Microbial response to environmental gradients in a ceramic-based diffusion system
A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic...
Saved in:
Published in | Biotechnology and bioengineering Vol. 100; no. 1; pp. 141 - 149 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.05.2008
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0006-3592 1097-0290 1097-0290 |
DOI | 10.1002/bit.21736 |
Cover
Loading…
Abstract | A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. Biotechnol. Bioeng. 2008;100: 141-149. |
---|---|
AbstractList | A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. A solid, porous matrix was used to establish steady‐state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two‐dimensional, finite‐element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid–liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid–liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long‐term investigations, making this approach preferable to conventional gel‐stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. Biotechnol. Bioeng. 2008;100: 141–149. © 2008 Wiley Periodicals, Inc. A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel.A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. Biotechnol. Bioeng. 2008;100: 141-149. A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. [PUBLICATION ABSTRACT] |
Author | Bressel, A. Sousa, A.J. Gardner, M.N. Korber, D.R. Wolfaardt, G.M. Hendry, M.J. Birkham, T. Pilaski, M. |
Author_xml | – sequence: 1 fullname: Wolfaardt, G.M – sequence: 2 fullname: Hendry, M.J – sequence: 3 fullname: Birkham, T – sequence: 4 fullname: Bressel, A – sequence: 5 fullname: Gardner, M.N – sequence: 6 fullname: Sousa, A.J – sequence: 7 fullname: Korber, D.R – sequence: 8 fullname: Pilaski, M |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20271326$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18175358$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0k1v1DAQBmALFdFt4cAfgAgJJA5p_W3n2FawVCogoAVu1iSZVC6Js9hZYP89LrstUiXYUxL5mRk58-6RnTAGJOQxoweMUn5Y--mAMyP0PTJjtDIl5RXdITNKqS6Fqvgu2UvpKn8aq_UDssssM0ooOyMf3vomjrWHvoiYFmNIWExjgeGHj2MYMEz55DJC6_NrKnwooGgwwuCbsoaEbdH6rlsmP4YirdKEw0Nyv4M-4aPNc59cvH51fvKmPHs_Pz05OisbZbguUSATIGuwUnDVUqWwElZzbMBo1raItDa2a7nhvOMgu0ZiXStdYyeVBSb2yYt130Ucvy8xTW7wqcG-h4DjMjlDpays4VuhzPOM5HYrFDwrJeVWyGmlFNXX8NkdeDUuY8i_xXEmjKZ5akZPNmhZD9i6RfQDxJW7WVIGzzcAUgN9FyE0Pt06TrlhguvsXq5d3mhKEbu_rai7DorLQXF_gpLt4R3b-AmmvMYpgu__V_HT97j6d2t3fHp-U1GuK3zOxa_bCojfnDbCKPfl3dwZcyw_zr9K9zn7p2vfwejgMuY7XnzilAlKrWU5IeI3lSnlLw |
CODEN | BIBIAU |
CitedBy_id | crossref_primary_10_1039_C6LC01101B crossref_primary_10_1063_1_4968522 crossref_primary_10_1089_dst_2012_0003 crossref_primary_10_1128_AEM_00070_10 crossref_primary_10_1021_acs_langmuir_6b03889 crossref_primary_10_1038_ismej_2017_184 crossref_primary_10_1063_1_4928296 crossref_primary_10_1111_j_1365_2672_2010_04894_x crossref_primary_10_1139_cjm_2014_0815 crossref_primary_10_1139_W09_075 crossref_primary_10_1371_journal_pcbi_1003870 crossref_primary_10_1038_s41396_020_00886_7 crossref_primary_10_1039_C8AY01513A crossref_primary_10_1063_1_5005932 crossref_primary_10_1128_AEM_00313_08 |
Cites_doi | 10.1016/0168-1605(95)00077-1 10.1016/j.mimet.2005.06.001 10.1111/j.1462-2920.2004.00605.x 10.1016/j.bmc.2006.08.021 10.1016/S0043-1354(97)00122-X 10.1126/science.125.3240.196 10.1099/00221287-134-1-107 10.1093/jac/dkh477 10.1002/(SICI)1097-0290(19970705)55:1<191::AID-BIT20>3.0.CO;2-O 10.1128/aem.59.8.2388-2396.1993 10.1016/j.ibiod.2005.11.002 10.1016/j.ijfoodmicro.2004.04.009 10.1128/9781555815882.ch9 10.1002/j.1875-9114.1997.tb03712.x 10.1080/03067319608045562 10.2166/wst.2004.0875 10.1111/j.1365-2389.1991.tb00093.x 10.1111/j.1574-6968.1986.tb01826.x 10.1139/m97-076 10.1080/01490459709378039 10.1146/annurev.mi.39.100185.001211 10.1111/j.1574-6941.1997.tb00410.x 10.1029/91WR02560 10.1073/pnas.111143098 10.1128/AAC.40.12.2859 10.1023/A:1000166400935 10.1006/fmic.1997.0103 10.1016/S0891-5520(05)70390-1 10.1139/m97-023 10.1093/jac/dkh339 10.1128/aem.63.6.2432-2438.1997 10.1139/m73-008 10.1128/AAC.48.4.1402-1405.2004 10.1016/S0378-1135(96)01256-4 |
ContentType | Journal Article |
Copyright | Copyright © 2008 Wiley Periodicals, Inc. 2008 INIST-CNRS Copyright 2008 Wiley Periodicals, Inc. Copyright John Wiley and Sons, Limited May 1, 2008 |
Copyright_xml | – notice: Copyright © 2008 Wiley Periodicals, Inc. – notice: 2008 INIST-CNRS – notice: Copyright 2008 Wiley Periodicals, Inc. – notice: Copyright John Wiley and Sons, Limited May 1, 2008 |
DBID | FBQ BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7S9 L.6 7X8 |
DOI | 10.1002/bit.21736 |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database CrossRef MEDLINE - Academic MEDLINE Solid State and Superconductivity Abstracts Materials Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology |
EISSN | 1097-0290 |
EndPage | 149 |
ExternalDocumentID | 1459080841 18175358 20271326 10_1002_bit_21736 BIT21736 ark_67375_WNG_77B4RGX4_V US201300881055 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AI. AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FBQ FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WSB WXSBR WYISQ XFK XG1 XPP XSW XV2 Y6R ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AHBTC AITYG BSCLL HGLYW OIG AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5726-e3e13a4ba84325d055e93862eca761ddee0b78fd2722f2a4fc4ebb56bef458a13 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 1097-0290 |
IngestDate | Fri Jul 11 05:42:58 EDT 2025 Thu Jul 10 17:50:56 EDT 2025 Fri Jul 11 03:44:19 EDT 2025 Fri Jul 11 08:51:57 EDT 2025 Sat Aug 16 22:51:17 EDT 2025 Thu Apr 03 06:55:58 EDT 2025 Mon Jul 21 09:13:33 EDT 2025 Tue Jul 01 03:28:23 EDT 2025 Thu Apr 24 23:00:09 EDT 2025 Wed Jan 22 17:00:02 EST 2025 Wed Oct 30 09:53:16 EDT 2024 Wed Dec 27 19:20:32 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Gradient enrichment of degradative communities Biofilm antimicrobial testing Microorganism Ceramic materials Antimicrobial agent environmental gradients |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright 2008 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5726-e3e13a4ba84325d055e93862eca761ddee0b78fd2722f2a4fc4ebb56bef458a13 |
Notes | http://dx.doi.org/10.1002/bit.21736 istex:D787E91AF0D46974390355C3830BBD7BEA712BF2 ark:/67375/WNG-77B4RGX4-V ArticleID:BIT21736 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
PMID | 18175358 |
PQID | 213760283 |
PQPubID | 48814 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_70449872 proquest_miscellaneous_47617428 proquest_miscellaneous_32428544 proquest_miscellaneous_20955064 proquest_journals_213760283 pubmed_primary_18175358 pascalfrancis_primary_20271326 crossref_primary_10_1002_bit_21736 crossref_citationtrail_10_1002_bit_21736 wiley_primary_10_1002_bit_21736_BIT21736 istex_primary_ark_67375_WNG_77B4RGX4_V fao_agris_US201300881055 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 May 2008 |
PublicationDateYYYYMMDD | 2008-05-01 |
PublicationDate_xml | – month: 05 year: 2008 text: 1 May 2008 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States – name: New York |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol. Bioeng |
PublicationYear | 2008 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley – name: Wiley Subscription Services, Inc |
References | Lebaron P, Bauda P, Lett MC, Duval-Iflah Y, Simonet P, Jacq E, Frank N, Roux B, Baleux B, Faurie G, Hubert JC, Normand P, Prieur D, Schmitt S, Block JC. 1997. Recombinant plasmid mobilization between E. coli strains in seven sterile microcosms. Can J Microbiol 43: 534-540. Wolfaardt GM, Lawrence JR, Hendry MJ, Robarts RD, Caldwell DE. 1993. Development of steady-state diffusion gradients for the cultivation of degradative microbial consortia. Appl Environ Microbiol 59: 2388-2396. Van Der Meer JR. 1997. Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Antonie Van Leeuwenhoek 71: 159-178. Kuhlmann B, Schottler U. 1996. Influence of different redox conditions on the biodegradation of the pesticide metabolites phenol and chlorophenols. Int J Anal Chem 65: 289-295. Thomas LV, Wimpenny JWT. 1996. Competition between Salmonella and Pseudomonas species growing in and on agar, as affected by pH, sodium chloride concentration and temperature. Int J Food Microbiol 29: 361-370. Tiller JC, Liao C, Lewis K, Klibanov AM. 2001. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 98: 5981-5985. Widman MT, Emerson D, Chiu CC, Worden RM. 1997. Modeling microbial chemotaxis in a diffusion gradient chamber. Biotechnol Bioeng 55: 191-205. Speakman AJ, Binns SH, Dawson S, Hart CA, Gaskell RM. 1997. Antimicrobial susceptibility of Bordetella bronchiseptica isolates from cats and a comparison of the agar dilution and E-test methods. Vet Microbiol 54: 63-72. Deleo PC, Baveye P. 1997. Factors affecting protozoan predation of bacteria clogging laboratory aquifer microcosms. Geomicrobiol J 14: 127-149. Lear JC, Maillard JY, Dettmar PW, Goddard PA, Russell AD. 2006. Chloroxylenol- and triclosan-tolerant bacteria from industrial sources-susceptibility to antibiotics and other biocides. Int Biodeterior Biodegrad 57: 51-56. Drago L, Vecchi ED, Nicola L, Colombo A, Gismondo MR. 2004. Selection of resistance of telithromycin against Haemophilus influenzae, Moraxella catarrhalis and streptococci in comparison with macrolides. J Antimicrob Chemother 54: 542-545. Bathe S, Mohan TVK, Wuertz S, Hausner M. 2004. Bioaugmentation of a sequencing batch biofilm reactor by horizontal gene transfer. Water Sci Technol 49: 337-344. Wimpenny JWT, Gest H, Favinger JL. 1986. The use of two-dimensional gradient plates in determining the responses in non-sulphur purple bacteria to pH and NaCl concentration. FEMS Microbiol Lett 37: 367-371. Caldwell DE, Hirsch P. 1973. Growth of microorganisms in two-dimensional steady-state diffusion gradients. Can J Microbiol 19: 53-58. Møller S, Korber DR, Wolfaardt GM, Caldwell DE. 1997. Impact of nutrient composition on a degradative biofilm community. Appl Environ Microbiol 63: 2432-2438. Sudicky EA, McLaren RG. 1992. The Laplace transform Galerkin technique for large-scale simulation of mass transport in discretely fractured porous formations. Water Resour Res 28: 499-514. Winniczuk PP, Parish ME. 1997. Minimum inhibitory concentrations of antimicrobials against micro-organisms related to citrus juice. Food Microbiol 14: 373-381. Rossi S, Azghani A, Omri A. 2004. Antimicrobial efficacy of a new antibiotic-loaded poly(hydroxybutyric-co-hydroxyvaleric acid) controlled release system. J Antimicrob Chemother 54: 1013-1018. Garrison MW, Anderson DE, Campbell DM, Carroll KC, Malone CL, Anderson JD, Hollis RJ, Pfaller MA. 1996. Stenotrophomonas maltophilia: Emergence of multidrug-resistant strains during therapy and in an in vitro pharmacodynamic chamber model. Antimicrob Agents Chemother 40: 2859-2864. Lawrence JR, Kwong YTJ, Swerhone GDW. 1997. Colonization and weathering of natural sulfide mineral assemblages by Thiobacillus ferrooxidans. Can J Microbiol 43: 178-188. Emerson D, Breznak JA. 1997. The response of microbial populations from oil-brine contaminated soil to gradients of NaCl and sodium p-toluate in a diffusion gradient chamber. FEMS Microbiol Ecol 23: 285-300. Gieffers J, Rupp J, Gebert A, Solbach W, Klinger M. 2004. First-choice antibiotics at subinhibitory concentrations induce persistence of Chlamydia pneumoniae. Antimicrob Agents Chemother 48: 1402-1405. Badawi AM, Azzam EMS, Morsy SMY. 2006. Surface and biocidal activity of some synthesized metallo azobenzene isothiouronium salts. Bioord Med Chem 14: 8661-8665. Grossman J, Udluft P. 1991. The extraction of soil water by the suction-cup method; a review. J Soil Sci 42: 83-93. Hamilton WA. 1985. Sulphate-reducing bacteria and anaerobic corrosion. Ann Rev Microbiol 39: 195-217. Weinberg ED. 1956. Double-gradient agar plates. Science 125: 196. Nasar-Abbas SM, Halkman AK. 2004. Antimicrobial effect of water extract of sumac (Rhus coriaria L.) on the growth of some food borne bacteria including pathogens. Int J Food Microbiol 97: 63-69. Penzak SR, Abate BR. 1997. Stenotrophomonas (Xanthomonas) maltophilia: A multidrug-resistant nosocomial pathogen. Pharmacotherapy 17: 293-301. Bokhamy M, Deront M, Adler N, Peringer P. 1997. Survival and activity of Comamonas testosteroni in mixed population. Water Res 31: 2802-2810. Lambertsen L, Sternberg K, Molin S. 2004. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol 6: 726-732. Choi KH, Kumar A, Schweizer HP. 2006. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: Application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Met 64: 391-397. Ben-Omar N, Arias JM, Gonzalez-Munoz MT. 1997. Extracellular bacterial mineralization within the context of geomicrobiology. Microbiologia (Madrid) 13: 161-172. Lorenz MG, Aardema BW, Wackernagel W. 1988. Highly efficient genetic transformation of Bacillus subtilis attached to sand grains. J Gen Microbiol 134: 107-112. Jorgensen JH. 1997. Laboratory issues in the detection and reporting of antibacterial resistance. Infect Dis Clin N Am 11: 785-786. 1997; 43 2006; 57 2004; 49 1997; 63 2004; 48 2006; 14 1997; 23 1986; 37 1973; 19 1997 2004; 6 2007 1995 1991 2004; 54 1993; 59 1985; 39 2004; 97 1996; 29 2006; 64 1997; 71 1997; 11 1997; 55 1997; 54 1997; 31 1997; 14 1991; 42 1997; 13 1992; 28 1988; 134 1997; 17 1996; 40 1996; 65 1956; 125 2001; 98 Sudicky EA (e_1_2_1_28_1) 1991 Wolfaardt GM (e_1_2_1_38_1) 2007 e_1_2_1_20_1 e_1_2_1_24_1 e_1_2_1_21_1 e_1_2_1_22_1 e_1_2_1_27_1 e_1_2_1_25_1 e_1_2_1_26_1 Wood P (e_1_2_1_39_1) 1997 Møller S (e_1_2_1_23_1) 1997; 63 e_1_2_1_29_1 Ben‐Omar N (e_1_2_1_4_1) 1997; 13 e_1_2_1_7_1 e_1_2_1_31_1 e_1_2_1_8_1 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_16_1 e_1_2_1_17_1 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 |
References_xml | – reference: Møller S, Korber DR, Wolfaardt GM, Caldwell DE. 1997. Impact of nutrient composition on a degradative biofilm community. Appl Environ Microbiol 63: 2432-2438. – reference: Drago L, Vecchi ED, Nicola L, Colombo A, Gismondo MR. 2004. Selection of resistance of telithromycin against Haemophilus influenzae, Moraxella catarrhalis and streptococci in comparison with macrolides. J Antimicrob Chemother 54: 542-545. – reference: Hamilton WA. 1985. Sulphate-reducing bacteria and anaerobic corrosion. Ann Rev Microbiol 39: 195-217. – reference: Bokhamy M, Deront M, Adler N, Peringer P. 1997. Survival and activity of Comamonas testosteroni in mixed population. Water Res 31: 2802-2810. – reference: Lorenz MG, Aardema BW, Wackernagel W. 1988. Highly efficient genetic transformation of Bacillus subtilis attached to sand grains. J Gen Microbiol 134: 107-112. – reference: Thomas LV, Wimpenny JWT. 1996. Competition between Salmonella and Pseudomonas species growing in and on agar, as affected by pH, sodium chloride concentration and temperature. Int J Food Microbiol 29: 361-370. – reference: Deleo PC, Baveye P. 1997. Factors affecting protozoan predation of bacteria clogging laboratory aquifer microcosms. Geomicrobiol J 14: 127-149. – reference: Garrison MW, Anderson DE, Campbell DM, Carroll KC, Malone CL, Anderson JD, Hollis RJ, Pfaller MA. 1996. Stenotrophomonas maltophilia: Emergence of multidrug-resistant strains during therapy and in an in vitro pharmacodynamic chamber model. Antimicrob Agents Chemother 40: 2859-2864. – reference: Wimpenny JWT, Gest H, Favinger JL. 1986. The use of two-dimensional gradient plates in determining the responses in non-sulphur purple bacteria to pH and NaCl concentration. FEMS Microbiol Lett 37: 367-371. – reference: Winniczuk PP, Parish ME. 1997. Minimum inhibitory concentrations of antimicrobials against micro-organisms related to citrus juice. Food Microbiol 14: 373-381. – reference: Rossi S, Azghani A, Omri A. 2004. Antimicrobial efficacy of a new antibiotic-loaded poly(hydroxybutyric-co-hydroxyvaleric acid) controlled release system. J Antimicrob Chemother 54: 1013-1018. – reference: Widman MT, Emerson D, Chiu CC, Worden RM. 1997. Modeling microbial chemotaxis in a diffusion gradient chamber. Biotechnol Bioeng 55: 191-205. – reference: Tiller JC, Liao C, Lewis K, Klibanov AM. 2001. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 98: 5981-5985. – reference: Ben-Omar N, Arias JM, Gonzalez-Munoz MT. 1997. Extracellular bacterial mineralization within the context of geomicrobiology. Microbiologia (Madrid) 13: 161-172. – reference: Caldwell DE, Hirsch P. 1973. Growth of microorganisms in two-dimensional steady-state diffusion gradients. Can J Microbiol 19: 53-58. – reference: Weinberg ED. 1956. Double-gradient agar plates. Science 125: 196. – reference: Bathe S, Mohan TVK, Wuertz S, Hausner M. 2004. Bioaugmentation of a sequencing batch biofilm reactor by horizontal gene transfer. Water Sci Technol 49: 337-344. – reference: Van Der Meer JR. 1997. Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Antonie Van Leeuwenhoek 71: 159-178. – reference: Kuhlmann B, Schottler U. 1996. Influence of different redox conditions on the biodegradation of the pesticide metabolites phenol and chlorophenols. Int J Anal Chem 65: 289-295. – reference: Speakman AJ, Binns SH, Dawson S, Hart CA, Gaskell RM. 1997. Antimicrobial susceptibility of Bordetella bronchiseptica isolates from cats and a comparison of the agar dilution and E-test methods. Vet Microbiol 54: 63-72. – reference: Penzak SR, Abate BR. 1997. Stenotrophomonas (Xanthomonas) maltophilia: A multidrug-resistant nosocomial pathogen. Pharmacotherapy 17: 293-301. – reference: Lawrence JR, Kwong YTJ, Swerhone GDW. 1997. Colonization and weathering of natural sulfide mineral assemblages by Thiobacillus ferrooxidans. Can J Microbiol 43: 178-188. – reference: Grossman J, Udluft P. 1991. The extraction of soil water by the suction-cup method; a review. J Soil Sci 42: 83-93. – reference: Nasar-Abbas SM, Halkman AK. 2004. Antimicrobial effect of water extract of sumac (Rhus coriaria L.) on the growth of some food borne bacteria including pathogens. Int J Food Microbiol 97: 63-69. – reference: Wolfaardt GM, Lawrence JR, Hendry MJ, Robarts RD, Caldwell DE. 1993. Development of steady-state diffusion gradients for the cultivation of degradative microbial consortia. Appl Environ Microbiol 59: 2388-2396. – reference: Badawi AM, Azzam EMS, Morsy SMY. 2006. Surface and biocidal activity of some synthesized metallo azobenzene isothiouronium salts. Bioord Med Chem 14: 8661-8665. – reference: Emerson D, Breznak JA. 1997. The response of microbial populations from oil-brine contaminated soil to gradients of NaCl and sodium p-toluate in a diffusion gradient chamber. FEMS Microbiol Ecol 23: 285-300. – reference: Gieffers J, Rupp J, Gebert A, Solbach W, Klinger M. 2004. First-choice antibiotics at subinhibitory concentrations induce persistence of Chlamydia pneumoniae. Antimicrob Agents Chemother 48: 1402-1405. – reference: Jorgensen JH. 1997. Laboratory issues in the detection and reporting of antibacterial resistance. Infect Dis Clin N Am 11: 785-786. – reference: Choi KH, Kumar A, Schweizer HP. 2006. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: Application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Met 64: 391-397. – reference: Lambertsen L, Sternberg K, Molin S. 2004. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol 6: 726-732. – reference: Lebaron P, Bauda P, Lett MC, Duval-Iflah Y, Simonet P, Jacq E, Frank N, Roux B, Baleux B, Faurie G, Hubert JC, Normand P, Prieur D, Schmitt S, Block JC. 1997. Recombinant plasmid mobilization between E. coli strains in seven sterile microcosms. Can J Microbiol 43: 534-540. – reference: Lear JC, Maillard JY, Dettmar PW, Goddard PA, Russell AD. 2006. Chloroxylenol- and triclosan-tolerant bacteria from industrial sources-susceptibility to antibiotics and other biocides. Int Biodeterior Biodegrad 57: 51-56. – reference: Sudicky EA, McLaren RG. 1992. The Laplace transform Galerkin technique for large-scale simulation of mass transport in discretely fractured porous formations. Water Resour Res 28: 499-514. – volume: 59 start-page: 2388 year: 1993 end-page: 2396 article-title: Development of steady‐state diffusion gradients for the cultivation of degradative microbial consortia publication-title: Appl Environ Microbiol – volume: 43 start-page: 178 year: 1997 end-page: 188 article-title: Colonization and weathering of natural sulfide mineral assemblages by publication-title: Can J Microbiol – start-page: 101 year: 2007 end-page: 111 – volume: 14 start-page: 127 year: 1997 end-page: 149 article-title: Factors affecting protozoan predation of bacteria clogging laboratory aquifer microcosms publication-title: Geomicrobiol J – volume: 37 start-page: 367 year: 1986 end-page: 371 article-title: The use of two‐dimensional gradient plates in determining the responses in non‐sulphur purple bacteria to pH and NaCl concentration publication-title: FEMS Microbiol Lett – volume: 48 start-page: 1402 year: 2004 end-page: 1405 article-title: First‐choice antibiotics at subinhibitory concentrations induce persistence of publication-title: Antimicrob Agents Chemother – volume: 31 start-page: 2802 year: 1997 end-page: 2810 article-title: Survival and activity of in mixed population publication-title: Water Res – volume: 97 start-page: 63 year: 2004 end-page: 69 article-title: Antimicrobial effect of water extract of sumac ( L.) on the growth of some food borne bacteria including pathogens publication-title: Int J Food Microbiol – volume: 43 start-page: 534 year: 1997 end-page: 540 article-title: Recombinant plasmid mobilization between strains in seven sterile microcosms publication-title: Can J Microbiol – volume: 54 start-page: 1013 year: 2004 end-page: 1018 article-title: Antimicrobial efficacy of a new antibiotic‐loaded poly(hydroxybutyric‐co‐hydroxyvaleric acid) controlled release system publication-title: J Antimicrob Chemother – volume: 55 start-page: 191 year: 1997 end-page: 205 article-title: Modeling microbial chemotaxis in a diffusion gradient chamber publication-title: Biotechnol Bioeng – volume: 57 start-page: 51 year: 2006 end-page: 56 article-title: Chloroxylenol‐ and triclosan‐tolerant bacteria from industrial sources—susceptibility to antibiotics and other biocides publication-title: Int Biodeterior Biodegrad – volume: 49 start-page: 337 year: 2004 end-page: 344 article-title: Bioaugmentation of a sequencing batch biofilm reactor by horizontal gene transfer publication-title: Water Sci Technol – volume: 14 start-page: 373 year: 1997 end-page: 381 article-title: Minimum inhibitory concentrations of antimicrobials against micro‐organisms related to citrus juice publication-title: Food Microbiol – volume: 65 start-page: 289 year: 1996 end-page: 295 article-title: Influence of different redox conditions on the biodegradation of the pesticide metabolites phenol and chlorophenols publication-title: Int J Anal Chem – volume: 134 start-page: 107 year: 1988 end-page: 112 article-title: Highly efficient genetic transformation of attached to sand grains publication-title: J Gen Microbiol – start-page: 227 year: 1997 end-page: 234 – volume: 98 start-page: 5981 year: 2001 end-page: 5985 article-title: Designing surfaces that kill bacteria on contact publication-title: Proc Natl Acad Sci USA – volume: 28 start-page: 499 year: 1992 end-page: 514 article-title: The Laplace transform Galerkin technique for large‐scale simulation of mass transport in discretely fractured porous formations publication-title: Water Resour Res – volume: 64 start-page: 391 year: 2006 end-page: 397 article-title: A 10‐min method for preparation of highly electrocompetent cells: Application for DNA fragment transfer between chromosomes and plasmid transformation publication-title: J Microbiol Met – volume: 14 start-page: 8661 year: 2006 end-page: 8665 article-title: Surface and biocidal activity of some synthesized metallo azobenzene isothiouronium salts publication-title: Bioord Med Chem – volume: 54 start-page: 542 year: 2004 end-page: 545 article-title: Selection of resistance of telithromycin against , and streptococci in comparison with macrolides publication-title: J Antimicrob Chemother – start-page: 1 year: 1991 end-page: 37 – volume: 19 start-page: 53 year: 1973 end-page: 58 article-title: Growth of microorganisms in two‐dimensional steady‐state diffusion gradients publication-title: Can J Microbiol – volume: 29 start-page: 361 year: 1996 end-page: 370 article-title: Competition between and species growing in and on agar, as affected by pH, sodium chloride concentration and temperature publication-title: Int J Food Microbiol – volume: 71 start-page: 159 year: 1997 end-page: 178 article-title: Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds publication-title: Antonie Van Leeuwenhoek – volume: 63 start-page: 2432 year: 1997 end-page: 2438 article-title: Impact of nutrient composition on a degradative biofilm community publication-title: Appl Environ Microbiol – volume: 23 start-page: 285 year: 1997 end-page: 300 article-title: The response of microbial populations from oil‐brine contaminated soil to gradients of NaCl and sodium p‐toluate in a diffusion gradient chamber publication-title: FEMS Microbiol Ecol – volume: 39 start-page: 195 year: 1985 end-page: 217 article-title: Sulphate‐reducing bacteria and anaerobic corrosion publication-title: Ann Rev Microbiol – volume: 42 start-page: 83 year: 1991 end-page: 93 article-title: The extraction of soil water by the suction‐cup method; a review publication-title: J Soil Sci – volume: 54 start-page: 63 year: 1997 end-page: 72 article-title: Antimicrobial susceptibility of isolates from cats and a comparison of the agar dilution and E‐test methods publication-title: Vet Microbiol – year: 1995 – volume: 125 start-page: 196 year: 1956 article-title: Double‐gradient agar plates publication-title: Science – volume: 40 start-page: 2859 year: 1996 end-page: 2864 article-title: : Emergence of multidrug‐resistant strains during therapy and in an in vitro pharmacodynamic chamber model publication-title: Antimicrob Agents Chemother – volume: 13 start-page: 161 year: 1997 end-page: 172 article-title: Extracellular bacterial mineralization within the context of geomicrobiology publication-title: Microbiologia (Madrid) – volume: 6 start-page: 726 year: 2004 end-page: 732 article-title: Mini‐Tn7 transposons for site‐specific tagging of bacteria with fluorescent proteins publication-title: Environ Microbiol – volume: 17 start-page: 293 year: 1997 end-page: 301 article-title: : A multidrug‐resistant nosocomial pathogen publication-title: Pharmacotherapy – volume: 11 start-page: 785 year: 1997 end-page: 786 article-title: Laboratory issues in the detection and reporting of antibacterial resistance publication-title: Infect Dis Clin N Am – ident: e_1_2_1_30_1 doi: 10.1016/0168-1605(95)00077-1 – ident: e_1_2_1_7_1 doi: 10.1016/j.mimet.2005.06.001 – ident: e_1_2_1_17_1 doi: 10.1111/j.1462-2920.2004.00605.x – ident: e_1_2_1_21_1 – ident: e_1_2_1_2_1 doi: 10.1016/j.bmc.2006.08.021 – ident: e_1_2_1_5_1 doi: 10.1016/S0043-1354(97)00122-X – ident: e_1_2_1_33_1 doi: 10.1126/science.125.3240.196 – ident: e_1_2_1_22_1 doi: 10.1099/00221287-134-1-107 – ident: e_1_2_1_26_1 doi: 10.1093/jac/dkh477 – ident: e_1_2_1_34_1 doi: 10.1002/(SICI)1097-0290(19970705)55:1<191::AID-BIT20>3.0.CO;2-O – start-page: 227 volume-title: Biofilms: Community interactions and control year: 1997 ident: e_1_2_1_39_1 – ident: e_1_2_1_37_1 doi: 10.1128/aem.59.8.2388-2396.1993 – ident: e_1_2_1_19_1 doi: 10.1016/j.ibiod.2005.11.002 – start-page: 1 volume-title: User's guide to FRACTRAN year: 1991 ident: e_1_2_1_28_1 – ident: e_1_2_1_24_1 doi: 10.1016/j.ijfoodmicro.2004.04.009 – start-page: 101 volume-title: Manual for environmental microbiology year: 2007 ident: e_1_2_1_38_1 doi: 10.1128/9781555815882.ch9 – ident: e_1_2_1_25_1 doi: 10.1002/j.1875-9114.1997.tb03712.x – ident: e_1_2_1_16_1 doi: 10.1080/03067319608045562 – ident: e_1_2_1_3_1 doi: 10.2166/wst.2004.0875 – ident: e_1_2_1_13_1 doi: 10.1111/j.1365-2389.1991.tb00093.x – ident: e_1_2_1_35_1 doi: 10.1111/j.1574-6968.1986.tb01826.x – ident: e_1_2_1_20_1 doi: 10.1139/m97-076 – ident: e_1_2_1_8_1 doi: 10.1080/01490459709378039 – ident: e_1_2_1_14_1 doi: 10.1146/annurev.mi.39.100185.001211 – ident: e_1_2_1_10_1 doi: 10.1111/j.1574-6941.1997.tb00410.x – volume: 13 start-page: 161 year: 1997 ident: e_1_2_1_4_1 article-title: Extracellular bacterial mineralization within the context of geomicrobiology publication-title: Microbiologia (Madrid) – ident: e_1_2_1_29_1 doi: 10.1029/91WR02560 – ident: e_1_2_1_31_1 doi: 10.1073/pnas.111143098 – ident: e_1_2_1_11_1 doi: 10.1128/AAC.40.12.2859 – ident: e_1_2_1_32_1 doi: 10.1023/A:1000166400935 – ident: e_1_2_1_36_1 doi: 10.1006/fmic.1997.0103 – ident: e_1_2_1_15_1 doi: 10.1016/S0891-5520(05)70390-1 – ident: e_1_2_1_18_1 doi: 10.1139/m97-023 – ident: e_1_2_1_9_1 doi: 10.1093/jac/dkh339 – volume: 63 start-page: 2432 year: 1997 ident: e_1_2_1_23_1 article-title: Impact of nutrient composition on a degradative biofilm community publication-title: Appl Environ Microbiol doi: 10.1128/aem.63.6.2432-2438.1997 – ident: e_1_2_1_6_1 doi: 10.1139/m73-008 – ident: e_1_2_1_12_1 doi: 10.1128/AAC.48.4.1402-1405.2004 – ident: e_1_2_1_27_1 doi: 10.1016/S0378-1135(96)01256-4 |
SSID | ssj0007866 |
Score | 1.9700269 |
Snippet | A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or... A solid, porous matrix was used to establish steady‐state concentration profiles upon which microbial responses to concentration gradients of nutrients or... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 141 |
SubjectTerms | Antimicrobial agents antimicrobial testing biofilm Biofilms Biofilms - growth & development Biological and medical sciences Bioreactors - microbiology Biotechnology Cell Culture Techniques - instrumentation Cell Culture Techniques - methods Cell Proliferation Ceramics Computer Simulation enrichment of degradative communities Environmental gradient environmental gradients Flow Injection Analysis - instrumentation Flow Injection Analysis - methods Fundamental and applied biological sciences. Psychology Microbial activity Microbiology Microfluidic Analytical Techniques - instrumentation Microfluidic Analytical Techniques - methods Microscopy Models, Biological Nutrient concentrations Porous media Solid modeling Solutes Ultrafiltration - instrumentation Ultrafiltration - methods |
Title | Microbial response to environmental gradients in a ceramic-based diffusion system |
URI | https://api.istex.fr/ark:/67375/WNG-77B4RGX4-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.21736 https://www.ncbi.nlm.nih.gov/pubmed/18175358 https://www.proquest.com/docview/213760283 https://www.proquest.com/docview/20955064 https://www.proquest.com/docview/32428544 https://www.proquest.com/docview/47617428 https://www.proquest.com/docview/70449872 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXGJAQ88NEBC4NhITTtJV3j2HEintaJbSBtD9sKe0Cy7MSZqrEUtakEPPET-I38Eu61m3RFK0K8Rcp1q1xfXx_bx-cS8jpjkbYxM2FaxDLkuihDXRoZZjaxyGZMc3d97Og4ORzw9-fifIW8ae7CeH2IdsMNR4bL1zjAtZnszEVDzbDuAp6OUW4buVoIiE7m0lEy9eeUuGKORcYaVaEe22lbLsxFt0o9AoSKzv2KDEk9ASeVvrrFTfBzEc266Wj_AfnUfIhnoVx2p7Xp5t__0Hj8zy99SO7PYCrd9XH1iKzYqkPWditYol99o1vUEUfdjnyH3O43T3f2mvJxHXLvmtLhGjk9GjrFJ_jNsWflWlqP6LVrdvDmYuz4Z_WEDiuqaW7H-mqY__rxE6fagmItlylu7lEvP_2YDPbfnu0dhrN6DmEuJEtCG9so1tzolMdMFD0hbBbDisrmWiYR5FnbMzItCyYZK5nmZc6tMSIxtuQi1VH8hKxWo8quEyqkkQXAlwwhZ2LSTGRGlGXEdS_SgOkCst30rMpnYudYc-Oz8jLNTIFTlXNqQF61pl-8wsdNRusQHkpfQOZVg1OG572Qn7G6aEC2XMy0jfX4EtlyUqiPxwdKyj4_OTjn6kNANheCqm2A-08RwOiAbDRRpmaZZAJ_j7QlAIEBedm-ha7Ecx1d2dEUTFBGEKDlcgtEzangf7Hg0AMSjJZbyB7nWSpZQJ76ATD3VopyrwLabrswXu5G1X935h6e_bvpBrnrOTpIMn1OVuvx1L4AIFibTTfifwP-MlcR |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL3ahtDggY8OWBhsEULTXtI1jh0nEi_rxNbB2oethb4gy06cqRpLUZtKwBM_gd_IL-HaadINrQjxFinXrXJ9bR9fH58L8DomvtQBUV6UBtyjMs08mSnuxTrUhs0YJfb6WLcXdgb03ZANV-BNdRem1IeoE25mZNj52gxwk5DeX6iGqlHRREAdhKtwx1T0thuqs4V4FI_Kk0qzZw5YTCpdoRbZr5veWI1WMzlGjGrc-9VwJOUU3ZSV9S1uA6A38axdkI4ewqfqU0oeymVzVqhm8v0Plcf__dZH8GCOVN2DMrQew4rOG7BxkOMu_eqbu-ta7qhNyjfgbrt6Wj-sKsg14P41scMNOO-OrOgT_uakJOZqtxi7127a4ZuLiaWgFVN3lLvSTfREXo2SXz9-mtU2dU05l5nJ77mlAvUTGBy97R92vHlJBy9hnISeDrQfSKpkRAPC0hZjOg5wU6UTyUMfp1rdUjzKUsIJyYikWUK1UixUOqMskn7wFNbyca43wWVc8RQRTGxQZ6iimMWKZZlPZcuXCOsc2Ku6ViRzvXNTduOzKJWaiUCnCutUB17Vpl9KkY_bjDYxPoS8wMlXDM6JOfLFKdoUGHVg1wZN3VhOLg1hjjPxsXcsOG_Ts-MhFR8c2L4RVXUDk4LyEUk7sFWFmZhPJlP8e8NcQhzowE79FrvSHO3IXI9naGKUBBFdLrcwwDli9C8WFHuAo9FyC96iNI44ceBZOQIW3oqM4ivDtns2jpe7UbRP-vbh-b-b7sB6p989FacnvfdbcK-k7BjO6QtYKyYz_RJxYaG27fD_DUGFWyw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL3ahvh64KMDFgZbhNC0l3SJY8eJeFo3ug1YhbZ19AHJshNnqsbSqU0l4ImfwG_kl3DtNN2KVoR4i5TrVrm-vj62j88FeJ2QQOqQKC_OQu5RmeWezBX3Eh1pw2aMU3t97LAT7Xfpux7rLcCb-i5MpQ8x3XAzI8PmazPAL7N860o0VPXLJuLpMFqEWzTyYxPSu0dX2lE8rg4qzZI5ZAmpZYV8sjVtOjMZLeZygBDVePeroUjKEXopr8pb3IQ_Z-GsnY_aD-Fz_SUVDeW8OS5VM_3-h8jjf37qI3gwwanudhVYj2FBFw1Y3i5wjX7xzd1wLXPUbsk34Harfrq7U9ePa8D9a1KHy3B82LeST_ibw4qWq91y4F67Z4dvzoaWgFaO3H7hSjfVQ3nRT3_9-Gnm2sw1xVzGZnfPrfSnn0C3_fZkZ9-bFHTwUsZJ5OlQB6GkSsY0JCzzGdNJiEsqnUoeBZhota94nGeEE5ITSfOUaqVYpHROWSyD8CksFYNCr4DLuOIZ4pfEYM5IxQlLFMvzgEo_kAjqHNise1akE7VzU3Tji6h0molApwrrVAdeTU0vK4mPm4xWMDyEPMPUK7rHxBz4YoI25UUd2LAxM20sh-eGLseZ-NTZE5y36NFej4pTB9ZmgmrawGxABYijHVito0xMUskI_97wlhAFOrA-fYtdaQ52ZKEHYzQxOoKILedbGNgcM_oXC4o9wNFovgX3KU1iThx4Vg2AK2_FRu-VYdtNG8bz3ShaByf24fm_m67DnY-7bfHhoPN-Fe5VfB1DOH0BS-VwrF8iKCzVmh38vwEJVlnk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+response+to+environmental+gradients+in+a+ceramic-based+diffusion+system&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Wolfaardt%2C+G.M.&rft.au=Hendry%2C+M.J.&rft.au=Birkham%2C+T.&rft.au=Bressel%2C+A.&rft.date=2008-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=100&rft.issue=1&rft.spage=141&rft.epage=149&rft_id=info:doi/10.1002%2Fbit.21736&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_77B4RGX4_V |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |