Microbial response to environmental gradients in a ceramic-based diffusion system

A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 100; no. 1; pp. 141 - 149
Main Authors Wolfaardt, G.M, Hendry, M.J, Birkham, T, Bressel, A, Gardner, M.N, Sousa, A.J, Korber, D.R, Pilaski, M
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.05.2008
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0006-3592
1097-0290
1097-0290
DOI10.1002/bit.21736

Cover

Loading…
Abstract A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. Biotechnol. Bioeng. 2008;100: 141-149.
AbstractList A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel.
A solid, porous matrix was used to establish steady‐state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two‐dimensional, finite‐element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid–liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid–liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long‐term investigations, making this approach preferable to conventional gel‐stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. Biotechnol. Bioeng. 2008;100: 141–149. © 2008 Wiley Periodicals, Inc.
A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel.A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel.
A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. Biotechnol. Bioeng. 2008;100: 141-149.
A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or antimicrobial agents could be quantified. This technique relies on the development of spatially defined concentration gradients across a ceramic plate resulting from the diffusion of solutes through the porous ceramic matrix. A two-dimensional, finite-element numerical transport model was used to predict the establishment of concentration profiles, after which concentration profiles of conservative tracers were quantified fluorometrically and chemically at the solid-liquid interface to verify the simulated profiles. Microbial growth responses to nutrient, hypochloride, and antimicrobial concentration gradients were then quantified using epifluorescent or scanning confocal laser microscopy. The observed microbial response verified the establishment and maintenance of stable concentration gradients along the solid-liquid interface. These results indicate the ceramic diffusion system has potential for the isolation of heterogeneous microbial communities as well as for testing the efficacy of antimicrobial agents. In addition, the durability of the solid matrix allowed long-term investigations, making this approach preferable to conventional gel-stabilized systems that are impeded by erosion as well as expansion or shrinkage of the gel. [PUBLICATION ABSTRACT]
Author Bressel, A.
Sousa, A.J.
Gardner, M.N.
Korber, D.R.
Wolfaardt, G.M.
Hendry, M.J.
Birkham, T.
Pilaski, M.
Author_xml – sequence: 1
  fullname: Wolfaardt, G.M
– sequence: 2
  fullname: Hendry, M.J
– sequence: 3
  fullname: Birkham, T
– sequence: 4
  fullname: Bressel, A
– sequence: 5
  fullname: Gardner, M.N
– sequence: 6
  fullname: Sousa, A.J
– sequence: 7
  fullname: Korber, D.R
– sequence: 8
  fullname: Pilaski, M
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20271326$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18175358$$D View this record in MEDLINE/PubMed
BookMark eNqF0k1v1DAQBmALFdFt4cAfgAgJJA5p_W3n2FawVCogoAVu1iSZVC6Js9hZYP89LrstUiXYUxL5mRk58-6RnTAGJOQxoweMUn5Y--mAMyP0PTJjtDIl5RXdITNKqS6Fqvgu2UvpKn8aq_UDssssM0ooOyMf3vomjrWHvoiYFmNIWExjgeGHj2MYMEz55DJC6_NrKnwooGgwwuCbsoaEbdH6rlsmP4YirdKEw0Nyv4M-4aPNc59cvH51fvKmPHs_Pz05OisbZbguUSATIGuwUnDVUqWwElZzbMBo1raItDa2a7nhvOMgu0ZiXStdYyeVBSb2yYt130Ucvy8xTW7wqcG-h4DjMjlDpays4VuhzPOM5HYrFDwrJeVWyGmlFNXX8NkdeDUuY8i_xXEmjKZ5akZPNmhZD9i6RfQDxJW7WVIGzzcAUgN9FyE0Pt06TrlhguvsXq5d3mhKEbu_rai7DorLQXF_gpLt4R3b-AmmvMYpgu__V_HT97j6d2t3fHp-U1GuK3zOxa_bCojfnDbCKPfl3dwZcyw_zr9K9zn7p2vfwejgMuY7XnzilAlKrWU5IeI3lSnlLw
CODEN BIBIAU
CitedBy_id crossref_primary_10_1039_C6LC01101B
crossref_primary_10_1063_1_4968522
crossref_primary_10_1089_dst_2012_0003
crossref_primary_10_1128_AEM_00070_10
crossref_primary_10_1021_acs_langmuir_6b03889
crossref_primary_10_1038_ismej_2017_184
crossref_primary_10_1063_1_4928296
crossref_primary_10_1111_j_1365_2672_2010_04894_x
crossref_primary_10_1139_cjm_2014_0815
crossref_primary_10_1139_W09_075
crossref_primary_10_1371_journal_pcbi_1003870
crossref_primary_10_1038_s41396_020_00886_7
crossref_primary_10_1039_C8AY01513A
crossref_primary_10_1063_1_5005932
crossref_primary_10_1128_AEM_00313_08
Cites_doi 10.1016/0168-1605(95)00077-1
10.1016/j.mimet.2005.06.001
10.1111/j.1462-2920.2004.00605.x
10.1016/j.bmc.2006.08.021
10.1016/S0043-1354(97)00122-X
10.1126/science.125.3240.196
10.1099/00221287-134-1-107
10.1093/jac/dkh477
10.1002/(SICI)1097-0290(19970705)55:1<191::AID-BIT20>3.0.CO;2-O
10.1128/aem.59.8.2388-2396.1993
10.1016/j.ibiod.2005.11.002
10.1016/j.ijfoodmicro.2004.04.009
10.1128/9781555815882.ch9
10.1002/j.1875-9114.1997.tb03712.x
10.1080/03067319608045562
10.2166/wst.2004.0875
10.1111/j.1365-2389.1991.tb00093.x
10.1111/j.1574-6968.1986.tb01826.x
10.1139/m97-076
10.1080/01490459709378039
10.1146/annurev.mi.39.100185.001211
10.1111/j.1574-6941.1997.tb00410.x
10.1029/91WR02560
10.1073/pnas.111143098
10.1128/AAC.40.12.2859
10.1023/A:1000166400935
10.1006/fmic.1997.0103
10.1016/S0891-5520(05)70390-1
10.1139/m97-023
10.1093/jac/dkh339
10.1128/aem.63.6.2432-2438.1997
10.1139/m73-008
10.1128/AAC.48.4.1402-1405.2004
10.1016/S0378-1135(96)01256-4
ContentType Journal Article
Copyright Copyright © 2008 Wiley Periodicals, Inc.
2008 INIST-CNRS
Copyright 2008 Wiley Periodicals, Inc.
Copyright John Wiley and Sons, Limited May 1, 2008
Copyright_xml – notice: Copyright © 2008 Wiley Periodicals, Inc.
– notice: 2008 INIST-CNRS
– notice: Copyright 2008 Wiley Periodicals, Inc.
– notice: Copyright John Wiley and Sons, Limited May 1, 2008
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7S9
L.6
7X8
DOI 10.1002/bit.21736
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
CrossRef
MEDLINE - Academic

MEDLINE
Solid State and Superconductivity Abstracts

Materials Research Database
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 149
ExternalDocumentID 1459080841
18175358
20271326
10_1002_bit_21736
BIT21736
ark_67375_WNG_77B4RGX4_V
US201300881055
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AI.
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XFK
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7S9
L.6
7X8
ID FETCH-LOGICAL-c5726-e3e13a4ba84325d055e93862eca761ddee0b78fd2722f2a4fc4ebb56bef458a13
IEDL.DBID DR2
ISSN 0006-3592
1097-0290
IngestDate Fri Jul 11 05:42:58 EDT 2025
Thu Jul 10 17:50:56 EDT 2025
Fri Jul 11 03:44:19 EDT 2025
Fri Jul 11 08:51:57 EDT 2025
Sat Aug 16 22:51:17 EDT 2025
Thu Apr 03 06:55:58 EDT 2025
Mon Jul 21 09:13:33 EDT 2025
Tue Jul 01 03:28:23 EDT 2025
Thu Apr 24 23:00:09 EDT 2025
Wed Jan 22 17:00:02 EST 2025
Wed Oct 30 09:53:16 EDT 2024
Wed Dec 27 19:20:32 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gradient
enrichment of degradative communities
Biofilm
antimicrobial testing
Microorganism
Ceramic materials
Antimicrobial agent
environmental gradients
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright 2008 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5726-e3e13a4ba84325d055e93862eca761ddee0b78fd2722f2a4fc4ebb56bef458a13
Notes http://dx.doi.org/10.1002/bit.21736
istex:D787E91AF0D46974390355C3830BBD7BEA712BF2
ark:/67375/WNG-77B4RGX4-V
ArticleID:BIT21736
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PMID 18175358
PQID 213760283
PQPubID 48814
PageCount 9
ParticipantIDs proquest_miscellaneous_70449872
proquest_miscellaneous_47617428
proquest_miscellaneous_32428544
proquest_miscellaneous_20955064
proquest_journals_213760283
pubmed_primary_18175358
pascalfrancis_primary_20271326
crossref_primary_10_1002_bit_21736
crossref_citationtrail_10_1002_bit_21736
wiley_primary_10_1002_bit_21736_BIT21736
istex_primary_ark_67375_WNG_77B4RGX4_V
fao_agris_US201300881055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 May 2008
PublicationDateYYYYMMDD 2008-05-01
PublicationDate_xml – month: 05
  year: 2008
  text: 1 May 2008
  day: 01
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: Wiley Subscription Services, Inc
References Lebaron P, Bauda P, Lett MC, Duval-Iflah Y, Simonet P, Jacq E, Frank N, Roux B, Baleux B, Faurie G, Hubert JC, Normand P, Prieur D, Schmitt S, Block JC. 1997. Recombinant plasmid mobilization between E. coli strains in seven sterile microcosms. Can J Microbiol 43: 534-540.
Wolfaardt GM, Lawrence JR, Hendry MJ, Robarts RD, Caldwell DE. 1993. Development of steady-state diffusion gradients for the cultivation of degradative microbial consortia. Appl Environ Microbiol 59: 2388-2396.
Van Der Meer JR. 1997. Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Antonie Van Leeuwenhoek 71: 159-178.
Kuhlmann B, Schottler U. 1996. Influence of different redox conditions on the biodegradation of the pesticide metabolites phenol and chlorophenols. Int J Anal Chem 65: 289-295.
Thomas LV, Wimpenny JWT. 1996. Competition between Salmonella and Pseudomonas species growing in and on agar, as affected by pH, sodium chloride concentration and temperature. Int J Food Microbiol 29: 361-370.
Tiller JC, Liao C, Lewis K, Klibanov AM. 2001. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 98: 5981-5985.
Widman MT, Emerson D, Chiu CC, Worden RM. 1997. Modeling microbial chemotaxis in a diffusion gradient chamber. Biotechnol Bioeng 55: 191-205.
Speakman AJ, Binns SH, Dawson S, Hart CA, Gaskell RM. 1997. Antimicrobial susceptibility of Bordetella bronchiseptica isolates from cats and a comparison of the agar dilution and E-test methods. Vet Microbiol 54: 63-72.
Deleo PC, Baveye P. 1997. Factors affecting protozoan predation of bacteria clogging laboratory aquifer microcosms. Geomicrobiol J 14: 127-149.
Lear JC, Maillard JY, Dettmar PW, Goddard PA, Russell AD. 2006. Chloroxylenol- and triclosan-tolerant bacteria from industrial sources-susceptibility to antibiotics and other biocides. Int Biodeterior Biodegrad 57: 51-56.
Drago L, Vecchi ED, Nicola L, Colombo A, Gismondo MR. 2004. Selection of resistance of telithromycin against Haemophilus influenzae, Moraxella catarrhalis and streptococci in comparison with macrolides. J Antimicrob Chemother 54: 542-545.
Bathe S, Mohan TVK, Wuertz S, Hausner M. 2004. Bioaugmentation of a sequencing batch biofilm reactor by horizontal gene transfer. Water Sci Technol 49: 337-344.
Wimpenny JWT, Gest H, Favinger JL. 1986. The use of two-dimensional gradient plates in determining the responses in non-sulphur purple bacteria to pH and NaCl concentration. FEMS Microbiol Lett 37: 367-371.
Caldwell DE, Hirsch P. 1973. Growth of microorganisms in two-dimensional steady-state diffusion gradients. Can J Microbiol 19: 53-58.
Møller S, Korber DR, Wolfaardt GM, Caldwell DE. 1997. Impact of nutrient composition on a degradative biofilm community. Appl Environ Microbiol 63: 2432-2438.
Sudicky EA, McLaren RG. 1992. The Laplace transform Galerkin technique for large-scale simulation of mass transport in discretely fractured porous formations. Water Resour Res 28: 499-514.
Winniczuk PP, Parish ME. 1997. Minimum inhibitory concentrations of antimicrobials against micro-organisms related to citrus juice. Food Microbiol 14: 373-381.
Rossi S, Azghani A, Omri A. 2004. Antimicrobial efficacy of a new antibiotic-loaded poly(hydroxybutyric-co-hydroxyvaleric acid) controlled release system. J Antimicrob Chemother 54: 1013-1018.
Garrison MW, Anderson DE, Campbell DM, Carroll KC, Malone CL, Anderson JD, Hollis RJ, Pfaller MA. 1996. Stenotrophomonas maltophilia: Emergence of multidrug-resistant strains during therapy and in an in vitro pharmacodynamic chamber model. Antimicrob Agents Chemother 40: 2859-2864.
Lawrence JR, Kwong YTJ, Swerhone GDW. 1997. Colonization and weathering of natural sulfide mineral assemblages by Thiobacillus ferrooxidans. Can J Microbiol 43: 178-188.
Emerson D, Breznak JA. 1997. The response of microbial populations from oil-brine contaminated soil to gradients of NaCl and sodium p-toluate in a diffusion gradient chamber. FEMS Microbiol Ecol 23: 285-300.
Gieffers J, Rupp J, Gebert A, Solbach W, Klinger M. 2004. First-choice antibiotics at subinhibitory concentrations induce persistence of Chlamydia pneumoniae. Antimicrob Agents Chemother 48: 1402-1405.
Badawi AM, Azzam EMS, Morsy SMY. 2006. Surface and biocidal activity of some synthesized metallo azobenzene isothiouronium salts. Bioord Med Chem 14: 8661-8665.
Grossman J, Udluft P. 1991. The extraction of soil water by the suction-cup method; a review. J Soil Sci 42: 83-93.
Hamilton WA. 1985. Sulphate-reducing bacteria and anaerobic corrosion. Ann Rev Microbiol 39: 195-217.
Weinberg ED. 1956. Double-gradient agar plates. Science 125: 196.
Nasar-Abbas SM, Halkman AK. 2004. Antimicrobial effect of water extract of sumac (Rhus coriaria L.) on the growth of some food borne bacteria including pathogens. Int J Food Microbiol 97: 63-69.
Penzak SR, Abate BR. 1997. Stenotrophomonas (Xanthomonas) maltophilia: A multidrug-resistant nosocomial pathogen. Pharmacotherapy 17: 293-301.
Bokhamy M, Deront M, Adler N, Peringer P. 1997. Survival and activity of Comamonas testosteroni in mixed population. Water Res 31: 2802-2810.
Lambertsen L, Sternberg K, Molin S. 2004. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol 6: 726-732.
Choi KH, Kumar A, Schweizer HP. 2006. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: Application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Met 64: 391-397.
Ben-Omar N, Arias JM, Gonzalez-Munoz MT. 1997. Extracellular bacterial mineralization within the context of geomicrobiology. Microbiologia (Madrid) 13: 161-172.
Lorenz MG, Aardema BW, Wackernagel W. 1988. Highly efficient genetic transformation of Bacillus subtilis attached to sand grains. J Gen Microbiol 134: 107-112.
Jorgensen JH. 1997. Laboratory issues in the detection and reporting of antibacterial resistance. Infect Dis Clin N Am 11: 785-786.
1997; 43
2006; 57
2004; 49
1997; 63
2004; 48
2006; 14
1997; 23
1986; 37
1973; 19
1997
2004; 6
2007
1995
1991
2004; 54
1993; 59
1985; 39
2004; 97
1996; 29
2006; 64
1997; 71
1997; 11
1997; 55
1997; 54
1997; 31
1997; 14
1991; 42
1997; 13
1992; 28
1988; 134
1997; 17
1996; 40
1996; 65
1956; 125
2001; 98
Sudicky EA (e_1_2_1_28_1) 1991
Wolfaardt GM (e_1_2_1_38_1) 2007
e_1_2_1_20_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_22_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_26_1
Wood P (e_1_2_1_39_1) 1997
Møller S (e_1_2_1_23_1) 1997; 63
e_1_2_1_29_1
Ben‐Omar N (e_1_2_1_4_1) 1997; 13
e_1_2_1_7_1
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_14_1
e_1_2_1_37_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – reference: Møller S, Korber DR, Wolfaardt GM, Caldwell DE. 1997. Impact of nutrient composition on a degradative biofilm community. Appl Environ Microbiol 63: 2432-2438.
– reference: Drago L, Vecchi ED, Nicola L, Colombo A, Gismondo MR. 2004. Selection of resistance of telithromycin against Haemophilus influenzae, Moraxella catarrhalis and streptococci in comparison with macrolides. J Antimicrob Chemother 54: 542-545.
– reference: Hamilton WA. 1985. Sulphate-reducing bacteria and anaerobic corrosion. Ann Rev Microbiol 39: 195-217.
– reference: Bokhamy M, Deront M, Adler N, Peringer P. 1997. Survival and activity of Comamonas testosteroni in mixed population. Water Res 31: 2802-2810.
– reference: Lorenz MG, Aardema BW, Wackernagel W. 1988. Highly efficient genetic transformation of Bacillus subtilis attached to sand grains. J Gen Microbiol 134: 107-112.
– reference: Thomas LV, Wimpenny JWT. 1996. Competition between Salmonella and Pseudomonas species growing in and on agar, as affected by pH, sodium chloride concentration and temperature. Int J Food Microbiol 29: 361-370.
– reference: Deleo PC, Baveye P. 1997. Factors affecting protozoan predation of bacteria clogging laboratory aquifer microcosms. Geomicrobiol J 14: 127-149.
– reference: Garrison MW, Anderson DE, Campbell DM, Carroll KC, Malone CL, Anderson JD, Hollis RJ, Pfaller MA. 1996. Stenotrophomonas maltophilia: Emergence of multidrug-resistant strains during therapy and in an in vitro pharmacodynamic chamber model. Antimicrob Agents Chemother 40: 2859-2864.
– reference: Wimpenny JWT, Gest H, Favinger JL. 1986. The use of two-dimensional gradient plates in determining the responses in non-sulphur purple bacteria to pH and NaCl concentration. FEMS Microbiol Lett 37: 367-371.
– reference: Winniczuk PP, Parish ME. 1997. Minimum inhibitory concentrations of antimicrobials against micro-organisms related to citrus juice. Food Microbiol 14: 373-381.
– reference: Rossi S, Azghani A, Omri A. 2004. Antimicrobial efficacy of a new antibiotic-loaded poly(hydroxybutyric-co-hydroxyvaleric acid) controlled release system. J Antimicrob Chemother 54: 1013-1018.
– reference: Widman MT, Emerson D, Chiu CC, Worden RM. 1997. Modeling microbial chemotaxis in a diffusion gradient chamber. Biotechnol Bioeng 55: 191-205.
– reference: Tiller JC, Liao C, Lewis K, Klibanov AM. 2001. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA 98: 5981-5985.
– reference: Ben-Omar N, Arias JM, Gonzalez-Munoz MT. 1997. Extracellular bacterial mineralization within the context of geomicrobiology. Microbiologia (Madrid) 13: 161-172.
– reference: Caldwell DE, Hirsch P. 1973. Growth of microorganisms in two-dimensional steady-state diffusion gradients. Can J Microbiol 19: 53-58.
– reference: Weinberg ED. 1956. Double-gradient agar plates. Science 125: 196.
– reference: Bathe S, Mohan TVK, Wuertz S, Hausner M. 2004. Bioaugmentation of a sequencing batch biofilm reactor by horizontal gene transfer. Water Sci Technol 49: 337-344.
– reference: Van Der Meer JR. 1997. Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Antonie Van Leeuwenhoek 71: 159-178.
– reference: Kuhlmann B, Schottler U. 1996. Influence of different redox conditions on the biodegradation of the pesticide metabolites phenol and chlorophenols. Int J Anal Chem 65: 289-295.
– reference: Speakman AJ, Binns SH, Dawson S, Hart CA, Gaskell RM. 1997. Antimicrobial susceptibility of Bordetella bronchiseptica isolates from cats and a comparison of the agar dilution and E-test methods. Vet Microbiol 54: 63-72.
– reference: Penzak SR, Abate BR. 1997. Stenotrophomonas (Xanthomonas) maltophilia: A multidrug-resistant nosocomial pathogen. Pharmacotherapy 17: 293-301.
– reference: Lawrence JR, Kwong YTJ, Swerhone GDW. 1997. Colonization and weathering of natural sulfide mineral assemblages by Thiobacillus ferrooxidans. Can J Microbiol 43: 178-188.
– reference: Grossman J, Udluft P. 1991. The extraction of soil water by the suction-cup method; a review. J Soil Sci 42: 83-93.
– reference: Nasar-Abbas SM, Halkman AK. 2004. Antimicrobial effect of water extract of sumac (Rhus coriaria L.) on the growth of some food borne bacteria including pathogens. Int J Food Microbiol 97: 63-69.
– reference: Wolfaardt GM, Lawrence JR, Hendry MJ, Robarts RD, Caldwell DE. 1993. Development of steady-state diffusion gradients for the cultivation of degradative microbial consortia. Appl Environ Microbiol 59: 2388-2396.
– reference: Badawi AM, Azzam EMS, Morsy SMY. 2006. Surface and biocidal activity of some synthesized metallo azobenzene isothiouronium salts. Bioord Med Chem 14: 8661-8665.
– reference: Emerson D, Breznak JA. 1997. The response of microbial populations from oil-brine contaminated soil to gradients of NaCl and sodium p-toluate in a diffusion gradient chamber. FEMS Microbiol Ecol 23: 285-300.
– reference: Gieffers J, Rupp J, Gebert A, Solbach W, Klinger M. 2004. First-choice antibiotics at subinhibitory concentrations induce persistence of Chlamydia pneumoniae. Antimicrob Agents Chemother 48: 1402-1405.
– reference: Jorgensen JH. 1997. Laboratory issues in the detection and reporting of antibacterial resistance. Infect Dis Clin N Am 11: 785-786.
– reference: Choi KH, Kumar A, Schweizer HP. 2006. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: Application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Met 64: 391-397.
– reference: Lambertsen L, Sternberg K, Molin S. 2004. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol 6: 726-732.
– reference: Lebaron P, Bauda P, Lett MC, Duval-Iflah Y, Simonet P, Jacq E, Frank N, Roux B, Baleux B, Faurie G, Hubert JC, Normand P, Prieur D, Schmitt S, Block JC. 1997. Recombinant plasmid mobilization between E. coli strains in seven sterile microcosms. Can J Microbiol 43: 534-540.
– reference: Lear JC, Maillard JY, Dettmar PW, Goddard PA, Russell AD. 2006. Chloroxylenol- and triclosan-tolerant bacteria from industrial sources-susceptibility to antibiotics and other biocides. Int Biodeterior Biodegrad 57: 51-56.
– reference: Sudicky EA, McLaren RG. 1992. The Laplace transform Galerkin technique for large-scale simulation of mass transport in discretely fractured porous formations. Water Resour Res 28: 499-514.
– volume: 59
  start-page: 2388
  year: 1993
  end-page: 2396
  article-title: Development of steady‐state diffusion gradients for the cultivation of degradative microbial consortia
  publication-title: Appl Environ Microbiol
– volume: 43
  start-page: 178
  year: 1997
  end-page: 188
  article-title: Colonization and weathering of natural sulfide mineral assemblages by
  publication-title: Can J Microbiol
– start-page: 101
  year: 2007
  end-page: 111
– volume: 14
  start-page: 127
  year: 1997
  end-page: 149
  article-title: Factors affecting protozoan predation of bacteria clogging laboratory aquifer microcosms
  publication-title: Geomicrobiol J
– volume: 37
  start-page: 367
  year: 1986
  end-page: 371
  article-title: The use of two‐dimensional gradient plates in determining the responses in non‐sulphur purple bacteria to pH and NaCl concentration
  publication-title: FEMS Microbiol Lett
– volume: 48
  start-page: 1402
  year: 2004
  end-page: 1405
  article-title: First‐choice antibiotics at subinhibitory concentrations induce persistence of
  publication-title: Antimicrob Agents Chemother
– volume: 31
  start-page: 2802
  year: 1997
  end-page: 2810
  article-title: Survival and activity of in mixed population
  publication-title: Water Res
– volume: 97
  start-page: 63
  year: 2004
  end-page: 69
  article-title: Antimicrobial effect of water extract of sumac ( L.) on the growth of some food borne bacteria including pathogens
  publication-title: Int J Food Microbiol
– volume: 43
  start-page: 534
  year: 1997
  end-page: 540
  article-title: Recombinant plasmid mobilization between strains in seven sterile microcosms
  publication-title: Can J Microbiol
– volume: 54
  start-page: 1013
  year: 2004
  end-page: 1018
  article-title: Antimicrobial efficacy of a new antibiotic‐loaded poly(hydroxybutyric‐co‐hydroxyvaleric acid) controlled release system
  publication-title: J Antimicrob Chemother
– volume: 55
  start-page: 191
  year: 1997
  end-page: 205
  article-title: Modeling microbial chemotaxis in a diffusion gradient chamber
  publication-title: Biotechnol Bioeng
– volume: 57
  start-page: 51
  year: 2006
  end-page: 56
  article-title: Chloroxylenol‐ and triclosan‐tolerant bacteria from industrial sources—susceptibility to antibiotics and other biocides
  publication-title: Int Biodeterior Biodegrad
– volume: 49
  start-page: 337
  year: 2004
  end-page: 344
  article-title: Bioaugmentation of a sequencing batch biofilm reactor by horizontal gene transfer
  publication-title: Water Sci Technol
– volume: 14
  start-page: 373
  year: 1997
  end-page: 381
  article-title: Minimum inhibitory concentrations of antimicrobials against micro‐organisms related to citrus juice
  publication-title: Food Microbiol
– volume: 65
  start-page: 289
  year: 1996
  end-page: 295
  article-title: Influence of different redox conditions on the biodegradation of the pesticide metabolites phenol and chlorophenols
  publication-title: Int J Anal Chem
– volume: 134
  start-page: 107
  year: 1988
  end-page: 112
  article-title: Highly efficient genetic transformation of attached to sand grains
  publication-title: J Gen Microbiol
– start-page: 227
  year: 1997
  end-page: 234
– volume: 98
  start-page: 5981
  year: 2001
  end-page: 5985
  article-title: Designing surfaces that kill bacteria on contact
  publication-title: Proc Natl Acad Sci USA
– volume: 28
  start-page: 499
  year: 1992
  end-page: 514
  article-title: The Laplace transform Galerkin technique for large‐scale simulation of mass transport in discretely fractured porous formations
  publication-title: Water Resour Res
– volume: 64
  start-page: 391
  year: 2006
  end-page: 397
  article-title: A 10‐min method for preparation of highly electrocompetent cells: Application for DNA fragment transfer between chromosomes and plasmid transformation
  publication-title: J Microbiol Met
– volume: 14
  start-page: 8661
  year: 2006
  end-page: 8665
  article-title: Surface and biocidal activity of some synthesized metallo azobenzene isothiouronium salts
  publication-title: Bioord Med Chem
– volume: 54
  start-page: 542
  year: 2004
  end-page: 545
  article-title: Selection of resistance of telithromycin against , and streptococci in comparison with macrolides
  publication-title: J Antimicrob Chemother
– start-page: 1
  year: 1991
  end-page: 37
– volume: 19
  start-page: 53
  year: 1973
  end-page: 58
  article-title: Growth of microorganisms in two‐dimensional steady‐state diffusion gradients
  publication-title: Can J Microbiol
– volume: 29
  start-page: 361
  year: 1996
  end-page: 370
  article-title: Competition between and species growing in and on agar, as affected by pH, sodium chloride concentration and temperature
  publication-title: Int J Food Microbiol
– volume: 71
  start-page: 159
  year: 1997
  end-page: 178
  article-title: Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds
  publication-title: Antonie Van Leeuwenhoek
– volume: 63
  start-page: 2432
  year: 1997
  end-page: 2438
  article-title: Impact of nutrient composition on a degradative biofilm community
  publication-title: Appl Environ Microbiol
– volume: 23
  start-page: 285
  year: 1997
  end-page: 300
  article-title: The response of microbial populations from oil‐brine contaminated soil to gradients of NaCl and sodium p‐toluate in a diffusion gradient chamber
  publication-title: FEMS Microbiol Ecol
– volume: 39
  start-page: 195
  year: 1985
  end-page: 217
  article-title: Sulphate‐reducing bacteria and anaerobic corrosion
  publication-title: Ann Rev Microbiol
– volume: 42
  start-page: 83
  year: 1991
  end-page: 93
  article-title: The extraction of soil water by the suction‐cup method; a review
  publication-title: J Soil Sci
– volume: 54
  start-page: 63
  year: 1997
  end-page: 72
  article-title: Antimicrobial susceptibility of isolates from cats and a comparison of the agar dilution and E‐test methods
  publication-title: Vet Microbiol
– year: 1995
– volume: 125
  start-page: 196
  year: 1956
  article-title: Double‐gradient agar plates
  publication-title: Science
– volume: 40
  start-page: 2859
  year: 1996
  end-page: 2864
  article-title: : Emergence of multidrug‐resistant strains during therapy and in an in vitro pharmacodynamic chamber model
  publication-title: Antimicrob Agents Chemother
– volume: 13
  start-page: 161
  year: 1997
  end-page: 172
  article-title: Extracellular bacterial mineralization within the context of geomicrobiology
  publication-title: Microbiologia (Madrid)
– volume: 6
  start-page: 726
  year: 2004
  end-page: 732
  article-title: Mini‐Tn7 transposons for site‐specific tagging of bacteria with fluorescent proteins
  publication-title: Environ Microbiol
– volume: 17
  start-page: 293
  year: 1997
  end-page: 301
  article-title: : A multidrug‐resistant nosocomial pathogen
  publication-title: Pharmacotherapy
– volume: 11
  start-page: 785
  year: 1997
  end-page: 786
  article-title: Laboratory issues in the detection and reporting of antibacterial resistance
  publication-title: Infect Dis Clin N Am
– ident: e_1_2_1_30_1
  doi: 10.1016/0168-1605(95)00077-1
– ident: e_1_2_1_7_1
  doi: 10.1016/j.mimet.2005.06.001
– ident: e_1_2_1_17_1
  doi: 10.1111/j.1462-2920.2004.00605.x
– ident: e_1_2_1_21_1
– ident: e_1_2_1_2_1
  doi: 10.1016/j.bmc.2006.08.021
– ident: e_1_2_1_5_1
  doi: 10.1016/S0043-1354(97)00122-X
– ident: e_1_2_1_33_1
  doi: 10.1126/science.125.3240.196
– ident: e_1_2_1_22_1
  doi: 10.1099/00221287-134-1-107
– ident: e_1_2_1_26_1
  doi: 10.1093/jac/dkh477
– ident: e_1_2_1_34_1
  doi: 10.1002/(SICI)1097-0290(19970705)55:1<191::AID-BIT20>3.0.CO;2-O
– start-page: 227
  volume-title: Biofilms: Community interactions and control
  year: 1997
  ident: e_1_2_1_39_1
– ident: e_1_2_1_37_1
  doi: 10.1128/aem.59.8.2388-2396.1993
– ident: e_1_2_1_19_1
  doi: 10.1016/j.ibiod.2005.11.002
– start-page: 1
  volume-title: User's guide to FRACTRAN
  year: 1991
  ident: e_1_2_1_28_1
– ident: e_1_2_1_24_1
  doi: 10.1016/j.ijfoodmicro.2004.04.009
– start-page: 101
  volume-title: Manual for environmental microbiology
  year: 2007
  ident: e_1_2_1_38_1
  doi: 10.1128/9781555815882.ch9
– ident: e_1_2_1_25_1
  doi: 10.1002/j.1875-9114.1997.tb03712.x
– ident: e_1_2_1_16_1
  doi: 10.1080/03067319608045562
– ident: e_1_2_1_3_1
  doi: 10.2166/wst.2004.0875
– ident: e_1_2_1_13_1
  doi: 10.1111/j.1365-2389.1991.tb00093.x
– ident: e_1_2_1_35_1
  doi: 10.1111/j.1574-6968.1986.tb01826.x
– ident: e_1_2_1_20_1
  doi: 10.1139/m97-076
– ident: e_1_2_1_8_1
  doi: 10.1080/01490459709378039
– ident: e_1_2_1_14_1
  doi: 10.1146/annurev.mi.39.100185.001211
– ident: e_1_2_1_10_1
  doi: 10.1111/j.1574-6941.1997.tb00410.x
– volume: 13
  start-page: 161
  year: 1997
  ident: e_1_2_1_4_1
  article-title: Extracellular bacterial mineralization within the context of geomicrobiology
  publication-title: Microbiologia (Madrid)
– ident: e_1_2_1_29_1
  doi: 10.1029/91WR02560
– ident: e_1_2_1_31_1
  doi: 10.1073/pnas.111143098
– ident: e_1_2_1_11_1
  doi: 10.1128/AAC.40.12.2859
– ident: e_1_2_1_32_1
  doi: 10.1023/A:1000166400935
– ident: e_1_2_1_36_1
  doi: 10.1006/fmic.1997.0103
– ident: e_1_2_1_15_1
  doi: 10.1016/S0891-5520(05)70390-1
– ident: e_1_2_1_18_1
  doi: 10.1139/m97-023
– ident: e_1_2_1_9_1
  doi: 10.1093/jac/dkh339
– volume: 63
  start-page: 2432
  year: 1997
  ident: e_1_2_1_23_1
  article-title: Impact of nutrient composition on a degradative biofilm community
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.63.6.2432-2438.1997
– ident: e_1_2_1_6_1
  doi: 10.1139/m73-008
– ident: e_1_2_1_12_1
  doi: 10.1128/AAC.48.4.1402-1405.2004
– ident: e_1_2_1_27_1
  doi: 10.1016/S0378-1135(96)01256-4
SSID ssj0007866
Score 1.9700269
Snippet A solid, porous matrix was used to establish steady-state concentration profiles upon which microbial responses to concentration gradients of nutrients or...
A solid, porous matrix was used to establish steady‐state concentration profiles upon which microbial responses to concentration gradients of nutrients or...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 141
SubjectTerms Antimicrobial agents
antimicrobial testing
biofilm
Biofilms
Biofilms - growth & development
Biological and medical sciences
Bioreactors - microbiology
Biotechnology
Cell Culture Techniques - instrumentation
Cell Culture Techniques - methods
Cell Proliferation
Ceramics
Computer Simulation
enrichment of degradative communities
Environmental gradient
environmental gradients
Flow Injection Analysis - instrumentation
Flow Injection Analysis - methods
Fundamental and applied biological sciences. Psychology
Microbial activity
Microbiology
Microfluidic Analytical Techniques - instrumentation
Microfluidic Analytical Techniques - methods
Microscopy
Models, Biological
Nutrient concentrations
Porous media
Solid modeling
Solutes
Ultrafiltration - instrumentation
Ultrafiltration - methods
Title Microbial response to environmental gradients in a ceramic-based diffusion system
URI https://api.istex.fr/ark:/67375/WNG-77B4RGX4-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.21736
https://www.ncbi.nlm.nih.gov/pubmed/18175358
https://www.proquest.com/docview/213760283
https://www.proquest.com/docview/20955064
https://www.proquest.com/docview/32428544
https://www.proquest.com/docview/47617428
https://www.proquest.com/docview/70449872
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXGJAQ88NEBC4NhITTtJV3j2HEintaJbSBtD9sKe0Cy7MSZqrEUtakEPPET-I38Eu61m3RFK0K8Rcp1q1xfXx_bx-cS8jpjkbYxM2FaxDLkuihDXRoZZjaxyGZMc3d97Og4ORzw9-fifIW8ae7CeH2IdsMNR4bL1zjAtZnszEVDzbDuAp6OUW4buVoIiE7m0lEy9eeUuGKORcYaVaEe22lbLsxFt0o9AoSKzv2KDEk9ASeVvrrFTfBzEc266Wj_AfnUfIhnoVx2p7Xp5t__0Hj8zy99SO7PYCrd9XH1iKzYqkPWditYol99o1vUEUfdjnyH3O43T3f2mvJxHXLvmtLhGjk9GjrFJ_jNsWflWlqP6LVrdvDmYuz4Z_WEDiuqaW7H-mqY__rxE6fagmItlylu7lEvP_2YDPbfnu0dhrN6DmEuJEtCG9so1tzolMdMFD0hbBbDisrmWiYR5FnbMzItCyYZK5nmZc6tMSIxtuQi1VH8hKxWo8quEyqkkQXAlwwhZ2LSTGRGlGXEdS_SgOkCst30rMpnYudYc-Oz8jLNTIFTlXNqQF61pl-8wsdNRusQHkpfQOZVg1OG572Qn7G6aEC2XMy0jfX4EtlyUqiPxwdKyj4_OTjn6kNANheCqm2A-08RwOiAbDRRpmaZZAJ_j7QlAIEBedm-ha7Ecx1d2dEUTFBGEKDlcgtEzangf7Hg0AMSjJZbyB7nWSpZQJ76ATD3VopyrwLabrswXu5G1X935h6e_bvpBrnrOTpIMn1OVuvx1L4AIFibTTfifwP-MlcR
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL3ahtDggY8OWBhsEULTXtI1jh0nEi_rxNbB2oethb4gy06cqRpLUZtKwBM_gd_IL-HaadINrQjxFinXrXJ9bR9fH58L8DomvtQBUV6UBtyjMs08mSnuxTrUhs0YJfb6WLcXdgb03ZANV-BNdRem1IeoE25mZNj52gxwk5DeX6iGqlHRREAdhKtwx1T0thuqs4V4FI_Kk0qzZw5YTCpdoRbZr5veWI1WMzlGjGrc-9VwJOUU3ZSV9S1uA6A38axdkI4ewqfqU0oeymVzVqhm8v0Plcf__dZH8GCOVN2DMrQew4rOG7BxkOMu_eqbu-ta7qhNyjfgbrt6Wj-sKsg14P41scMNOO-OrOgT_uakJOZqtxi7127a4ZuLiaWgFVN3lLvSTfREXo2SXz9-mtU2dU05l5nJ77mlAvUTGBy97R92vHlJBy9hnISeDrQfSKpkRAPC0hZjOg5wU6UTyUMfp1rdUjzKUsIJyYikWUK1UixUOqMskn7wFNbyca43wWVc8RQRTGxQZ6iimMWKZZlPZcuXCOsc2Ku6ViRzvXNTduOzKJWaiUCnCutUB17Vpl9KkY_bjDYxPoS8wMlXDM6JOfLFKdoUGHVg1wZN3VhOLg1hjjPxsXcsOG_Ts-MhFR8c2L4RVXUDk4LyEUk7sFWFmZhPJlP8e8NcQhzowE79FrvSHO3IXI9naGKUBBFdLrcwwDli9C8WFHuAo9FyC96iNI44ceBZOQIW3oqM4ivDtns2jpe7UbRP-vbh-b-b7sB6p989FacnvfdbcK-k7BjO6QtYKyYz_RJxYaG27fD_DUGFWyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL3ahvh64KMDFgZbhNC0l3SJY8eJeFo3ug1YhbZ19AHJshNnqsbSqU0l4ImfwG_kl3DtNN2KVoR4i5TrVrm-vj62j88FeJ2QQOqQKC_OQu5RmeWezBX3Eh1pw2aMU3t97LAT7Xfpux7rLcCb-i5MpQ8x3XAzI8PmazPAL7N860o0VPXLJuLpMFqEWzTyYxPSu0dX2lE8rg4qzZI5ZAmpZYV8sjVtOjMZLeZygBDVePeroUjKEXopr8pb3IQ_Z-GsnY_aD-Fz_SUVDeW8OS5VM_3-h8jjf37qI3gwwanudhVYj2FBFw1Y3i5wjX7xzd1wLXPUbsk34Harfrq7U9ePa8D9a1KHy3B82LeST_ibw4qWq91y4F67Z4dvzoaWgFaO3H7hSjfVQ3nRT3_9-Gnm2sw1xVzGZnfPrfSnn0C3_fZkZ9-bFHTwUsZJ5OlQB6GkSsY0JCzzGdNJiEsqnUoeBZhota94nGeEE5ITSfOUaqVYpHROWSyD8CksFYNCr4DLuOIZ4pfEYM5IxQlLFMvzgEo_kAjqHNise1akE7VzU3Tji6h0molApwrrVAdeTU0vK4mPm4xWMDyEPMPUK7rHxBz4YoI25UUd2LAxM20sh-eGLseZ-NTZE5y36NFej4pTB9ZmgmrawGxABYijHVito0xMUskI_97wlhAFOrA-fYtdaQ52ZKEHYzQxOoKILedbGNgcM_oXC4o9wNFovgX3KU1iThx4Vg2AK2_FRu-VYdtNG8bz3ShaByf24fm_m67DnY-7bfHhoPN-Fe5VfB1DOH0BS-VwrF8iKCzVmh38vwEJVlnk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+response+to+environmental+gradients+in+a+ceramic-based+diffusion+system&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Wolfaardt%2C+G.M.&rft.au=Hendry%2C+M.J.&rft.au=Birkham%2C+T.&rft.au=Bressel%2C+A.&rft.date=2008-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=100&rft.issue=1&rft.spage=141&rft.epage=149&rft_id=info:doi/10.1002%2Fbit.21736&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_77B4RGX4_V
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon