Machine Learning Glove Using Self‐Powered Conductive Superhydrophobic Triboelectric Textile for Gesture Recognition in VR/AR Applications

The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical linkage between human and machines. Using a glove as an intuitive and low‐cost HMI can expediently track the motions of human fingers, resulting in a stra...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 7; no. 14; pp. 2000261 - n/a
Main Authors Wen, Feng, Sun, Zhongda, He, Tianyiyi, Shi, Qiongfeng, Zhu, Minglu, Zhang, Zixuan, Li, Lianhui, Zhang, Ting, Lee, Chengkuo
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.07.2020
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical linkage between human and machines. Using a glove as an intuitive and low‐cost HMI can expediently track the motions of human fingers, resulting in a straightforward communication media of human–machine interactions. When combining several triboelectric textile sensors and proper machine learning technique, it has great potential to realize complex gesture recognition with the minimalist‐designed glove for the comprehensive control in both real and virtual space. However, humidity or sweat may negatively affect the triboelectric output as well as the textile itself. Hence, in this work, a facile carbon nanotubes/thermoplastic elastomer (CNTs/TPE) coating approach is investigated in detail to achieve superhydrophobicity of the triboelectric textile for performance improvement. With great energy harvesting and human motion sensing capabilities, the glove using the superhydrophobic textile realizes a low‐cost and self‐powered interface for gesture recognition. By leveraging machine learning technology, various gesture recognition tasks are done in real time by using gestures to achieve highly accurate virtual reality/augmented reality (VR/AR) controls including gun shooting, baseball pitching, and flower arrangement, with minimized effect from sweat during operation. With capabilities of humidity‐resistant and anti‐sweat, high‐accuracy complicated gesture recognition based on machine learning is realized using a low‐cost and self‐powered superhydrophobic glove human machine interface (HMI) with minimized sweat effect. With gesture recognition, the virtual reality/augmented reality (VR/AR) controls including shooting, baseball pitching, and floral arrangement are successfully demonstrated.
AbstractList The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical linkage between human and machines. Using a glove as an intuitive and low‐cost HMI can expediently track the motions of human fingers, resulting in a straightforward communication media of human–machine interactions. When combining several triboelectric textile sensors and proper machine learning technique, it has great potential to realize complex gesture recognition with the minimalist‐designed glove for the comprehensive control in both real and virtual space. However, humidity or sweat may negatively affect the triboelectric output as well as the textile itself. Hence, in this work, a facile carbon nanotubes/thermoplastic elastomer (CNTs/TPE) coating approach is investigated in detail to achieve superhydrophobicity of the triboelectric textile for performance improvement. With great energy harvesting and human motion sensing capabilities, the glove using the superhydrophobic textile realizes a low‐cost and self‐powered interface for gesture recognition. By leveraging machine learning technology, various gesture recognition tasks are done in real time by using gestures to achieve highly accurate virtual reality/augmented reality (VR/AR) controls including gun shooting, baseball pitching, and flower arrangement, with minimized effect from sweat during operation. With capabilities of humidity‐resistant and anti‐sweat, high‐accuracy complicated gesture recognition based on machine learning is realized using a low‐cost and self‐powered superhydrophobic glove human machine interface (HMI) with minimized sweat effect. With gesture recognition, the virtual reality/augmented reality (VR/AR) controls including shooting, baseball pitching, and floral arrangement are successfully demonstrated.
Abstract The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical linkage between human and machines. Using a glove as an intuitive and low‐cost HMI can expediently track the motions of human fingers, resulting in a straightforward communication media of human–machine interactions. When combining several triboelectric textile sensors and proper machine learning technique, it has great potential to realize complex gesture recognition with the minimalist‐designed glove for the comprehensive control in both real and virtual space. However, humidity or sweat may negatively affect the triboelectric output as well as the textile itself. Hence, in this work, a facile carbon nanotubes/thermoplastic elastomer (CNTs/TPE) coating approach is investigated in detail to achieve superhydrophobicity of the triboelectric textile for performance improvement. With great energy harvesting and human motion sensing capabilities, the glove using the superhydrophobic textile realizes a low‐cost and self‐powered interface for gesture recognition. By leveraging machine learning technology, various gesture recognition tasks are done in real time by using gestures to achieve highly accurate virtual reality/augmented reality (VR/AR) controls including gun shooting, baseball pitching, and flower arrangement, with minimized effect from sweat during operation.
The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical linkage between human and machines. Using a glove as an intuitive and low‐cost HMI can expediently track the motions of human fingers, resulting in a straightforward communication media of human–machine interactions. When combining several triboelectric textile sensors and proper machine learning technique, it has great potential to realize complex gesture recognition with the minimalist‐designed glove for the comprehensive control in both real and virtual space. However, humidity or sweat may negatively affect the triboelectric output as well as the textile itself. Hence, in this work, a facile carbon nanotubes/thermoplastic elastomer (CNTs/TPE) coating approach is investigated in detail to achieve superhydrophobicity of the triboelectric textile for performance improvement. With great energy harvesting and human motion sensing capabilities, the glove using the superhydrophobic textile realizes a low‐cost and self‐powered interface for gesture recognition. By leveraging machine learning technology, various gesture recognition tasks are done in real time by using gestures to achieve highly accurate virtual reality/augmented reality (VR/AR) controls including gun shooting, baseball pitching, and flower arrangement, with minimized effect from sweat during operation.
The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical linkage between human and machines. Using a glove as an intuitive and low-cost HMI can expediently track the motions of human fingers, resulting in a straightforward communication media of human-machine interactions. When combining several triboelectric textile sensors and proper machine learning technique, it has great potential to realize complex gesture recognition with the minimalist-designed glove for the comprehensive control in both real and virtual space. However, humidity or sweat may negatively affect the triboelectric output as well as the textile itself. Hence, in this work, a facile carbon nanotubes/thermoplastic elastomer (CNTs/TPE) coating approach is investigated in detail to achieve superhydrophobicity of the triboelectric textile for performance improvement. With great energy harvesting and human motion sensing capabilities, the glove using the superhydrophobic textile realizes a low-cost and self-powered interface for gesture recognition. By leveraging machine learning technology, various gesture recognition tasks are done in real time by using gestures to achieve highly accurate virtual reality/augmented reality (VR/AR) controls including gun shooting, baseball pitching, and flower arrangement, with minimized effect from sweat during operation.The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical linkage between human and machines. Using a glove as an intuitive and low-cost HMI can expediently track the motions of human fingers, resulting in a straightforward communication media of human-machine interactions. When combining several triboelectric textile sensors and proper machine learning technique, it has great potential to realize complex gesture recognition with the minimalist-designed glove for the comprehensive control in both real and virtual space. However, humidity or sweat may negatively affect the triboelectric output as well as the textile itself. Hence, in this work, a facile carbon nanotubes/thermoplastic elastomer (CNTs/TPE) coating approach is investigated in detail to achieve superhydrophobicity of the triboelectric textile for performance improvement. With great energy harvesting and human motion sensing capabilities, the glove using the superhydrophobic textile realizes a low-cost and self-powered interface for gesture recognition. By leveraging machine learning technology, various gesture recognition tasks are done in real time by using gestures to achieve highly accurate virtual reality/augmented reality (VR/AR) controls including gun shooting, baseball pitching, and flower arrangement, with minimized effect from sweat during operation.
Author Zhang, Zixuan
Wen, Feng
Shi, Qiongfeng
Zhang, Ting
Zhu, Minglu
Sun, Zhongda
Lee, Chengkuo
He, Tianyiyi
Li, Lianhui
AuthorAffiliation 2 National University of Singapore Suzhou Research Institute (NUSRI) Suzhou Industrial Park Suzhou 215123 China
5 i‐Lab Suzhou Institute of Nano‐Tech and Nano‐Bionics Chinese Academy of Sciences (CAS) Suzhou 215123 China
1 Department of Electrical & Computer Engineering National University of Singapore 4 Engineering Drive 3 Singapore 117576 Singapore
3 Center for Intelligent Sensors and MEMS National University of Singapore 5 Engineering Drive 1 Singapore 117608 Singapore
4 Hybrid Integrated Flexible Electronic Systems (HIFES) 5 Engineering Drive 1 Singapore 117608 Singapore
AuthorAffiliation_xml – name: 5 i‐Lab Suzhou Institute of Nano‐Tech and Nano‐Bionics Chinese Academy of Sciences (CAS) Suzhou 215123 China
– name: 1 Department of Electrical & Computer Engineering National University of Singapore 4 Engineering Drive 3 Singapore 117576 Singapore
– name: 3 Center for Intelligent Sensors and MEMS National University of Singapore 5 Engineering Drive 1 Singapore 117608 Singapore
– name: 4 Hybrid Integrated Flexible Electronic Systems (HIFES) 5 Engineering Drive 1 Singapore 117608 Singapore
– name: 2 National University of Singapore Suzhou Research Institute (NUSRI) Suzhou Industrial Park Suzhou 215123 China
Author_xml – sequence: 1
  givenname: Feng
  surname: Wen
  fullname: Wen, Feng
  organization: Hybrid Integrated Flexible Electronic Systems (HIFES)
– sequence: 2
  givenname: Zhongda
  surname: Sun
  fullname: Sun, Zhongda
  organization: Hybrid Integrated Flexible Electronic Systems (HIFES)
– sequence: 3
  givenname: Tianyiyi
  surname: He
  fullname: He, Tianyiyi
  organization: Hybrid Integrated Flexible Electronic Systems (HIFES)
– sequence: 4
  givenname: Qiongfeng
  surname: Shi
  fullname: Shi, Qiongfeng
  organization: Hybrid Integrated Flexible Electronic Systems (HIFES)
– sequence: 5
  givenname: Minglu
  surname: Zhu
  fullname: Zhu, Minglu
  organization: Hybrid Integrated Flexible Electronic Systems (HIFES)
– sequence: 6
  givenname: Zixuan
  surname: Zhang
  fullname: Zhang, Zixuan
  organization: Hybrid Integrated Flexible Electronic Systems (HIFES)
– sequence: 7
  givenname: Lianhui
  surname: Li
  fullname: Li, Lianhui
  organization: Chinese Academy of Sciences (CAS)
– sequence: 8
  givenname: Ting
  surname: Zhang
  fullname: Zhang, Ting
  email: tzhang2009@sinano.ac.cn
  organization: Chinese Academy of Sciences (CAS)
– sequence: 9
  givenname: Chengkuo
  orcidid: 0000-0002-8886-3649
  surname: Lee
  fullname: Lee, Chengkuo
  email: elelc@nus.edu.sg
  organization: Hybrid Integrated Flexible Electronic Systems (HIFES)
BookMark eNqFkk1vEzEQhleoiJbSK-eVuHBJ6q_ddS5IUYFQKQiUtL1aXnucONrYi72bkht3LvxGfgnepqpoLz15PPPOM6OZeZ0dOe8gy95iNMYIkXOpd3FMEEHpU-IX2QnBEz6inLGj_-zj7CzGTdLgglYM81fZMSUVZlWBTrLfX6VaWwf5HGRw1q3yWeN3kF_HwV5CY_7--vPd30IAnV94p3vV2RRf9i2E9V4H3659bVV-FWztoQHVheEHPzvbQG58yGcQuz5AvgDlV8521rvcuvxmcT5d5NO2baySgzO-yV4a2UQ4u39Ps-vPn64uvozm32aXF9P5SBUVKUe0VLVhtKbGgKwLopAELDXixHDQpSpQwSpZUl5KIyd0opTWhtZcI1ZTrRQ9zS4PXO3lRrTBbmXYCy-tuHP4sBIydFY1IKAiJiG4AUgD44RXqRjnTFJFWVlXifXhwGr7egtageuCbB5BH0ecXYuV34mKVgVhPAHe3wOC_9GnUYmtjQqaRjrwfRSEkSTEpEBJ-u6JdOP74NKoBlXBy2KCh47GB5UKPsYA5qEZjMRwNmI4G_FwNimBPUlQtrvbSGrYNs-m3aZF758pIqYfb5a4QiX9BzbJ23M
CitedBy_id crossref_primary_10_1002_zaac_202400051
crossref_primary_10_1016_j_device_2024_100355
crossref_primary_10_1016_j_eng_2023_06_018
crossref_primary_10_1016_j_apmt_2024_102122
crossref_primary_10_1016_j_esr_2024_101422
crossref_primary_10_1016_j_mser_2024_100915
crossref_primary_10_1002_adfm_202208271
crossref_primary_10_1016_j_cej_2021_130200
crossref_primary_10_1007_s12274_022_5077_9
crossref_primary_10_1088_1361_6528_acb94c
crossref_primary_10_1016_j_isci_2020_101934
crossref_primary_10_1146_annurev_bioeng_103122_032652
crossref_primary_10_1002_adfm_202412545
crossref_primary_10_1021_acsami_2c20520
crossref_primary_10_1038_s41467_020_19059_3
crossref_primary_10_1002_admt_202200282
crossref_primary_10_1021_acsami_4c06404
crossref_primary_10_1002_advs_202308560
crossref_primary_10_1016_j_nanoen_2021_106650
crossref_primary_10_1016_j_nanoen_2022_107588
crossref_primary_10_1016_j_nanoen_2024_110629
crossref_primary_10_3389_fmats_2022_902499
crossref_primary_10_1088_1361_6439_ac168e
crossref_primary_10_1002_adfm_202008936
crossref_primary_10_1007_s40820_022_00981_8
crossref_primary_10_1016_j_device_2024_100466
crossref_primary_10_3390_s24102958
crossref_primary_10_1002_admt_202301316
crossref_primary_10_1126_sciadv_adr4797
crossref_primary_10_1021_acsami_1c08319
crossref_primary_10_1016_j_cej_2022_137491
crossref_primary_10_1016_j_nanoen_2024_110186
crossref_primary_10_1016_j_cej_2021_134002
crossref_primary_10_1016_j_nanoen_2021_106304
crossref_primary_10_1007_s12274_023_5879_4
crossref_primary_10_1002_adma_202203073
crossref_primary_10_1016_j_nantod_2020_101016
crossref_primary_10_1002_adfm_202416577
crossref_primary_10_1016_j_nanoen_2024_109639
crossref_primary_10_1088_2632_959X_abf3d4
crossref_primary_10_1038_s43246_024_00490_8
crossref_primary_10_1016_j_nanoen_2023_109018
crossref_primary_10_1039_D4TA07129H
crossref_primary_10_1016_j_nanoen_2020_105155
crossref_primary_10_1016_j_sna_2024_115687
crossref_primary_10_1016_j_nanoen_2024_109753
crossref_primary_10_1021_acsanm_2c05360
crossref_primary_10_1021_acsami_3c08709
crossref_primary_10_3390_mi13020254
crossref_primary_10_1007_s42765_022_00163_6
crossref_primary_10_1016_j_triboint_2022_108083
crossref_primary_10_1021_acsnano_1c10676
crossref_primary_10_1002_advs_202410702
crossref_primary_10_1002_admt_202301681
crossref_primary_10_1021_acsnano_1c10680
crossref_primary_10_3390_mi11090865
crossref_primary_10_1002_admt_202201234
crossref_primary_10_1016_j_nanoen_2022_107807
crossref_primary_10_1038_s41467_021_25637_w
crossref_primary_10_1007_s40820_022_00965_8
crossref_primary_10_1016_j_nanoen_2021_106517
crossref_primary_10_3390_app15063302
crossref_primary_10_1016_j_nanoen_2021_106199
crossref_primary_10_1002_adfm_202502568
crossref_primary_10_1002_admi_202200435
crossref_primary_10_1039_D3TA04690G
crossref_primary_10_1002_advs_202400479
crossref_primary_10_1002_advs_202100230
crossref_primary_10_7498_aps_71_20211632
crossref_primary_10_1021_acsaelm_5c00070
crossref_primary_10_1021_acs_chemrev_4c00049
crossref_primary_10_1360_TB_2023_0636
crossref_primary_10_1021_acsami_3c15237
crossref_primary_10_1021_acsami_4c12753
crossref_primary_10_1021_acsomega_4c10150
crossref_primary_10_3390_s23083905
crossref_primary_10_1002_adfm_202109430
crossref_primary_10_1016_j_mattod_2024_08_013
crossref_primary_10_1021_acsami_3c17419
crossref_primary_10_1002_inf2_12360
crossref_primary_10_1002_adfm_202008807
crossref_primary_10_1002_aisy_202400643
crossref_primary_10_1016_j_nanoen_2023_108504
crossref_primary_10_1016_j_mattod_2024_12_013
crossref_primary_10_1021_acsami_2c17943
crossref_primary_10_1016_j_nanoen_2022_107112
crossref_primary_10_1002_adfm_202008805
crossref_primary_10_1007_s40820_024_01352_1
crossref_primary_10_1016_j_nanoen_2022_107597
crossref_primary_10_1021_acsanm_4c02017
crossref_primary_10_1109_JSEN_2022_3171218
crossref_primary_10_1002_aesr_202400116
crossref_primary_10_1021_acsaem_3c02642
crossref_primary_10_1021_acsami_3c10846
crossref_primary_10_1007_s12274_023_5413_8
crossref_primary_10_1002_aenm_202002969
crossref_primary_10_3390_en15207495
crossref_primary_10_1002_adma_202203786
crossref_primary_10_1088_1361_665X_ac8c0b
crossref_primary_10_1016_j_nanoen_2021_105887
crossref_primary_10_1021_acsaelm_3c01043
crossref_primary_10_1002_EXP_20230046
crossref_primary_10_1016_j_jmst_2025_01_021
crossref_primary_10_1002_admt_202201294
crossref_primary_10_1007_s40820_023_01013_9
crossref_primary_10_1109_JSEN_2023_3241947
crossref_primary_10_3390_nanoenergyadv4030016
crossref_primary_10_1038_s42256_023_00760_z
crossref_primary_10_1016_j_mattod_2021_11_027
crossref_primary_10_1109_MSMC_2023_3299431
crossref_primary_10_1002_aisy_202100228
crossref_primary_10_1109_TNNLS_2022_3161682
crossref_primary_10_1002_aisy_202200193
crossref_primary_10_1021_acsnano_1c07579
crossref_primary_10_1021_acs_chemrev_3c00356
crossref_primary_10_1016_j_cej_2023_141777
crossref_primary_10_1021_acsnano_0c07464
crossref_primary_10_1002_admt_202201740
crossref_primary_10_3390_nanoenergyadv1010005
crossref_primary_10_1016_j_nanoen_2021_106501
crossref_primary_10_1002_adfm_202007254
crossref_primary_10_1002_smll_202301868
crossref_primary_10_1002_adfm_202007376
crossref_primary_10_1016_j_nanoen_2020_105590
crossref_primary_10_1002_aisy_202300291
crossref_primary_10_1016_j_cej_2023_145686
crossref_primary_10_1088_1361_6463_ad0e95
crossref_primary_10_1016_j_nanoen_2022_107681
crossref_primary_10_1002_adfm_202104288
crossref_primary_10_3390_mi12080946
crossref_primary_10_1002_adhm_202203292
crossref_primary_10_1016_j_esr_2023_101124
crossref_primary_10_1002_admt_202401458
crossref_primary_10_1021_acsnano_2c12592
crossref_primary_10_1021_acsaelm_4c00152
crossref_primary_10_1063_5_0016485
crossref_primary_10_12688_f1000research_160816_1
crossref_primary_10_1016_j_enconman_2022_115720
crossref_primary_10_3390_s21248268
crossref_primary_10_1039_D4TA09222H
crossref_primary_10_1021_acsami_3c18430
crossref_primary_10_1021_acsmaterialsau_2c00001
crossref_primary_10_1002_advs_202305871
crossref_primary_10_1016_j_eng_2023_01_009
crossref_primary_10_1126_sciadv_abq2521
crossref_primary_10_1016_j_matdes_2022_111149
crossref_primary_10_16984_saufenbilder_1206968
crossref_primary_10_20517_ss_2023_24
crossref_primary_10_1021_acs_chemrev_2c00045
crossref_primary_10_1038_s41467_024_54249_3
crossref_primary_10_1016_j_nanoen_2025_110821
crossref_primary_10_1016_j_nanoen_2022_108084
crossref_primary_10_1038_s41928_022_00888_7
crossref_primary_10_1002_advs_202201056
crossref_primary_10_1021_acsami_1c19304
crossref_primary_10_1088_2631_7990_ad94b8
crossref_primary_10_1002_admt_202300046
crossref_primary_10_1016_j_scib_2023_04_019
crossref_primary_10_1039_D1MH00857A
crossref_primary_10_1089_soro_2021_0209
crossref_primary_10_1002_aisy_202300631
crossref_primary_10_1021_acsnano_2c06482
crossref_primary_10_3390_nano14020165
crossref_primary_10_1016_j_nanoen_2022_107557
crossref_primary_10_1016_j_nanoen_2023_109239
crossref_primary_10_1016_j_nanoen_2022_107671
crossref_primary_10_1016_j_joule_2022_06_013
crossref_primary_10_1016_j_nanoen_2022_107311
crossref_primary_10_1016_j_sna_2021_113010
crossref_primary_10_1016_j_nanoen_2022_107063
crossref_primary_10_1109_JSEN_2021_3087253
crossref_primary_10_1002_advs_202303949
crossref_primary_10_1007_s12274_022_4443_y
crossref_primary_10_1021_acsami_1c19718
crossref_primary_10_1002_adfm_202301404
crossref_primary_10_1109_JSEN_2024_3416188
crossref_primary_10_1016_j_nanoen_2024_110118
crossref_primary_10_1109_JSEN_2024_3405173
crossref_primary_10_1016_j_nanoen_2024_110591
crossref_primary_10_1126_sciadv_abl9874
crossref_primary_10_1002_advs_202205960
crossref_primary_10_1007_s12274_021_3540_7
crossref_primary_10_1088_1361_6463_ac5192
crossref_primary_10_3390_s22249613
crossref_primary_10_1109_JSEN_2023_3264620
crossref_primary_10_1002_aisy_202100091
crossref_primary_10_1016_j_nanoen_2022_107745
crossref_primary_10_1016_j_sna_2023_114908
crossref_primary_10_1016_j_cej_2021_132597
crossref_primary_10_1039_D2TC02081E
crossref_primary_10_1002_adfm_202200260
crossref_primary_10_1016_j_nanoen_2023_108559
crossref_primary_10_1021_acsami_3c10775
crossref_primary_10_3390_s24041069
crossref_primary_10_1016_j_nanoen_2023_108795
crossref_primary_10_1021_acsami_2c13714
crossref_primary_10_1016_j_nanoen_2023_108313
crossref_primary_10_3762_bjnano_12_12
crossref_primary_10_1002_adma_202110024
crossref_primary_10_1088_1361_6439_ac3ab9
crossref_primary_10_1088_1361_6528_acec7b
crossref_primary_10_1002_advs_202201111
crossref_primary_10_1016_j_cej_2022_138741
crossref_primary_10_1186_s42234_020_00059_z
crossref_primary_10_1126_sciadv_abj9220
crossref_primary_10_1038_s41378_024_00739_9
crossref_primary_10_3390_s21155240
crossref_primary_10_1002_eom2_12493
crossref_primary_10_1016_j_nanoen_2024_109465
crossref_primary_10_1016_j_xcrp_2024_101888
crossref_primary_10_1038_s41467_021_23020_3
crossref_primary_10_1016_j_cej_2023_147026
crossref_primary_10_1007_s42765_024_00434_4
crossref_primary_10_1002_adom_202301028
crossref_primary_10_1021_acsami_4c10168
crossref_primary_10_1093_nsr_nwad298
crossref_primary_10_3390_mi12060666
crossref_primary_10_1002_aisy_202100194
crossref_primary_10_3390_su141710875
crossref_primary_10_1021_acsami_2c18989
crossref_primary_10_1007_s40820_022_00875_9
crossref_primary_10_1016_j_nanoen_2024_110324
crossref_primary_10_1002_sys3_4
crossref_primary_10_1007_s11431_023_2621_5
crossref_primary_10_1007_s40820_023_01235_x
crossref_primary_10_1016_j_jjimei_2021_100051
crossref_primary_10_34133_research_0154
crossref_primary_10_1002_admt_202302027
crossref_primary_10_1016_j_mne_2022_100140
crossref_primary_10_3390_nano11102711
crossref_primary_10_1038_s41467_023_38200_6
crossref_primary_10_1002_aisy_202000157
crossref_primary_10_1002_adfm_202007436
crossref_primary_10_1039_D1EE03633E
crossref_primary_10_1016_j_nanoen_2020_105414
crossref_primary_10_1007_s42765_023_00350_z
crossref_primary_10_1016_j_nanoen_2023_108903
crossref_primary_10_1186_s42234_023_00118_1
crossref_primary_10_1039_D2NA00608A
crossref_primary_10_1002_smll_202304599
crossref_primary_10_1016_j_nanoen_2021_106486
crossref_primary_10_34133_adi_0054
crossref_primary_10_1039_D0NR05976E
crossref_primary_10_1002_adma_202303311
crossref_primary_10_1002_advs_202103694
crossref_primary_10_1109_TNSRE_2022_3212705
crossref_primary_10_1007_s42235_022_00320_y
crossref_primary_10_1021_acsami_3c05775
crossref_primary_10_1021_acs_chemrev_3c00507
crossref_primary_10_1016_j_nanoen_2021_106215
crossref_primary_10_1002_inf2_12534
crossref_primary_10_1002_aisy_202300222
crossref_primary_10_1016_j_nanoen_2020_105405
crossref_primary_10_1016_j_nanoen_2024_109849
crossref_primary_10_1007_s12274_023_5784_x
crossref_primary_10_1038_s43016_023_00817_7
crossref_primary_10_3390_chemosensors10050157
crossref_primary_10_3390_inventions10010005
crossref_primary_10_1016_j_nanoen_2021_106330
crossref_primary_10_3389_felec_2022_1017511
crossref_primary_10_3390_s23094300
crossref_primary_10_1038_s41598_023_34540_x
crossref_primary_10_1080_10447318_2023_2276991
crossref_primary_10_3390_mi14091697
crossref_primary_10_1002_advs_202402818
crossref_primary_10_1016_j_cej_2021_129650
crossref_primary_10_1002_adma_202004178
crossref_primary_10_1002_advs_202101020
crossref_primary_10_1002_admt_202400554
crossref_primary_10_1007_s40820_021_00644_0
crossref_primary_10_1016_j_fmre_2022_01_003
crossref_primary_10_1177_00405175211034245
crossref_primary_10_3390_nano12081385
crossref_primary_10_1016_j_nanoen_2024_110141
crossref_primary_10_1109_JSEN_2023_3345344
crossref_primary_10_1088_1361_6439_ac7a8f
crossref_primary_10_1002_inf2_12424
crossref_primary_10_1016_j_nanoen_2023_108769
crossref_primary_10_1002_advs_202406190
crossref_primary_10_1038_s41467_022_32745_8
crossref_primary_10_1016_j_nanoen_2024_109956
crossref_primary_10_1002_aenm_202203040
crossref_primary_10_1016_j_apmt_2023_102039
crossref_primary_10_1109_OJCAS_2021_3123272
crossref_primary_10_1016_j_nanoen_2023_108520
crossref_primary_10_1177_15280837231225827
crossref_primary_10_1126_sciadv_abl6700
crossref_primary_10_1021_acsami_5c01936
crossref_primary_10_1002_eom2_12298
crossref_primary_10_1016_j_tibtech_2022_12_012
crossref_primary_10_1016_j_jechem_2022_12_024
crossref_primary_10_1063_5_0144956
crossref_primary_10_1016_j_scib_2021_03_021
crossref_primary_10_1002_aisy_202200128
crossref_primary_10_1007_s40820_020_00575_2
crossref_primary_10_1515_nanoph_2024_0572
crossref_primary_10_1016_j_nanoen_2024_110252
crossref_primary_10_1039_D3TC02970K
crossref_primary_10_1109_JSEN_2024_3445128
crossref_primary_10_1002_adfm_202309553
crossref_primary_10_1145_3635159
crossref_primary_10_1002_adfm_202008831
crossref_primary_10_1002_adfm_202303562
crossref_primary_10_1002_advs_202408384
crossref_primary_10_1088_1748_3190_ad61a8
crossref_primary_10_1021_acsnano_0c03728
crossref_primary_10_1109_TII_2022_3152214
crossref_primary_10_1002_VIW_20220026
crossref_primary_10_1016_j_nanoen_2023_108656
crossref_primary_10_1016_j_nanoen_2023_108898
crossref_primary_10_1016_j_porgcoat_2022_106919
crossref_primary_10_1016_j_nanoen_2022_108013
crossref_primary_10_1021_acsami_4c11050
crossref_primary_10_1002_advs_202100711
crossref_primary_10_1002_sstr_202300325
crossref_primary_10_1016_j_nanoen_2022_107289
crossref_primary_10_1002_adsr_202200072
crossref_primary_10_1002_aisy_202200371
crossref_primary_10_1007_s40820_022_00874_w
crossref_primary_10_1016_j_nanoen_2024_109496
crossref_primary_10_1021_acsami_4c19102
crossref_primary_10_1016_j_ins_2022_05_085
crossref_primary_10_1109_LSENS_2023_3276814
crossref_primary_10_1039_D4MH00753K
crossref_primary_10_1002_adfm_202416163
crossref_primary_10_1109_JSEN_2021_3132793
crossref_primary_10_1002_admt_202302068
crossref_primary_10_1016_j_device_2025_100707
crossref_primary_10_1007_s40820_021_00720_5
crossref_primary_10_1021_acsami_0c22670
crossref_primary_10_3390_polym12122905
crossref_primary_10_1016_j_nantod_2022_101437
crossref_primary_10_1002_adfm_202005692
crossref_primary_10_1021_acsami_4c04770
crossref_primary_10_3390_nano12081366
crossref_primary_10_1002_aisy_202100046
crossref_primary_10_1038_s41378_021_00248_z
crossref_primary_10_1002_aenm_202301178
crossref_primary_10_1149_1945_7111_ac72c3
Cites_doi 10.1002/aenm.201703086
10.1002/adfm.201807560
10.1016/j.nanoen.2019.06.040
10.1126/scirobotics.aau6914
10.1002/smll.201901558
10.1016/j.nanoen.2019.01.069
10.1002/adfm.201602619
10.1002/adma.201401184
10.1002/aenm.201602397
10.1016/j.nanoen.2018.09.024
10.1126/sciadv.aav9653
10.1038/s41586-019-1234-z
10.1002/admt.201800167
10.1021/acsnano.7b07534
10.1016/j.nanoen.2018.06.029
10.1007/s004250050096
10.1038/432036a
10.1126/scirobotics.aat2516
10.1016/j.nanoen.2019.104167
10.1016/j.nanoen.2018.10.044
10.2165/00007256-200030010-00002
10.1016/j.nanoen.2019.104143
10.1186/2046-7648-2-4
10.1021/acsnano.8b07567
10.1007/s40820-019-0271-3
10.1126/sciadv.aax0649
10.1016/j.nanoen.2019.103871
10.1016/j.nanoen.2018.10.036
10.1021/acsnano.6b03926
10.3390/nano9070945
10.1021/am200033u
10.1021/acsnano.7b00396
10.1016/j.nanoen.2019.05.029
10.1002/adma.201800716
10.1016/j.nanoen.2017.08.018
10.1002/adma.201504249
10.1016/j.nanoen.2019.03.082
10.1038/nature25494
10.1002/advs.201700143
10.1021/acsnano.7b05213
10.1016/j.nanoen.2016.10.046
10.1002/admt.201600136
10.1002/adhm.201600092
10.1109/TNANO.2017.2789300
10.1038/s41467-019-09464-8
10.1016/j.nanoen.2018.12.091
10.1002/adma.200904411
10.1021/acssensors.6b00145
10.1016/j.nanoen.2019.104039
10.1038/s41467-017-01210-2
10.1002/advs.201900617
10.1002/adma.201801072
10.1016/j.nanoen.2019.01.096
10.1021/acsnano.6b07389
10.1016/j.mattod.2018.01.006
10.1002/aenm.201701243
10.1016/j.nanoen.2012.01.004
10.1038/s41467-019-09461-x
10.1016/j.nanoen.2018.06.022
10.1016/j.nanoen.2019.05.033
10.1021/acsami.9b04569
10.1002/advs.201900149
10.1021/acsnano.8b06747
10.1016/j.nanoen.2019.03.090
10.1016/j.nanoen.2018.03.027
10.1016/j.nanoen.2018.09.030
10.1002/adfm.201803684
10.1002/smll.200800649
10.1016/j.nanoen.2016.02.054
10.1021/acsnano.9b04911
10.1016/j.nanoen.2019.01.091
10.1038/nenergy.2016.138
10.1002/admt.201700237
10.1038/s41928-019-0257-7
10.1016/j.nanoen.2018.04.004
10.1016/j.nanoen.2018.11.078
10.1016/j.nanoen.2019.04.004
10.1016/j.nanoen.2017.08.035
10.1002/advs.201500441
10.1103/PhysRevLett.102.026001
10.1016/j.nanoen.2018.11.075
10.1002/adma.201701985
10.1002/marc.200500458
10.1021/acsnano.9b00140
10.1038/nmat856
10.1021/acsnano.8b00147
10.1016/j.nanoen.2019.03.071
10.1002/advs.201801883
10.1021/acsnano.8b00303
10.1002/aisy.201900088
10.1002/adfm.201601237
10.1039/C7TA01302G
10.1002/aenm.201802159
10.1038/s41467-018-06759-0
10.1002/smll.201802876
10.1021/acsnano.6b05815
10.1002/advs.201901437
10.1016/j.nanoen.2019.103984
10.1002/adfm.201905808
10.1109/TNANO.2016.2522187
10.1021/acsnano.9b07874
10.1002/adfm.201604462
10.1002/adfm.201970294
10.1021/nn506832w
10.1002/adma.201702517
10.1002/adfm.201807957
10.1016/j.nanoen.2018.10.049
10.1002/adfm.201800625
10.1016/j.nanoen.2015.04.020
10.1002/admt.201800487
10.1109/TNANO.2017.2659383
10.1021/acsnano.8b00416
10.1002/aisy.201900090
10.1002/adfm.201808786
10.1002/adma.201401364
10.1002/adfm.201402987
ContentType Journal Article
Copyright 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 24P
AAYXX
CITATION
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202000261
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Open Access资源_Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_e72f9398fee14782870ae884a3c346b7
PMC7375248
10_1002_advs_202000261
ADVS1706
Genre article
GrantInformation_xml – fundername: HiFES Seed Funding
  funderid: R‐263‐501‐012‐133
– fundername: Artificial Intelligence (AI) Singapore Grand Challenge
  funderid: AISG‐GC‐2019‐002
– fundername: Hybrid Integration of Flexible Power Source and Pressure Sensors
– fundername: Science Foundation for Distinguished Young Scholars of Jiangsu Province
  funderid: BK20170008
– fundername: RIE 2020‐AME‐2019‐Nanosystems at the Edge
  funderid: R‐263‐000‐D67‐305
– fundername: National University of Singapore
– fundername: National Key R&D Program of China
  funderid: 2018YFB1304700
– fundername: ;
– fundername: Science Foundation for Distinguished Young Scholars of Jiangsu Province
  grantid: BK20170008
– fundername: HiFES Seed Funding
  grantid: R‐263‐501‐012‐133
– fundername: RIE 2020‐AME‐2019‐Nanosystems at the Edge
  grantid: R‐263‐000‐D67‐305
– fundername: National Key R&D Program of China
  grantid: 2018YFB1304700
– fundername: Artificial Intelligence (AI) Singapore Grand Challenge
  grantid: AISG‐GC‐2019‐002
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
ITC
PHGZM
PHGZT
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5726-36cbf43b3ffeab52c0ae1ad082f8ed6c50547a6386afa939ccddf3b8d04b3dcc3
IEDL.DBID DOA
ISSN 2198-3844
IngestDate Wed Aug 27 00:27:09 EDT 2025
Thu Aug 21 14:16:27 EDT 2025
Thu Jul 10 16:53:06 EDT 2025
Fri Jul 25 06:51:36 EDT 2025
Tue Jul 01 03:59:23 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Wed Jan 22 16:32:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5726-36cbf43b3ffeab52c0ae1ad082f8ed6c50547a6386afa939ccddf3b8d04b3dcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8886-3649
OpenAccessLink https://doaj.org/article/e72f9398fee14782870ae884a3c346b7
PMID 32714750
PQID 2425865917
PQPubID 4365299
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_e72f9398fee14782870ae884a3c346b7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7375248
proquest_miscellaneous_2427521250
proquest_journals_2425865917
crossref_primary_10_1002_advs_202000261
crossref_citationtrail_10_1002_advs_202000261
wiley_primary_10_1002_advs_202000261_ADVS1706
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 40
2017; 5
2017; 7
2017; 8
2017; 4
2013; 2
2019; 55
2019; 11
2019; 10
2019; 13
2019; 57
2019; 56
2019; 15
2019; 58
2014; 26
2016; 30
2020; 14
2019; 569
2005; 26
2018; 47
2010; 22
2018; 9
2018; 8
2019; 60
2018; 3
2019; 62
2019; 63
2019; 66
2019; 65
2003; 2
2019; 29
2018; 28
2019; 9
2019; 4
2019; 6
2019; 5
2016; 19
2019; 31
2019; 2
2019; 1
2017; 27
2016; 10
2017; 29
2015; 9
2011; 3
2018; 21
2016; 15
2016; 5
1997; 202
2015; 25
2018; 17
2016; 1
2012; 1
2016; 3
2004; 432
2017; 16
2017; 11
2018; 555
2000; 30
2009; 102
2018; 51
2018; 50
2009; 5
2018; 12
2016; 28
2018; 54
2016; 26
2018; 53
2018; 14
2016; 23
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
Zheng L. (e_1_2_10_109_1) 2017; 7
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_92_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 202
  start-page: 1
  year: 1997
  publication-title: Planta
– volume: 569
  start-page: 698
  year: 2019
  publication-title: Nature
– volume: 14
  year: 2018
  publication-title: Small
– volume: 13
  start-page: 3589
  year: 2019
  publication-title: ACS Nano
– volume: 55
  start-page: 401
  year: 2019
  publication-title: Nano Energy
– volume: 51
  start-page: 162
  year: 2018
  publication-title: Nano Energy
– volume: 53
  start-page: 596
  year: 2018
  publication-title: Nano Energy
– volume: 16
  start-page: 259
  year: 2017
  publication-title: IEEE Trans. Nanotechnol.
– volume: 30
  start-page: 17
  year: 2000
  publication-title: Sports Med.
– volume: 10
  start-page: 9044
  year: 2016
  publication-title: ACS Nano
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 57
  start-page: 903
  year: 2019
  publication-title: Nano Energy
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 50
  start-page: 148
  year: 2018
  publication-title: Nano Energy
– volume: 13
  start-page: 1940
  year: 2019
  publication-title: ACS Nano
– volume: 3
  year: 2018
  publication-title: Adv. Mater. Technol.
– volume: 2
  start-page: 301
  year: 2003
  publication-title: Nat. Mater.
– volume: 17
  start-page: 220
  year: 2018
  publication-title: IEEE Trans. Nanotechnol.
– volume: 63
  year: 2019
  publication-title: Nano Energy
– volume: 60
  start-page: 545
  year: 2019
  publication-title: Nano Energy
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 40
  start-page: 282
  year: 2017
  publication-title: Nano Energy
– volume: 28
  start-page: 4485
  year: 2016
  publication-title: Adv. Mater.
– volume: 22
  start-page: 2325
  year: 2010
  publication-title: Adv. Mater.
– volume: 60
  start-page: 449
  year: 2019
  publication-title: Nano Energy
– volume: 30
  start-page: 450
  year: 2016
  publication-title: Nano Energy
– volume: 11
  start-page: 856
  year: 2017
  publication-title: ACS Nano
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 1
  start-page: 328
  year: 2012
  publication-title: Nano Energy
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 532
  year: 2016
  publication-title: Nano Energy
– volume: 58
  start-page: 536
  year: 2019
  publication-title: Nano Energy
– volume: 58
  start-page: 641
  year: 2019
  publication-title: Nano Energy
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 945
  year: 2019
  publication-title: Nanomaterials
– volume: 62
  start-page: 442
  year: 2019
  publication-title: Nano Energy
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 56
  start-page: 651
  year: 2019
  publication-title: Nano Energy
– volume: 40
  start-page: 203
  year: 2017
  publication-title: Nano Energy
– volume: 65
  year: 2019
  publication-title: Nano Energy
– volume: 555
  start-page: 83
  year: 2018
  publication-title: Nature
– volume: 26
  start-page: 4825
  year: 2014
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1426
  year: 2019
  publication-title: Nat. Commun.
– volume: 5
  start-page: 996
  year: 2016
  publication-title: Adv. Healthcare Mater.
– volume: 5
  start-page: 8376
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 102
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 56
  start-page: 516
  year: 2019
  publication-title: Nano Energy
– volume: 62
  start-page: 355
  year: 2019
  publication-title: Nano Energy
– volume: 21
  start-page: 216
  year: 2018
  publication-title: Mater. Today
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 54
  start-page: 453
  year: 2018
  publication-title: Nano Energy
– volume: 58
  start-page: 612
  year: 2019
  publication-title: Nano Energy
– volume: 2
  start-page: 243
  year: 2019
  publication-title: Nat. Electron.
– volume: 10
  start-page: 7973
  year: 2016
  publication-title: ACS Nano
– volume: 60
  start-page: 850
  year: 2019
  publication-title: Nano Energy
– volume: 12
  start-page: 3487
  year: 2018
  publication-title: ACS Nano
– volume: 26
  start-page: 5037
  year: 2014
  publication-title: Adv. Mater.
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 51
  start-page: 1
  year: 2018
  publication-title: Nano Energy
– volume: 15
  start-page: 295
  year: 2016
  publication-title: IEEE Trans. Nanotechnol.
– volume: 3
  start-page: 1216
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 90
  year: 2009
  publication-title: Small
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 6206
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 80
  year: 2016
  publication-title: Nano Energy
– volume: 60
  start-page: 440
  year: 2019
  publication-title: Nano Energy
– volume: 432
  start-page: 36
  year: 2004
  publication-title: Nature
– volume: 26
  start-page: 1805
  year: 2005
  publication-title: Macromol. Rapid Commun.
– volume: 3
  year: 2018
  publication-title: Sci. Rob.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 11
  start-page: 39
  year: 2019
  publication-title: Nano‐Micro Lett.
– volume: 25
  start-page: 375
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 658
  year: 2018
  publication-title: Nano Energy
– volume: 2
  start-page: 4
  year: 2013
  publication-title: Extreme Physiol. Med.
– volume: 55
  start-page: 516
  year: 2019
  publication-title: Nano Energy
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 12
  start-page: 2027
  year: 2018
  publication-title: ACS Nano
– volume: 66
  year: 2019
  publication-title: Nano Energy
– volume: 15
  year: 2019
  publication-title: Small
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 10
  start-page: 1427
  year: 2019
  publication-title: Nat. Commun.
– volume: 9
  start-page: 105
  year: 2015
  publication-title: ACS Nano
– volume: 1
  year: 2019
  publication-title: Adv. Intell. Syst.
– volume: 11
  start-page: 3950
  year: 2017
  publication-title: ACS Nano
– volume: 12
  start-page: 2893
  year: 2018
  publication-title: ACS Nano
– volume: 7
  start-page: 1
  year: 2017
  publication-title: Nanomater. Nanotechnol.
– volume: 47
  start-page: 442
  year: 2018
  publication-title: Nano Energy
– volume: 1
  year: 2016
  publication-title: Adv. Mater. Technol.
– volume: 1
  start-page: 817
  year: 2016
  publication-title: ACS Sens.
– volume: 26
  start-page: 7614
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 1202
  year: 2017
  publication-title: Nat. Commun.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 9
  start-page: 4280
  year: 2018
  publication-title: Nat. Commun.
– volume: 14
  start-page: 218
  year: 2020
  publication-title: ACS Nano
– ident: e_1_2_10_57_1
  doi: 10.1002/aenm.201703086
– ident: e_1_2_10_5_1
  doi: 10.1002/adfm.201807560
– ident: e_1_2_10_46_1
  doi: 10.1016/j.nanoen.2019.06.040
– ident: e_1_2_10_37_1
  doi: 10.1126/scirobotics.aau6914
– ident: e_1_2_10_21_1
  doi: 10.1002/smll.201901558
– ident: e_1_2_10_96_1
  doi: 10.1016/j.nanoen.2019.01.069
– ident: e_1_2_10_2_1
  doi: 10.1002/adfm.201602619
– ident: e_1_2_10_97_1
  doi: 10.1002/adma.201401184
– ident: e_1_2_10_64_1
  doi: 10.1002/aenm.201602397
– ident: e_1_2_10_25_1
  doi: 10.1016/j.nanoen.2018.09.024
– ident: e_1_2_10_29_1
  doi: 10.1126/sciadv.aav9653
– ident: e_1_2_10_38_1
  doi: 10.1038/s41586-019-1234-z
– ident: e_1_2_10_86_1
  doi: 10.1002/admt.201800167
– ident: e_1_2_10_36_1
  doi: 10.1021/acsnano.7b07534
– ident: e_1_2_10_95_1
  doi: 10.1016/j.nanoen.2018.06.029
– ident: e_1_2_10_105_1
  doi: 10.1007/s004250050096
– ident: e_1_2_10_107_1
  doi: 10.1038/432036a
– ident: e_1_2_10_55_1
  doi: 10.1126/scirobotics.aat2516
– ident: e_1_2_10_58_1
  doi: 10.1016/j.nanoen.2019.104167
– ident: e_1_2_10_80_1
  doi: 10.1016/j.nanoen.2018.10.044
– ident: e_1_2_10_116_1
  doi: 10.2165/00007256-200030010-00002
– ident: e_1_2_10_19_1
  doi: 10.1016/j.nanoen.2019.104143
– ident: e_1_2_10_117_1
  doi: 10.1186/2046-7648-2-4
– ident: e_1_2_10_1_1
  doi: 10.1021/acsnano.8b07567
– ident: e_1_2_10_81_1
  doi: 10.1007/s40820-019-0271-3
– ident: e_1_2_10_17_1
  doi: 10.1126/sciadv.aax0649
– ident: e_1_2_10_50_1
  doi: 10.1016/j.nanoen.2019.103871
– ident: e_1_2_10_34_1
  doi: 10.1016/j.nanoen.2018.10.036
– ident: e_1_2_10_56_1
  doi: 10.1021/acsnano.6b03926
– ident: e_1_2_10_92_1
  doi: 10.3390/nano9070945
– ident: e_1_2_10_98_1
  doi: 10.1021/am200033u
– ident: e_1_2_10_8_1
  doi: 10.1021/acsnano.7b00396
– ident: e_1_2_10_75_1
  doi: 10.1016/j.nanoen.2019.05.029
– ident: e_1_2_10_3_1
  doi: 10.1002/adma.201800716
– ident: e_1_2_10_47_1
  doi: 10.1016/j.nanoen.2017.08.018
– ident: e_1_2_10_23_1
  doi: 10.1002/adma.201504249
– ident: e_1_2_10_68_1
  doi: 10.1016/j.nanoen.2019.03.082
– ident: e_1_2_10_14_1
  doi: 10.1038/nature25494
– ident: e_1_2_10_71_1
  doi: 10.1002/advs.201700143
– ident: e_1_2_10_73_1
  doi: 10.1021/acsnano.7b05213
– ident: e_1_2_10_48_1
  doi: 10.1016/j.nanoen.2016.10.046
– ident: e_1_2_10_31_1
  doi: 10.1002/admt.201600136
– ident: e_1_2_10_15_1
  doi: 10.1002/adhm.201600092
– ident: e_1_2_10_43_1
  doi: 10.1109/TNANO.2017.2789300
– ident: e_1_2_10_59_1
  doi: 10.1038/s41467-019-09464-8
– ident: e_1_2_10_103_1
  doi: 10.1016/j.nanoen.2018.12.091
– ident: e_1_2_10_113_1
  doi: 10.1002/adma.200904411
– ident: e_1_2_10_40_1
  doi: 10.1021/acssensors.6b00145
– ident: e_1_2_10_67_1
  doi: 10.1016/j.nanoen.2019.104039
– ident: e_1_2_10_16_1
  doi: 10.1038/s41467-017-01210-2
– ident: e_1_2_10_28_1
  doi: 10.1002/advs.201900617
– ident: e_1_2_10_7_1
  doi: 10.1002/adma.201801072
– ident: e_1_2_10_41_1
  doi: 10.1016/j.nanoen.2019.01.096
– volume: 7
  start-page: 1
  year: 2017
  ident: e_1_2_10_109_1
  publication-title: Nanomater. Nanotechnol.
– ident: e_1_2_10_9_1
  doi: 10.1021/acsnano.6b07389
– ident: e_1_2_10_85_1
  doi: 10.1016/j.mattod.2018.01.006
– ident: e_1_2_10_99_1
  doi: 10.1002/aenm.201701243
– ident: e_1_2_10_54_1
  doi: 10.1016/j.nanoen.2012.01.004
– ident: e_1_2_10_66_1
  doi: 10.1038/s41467-019-09461-x
– ident: e_1_2_10_77_1
  doi: 10.1016/j.nanoen.2018.06.022
– ident: e_1_2_10_51_1
  doi: 10.1016/j.nanoen.2019.05.033
– ident: e_1_2_10_90_1
  doi: 10.1021/acsami.9b04569
– ident: e_1_2_10_61_1
  doi: 10.1002/advs.201900149
– ident: e_1_2_10_79_1
  doi: 10.1021/acsnano.8b06747
– ident: e_1_2_10_52_1
  doi: 10.1016/j.nanoen.2019.03.090
– ident: e_1_2_10_53_1
  doi: 10.1016/j.nanoen.2018.03.027
– ident: e_1_2_10_83_1
  doi: 10.1016/j.nanoen.2018.09.030
– ident: e_1_2_10_63_1
  doi: 10.1002/adfm.201803684
– ident: e_1_2_10_111_1
  doi: 10.1002/smll.200800649
– ident: e_1_2_10_49_1
  doi: 10.1016/j.nanoen.2016.02.054
– ident: e_1_2_10_65_1
  doi: 10.1021/acsnano.9b04911
– ident: e_1_2_10_32_1
  doi: 10.1016/j.nanoen.2019.01.091
– ident: e_1_2_10_33_1
  doi: 10.1038/nenergy.2016.138
– ident: e_1_2_10_91_1
  doi: 10.1002/admt.201700237
– ident: e_1_2_10_20_1
  doi: 10.1038/s41928-019-0257-7
– ident: e_1_2_10_69_1
  doi: 10.1016/j.nanoen.2018.04.004
– ident: e_1_2_10_84_1
  doi: 10.1016/j.nanoen.2018.11.078
– ident: e_1_2_10_94_1
  doi: 10.1016/j.nanoen.2019.04.004
– ident: e_1_2_10_115_1
  doi: 10.1016/j.nanoen.2017.08.035
– ident: e_1_2_10_72_1
  doi: 10.1002/advs.201500441
– ident: e_1_2_10_114_1
  doi: 10.1103/PhysRevLett.102.026001
– ident: e_1_2_10_42_1
  doi: 10.1016/j.nanoen.2018.11.075
– ident: e_1_2_10_12_1
  doi: 10.1002/adma.201701985
– ident: e_1_2_10_112_1
  doi: 10.1002/marc.200500458
– ident: e_1_2_10_62_1
  doi: 10.1021/acsnano.9b00140
– ident: e_1_2_10_106_1
  doi: 10.1038/nmat856
– ident: e_1_2_10_10_1
  doi: 10.1021/acsnano.8b00147
– ident: e_1_2_10_24_1
  doi: 10.1016/j.nanoen.2019.03.071
– ident: e_1_2_10_102_1
  doi: 10.1002/advs.201801883
– ident: e_1_2_10_70_1
  doi: 10.1021/acsnano.8b00303
– ident: e_1_2_10_88_1
  doi: 10.1002/aisy.201900088
– ident: e_1_2_10_18_1
  doi: 10.1002/adfm.201601237
– ident: e_1_2_10_100_1
  doi: 10.1039/C7TA01302G
– ident: e_1_2_10_89_1
  doi: 10.1002/aenm.201802159
– ident: e_1_2_10_35_1
  doi: 10.1038/s41467-018-06759-0
– ident: e_1_2_10_11_1
  doi: 10.1002/smll.201802876
– ident: e_1_2_10_104_1
  doi: 10.1021/acsnano.6b05815
– ident: e_1_2_10_74_1
  doi: 10.1002/advs.201901437
– ident: e_1_2_10_76_1
  doi: 10.1016/j.nanoen.2019.103984
– ident: e_1_2_10_39_1
  doi: 10.1002/adfm.201905808
– ident: e_1_2_10_44_1
  doi: 10.1109/TNANO.2016.2522187
– ident: e_1_2_10_4_1
  doi: 10.1021/acsnano.9b07874
– ident: e_1_2_10_93_1
  doi: 10.1002/adfm.201604462
– ident: e_1_2_10_101_1
  doi: 10.1002/adfm.201970294
– ident: e_1_2_10_87_1
  doi: 10.1021/nn506832w
– ident: e_1_2_10_108_1
  doi: 10.1002/adma.201702517
– ident: e_1_2_10_13_1
  doi: 10.1002/adfm.201807957
– ident: e_1_2_10_6_1
  doi: 10.1016/j.nanoen.2018.10.049
– ident: e_1_2_10_110_1
  doi: 10.1002/adfm.201800625
– ident: e_1_2_10_78_1
  doi: 10.1016/j.nanoen.2015.04.020
– ident: e_1_2_10_82_1
  doi: 10.1002/admt.201800487
– ident: e_1_2_10_45_1
  doi: 10.1109/TNANO.2017.2659383
– ident: e_1_2_10_60_1
  doi: 10.1021/acsnano.8b00416
– ident: e_1_2_10_30_1
  doi: 10.1002/aisy.201900090
– ident: e_1_2_10_22_1
  doi: 10.1002/adfm.201808786
– ident: e_1_2_10_26_1
  doi: 10.1002/adma.201401364
– ident: e_1_2_10_27_1
  doi: 10.1002/adfm.201402987
SSID ssj0001537418
Score 2.6180234
Snippet The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical linkage...
Abstract The rapid progress of Internet of things (IoT) technology raises an imperative demand on human machine interfaces (HMIs) which provide a critical...
SourceID doaj
pubmedcentral
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2000261
SubjectTerms Artificial intelligence
gesture recognition
Hydrophobic surfaces
Internet of Things
Machine learning
Power supply
Robotics
Screen printing
Sensors
superhydrophobic textiles
triboelectric nanogenerators (TENGs)
virtual reality/augmented reality (VR/AR) controls
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagvXBBLQ-RUpCRkIBDtEn8iHtC26qlQmpV7VLUW-Rnd6UqWdJuJW7cufAb-SV4HCc0SMAxsa2M7ZnJZ3v8DUKvC6UM9zg-LSSRKXXapMJwkuZECkkyIzSDi8Inp_z4nH68YBdxw-06hlX2PjE4atNo2COfADQWnPnVxfvVlxSyRsHpakyhcR9tehcs_OJrc__w9Gz2e5eFEaBn6dkas2IizS2wdMMNlYLno79RIO0fIc0_4yTv4tfwAzraQg8jcsTTbqq30T1bP0Lb0Tav8dtIIP3uMfp-EiIkLY7kqZc4RGriEB6A5_bK_fz24wzSo1mDD5oaKF-908Pz9cq2i6-mbVaLRi01BlqRpkuUA0_ej3vBsIe5-IMXfN1aPOvjj5oaL2v8eTaZzvD0zqH4E3R-dPjp4DiNSRdSzcqCp4Rr5ShRxDkrFSt0Jm0ujUcKTljDtUdMtJTearl0co_saW2MI0qYjCpitCZP0Ubd1PYZwlTL0gnmuLQlZcwK69FB7qyi1AjKRILSfvArHRnJITHGVdVxKRcVTFY1TFaC3gz1Vx0Xx19r7sNcDrWAQzu8aNrLKppkZcvC-Q4IZ21OSyD-910VgkqiCeWqTNBurwlVNGz_iUENE_RqKPYmCecssrbNOtQp4Uo0yxJUjjRoJNC4pF4uArl3SXxbCmMTdO0_Ha08eJkDA9LOv4V9jh5Amy7OeBdt3LRr-8KjqRv1MprML4brJBg
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9NAEMdXqFy4IMpDhLZokZCAgxXH--wxVJQKqahKKOrN2mcTqbIjt0Hi1jsXPiOfhJm148ZICHGMPUl2vTvr_9ozvyHkdWGtl6Djs8Iwk_HofKa9ZNmEGW1Y7rUTmCh8-lmenPNPF-JiK4u_5UP0D9zQM9J6jQ5u7PX4Dhpq_DfEbWOqSYH7n_uYX4v0_IKf3T1lEQzxLFhhDnbXGdOcb8iNeTEe_sTgzpQA_gPV-WfM5LaWTTej40fkYaci6bQd9l1yL1SPyW7np9f0bQeTfveE_DhN0ZKBdiDVS5qiNmkKFaDzcBV_3f48w1JpwdOjukL8KyyAdL5ehWbx3Tf1alHbpaOIGKnbojn4CdZ0aBgFyUs_QsPXTaCzTSxSXdFlRb_OxtMZnW69IH9Kzo8_fDk6yboCDJkTqpAZk85GziyLMRgrCpebMDEeVEPUwUsH6okrAx4sTTSH7NA57yOz2ufcMu8ce0Z2qroKzwnlzqioRZQmKC5E0AGUwiQGy7nXXOgRyTYXv3QdnRyLZFyVLVe5KHGwyn6wRuRNb79quRx_tXyPY9lbIU87Haiby7JzzzKoIkIHdAxhwhUWAYCuas0Nc4xLq0ZkfzMTys7J4S9gvdNSwIZ3RF71p8E98Z2LqUK9TjYK06NFPiJqMIMGDRqeqZaLBPpWDL7L8dqkufaPjpYgZOZIQ3rxn_Z75AEebIOQ98nOTbMOByC1buzL5E2_Aaf2Jws
  priority: 102
  providerName: Wiley-Blackwell
Title Machine Learning Glove Using Self‐Powered Conductive Superhydrophobic Triboelectric Textile for Gesture Recognition in VR/AR Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202000261
https://www.proquest.com/docview/2425865917
https://www.proquest.com/docview/2427521250
https://pubmed.ncbi.nlm.nih.gov/PMC7375248
https://doaj.org/article/e72f9398fee14782870ae884a3c346b7
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLggykMEyspISMAh2iR-xD1uS0uF2Gq1S1FvkR_j7kpVslq6SNy4c-E38ksYO9nVBgn1wilK7CRje8b-LM98Q8jrwhgnEcenhWY65d66VDnJ0pxppVnmlBUhUHh8Ls8u-MdLcbmT6iv4hLX0wG3HDaEs_CE7VB4g52WgZ880KMU1s4xLE-PIcc3b2Uy18cEs0LJsWBqzYqjdt8DOHSJTCpn3VqFI1t9DmH_7R-7i1rjwnD4kDzrESEetpPvkDtSPyH5nk1_p2444-t1j8nMcPSOBdqSpVzR6aNLoFkBncO1___g1CWnRwNHjpg5UrzjZ0dl6Cav5d7dqlvPGLCwNdCJNmyAn3OH8jYJRhLf0Awq-XgGdbvyOmpouavplOhxN6WjnMPwJuTg9-Xx8lnbJFlIrykKmTFrjOTPMe9BGFBa7OdcOEYJX4KRFpMRLjdYqtdc4INY655lRLuOGOWvZU7JXNzU8I5RbXXolvNRQciFAAaKC3IPh3CkuVELSTedXtmMiDwkxrquWQ7mowmBV28FKyJtt_WXLwfHPmkdhLLe1And2fIAaVXUaVd2mUQk52GhC1Rk0_gLnNiUFbm4T8mpbjKYYzld0Dc061ilDKLTIElL2NKgnUL-kXswjqXfJ8F0e-ibq2i0NrRC0zALz0fP_0eIX5H74cuuFfED2blZreIlY68YMyN2CTwbk3uj9-NMMr0cn55PpIBrbH0Z6Lrg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeoALojxEoICRQMBhlWT9WPeAUFpaUtpEVdKi3hY_m0jVbkgbUG_cufBL-FH8Emb2ERok4NTjru1d2zMef7bH3xDyLDbGScDxUayZjniwLlJOsqjDtNKs7ZQVeFG4P5C9I_7-WByvkB_1XRh0q6xtYmGoXW5xj7yF0FhJAauLN9NPEUaNwtPVOoRGqRZ7_uILLNnOXu--Bfk-j-Od7cOtXlRFFYisSGIZMWlN4MywELw2IrZt7TvawVQYlHfSAiTgiQa1lDroDbZhrXOBGeXa3DBnLYPvXiOrnMFSpkFWN7cHB8PfuzqCIR1MzQ7ZjlvafUZWcLwRE8vO0uxXBAlYQrZ_-mVexsvFhLdzi9yskCrtlqq1RlZ8dpusVbbgjL6sCKtf3SHf-oVHpqcVWesJLTxDaeGOQEf-NPz8-v0Aw7F5R7fyDClmwcjS0XzqZ-MLN8un49xMLEUak7wMzINPMG9AxSjAavoOKj6feTqs_Z3yjE4y-mHY6g5p99Ih_F1ydCXiuEcaWZ75-4Ryq5OgRJDaJ1wIrzygkU7whnOnuFBNEtWdn9qKAR0DcZymJXdznKKw0oWwmuTFIv-05P74a85NlOUiF3J2Fy_y2UlamYDUJ3GABqjgfYcnGGgAmqoU18wyLk3SJOu1JqSVIYFfLNS-SZ4uksEE4LmOznw-L_IkeAVbtJskWdKgpQotp2STcUEmnjAoy7FvCl37T0NTAEsjZFx68O_KPiHXe4f9_XR_d7D3kNzA8qWP8zppnM_m_hEguXPzuBo-lHy86hH7C9xKY4U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKiEuiPIQgQJGAgGHVXbX9q57QCh9hJbSKEoo6m3rZxOp2g1pA-qNOxd-Dz-HX8LMPkKDBJx63LW9a3vG48_2-BtCnsVa2wRwfBArpgLujQ2kTVgQMSUVC600Ai8KH_ST3UP-7kgcrZAfzV0YdKtsbGJpqG1hcI-8g9BYJgJWFx1fu0UMtntvpp8CjCCFJ61NOI1KRfbdxRdYvp293tsGWT-P497Oh63doI4wEBiRxknAEqM9Z5p575QWsQmVi5SFadFLZxMD8ICnClQ0UV5tsA1jrPVMSxtyzawxDL57jaymsCoKW2R1c6c_GP7e4REMqWEapsgw7ij7GRnC8XZMnERLM2EZMGAJ5f7po3kZO5eTX-8WuVmjVtqt1GyNrLj8Nlmr7cIZfVmTV7-6Q74dlN6ZjtbErSe09BKlpWsCHblT__Pr9wGGZnOWbhU50s2CwaWj-dTNxhd2VkzHhZ4YipQmRRWkB59AEFAxChCbvoWKz2eODhvfpyKnk5x-HHa6Q9q9dCB_lxxeiTjukVZe5O4-odyo1EvhE-VSLoSTDpBJ5J3m3EouZJsETednpmZDx6Acp1nF4xxnKKxsIaw2ebHIP614QP6acxNluciF_N3li2J2ktXmIHNp7KEB0jsX8RSDDkBTpeSKGcYTnbbJeqMJWW1U4BeLIdAmTxfJYA7wjEflrpiXeVK8ji3CNkmXNGipQssp-WRcEounDMpy7JtS1_7T0AyA0wjZlx78u7JPyHUYqdn7vf7-Q3IDi1fuzuukdT6bu0cA6s7143r0UHJ81QP2Fw4wZ7o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Glove+Using+Self%E2%80%90Powered+Conductive+Superhydrophobic+Triboelectric+Textile+for+Gesture+Recognition+in+VR%2FAR+Applications&rft.jtitle=Advanced+science&rft.au=Wen%2C+Feng&rft.au=Sun%2C+Zhongda&rft.au=He%2C+Tianyiyi&rft.au=Shi%2C+Qiongfeng&rft.date=2020-07-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=7&rft.issue=14&rft_id=info:doi/10.1002%2Fadvs.202000261&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202000261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon