTbvNLPLSNSNuQKqDJ5Mo_080FANQGQKgFu--R8t3iVP8c1d3OEe2QIzC28BP93YAXnMxMmAPDn4PPk2hevh8Pjk-yAOoHsnFRpA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6V9gAXRPkRhgKLBAIOVm3v2l4fEKKQKKFNhEgqejP75zRSZRenAfXGO_AePBRPwszaDg0ScOp1PU7WntnZz7uz30fIk0IEXIWJ8lUqpc9ZEvqZlLEfQRsLjDDcremOxsngkL87io82yI_uLAyWVXY50SVqU2lcI9_FHUKRCAjAV6effVSNwt3VTkKjCYt9e_4VPtkWL4dvwb9Po6jfm74Z-K2qgK9jmKyhU0pJFiKPHtNCKGO10DEAdZNyG0UBywIVKqOljqWIlCksT1RQWCFjbRUvGPzuFbIFjxVAItja643ff_i9qhMzpIPp2CGDaFeaL8gKjqVLIepxX5j9nEjAGrL9sy7zIl52E17_BrneIlX6ugmtbbJhy5tku80FC_q8Jax-cYvkI6zq-_ntO6Tqig7meKbZSayc0Imjp13WlvbKY1dsgE1VOaMf7Rnt13N3rIJOlnUhtaXDEjf-wUid02ltLVhUs8Vtcngpr_gO2Syr0t4lNNMiNdKEPOWaB5pJprJEmVBnoYx4ITzidy801y2rOYprnOQNH3OUowPylQM88mxlf9rwefzVcg_9s7JCHm7XUNWzvB3WOSDGzKY8KyC1ATRKhEwBCqQSvtoKFtvAIzudd_M2OcBfrELZI49Xl2FY416NLG21dDYchcEF80i6FhVrHVq_Us6PHUE4ahRkAdzpu_j5z4PmAIAmAPTTe__u7CNydTAdHeQHw_H-fXIN72-qGnfIJgSTfQDo7Ew9bIcEJZ8uexT-AoHUUAc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEOMiCgOMBAIeoiaxkzgPCG2sVctYNdFN7C3zLV2lKRntCtob_4F_w8_ZL-Ec58KKBDzt1TlJnJyLP9vH3yHkRS58roJYeSqR0uMsDrxUysgLoY35Rhju1nT3xvHwkH84io7WyM_mLAymVTYx0QVqU2pcI-_hDqGIBRhgL6_TIvZ3Bu_OvnhYQQp3WptyGpWJ7NqLbzB9W7wd7YCuX4bhoH_wfujVFQY8HcHADR1USrIAOfWYFkIZq4WOALSbhNsw9Fnqq0AZLXUkRahMbnms_NwKGWmreM7guTfIegKzIr9D1rf74_1Pv1d4IobUMA1TpB_2pPmKDOGYxhRgbe4rI6ErGLCCcv_M0byKnd3gN7hDbteolW5VZrZB1mxxl2zUcWFBX9fk1W_ukWwPM_wuv_-AsF3S4QzPN7tyK6d04qhql3NL-8WJSzzAprKY0s_2nA7mM3fEgk6W81xqS0cFJgGAkLqgB3NrQaKcLu6Tw2v5xQ9IpygL-5DQVIvESBPwhGvuayaZSmNlAp0GMuS56BKv-aGZrhnOsdDGaVZxM4cZKiBrFdAlr1r5s4rb46-S26ifVgo5uV1DOZ9mtYtngB5Tm_A0hzAHMCkWMgFYkEiYweUssn6XbDbazepAAa9ozbpLnreXwcVx30YWtlw6GY5FwgXrkmTFKlY6tHqlmJ04snCsV5D6cKfn7Oc_H5oBGJoA6E8e_buzz8hN8L7s42i8-5jcwturBMdN0gFbsk8AqJ2rp7VHUHJ83U74C_Y-VDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micro%E2%80%93Nano+Hierarchical+Structure+Enhanced+Strong+Wet+Friction+Surface+Inspired+by+Tree+Frogs&rft.jtitle=Advanced+science&rft.au=Liwen+Zhang&rft.au=Huawei+Chen&rft.au=Yurun+Guo&rft.au=Yan+Wang&rft.date=2020-10-01&rft.pub=Wiley&rft.eissn=2198-3844&rft.volume=7&rft.issue=20&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202001125&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0259e749f51040668a71237a182f35e0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |