Machine Learning Glove Using Self‐Powered Conductive Superhydrophobic Triboelectric Textile for Gesture Recognition in VR/AR Applications
The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical linkage between human and machines. Using a glove as an intuitive and low‐cost HMI can expediently track the motions of human fingers, resulting in a stra...
Saved in:
Published in | Advanced science Vol. 7; no. 14; pp. 2000261 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.07.2020
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical linkage between human and machines. Using a glove as an intuitive and low‐cost HMI can expediently track the motions of human fingers, resulting in a straightforward communication media of human–machine interactions. When combining several triboelectric textile sensors and proper machine learning technique, it has great potential to realize complex gesture recognition with the minimalist‐designed glove for the comprehensive control in both real and virtual space. However, humidity or sweat may negatively affect the triboelectric output as well as the textile itself. Hence, in this work, a facile carbon nanotubes/thermoplastic elastomer (CNTs/TPE) coating approach is investigated in detail to achieve superhydrophobicity of the triboelectric textile for performance improvement. With great energy harvesting and human motion sensing capabilities, the glove using the superhydrophobic textile realizes a low‐cost and self‐powered interface for gesture recognition. By leveraging machine learning technology, various gesture recognition tasks are done in real time by using gestures to achieve highly accurate virtual reality/augmented reality (VR/AR) controls including gun shooting, baseball pitching, and flower arrangement, with minimized effect from sweat during operation.
With capabilities of humidity‐resistant and anti‐sweat, high‐accuracy complicated gesture recognition based on machine learning is realized using a low‐cost and self‐powered superhydrophobic glove human machine interface (HMI) with minimized sweat effect. With gesture recognition, the virtual reality/augmented reality (VR/AR) controls including shooting, baseball pitching, and floral arrangement are successfully demonstrated. |
---|---|
AbstractList | The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical linkage between human and machines. Using a glove as an intuitive and low‐cost HMI can expediently track the motions of human fingers, resulting in a straightforward communication media of human–machine interactions. When combining several triboelectric textile sensors and proper machine learning technique, it has great potential to realize complex gesture recognition with the minimalist‐designed glove for the comprehensive control in both real and virtual space. However, humidity or sweat may negatively affect the triboelectric output as well as the textile itself. Hence, in this work, a facile carbon nanotubes/thermoplastic elastomer (CNTs/TPE) coating approach is investigated in detail to achieve superhydrophobicity of the triboelectric textile for performance improvement. With great energy harvesting and human motion sensing capabilities, the glove using the superhydrophobic textile realizes a low‐cost and self‐powered interface for gesture recognition. By leveraging machine learning technology, various gesture recognition tasks are done in real time by using gestures to achieve highly accurate virtual reality/augmented reality (VR/AR) controls including gun shooting, baseball pitching, and flower arrangement, with minimized effect from sweat during operation.
With capabilities of humidity‐resistant and anti‐sweat, high‐accuracy complicated gesture recognition based on machine learning is realized using a low‐cost and self‐powered superhydrophobic glove human machine interface (HMI) with minimized sweat effect. With gesture recognition, the virtual reality/augmented reality (VR/AR) controls including shooting, baseball pitching, and floral arrangement are successfully demonstrated. Abstract The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical linkage between human and machines. Using a glove as an intuitive and low‐cost HMI can expediently track the motions of human fingers, resulting in a straightforward communication media of human–machine interactions. When combining several triboelectric textile sensors and proper machine learning technique, it has great potential to realize complex gesture recognition with the minimalist‐designed glove for the comprehensive control in both real and virtual space. However, humidity or sweat may negatively affect the triboelectric output as well as the textile itself. Hence, in this work, a facile carbon nanotubes/thermoplastic elastomer (CNTs/TPE) coating approach is investigated in detail to achieve superhydrophobicity of the triboelectric textile for performance improvement. With great energy harvesting and human motion sensing capabilities, the glove using the superhydrophobic textile realizes a low‐cost and self‐powered interface for gesture recognition. By leveraging machine learning technology, various gesture recognition tasks are done in real time by using gestures to achieve highly accurate virtual reality/augmented reality (VR/AR) controls including gun shooting, baseball pitching, and flower arrangement, with minimized effect from sweat during operation. The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical linkage between human and machines. Using a glove as an intuitive and low‐cost HMI can expediently track the motions of human fingers, resulting in a straightforward communication media of human–machine interactions. When combining several triboelectric textile sensors and proper machine learning technique, it has great potential to realize complex gesture recognition with the minimalist‐designed glove for the comprehensive control in both real and virtual space. However, humidity or sweat may negatively affect the triboelectric output as well as the textile itself. Hence, in this work, a facile carbon nanotubes/thermoplastic elastomer (CNTs/TPE) coating approach is investigated in detail to achieve superhydrophobicity of the triboelectric textile for performance improvement. With great energy harvesting and human motion sensing capabilities, the glove using the superhydrophobic textile realizes a low‐cost and self‐powered interface for gesture recognition. By leveraging machine learning technology, various gesture recognition tasks are done in real time by using gestures to achieve highly accurate virtual reality/augmented reality (VR/AR) controls including gun shooting, baseball pitching, and flower arrangement, with minimized effect from sweat during operation. The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical linkage between human and machines. Using a glove as an intuitive and low-cost HMI can expediently track the motions of human fingers, resulting in a straightforward communication media of human-machine interactions. When combining several triboelectric textile sensors and proper machine learning technique, it has great potential to realize complex gesture recognition with the minimalist-designed glove for the comprehensive control in both real and virtual space. However, humidity or sweat may negatively affect the triboelectric output as well as the textile itself. Hence, in this work, a facile carbon nanotubes/thermoplastic elastomer (CNTs/TPE) coating approach is investigated in detail to achieve superhydrophobicity of the triboelectric textile for performance improvement. With great energy harvesting and human motion sensing capabilities, the glove using the superhydrophobic textile realizes a low-cost and self-powered interface for gesture recognition. By leveraging machine learning technology, various gesture recognition tasks are done in real time by using gestures to achieve highly accurate virtual reality/augmented reality (VR/AR) controls including gun shooting, baseball pitching, and flower arrangement, with minimized effect from sweat during operation.The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical linkage between human and machines. Using a glove as an intuitive and low-cost HMI can expediently track the motions of human fingers, resulting in a straightforward communication media of human-machine interactions. When combining several triboelectric textile sensors and proper machine learning technique, it has great potential to realize complex gesture recognition with the minimalist-designed glove for the comprehensive control in both real and virtual space. However, humidity or sweat may negatively affect the triboelectric output as well as the textile itself. Hence, in this work, a facile carbon nanotubes/thermoplastic elastomer (CNTs/TPE) coating approach is investigated in detail to achieve superhydrophobicity of the triboelectric textile for performance improvement. With great energy harvesting and human motion sensing capabilities, the glove using the superhydrophobic textile realizes a low-cost and self-powered interface for gesture recognition. By leveraging machine learning technology, various gesture recognition tasks are done in real time by using gestures to achieve highly accurate virtual reality/augmented reality (VR/AR) controls including gun shooting, baseball pitching, and flower arrangement, with minimized effect from sweat during operation. |
Author | Zhang, Zixuan Wen, Feng Shi, Qiongfeng Zhang, Ting Zhu, Minglu Sun, Zhongda Lee, Chengkuo He, Tianyiyi Li, Lianhui |
AuthorAffiliation | 2 National University of Singapore Suzhou Research Institute (NUSRI) Suzhou Industrial Park Suzhou 215123 China 5 i‐Lab Suzhou Institute of Nano‐Tech and Nano‐Bionics Chinese Academy of Sciences (CAS) Suzhou 215123 China 1 Department of Electrical & Computer Engineering National University of Singapore 4 Engineering Drive 3 Singapore 117576 Singapore 3 Center for Intelligent Sensors and MEMS National University of Singapore 5 Engineering Drive 1 Singapore 117608 Singapore 4 Hybrid Integrated Flexible Electronic Systems (HIFES) 5 Engineering Drive 1 Singapore 117608 Singapore |
AuthorAffiliation_xml | – name: 5 i‐Lab Suzhou Institute of Nano‐Tech and Nano‐Bionics Chinese Academy of Sciences (CAS) Suzhou 215123 China – name: 1 Department of Electrical & Computer Engineering National University of Singapore 4 Engineering Drive 3 Singapore 117576 Singapore – name: 3 Center for Intelligent Sensors and MEMS National University of Singapore 5 Engineering Drive 1 Singapore 117608 Singapore – name: 4 Hybrid Integrated Flexible Electronic Systems (HIFES) 5 Engineering Drive 1 Singapore 117608 Singapore – name: 2 National University of Singapore Suzhou Research Institute (NUSRI) Suzhou Industrial Park Suzhou 215123 China |
Author_xml | – sequence: 1 givenname: Feng surname: Wen fullname: Wen, Feng organization: Hybrid Integrated Flexible Electronic Systems (HIFES) – sequence: 2 givenname: Zhongda surname: Sun fullname: Sun, Zhongda organization: Hybrid Integrated Flexible Electronic Systems (HIFES) – sequence: 3 givenname: Tianyiyi surname: He fullname: He, Tianyiyi organization: Hybrid Integrated Flexible Electronic Systems (HIFES) – sequence: 4 givenname: Qiongfeng surname: Shi fullname: Shi, Qiongfeng organization: Hybrid Integrated Flexible Electronic Systems (HIFES) – sequence: 5 givenname: Minglu surname: Zhu fullname: Zhu, Minglu organization: Hybrid Integrated Flexible Electronic Systems (HIFES) – sequence: 6 givenname: Zixuan surname: Zhang fullname: Zhang, Zixuan organization: Hybrid Integrated Flexible Electronic Systems (HIFES) – sequence: 7 givenname: Lianhui surname: Li fullname: Li, Lianhui organization: Chinese Academy of Sciences (CAS) – sequence: 8 givenname: Ting surname: Zhang fullname: Zhang, Ting email: tzhang2009@sinano.ac.cn organization: Chinese Academy of Sciences (CAS) – sequence: 9 givenname: Chengkuo orcidid: 0000-0002-8886-3649 surname: Lee fullname: Lee, Chengkuo email: elelc@nus.edu.sg organization: Hybrid Integrated Flexible Electronic Systems (HIFES) |
BookMark | eNqFkk1vEzEQhleoiJbSK-eVuHBJ6q_ddS5IUYFQKQiUtL1aXnucONrYi72bkht3LvxGfgnepqpoLz15PPPOM6OZeZ0dOe8gy95iNMYIkXOpd3FMEEHpU-IX2QnBEz6inLGj_-zj7CzGTdLgglYM81fZMSUVZlWBTrLfX6VaWwf5HGRw1q3yWeN3kF_HwV5CY_7--vPd30IAnV94p3vV2RRf9i2E9V4H3659bVV-FWztoQHVheEHPzvbQG58yGcQuz5AvgDlV8521rvcuvxmcT5d5NO2baySgzO-yV4a2UQ4u39Ps-vPn64uvozm32aXF9P5SBUVKUe0VLVhtKbGgKwLopAELDXixHDQpSpQwSpZUl5KIyd0opTWhtZcI1ZTrRQ9zS4PXO3lRrTBbmXYCy-tuHP4sBIydFY1IKAiJiG4AUgD44RXqRjnTFJFWVlXifXhwGr7egtageuCbB5BH0ecXYuV34mKVgVhPAHe3wOC_9GnUYmtjQqaRjrwfRSEkSTEpEBJ-u6JdOP74NKoBlXBy2KCh47GB5UKPsYA5qEZjMRwNmI4G_FwNimBPUlQtrvbSGrYNs-m3aZF758pIqYfb5a4QiX9BzbJ23M |
CitedBy_id | crossref_primary_10_1002_zaac_202400051 crossref_primary_10_1016_j_device_2024_100355 crossref_primary_10_1016_j_eng_2023_06_018 crossref_primary_10_1016_j_apmt_2024_102122 crossref_primary_10_1016_j_esr_2024_101422 crossref_primary_10_1016_j_mser_2024_100915 crossref_primary_10_1002_adfm_202208271 crossref_primary_10_1016_j_cej_2021_130200 crossref_primary_10_1007_s12274_022_5077_9 crossref_primary_10_1088_1361_6528_acb94c crossref_primary_10_1016_j_isci_2020_101934 crossref_primary_10_1146_annurev_bioeng_103122_032652 crossref_primary_10_1002_adfm_202412545 crossref_primary_10_1021_acsami_2c20520 crossref_primary_10_1038_s41467_020_19059_3 crossref_primary_10_1002_admt_202200282 crossref_primary_10_1021_acsami_4c06404 crossref_primary_10_1002_advs_202308560 crossref_primary_10_1016_j_nanoen_2021_106650 crossref_primary_10_1016_j_nanoen_2022_107588 crossref_primary_10_1016_j_nanoen_2024_110629 crossref_primary_10_3389_fmats_2022_902499 crossref_primary_10_1088_1361_6439_ac168e crossref_primary_10_1002_adfm_202008936 crossref_primary_10_1007_s40820_022_00981_8 crossref_primary_10_1016_j_device_2024_100466 crossref_primary_10_3390_s24102958 crossref_primary_10_1002_admt_202301316 crossref_primary_10_1126_sciadv_adr4797 crossref_primary_10_1021_acsami_1c08319 crossref_primary_10_1016_j_cej_2022_137491 crossref_primary_10_1016_j_nanoen_2024_110186 crossref_primary_10_1016_j_cej_2021_134002 crossref_primary_10_1016_j_nanoen_2021_106304 crossref_primary_10_1007_s12274_023_5879_4 crossref_primary_10_1002_adma_202203073 crossref_primary_10_1016_j_nantod_2020_101016 crossref_primary_10_1002_adfm_202416577 crossref_primary_10_1016_j_nanoen_2024_109639 crossref_primary_10_1088_2632_959X_abf3d4 crossref_primary_10_1038_s43246_024_00490_8 crossref_primary_10_1016_j_nanoen_2023_109018 crossref_primary_10_1039_D4TA07129H crossref_primary_10_1016_j_nanoen_2020_105155 crossref_primary_10_1016_j_sna_2024_115687 crossref_primary_10_1016_j_nanoen_2024_109753 crossref_primary_10_1021_acsanm_2c05360 crossref_primary_10_1021_acsami_3c08709 crossref_primary_10_3390_mi13020254 crossref_primary_10_1007_s42765_022_00163_6 crossref_primary_10_1016_j_triboint_2022_108083 crossref_primary_10_1021_acsnano_1c10676 crossref_primary_10_1002_advs_202410702 crossref_primary_10_1002_admt_202301681 crossref_primary_10_1021_acsnano_1c10680 crossref_primary_10_3390_mi11090865 crossref_primary_10_1002_admt_202201234 crossref_primary_10_1016_j_nanoen_2022_107807 crossref_primary_10_1038_s41467_021_25637_w crossref_primary_10_1007_s40820_022_00965_8 crossref_primary_10_1016_j_nanoen_2021_106517 crossref_primary_10_3390_app15063302 crossref_primary_10_1016_j_nanoen_2021_106199 crossref_primary_10_1002_adfm_202502568 crossref_primary_10_1002_admi_202200435 crossref_primary_10_1039_D3TA04690G crossref_primary_10_1002_advs_202400479 crossref_primary_10_1002_advs_202100230 crossref_primary_10_7498_aps_71_20211632 crossref_primary_10_1021_acsaelm_5c00070 crossref_primary_10_1021_acs_chemrev_4c00049 crossref_primary_10_1360_TB_2023_0636 crossref_primary_10_1021_acsami_3c15237 crossref_primary_10_1021_acsami_4c12753 crossref_primary_10_1021_acsomega_4c10150 crossref_primary_10_3390_s23083905 crossref_primary_10_1002_adfm_202109430 crossref_primary_10_1016_j_mattod_2024_08_013 crossref_primary_10_1021_acsami_3c17419 crossref_primary_10_1002_inf2_12360 crossref_primary_10_1002_adfm_202008807 crossref_primary_10_1002_aisy_202400643 crossref_primary_10_1016_j_nanoen_2023_108504 crossref_primary_10_1016_j_mattod_2024_12_013 crossref_primary_10_1021_acsami_2c17943 crossref_primary_10_1016_j_nanoen_2022_107112 crossref_primary_10_1002_adfm_202008805 crossref_primary_10_1007_s40820_024_01352_1 crossref_primary_10_1016_j_nanoen_2022_107597 crossref_primary_10_1021_acsanm_4c02017 crossref_primary_10_1109_JSEN_2022_3171218 crossref_primary_10_1002_aesr_202400116 crossref_primary_10_1021_acsaem_3c02642 crossref_primary_10_1021_acsami_3c10846 crossref_primary_10_1007_s12274_023_5413_8 crossref_primary_10_1002_aenm_202002969 crossref_primary_10_3390_en15207495 crossref_primary_10_1002_adma_202203786 crossref_primary_10_1088_1361_665X_ac8c0b crossref_primary_10_1016_j_nanoen_2021_105887 crossref_primary_10_1021_acsaelm_3c01043 crossref_primary_10_1002_EXP_20230046 crossref_primary_10_1016_j_jmst_2025_01_021 crossref_primary_10_1002_admt_202201294 crossref_primary_10_1007_s40820_023_01013_9 crossref_primary_10_1109_JSEN_2023_3241947 crossref_primary_10_3390_nanoenergyadv4030016 crossref_primary_10_1038_s42256_023_00760_z crossref_primary_10_1016_j_mattod_2021_11_027 crossref_primary_10_1109_MSMC_2023_3299431 crossref_primary_10_1002_aisy_202100228 crossref_primary_10_1109_TNNLS_2022_3161682 crossref_primary_10_1002_aisy_202200193 crossref_primary_10_1021_acsnano_1c07579 crossref_primary_10_1021_acs_chemrev_3c00356 crossref_primary_10_1016_j_cej_2023_141777 crossref_primary_10_1021_acsnano_0c07464 crossref_primary_10_1002_admt_202201740 crossref_primary_10_3390_nanoenergyadv1010005 crossref_primary_10_1016_j_nanoen_2021_106501 crossref_primary_10_1002_adfm_202007254 crossref_primary_10_1002_smll_202301868 crossref_primary_10_1002_adfm_202007376 crossref_primary_10_1016_j_nanoen_2020_105590 crossref_primary_10_1002_aisy_202300291 crossref_primary_10_1016_j_cej_2023_145686 crossref_primary_10_1088_1361_6463_ad0e95 crossref_primary_10_1016_j_nanoen_2022_107681 crossref_primary_10_1002_adfm_202104288 crossref_primary_10_3390_mi12080946 crossref_primary_10_1002_adhm_202203292 crossref_primary_10_1016_j_esr_2023_101124 crossref_primary_10_1002_admt_202401458 crossref_primary_10_1021_acsnano_2c12592 crossref_primary_10_1021_acsaelm_4c00152 crossref_primary_10_1063_5_0016485 crossref_primary_10_12688_f1000research_160816_1 crossref_primary_10_1016_j_enconman_2022_115720 crossref_primary_10_3390_s21248268 crossref_primary_10_1039_D4TA09222H crossref_primary_10_1021_acsami_3c18430 crossref_primary_10_1021_acsmaterialsau_2c00001 crossref_primary_10_1002_advs_202305871 crossref_primary_10_1016_j_eng_2023_01_009 crossref_primary_10_1126_sciadv_abq2521 crossref_primary_10_1016_j_matdes_2022_111149 crossref_primary_10_16984_saufenbilder_1206968 crossref_primary_10_20517_ss_2023_24 crossref_primary_10_1021_acs_chemrev_2c00045 crossref_primary_10_1038_s41467_024_54249_3 crossref_primary_10_1016_j_nanoen_2025_110821 crossref_primary_10_1016_j_nanoen_2022_108084 crossref_primary_10_1038_s41928_022_00888_7 crossref_primary_10_1002_advs_202201056 crossref_primary_10_1021_acsami_1c19304 crossref_primary_10_1088_2631_7990_ad94b8 crossref_primary_10_1002_admt_202300046 crossref_primary_10_1016_j_scib_2023_04_019 crossref_primary_10_1039_D1MH00857A crossref_primary_10_1089_soro_2021_0209 crossref_primary_10_1002_aisy_202300631 crossref_primary_10_1021_acsnano_2c06482 crossref_primary_10_3390_nano14020165 crossref_primary_10_1016_j_nanoen_2022_107557 crossref_primary_10_1016_j_nanoen_2023_109239 crossref_primary_10_1016_j_nanoen_2022_107671 crossref_primary_10_1016_j_joule_2022_06_013 crossref_primary_10_1016_j_nanoen_2022_107311 crossref_primary_10_1016_j_sna_2021_113010 crossref_primary_10_1016_j_nanoen_2022_107063 crossref_primary_10_1109_JSEN_2021_3087253 crossref_primary_10_1002_advs_202303949 crossref_primary_10_1007_s12274_022_4443_y crossref_primary_10_1021_acsami_1c19718 crossref_primary_10_1002_adfm_202301404 crossref_primary_10_1109_JSEN_2024_3416188 crossref_primary_10_1016_j_nanoen_2024_110118 crossref_primary_10_1109_JSEN_2024_3405173 crossref_primary_10_1016_j_nanoen_2024_110591 crossref_primary_10_1126_sciadv_abl9874 crossref_primary_10_1002_advs_202205960 crossref_primary_10_1007_s12274_021_3540_7 crossref_primary_10_1088_1361_6463_ac5192 crossref_primary_10_3390_s22249613 crossref_primary_10_1109_JSEN_2023_3264620 crossref_primary_10_1002_aisy_202100091 crossref_primary_10_1016_j_nanoen_2022_107745 crossref_primary_10_1016_j_sna_2023_114908 crossref_primary_10_1016_j_cej_2021_132597 crossref_primary_10_1039_D2TC02081E crossref_primary_10_1002_adfm_202200260 crossref_primary_10_1016_j_nanoen_2023_108559 crossref_primary_10_1021_acsami_3c10775 crossref_primary_10_3390_s24041069 crossref_primary_10_1016_j_nanoen_2023_108795 crossref_primary_10_1021_acsami_2c13714 crossref_primary_10_1016_j_nanoen_2023_108313 crossref_primary_10_3762_bjnano_12_12 crossref_primary_10_1002_adma_202110024 crossref_primary_10_1088_1361_6439_ac3ab9 crossref_primary_10_1088_1361_6528_acec7b crossref_primary_10_1002_advs_202201111 crossref_primary_10_1016_j_cej_2022_138741 crossref_primary_10_1186_s42234_020_00059_z crossref_primary_10_1126_sciadv_abj9220 crossref_primary_10_1038_s41378_024_00739_9 crossref_primary_10_3390_s21155240 crossref_primary_10_1002_eom2_12493 crossref_primary_10_1016_j_nanoen_2024_109465 crossref_primary_10_1016_j_xcrp_2024_101888 crossref_primary_10_1038_s41467_021_23020_3 crossref_primary_10_1016_j_cej_2023_147026 crossref_primary_10_1007_s42765_024_00434_4 crossref_primary_10_1002_adom_202301028 crossref_primary_10_1021_acsami_4c10168 crossref_primary_10_1093_nsr_nwad298 crossref_primary_10_3390_mi12060666 crossref_primary_10_1002_aisy_202100194 crossref_primary_10_3390_su141710875 crossref_primary_10_1021_acsami_2c18989 crossref_primary_10_1007_s40820_022_00875_9 crossref_primary_10_1016_j_nanoen_2024_110324 crossref_primary_10_1002_sys3_4 crossref_primary_10_1007_s11431_023_2621_5 crossref_primary_10_1007_s40820_023_01235_x crossref_primary_10_1016_j_jjimei_2021_100051 crossref_primary_10_34133_research_0154 crossref_primary_10_1002_admt_202302027 crossref_primary_10_1016_j_mne_2022_100140 crossref_primary_10_3390_nano11102711 crossref_primary_10_1038_s41467_023_38200_6 crossref_primary_10_1002_aisy_202000157 crossref_primary_10_1002_adfm_202007436 crossref_primary_10_1039_D1EE03633E crossref_primary_10_1016_j_nanoen_2020_105414 crossref_primary_10_1007_s42765_023_00350_z crossref_primary_10_1016_j_nanoen_2023_108903 crossref_primary_10_1186_s42234_023_00118_1 crossref_primary_10_1039_D2NA00608A crossref_primary_10_1002_smll_202304599 crossref_primary_10_1016_j_nanoen_2021_106486 crossref_primary_10_34133_adi_0054 crossref_primary_10_1039_D0NR05976E crossref_primary_10_1002_adma_202303311 crossref_primary_10_1002_advs_202103694 crossref_primary_10_1109_TNSRE_2022_3212705 crossref_primary_10_1007_s42235_022_00320_y crossref_primary_10_1021_acsami_3c05775 crossref_primary_10_1021_acs_chemrev_3c00507 crossref_primary_10_1016_j_nanoen_2021_106215 crossref_primary_10_1002_inf2_12534 crossref_primary_10_1002_aisy_202300222 crossref_primary_10_1016_j_nanoen_2020_105405 crossref_primary_10_1016_j_nanoen_2024_109849 crossref_primary_10_1007_s12274_023_5784_x crossref_primary_10_1038_s43016_023_00817_7 crossref_primary_10_3390_chemosensors10050157 crossref_primary_10_3390_inventions10010005 crossref_primary_10_1016_j_nanoen_2021_106330 crossref_primary_10_3389_felec_2022_1017511 crossref_primary_10_3390_s23094300 crossref_primary_10_1038_s41598_023_34540_x crossref_primary_10_1080_10447318_2023_2276991 crossref_primary_10_3390_mi14091697 crossref_primary_10_1002_advs_202402818 crossref_primary_10_1016_j_cej_2021_129650 crossref_primary_10_1002_adma_202004178 crossref_primary_10_1002_advs_202101020 crossref_primary_10_1002_admt_202400554 crossref_primary_10_1007_s40820_021_00644_0 crossref_primary_10_1016_j_fmre_2022_01_003 crossref_primary_10_1177_00405175211034245 crossref_primary_10_3390_nano12081385 crossref_primary_10_1016_j_nanoen_2024_110141 crossref_primary_10_1109_JSEN_2023_3345344 crossref_primary_10_1088_1361_6439_ac7a8f crossref_primary_10_1002_inf2_12424 crossref_primary_10_1016_j_nanoen_2023_108769 crossref_primary_10_1002_advs_202406190 crossref_primary_10_1038_s41467_022_32745_8 crossref_primary_10_1016_j_nanoen_2024_109956 crossref_primary_10_1002_aenm_202203040 crossref_primary_10_1016_j_apmt_2023_102039 crossref_primary_10_1109_OJCAS_2021_3123272 crossref_primary_10_1016_j_nanoen_2023_108520 crossref_primary_10_1177_15280837231225827 crossref_primary_10_1126_sciadv_abl6700 crossref_primary_10_1021_acsami_5c01936 crossref_primary_10_1002_eom2_12298 crossref_primary_10_1016_j_tibtech_2022_12_012 crossref_primary_10_1016_j_jechem_2022_12_024 crossref_primary_10_1063_5_0144956 crossref_primary_10_1016_j_scib_2021_03_021 crossref_primary_10_1002_aisy_202200128 crossref_primary_10_1007_s40820_020_00575_2 crossref_primary_10_1515_nanoph_2024_0572 crossref_primary_10_1016_j_nanoen_2024_110252 crossref_primary_10_1039_D3TC02970K crossref_primary_10_1109_JSEN_2024_3445128 crossref_primary_10_1002_adfm_202309553 crossref_primary_10_1145_3635159 crossref_primary_10_1002_adfm_202008831 crossref_primary_10_1002_adfm_202303562 crossref_primary_10_1002_advs_202408384 crossref_primary_10_1088_1748_3190_ad61a8 crossref_primary_10_1021_acsnano_0c03728 crossref_primary_10_1109_TII_2022_3152214 crossref_primary_10_1002_VIW_20220026 crossref_primary_10_1016_j_nanoen_2023_108656 crossref_primary_10_1016_j_nanoen_2023_108898 crossref_primary_10_1016_j_porgcoat_2022_106919 crossref_primary_10_1016_j_nanoen_2022_108013 crossref_primary_10_1021_acsami_4c11050 crossref_primary_10_1002_advs_202100711 crossref_primary_10_1002_sstr_202300325 crossref_primary_10_1016_j_nanoen_2022_107289 crossref_primary_10_1002_adsr_202200072 crossref_primary_10_1002_aisy_202200371 crossref_primary_10_1007_s40820_022_00874_w crossref_primary_10_1016_j_nanoen_2024_109496 crossref_primary_10_1021_acsami_4c19102 crossref_primary_10_1016_j_ins_2022_05_085 crossref_primary_10_1109_LSENS_2023_3276814 crossref_primary_10_1039_D4MH00753K crossref_primary_10_1002_adfm_202416163 crossref_primary_10_1109_JSEN_2021_3132793 crossref_primary_10_1002_admt_202302068 crossref_primary_10_1016_j_device_2025_100707 crossref_primary_10_1007_s40820_021_00720_5 crossref_primary_10_1021_acsami_0c22670 crossref_primary_10_3390_polym12122905 crossref_primary_10_1016_j_nantod_2022_101437 crossref_primary_10_1002_adfm_202005692 crossref_primary_10_1021_acsami_4c04770 crossref_primary_10_3390_nano12081366 crossref_primary_10_1002_aisy_202100046 crossref_primary_10_1038_s41378_021_00248_z crossref_primary_10_1002_aenm_202301178 crossref_primary_10_1149_1945_7111_ac72c3 |
Cites_doi | 10.1002/aenm.201703086 10.1002/adfm.201807560 10.1016/j.nanoen.2019.06.040 10.1126/scirobotics.aau6914 10.1002/smll.201901558 10.1016/j.nanoen.2019.01.069 10.1002/adfm.201602619 10.1002/adma.201401184 10.1002/aenm.201602397 10.1016/j.nanoen.2018.09.024 10.1126/sciadv.aav9653 10.1038/s41586-019-1234-z 10.1002/admt.201800167 10.1021/acsnano.7b07534 10.1016/j.nanoen.2018.06.029 10.1007/s004250050096 10.1038/432036a 10.1126/scirobotics.aat2516 10.1016/j.nanoen.2019.104167 10.1016/j.nanoen.2018.10.044 10.2165/00007256-200030010-00002 10.1016/j.nanoen.2019.104143 10.1186/2046-7648-2-4 10.1021/acsnano.8b07567 10.1007/s40820-019-0271-3 10.1126/sciadv.aax0649 10.1016/j.nanoen.2019.103871 10.1016/j.nanoen.2018.10.036 10.1021/acsnano.6b03926 10.3390/nano9070945 10.1021/am200033u 10.1021/acsnano.7b00396 10.1016/j.nanoen.2019.05.029 10.1002/adma.201800716 10.1016/j.nanoen.2017.08.018 10.1002/adma.201504249 10.1016/j.nanoen.2019.03.082 10.1038/nature25494 10.1002/advs.201700143 10.1021/acsnano.7b05213 10.1016/j.nanoen.2016.10.046 10.1002/admt.201600136 10.1002/adhm.201600092 10.1109/TNANO.2017.2789300 10.1038/s41467-019-09464-8 10.1016/j.nanoen.2018.12.091 10.1002/adma.200904411 10.1021/acssensors.6b00145 10.1016/j.nanoen.2019.104039 10.1038/s41467-017-01210-2 10.1002/advs.201900617 10.1002/adma.201801072 10.1016/j.nanoen.2019.01.096 10.1021/acsnano.6b07389 10.1016/j.mattod.2018.01.006 10.1002/aenm.201701243 10.1016/j.nanoen.2012.01.004 10.1038/s41467-019-09461-x 10.1016/j.nanoen.2018.06.022 10.1016/j.nanoen.2019.05.033 10.1021/acsami.9b04569 10.1002/advs.201900149 10.1021/acsnano.8b06747 10.1016/j.nanoen.2019.03.090 10.1016/j.nanoen.2018.03.027 10.1016/j.nanoen.2018.09.030 10.1002/adfm.201803684 10.1002/smll.200800649 10.1016/j.nanoen.2016.02.054 10.1021/acsnano.9b04911 10.1016/j.nanoen.2019.01.091 10.1038/nenergy.2016.138 10.1002/admt.201700237 10.1038/s41928-019-0257-7 10.1016/j.nanoen.2018.04.004 10.1016/j.nanoen.2018.11.078 10.1016/j.nanoen.2019.04.004 10.1016/j.nanoen.2017.08.035 10.1002/advs.201500441 10.1103/PhysRevLett.102.026001 10.1016/j.nanoen.2018.11.075 10.1002/adma.201701985 10.1002/marc.200500458 10.1021/acsnano.9b00140 10.1038/nmat856 10.1021/acsnano.8b00147 10.1016/j.nanoen.2019.03.071 10.1002/advs.201801883 10.1021/acsnano.8b00303 10.1002/aisy.201900088 10.1002/adfm.201601237 10.1039/C7TA01302G 10.1002/aenm.201802159 10.1038/s41467-018-06759-0 10.1002/smll.201802876 10.1021/acsnano.6b05815 10.1002/advs.201901437 10.1016/j.nanoen.2019.103984 10.1002/adfm.201905808 10.1109/TNANO.2016.2522187 10.1021/acsnano.9b07874 10.1002/adfm.201604462 10.1002/adfm.201970294 10.1021/nn506832w 10.1002/adma.201702517 10.1002/adfm.201807957 10.1016/j.nanoen.2018.10.049 10.1002/adfm.201800625 10.1016/j.nanoen.2015.04.020 10.1002/admt.201800487 10.1109/TNANO.2017.2659383 10.1021/acsnano.8b00416 10.1002/aisy.201900090 10.1002/adfm.201808786 10.1002/adma.201401364 10.1002/adfm.201402987 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | 24P AAYXX CITATION 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.202000261 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Open Access资源_Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_e72f9398fee14782870ae884a3c346b7 PMC7375248 10_1002_advs_202000261 ADVS1706 |
Genre | article |
GrantInformation_xml | – fundername: HiFES Seed Funding funderid: R‐263‐501‐012‐133 – fundername: Artificial Intelligence (AI) Singapore Grand Challenge funderid: AISG‐GC‐2019‐002 – fundername: Hybrid Integration of Flexible Power Source and Pressure Sensors – fundername: Science Foundation for Distinguished Young Scholars of Jiangsu Province funderid: BK20170008 – fundername: RIE 2020‐AME‐2019‐Nanosystems at the Edge funderid: R‐263‐000‐D67‐305 – fundername: National University of Singapore – fundername: National Key R&D Program of China funderid: 2018YFB1304700 – fundername: ; – fundername: Science Foundation for Distinguished Young Scholars of Jiangsu Province grantid: BK20170008 – fundername: HiFES Seed Funding grantid: R‐263‐501‐012‐133 – fundername: RIE 2020‐AME‐2019‐Nanosystems at the Edge grantid: R‐263‐000‐D67‐305 – fundername: National Key R&D Program of China grantid: 2018YFB1304700 – fundername: Artificial Intelligence (AI) Singapore Grand Challenge grantid: AISG‐GC‐2019‐002 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS ITC PHGZM PHGZT 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5726-36cbf43b3ffeab52c0ae1ad082f8ed6c50547a6386afa939ccddf3b8d04b3dcc3 |
IEDL.DBID | DOA |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 00:27:09 EDT 2025 Thu Aug 21 14:16:27 EDT 2025 Thu Jul 10 16:53:06 EDT 2025 Fri Jul 25 06:51:36 EDT 2025 Tue Jul 01 03:59:23 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Wed Jan 22 16:32:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5726-36cbf43b3ffeab52c0ae1ad082f8ed6c50547a6386afa939ccddf3b8d04b3dcc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8886-3649 |
OpenAccessLink | https://doaj.org/article/e72f9398fee14782870ae884a3c346b7 |
PMID | 32714750 |
PQID | 2425865917 |
PQPubID | 4365299 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e72f9398fee14782870ae884a3c346b7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7375248 proquest_miscellaneous_2427521250 proquest_journals_2425865917 crossref_primary_10_1002_advs_202000261 crossref_citationtrail_10_1002_advs_202000261 wiley_primary_10_1002_advs_202000261_ADVS1706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2017; 40 2017; 5 2017; 7 2017; 8 2017; 4 2013; 2 2019; 55 2019; 11 2019; 10 2019; 13 2019; 57 2019; 56 2019; 15 2019; 58 2014; 26 2016; 30 2020; 14 2019; 569 2005; 26 2018; 47 2010; 22 2018; 9 2018; 8 2019; 60 2018; 3 2019; 62 2019; 63 2019; 66 2019; 65 2003; 2 2019; 29 2018; 28 2019; 9 2019; 4 2019; 6 2019; 5 2016; 19 2019; 31 2019; 2 2019; 1 2017; 27 2016; 10 2017; 29 2015; 9 2011; 3 2018; 21 2016; 15 2016; 5 1997; 202 2015; 25 2018; 17 2016; 1 2012; 1 2016; 3 2004; 432 2017; 16 2017; 11 2018; 555 2000; 30 2009; 102 2018; 51 2018; 50 2009; 5 2018; 12 2016; 28 2018; 54 2016; 26 2018; 53 2018; 14 2016; 23 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 Zheng L. (e_1_2_10_109_1) 2017; 7 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_92_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 202 start-page: 1 year: 1997 publication-title: Planta – volume: 569 start-page: 698 year: 2019 publication-title: Nature – volume: 14 year: 2018 publication-title: Small – volume: 13 start-page: 3589 year: 2019 publication-title: ACS Nano – volume: 55 start-page: 401 year: 2019 publication-title: Nano Energy – volume: 51 start-page: 162 year: 2018 publication-title: Nano Energy – volume: 53 start-page: 596 year: 2018 publication-title: Nano Energy – volume: 16 start-page: 259 year: 2017 publication-title: IEEE Trans. Nanotechnol. – volume: 30 start-page: 17 year: 2000 publication-title: Sports Med. – volume: 10 start-page: 9044 year: 2016 publication-title: ACS Nano – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 57 start-page: 903 year: 2019 publication-title: Nano Energy – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 50 start-page: 148 year: 2018 publication-title: Nano Energy – volume: 13 start-page: 1940 year: 2019 publication-title: ACS Nano – volume: 3 year: 2018 publication-title: Adv. Mater. Technol. – volume: 2 start-page: 301 year: 2003 publication-title: Nat. Mater. – volume: 17 start-page: 220 year: 2018 publication-title: IEEE Trans. Nanotechnol. – volume: 63 year: 2019 publication-title: Nano Energy – volume: 60 start-page: 545 year: 2019 publication-title: Nano Energy – volume: 4 year: 2019 publication-title: Adv. Mater. Technol. – volume: 40 start-page: 282 year: 2017 publication-title: Nano Energy – volume: 28 start-page: 4485 year: 2016 publication-title: Adv. Mater. – volume: 22 start-page: 2325 year: 2010 publication-title: Adv. Mater. – volume: 60 start-page: 449 year: 2019 publication-title: Nano Energy – volume: 30 start-page: 450 year: 2016 publication-title: Nano Energy – volume: 11 start-page: 856 year: 2017 publication-title: ACS Nano – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 1 start-page: 328 year: 2012 publication-title: Nano Energy – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 532 year: 2016 publication-title: Nano Energy – volume: 58 start-page: 536 year: 2019 publication-title: Nano Energy – volume: 58 start-page: 641 year: 2019 publication-title: Nano Energy – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 9 start-page: 945 year: 2019 publication-title: Nanomaterials – volume: 62 start-page: 442 year: 2019 publication-title: Nano Energy – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 56 start-page: 651 year: 2019 publication-title: Nano Energy – volume: 40 start-page: 203 year: 2017 publication-title: Nano Energy – volume: 65 year: 2019 publication-title: Nano Energy – volume: 555 start-page: 83 year: 2018 publication-title: Nature – volume: 26 start-page: 4825 year: 2014 publication-title: Adv. Mater. – volume: 10 start-page: 1426 year: 2019 publication-title: Nat. Commun. – volume: 5 start-page: 996 year: 2016 publication-title: Adv. Healthcare Mater. – volume: 5 start-page: 8376 year: 2017 publication-title: J. Mater. Chem. A – volume: 102 year: 2009 publication-title: Phys. Rev. Lett. – volume: 56 start-page: 516 year: 2019 publication-title: Nano Energy – volume: 62 start-page: 355 year: 2019 publication-title: Nano Energy – volume: 21 start-page: 216 year: 2018 publication-title: Mater. Today – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 54 start-page: 453 year: 2018 publication-title: Nano Energy – volume: 58 start-page: 612 year: 2019 publication-title: Nano Energy – volume: 2 start-page: 243 year: 2019 publication-title: Nat. Electron. – volume: 10 start-page: 7973 year: 2016 publication-title: ACS Nano – volume: 60 start-page: 850 year: 2019 publication-title: Nano Energy – volume: 12 start-page: 3487 year: 2018 publication-title: ACS Nano – volume: 26 start-page: 5037 year: 2014 publication-title: Adv. Mater. – volume: 11 year: 2017 publication-title: ACS Nano – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 51 start-page: 1 year: 2018 publication-title: Nano Energy – volume: 15 start-page: 295 year: 2016 publication-title: IEEE Trans. Nanotechnol. – volume: 3 start-page: 1216 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 90 year: 2009 publication-title: Small – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 6206 year: 2016 publication-title: Adv. Funct. Mater. – volume: 23 start-page: 80 year: 2016 publication-title: Nano Energy – volume: 60 start-page: 440 year: 2019 publication-title: Nano Energy – volume: 432 start-page: 36 year: 2004 publication-title: Nature – volume: 26 start-page: 1805 year: 2005 publication-title: Macromol. Rapid Commun. – volume: 3 year: 2018 publication-title: Sci. Rob. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 11 start-page: 39 year: 2019 publication-title: Nano‐Micro Lett. – volume: 25 start-page: 375 year: 2015 publication-title: Adv. Funct. Mater. – volume: 53 start-page: 658 year: 2018 publication-title: Nano Energy – volume: 2 start-page: 4 year: 2013 publication-title: Extreme Physiol. Med. – volume: 55 start-page: 516 year: 2019 publication-title: Nano Energy – volume: 13 year: 2019 publication-title: ACS Nano – volume: 12 start-page: 2027 year: 2018 publication-title: ACS Nano – volume: 66 year: 2019 publication-title: Nano Energy – volume: 15 year: 2019 publication-title: Small – volume: 12 year: 2018 publication-title: ACS Nano – volume: 10 start-page: 1427 year: 2019 publication-title: Nat. Commun. – volume: 9 start-page: 105 year: 2015 publication-title: ACS Nano – volume: 1 year: 2019 publication-title: Adv. Intell. Syst. – volume: 11 start-page: 3950 year: 2017 publication-title: ACS Nano – volume: 12 start-page: 2893 year: 2018 publication-title: ACS Nano – volume: 7 start-page: 1 year: 2017 publication-title: Nanomater. Nanotechnol. – volume: 47 start-page: 442 year: 2018 publication-title: Nano Energy – volume: 1 year: 2016 publication-title: Adv. Mater. Technol. – volume: 1 start-page: 817 year: 2016 publication-title: ACS Sens. – volume: 26 start-page: 7614 year: 2016 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 1202 year: 2017 publication-title: Nat. Commun. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 9 start-page: 4280 year: 2018 publication-title: Nat. Commun. – volume: 14 start-page: 218 year: 2020 publication-title: ACS Nano – ident: e_1_2_10_57_1 doi: 10.1002/aenm.201703086 – ident: e_1_2_10_5_1 doi: 10.1002/adfm.201807560 – ident: e_1_2_10_46_1 doi: 10.1016/j.nanoen.2019.06.040 – ident: e_1_2_10_37_1 doi: 10.1126/scirobotics.aau6914 – ident: e_1_2_10_21_1 doi: 10.1002/smll.201901558 – ident: e_1_2_10_96_1 doi: 10.1016/j.nanoen.2019.01.069 – ident: e_1_2_10_2_1 doi: 10.1002/adfm.201602619 – ident: e_1_2_10_97_1 doi: 10.1002/adma.201401184 – ident: e_1_2_10_64_1 doi: 10.1002/aenm.201602397 – ident: e_1_2_10_25_1 doi: 10.1016/j.nanoen.2018.09.024 – ident: e_1_2_10_29_1 doi: 10.1126/sciadv.aav9653 – ident: e_1_2_10_38_1 doi: 10.1038/s41586-019-1234-z – ident: e_1_2_10_86_1 doi: 10.1002/admt.201800167 – ident: e_1_2_10_36_1 doi: 10.1021/acsnano.7b07534 – ident: e_1_2_10_95_1 doi: 10.1016/j.nanoen.2018.06.029 – ident: e_1_2_10_105_1 doi: 10.1007/s004250050096 – ident: e_1_2_10_107_1 doi: 10.1038/432036a – ident: e_1_2_10_55_1 doi: 10.1126/scirobotics.aat2516 – ident: e_1_2_10_58_1 doi: 10.1016/j.nanoen.2019.104167 – ident: e_1_2_10_80_1 doi: 10.1016/j.nanoen.2018.10.044 – ident: e_1_2_10_116_1 doi: 10.2165/00007256-200030010-00002 – ident: e_1_2_10_19_1 doi: 10.1016/j.nanoen.2019.104143 – ident: e_1_2_10_117_1 doi: 10.1186/2046-7648-2-4 – ident: e_1_2_10_1_1 doi: 10.1021/acsnano.8b07567 – ident: e_1_2_10_81_1 doi: 10.1007/s40820-019-0271-3 – ident: e_1_2_10_17_1 doi: 10.1126/sciadv.aax0649 – ident: e_1_2_10_50_1 doi: 10.1016/j.nanoen.2019.103871 – ident: e_1_2_10_34_1 doi: 10.1016/j.nanoen.2018.10.036 – ident: e_1_2_10_56_1 doi: 10.1021/acsnano.6b03926 – ident: e_1_2_10_92_1 doi: 10.3390/nano9070945 – ident: e_1_2_10_98_1 doi: 10.1021/am200033u – ident: e_1_2_10_8_1 doi: 10.1021/acsnano.7b00396 – ident: e_1_2_10_75_1 doi: 10.1016/j.nanoen.2019.05.029 – ident: e_1_2_10_3_1 doi: 10.1002/adma.201800716 – ident: e_1_2_10_47_1 doi: 10.1016/j.nanoen.2017.08.018 – ident: e_1_2_10_23_1 doi: 10.1002/adma.201504249 – ident: e_1_2_10_68_1 doi: 10.1016/j.nanoen.2019.03.082 – ident: e_1_2_10_14_1 doi: 10.1038/nature25494 – ident: e_1_2_10_71_1 doi: 10.1002/advs.201700143 – ident: e_1_2_10_73_1 doi: 10.1021/acsnano.7b05213 – ident: e_1_2_10_48_1 doi: 10.1016/j.nanoen.2016.10.046 – ident: e_1_2_10_31_1 doi: 10.1002/admt.201600136 – ident: e_1_2_10_15_1 doi: 10.1002/adhm.201600092 – ident: e_1_2_10_43_1 doi: 10.1109/TNANO.2017.2789300 – ident: e_1_2_10_59_1 doi: 10.1038/s41467-019-09464-8 – ident: e_1_2_10_103_1 doi: 10.1016/j.nanoen.2018.12.091 – ident: e_1_2_10_113_1 doi: 10.1002/adma.200904411 – ident: e_1_2_10_40_1 doi: 10.1021/acssensors.6b00145 – ident: e_1_2_10_67_1 doi: 10.1016/j.nanoen.2019.104039 – ident: e_1_2_10_16_1 doi: 10.1038/s41467-017-01210-2 – ident: e_1_2_10_28_1 doi: 10.1002/advs.201900617 – ident: e_1_2_10_7_1 doi: 10.1002/adma.201801072 – ident: e_1_2_10_41_1 doi: 10.1016/j.nanoen.2019.01.096 – volume: 7 start-page: 1 year: 2017 ident: e_1_2_10_109_1 publication-title: Nanomater. Nanotechnol. – ident: e_1_2_10_9_1 doi: 10.1021/acsnano.6b07389 – ident: e_1_2_10_85_1 doi: 10.1016/j.mattod.2018.01.006 – ident: e_1_2_10_99_1 doi: 10.1002/aenm.201701243 – ident: e_1_2_10_54_1 doi: 10.1016/j.nanoen.2012.01.004 – ident: e_1_2_10_66_1 doi: 10.1038/s41467-019-09461-x – ident: e_1_2_10_77_1 doi: 10.1016/j.nanoen.2018.06.022 – ident: e_1_2_10_51_1 doi: 10.1016/j.nanoen.2019.05.033 – ident: e_1_2_10_90_1 doi: 10.1021/acsami.9b04569 – ident: e_1_2_10_61_1 doi: 10.1002/advs.201900149 – ident: e_1_2_10_79_1 doi: 10.1021/acsnano.8b06747 – ident: e_1_2_10_52_1 doi: 10.1016/j.nanoen.2019.03.090 – ident: e_1_2_10_53_1 doi: 10.1016/j.nanoen.2018.03.027 – ident: e_1_2_10_83_1 doi: 10.1016/j.nanoen.2018.09.030 – ident: e_1_2_10_63_1 doi: 10.1002/adfm.201803684 – ident: e_1_2_10_111_1 doi: 10.1002/smll.200800649 – ident: e_1_2_10_49_1 doi: 10.1016/j.nanoen.2016.02.054 – ident: e_1_2_10_65_1 doi: 10.1021/acsnano.9b04911 – ident: e_1_2_10_32_1 doi: 10.1016/j.nanoen.2019.01.091 – ident: e_1_2_10_33_1 doi: 10.1038/nenergy.2016.138 – ident: e_1_2_10_91_1 doi: 10.1002/admt.201700237 – ident: e_1_2_10_20_1 doi: 10.1038/s41928-019-0257-7 – ident: e_1_2_10_69_1 doi: 10.1016/j.nanoen.2018.04.004 – ident: e_1_2_10_84_1 doi: 10.1016/j.nanoen.2018.11.078 – ident: e_1_2_10_94_1 doi: 10.1016/j.nanoen.2019.04.004 – ident: e_1_2_10_115_1 doi: 10.1016/j.nanoen.2017.08.035 – ident: e_1_2_10_72_1 doi: 10.1002/advs.201500441 – ident: e_1_2_10_114_1 doi: 10.1103/PhysRevLett.102.026001 – ident: e_1_2_10_42_1 doi: 10.1016/j.nanoen.2018.11.075 – ident: e_1_2_10_12_1 doi: 10.1002/adma.201701985 – ident: e_1_2_10_112_1 doi: 10.1002/marc.200500458 – ident: e_1_2_10_62_1 doi: 10.1021/acsnano.9b00140 – ident: e_1_2_10_106_1 doi: 10.1038/nmat856 – ident: e_1_2_10_10_1 doi: 10.1021/acsnano.8b00147 – ident: e_1_2_10_24_1 doi: 10.1016/j.nanoen.2019.03.071 – ident: e_1_2_10_102_1 doi: 10.1002/advs.201801883 – ident: e_1_2_10_70_1 doi: 10.1021/acsnano.8b00303 – ident: e_1_2_10_88_1 doi: 10.1002/aisy.201900088 – ident: e_1_2_10_18_1 doi: 10.1002/adfm.201601237 – ident: e_1_2_10_100_1 doi: 10.1039/C7TA01302G – ident: e_1_2_10_89_1 doi: 10.1002/aenm.201802159 – ident: e_1_2_10_35_1 doi: 10.1038/s41467-018-06759-0 – ident: e_1_2_10_11_1 doi: 10.1002/smll.201802876 – ident: e_1_2_10_104_1 doi: 10.1021/acsnano.6b05815 – ident: e_1_2_10_74_1 doi: 10.1002/advs.201901437 – ident: e_1_2_10_76_1 doi: 10.1016/j.nanoen.2019.103984 – ident: e_1_2_10_39_1 doi: 10.1002/adfm.201905808 – ident: e_1_2_10_44_1 doi: 10.1109/TNANO.2016.2522187 – ident: e_1_2_10_4_1 doi: 10.1021/acsnano.9b07874 – ident: e_1_2_10_93_1 doi: 10.1002/adfm.201604462 – ident: e_1_2_10_101_1 doi: 10.1002/adfm.201970294 – ident: e_1_2_10_87_1 doi: 10.1021/nn506832w – ident: e_1_2_10_108_1 doi: 10.1002/adma.201702517 – ident: e_1_2_10_13_1 doi: 10.1002/adfm.201807957 – ident: e_1_2_10_6_1 doi: 10.1016/j.nanoen.2018.10.049 – ident: e_1_2_10_110_1 doi: 10.1002/adfm.201800625 – ident: e_1_2_10_78_1 doi: 10.1016/j.nanoen.2015.04.020 – ident: e_1_2_10_82_1 doi: 10.1002/admt.201800487 – ident: e_1_2_10_45_1 doi: 10.1109/TNANO.2017.2659383 – ident: e_1_2_10_60_1 doi: 10.1021/acsnano.8b00416 – ident: e_1_2_10_30_1 doi: 10.1002/aisy.201900090 – ident: e_1_2_10_22_1 doi: 10.1002/adfm.201808786 – ident: e_1_2_10_26_1 doi: 10.1002/adma.201401364 – ident: e_1_2_10_27_1 doi: 10.1002/adfm.201402987 |
SSID | ssj0001537418 |
Score | 2.6180234 |
Snippet | The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical linkage... Abstract The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical... |
SourceID | doaj pubmedcentral proquest crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2000261 |
SubjectTerms | Artificial intelligence gesture recognition Hydrophobic surfaces Internet of Things Machine learning Power supply Robotics Screen printing Sensors superhydrophobic textiles triboelectric nanogenerators (TENGs) virtual reality/augmented reality (VR/AR) controls |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagvXBBLQ-RUpCRkIBDtEn8iHtC26qlQmpV7VLUW-Rnd6UqWdJuJW7cufAb-SV4HCc0SMAxsa2M7ZnJZ3v8DUKvC6UM9zg-LSSRKXXapMJwkuZECkkyIzSDi8Inp_z4nH68YBdxw-06hlX2PjE4atNo2COfADQWnPnVxfvVlxSyRsHpakyhcR9tehcs_OJrc__w9Gz2e5eFEaBn6dkas2IizS2wdMMNlYLno79RIO0fIc0_4yTv4tfwAzraQg8jcsTTbqq30T1bP0Lb0Tav8dtIIP3uMfp-EiIkLY7kqZc4RGriEB6A5_bK_fz24wzSo1mDD5oaKF-908Pz9cq2i6-mbVaLRi01BlqRpkuUA0_ej3vBsIe5-IMXfN1aPOvjj5oaL2v8eTaZzvD0zqH4E3R-dPjp4DiNSRdSzcqCp4Rr5ShRxDkrFSt0Jm0ujUcKTljDtUdMtJTearl0co_saW2MI0qYjCpitCZP0Ubd1PYZwlTL0gnmuLQlZcwK69FB7qyi1AjKRILSfvArHRnJITHGVdVxKRcVTFY1TFaC3gz1Vx0Xx19r7sNcDrWAQzu8aNrLKppkZcvC-Q4IZ21OSyD-910VgkqiCeWqTNBurwlVNGz_iUENE_RqKPYmCecssrbNOtQp4Uo0yxJUjjRoJNC4pF4uArl3SXxbCmMTdO0_Ha08eJkDA9LOv4V9jh5Amy7OeBdt3LRr-8KjqRv1MprML4brJBg priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9NAEMdXqFy4IMpDhLZokZCAgxXH--wxVJQKqahKKOrN2mcTqbIjt0Hi1jsXPiOfhJm148ZICHGMPUl2vTvr_9ozvyHkdWGtl6Djs8Iwk_HofKa9ZNmEGW1Y7rUTmCh8-lmenPNPF-JiK4u_5UP0D9zQM9J6jQ5u7PX4Dhpq_DfEbWOqSYH7n_uYX4v0_IKf3T1lEQzxLFhhDnbXGdOcb8iNeTEe_sTgzpQA_gPV-WfM5LaWTTej40fkYaci6bQd9l1yL1SPyW7np9f0bQeTfveE_DhN0ZKBdiDVS5qiNmkKFaDzcBV_3f48w1JpwdOjukL8KyyAdL5ehWbx3Tf1alHbpaOIGKnbojn4CdZ0aBgFyUs_QsPXTaCzTSxSXdFlRb_OxtMZnW69IH9Kzo8_fDk6yboCDJkTqpAZk85GziyLMRgrCpebMDEeVEPUwUsH6okrAx4sTTSH7NA57yOz2ufcMu8ce0Z2qroKzwnlzqioRZQmKC5E0AGUwiQGy7nXXOgRyTYXv3QdnRyLZFyVLVe5KHGwyn6wRuRNb79quRx_tXyPY9lbIU87Haiby7JzzzKoIkIHdAxhwhUWAYCuas0Nc4xLq0ZkfzMTys7J4S9gvdNSwIZ3RF71p8E98Z2LqUK9TjYK06NFPiJqMIMGDRqeqZaLBPpWDL7L8dqkufaPjpYgZOZIQ3rxn_Z75AEebIOQ98nOTbMOByC1buzL5E2_Aaf2Jws priority: 102 providerName: Wiley-Blackwell |
Title | Machine Learning Glove Using Self‐Powered Conductive Superhydrophobic Triboelectric Textile for Gesture Recognition in VR/AR Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202000261 https://www.proquest.com/docview/2425865917 https://www.proquest.com/docview/2427521250 https://pubmed.ncbi.nlm.nih.gov/PMC7375248 https://doaj.org/article/e72f9398fee14782870ae884a3c346b7 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLggykMEyspISMAh2iR-xD1uS0uF2Gq1S1FvkR_j7kpVslq6SNy4c-E38ksYO9nVBgn1wilK7CRje8b-LM98Q8jrwhgnEcenhWY65d66VDnJ0pxppVnmlBUhUHh8Ls8u-MdLcbmT6iv4hLX0wG3HDaEs_CE7VB4g52WgZ880KMU1s4xLE-PIcc3b2Uy18cEs0LJsWBqzYqjdt8DOHSJTCpn3VqFI1t9DmH_7R-7i1rjwnD4kDzrESEetpPvkDtSPyH5nk1_p2444-t1j8nMcPSOBdqSpVzR6aNLoFkBncO1___g1CWnRwNHjpg5UrzjZ0dl6Cav5d7dqlvPGLCwNdCJNmyAn3OH8jYJRhLf0Awq-XgGdbvyOmpouavplOhxN6WjnMPwJuTg9-Xx8lnbJFlIrykKmTFrjOTPMe9BGFBa7OdcOEYJX4KRFpMRLjdYqtdc4INY655lRLuOGOWvZU7JXNzU8I5RbXXolvNRQciFAAaKC3IPh3CkuVELSTedXtmMiDwkxrquWQ7mowmBV28FKyJtt_WXLwfHPmkdhLLe1And2fIAaVXUaVd2mUQk52GhC1Rk0_gLnNiUFbm4T8mpbjKYYzld0Dc061ilDKLTIElL2NKgnUL-kXswjqXfJ8F0e-ibq2i0NrRC0zALz0fP_0eIX5H74cuuFfED2blZreIlY68YMyN2CTwbk3uj9-NMMr0cn55PpIBrbH0Z6Lrg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeoALojxEoICRQMBhlWT9WPeAUFpaUtpEVdKi3hY_m0jVbkgbUG_cufBL-FH8Emb2ERok4NTjru1d2zMef7bH3xDyLDbGScDxUayZjniwLlJOsqjDtNKs7ZQVeFG4P5C9I_7-WByvkB_1XRh0q6xtYmGoXW5xj7yF0FhJAauLN9NPEUaNwtPVOoRGqRZ7_uILLNnOXu--Bfk-j-Od7cOtXlRFFYisSGIZMWlN4MywELw2IrZt7TvawVQYlHfSAiTgiQa1lDroDbZhrXOBGeXa3DBnLYPvXiOrnMFSpkFWN7cHB8PfuzqCIR1MzQ7ZjlvafUZWcLwRE8vO0uxXBAlYQrZ_-mVexsvFhLdzi9yskCrtlqq1RlZ8dpusVbbgjL6sCKtf3SHf-oVHpqcVWesJLTxDaeGOQEf-NPz8-v0Aw7F5R7fyDClmwcjS0XzqZ-MLN8un49xMLEUak7wMzINPMG9AxSjAavoOKj6feTqs_Z3yjE4y-mHY6g5p99Ih_F1ydCXiuEcaWZ75-4Ryq5OgRJDaJ1wIrzygkU7whnOnuFBNEtWdn9qKAR0DcZymJXdznKKw0oWwmuTFIv-05P74a85NlOUiF3J2Fy_y2UlamYDUJ3GABqjgfYcnGGgAmqoU18wyLk3SJOu1JqSVIYFfLNS-SZ4uksEE4LmOznw-L_IkeAVbtJskWdKgpQotp2STcUEmnjAoy7FvCl37T0NTAEsjZFx68O_KPiHXe4f9_XR_d7D3kNzA8qWP8zppnM_m_hEguXPzuBo-lHy86hH7C9xKY4U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKiEuiPIQgQJGAgGHVXbX9q57QCh9hJbSKEoo6m3rZxOp2g1pA-qNOxd-Dz-HX8LMPkKDBJx63LW9a3vG48_2-BtCnsVa2wRwfBArpgLujQ2kTVgQMSUVC600Ai8KH_ST3UP-7kgcrZAfzV0YdKtsbGJpqG1hcI-8g9BYJgJWFx1fu0UMtntvpp8CjCCFJ61NOI1KRfbdxRdYvp293tsGWT-P497Oh63doI4wEBiRxknAEqM9Z5p575QWsQmVi5SFadFLZxMD8ICnClQ0UV5tsA1jrPVMSxtyzawxDL57jaymsCoKW2R1c6c_GP7e4REMqWEapsgw7ij7GRnC8XZMnERLM2EZMGAJ5f7po3kZO5eTX-8WuVmjVtqt1GyNrLj8Nlmr7cIZfVmTV7-6Q74dlN6ZjtbErSe09BKlpWsCHblT__Pr9wGGZnOWbhU50s2CwaWj-dTNxhd2VkzHhZ4YipQmRRWkB59AEFAxChCbvoWKz2eODhvfpyKnk5x-HHa6Q9q9dCB_lxxeiTjukVZe5O4-odyo1EvhE-VSLoSTDpBJ5J3m3EouZJsETednpmZDx6Acp1nF4xxnKKxsIaw2ebHIP614QP6acxNluciF_N3li2J2ktXmIHNp7KEB0jsX8RSDDkBTpeSKGcYTnbbJeqMJWW1U4BeLIdAmTxfJYA7wjEflrpiXeVK8ji3CNkmXNGipQssp-WRcEounDMpy7JtS1_7T0AyA0wjZlx78u7JPyHUYqdn7vf7-Q3IDi1fuzuukdT6bu0cA6s7143r0UHJ81QP2Fw4wZ7o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Glove+Using+Self%E2%80%90Powered+Conductive+Superhydrophobic+Triboelectric+Textile+for+Gesture+Recognition+in+VR%2FAR+Applications&rft.jtitle=Advanced+science&rft.au=Wen%2C+Feng&rft.au=Sun%2C+Zhongda&rft.au=He%2C+Tianyiyi&rft.au=Shi%2C+Qiongfeng&rft.date=2020-07-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=7&rft.issue=14&rft_id=info:doi/10.1002%2Fadvs.202000261&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202000261 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |