Estimation using all available covariate information versus a fixed look-back window for dichotomous covariates

ABSTRACT Purpose When using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available historical data differs among subjects, investigators must choose between using all available historical data versus data from a fixed windo...

Full description

Saved in:
Bibliographic Details
Published inPharmacoepidemiology and drug safety Vol. 22; no. 5; pp. 542 - 550
Main Authors Brunelli, Steven M., Gagne, Joshua J., Huybrechts, Krista F., Wang, Shirley V., Patrick, Amanda R., Rothman, Kenneth J., Seeger, John D.
Format Journal Article
LanguageEnglish
Published Chichester Blackwell Publishing Ltd 01.05.2013
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Purpose When using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available historical data differs among subjects, investigators must choose between using all available historical data versus data from a fixed window to assess C. Our purpose was to compare estimation under these two approaches. Methods We simulated cohorts of 20 000 subjects with dichotomous variables representing exposure (E), outcome (D), and a single time‐invariant C, as well as varying availability of historical data. C was operationally defined under each paradigm and used to estimate the adjusted risk ratio of E on D via Mantel–Haenszel methods. Results In the base case scenario, less bias and lower mean square error were observed using all available information compared with a fixed window; differences were magnified at higher modeled confounder strength. Upon introduction of an unmeasured covariate (F), the all‐available approach remained less biased in most circumstances and rendered estimates that better approximated those that were adjusted for the true (modeled) value of C in all instances. Conclusions In most instances considered, operationally defining time‐invariant dichotomous C based on all available historical data, rather than on data observed over a commonly shared fixed historical window, results in less biased estimates. Copyright © 2013 John Wiley & Sons, Ltd.
AbstractList Purpose When using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available historical data differs among subjects, investigators must choose between using all available historical data versus data from a fixed window to assess C. Our purpose was to compare estimation under these two approaches. Methods We simulated cohorts of 20000 subjects with dichotomous variables representing exposure (E), outcome (D), and a single time-invariant C, as well as varying availability of historical data. C was operationally defined under each paradigm and used to estimate the adjusted risk ratio of E on D via Mantel-Haenszel methods. Results In the base case scenario, less bias and lower mean square error were observed using all available information compared with a fixed window; differences were magnified at higher modeled confounder strength. Upon introduction of an unmeasured covariate (F), the all-available approach remained less biased in most circumstances and rendered estimates that better approximated those that were adjusted for the true (modeled) value of C in all instances. Conclusions In most instances considered, operationally defining time-invariant dichotomous C based on all available historical data, rather than on data observed over a commonly shared fixed historical window, results in less biased estimates. Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
When using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available historical data differs among subjects, investigators must choose between using all available historical data versus data from a fixed window to assess C. Our purpose was to compare estimation under these two approaches. We simulated cohorts of 20,000 subjects with dichotomous variables representing exposure (E), outcome (D), and a single time-invariant C, as well as varying availability of historical data. C was operationally defined under each paradigm and used to estimate the adjusted risk ratio of E on D via Mantel-Haenszel methods. In the base case scenario, less bias and lower mean square error were observed using all available information compared with a fixed window; differences were magnified at higher modeled confounder strength. Upon introduction of an unmeasured covariate (F), the all-available approach remained less biased in most circumstances and rendered estimates that better approximated those that were adjusted for the true (modeled) value of C in all instances. In most instances considered, operationally defining time-invariant dichotomous C based on all available historical data, rather than on data observed over a commonly shared fixed historical window, results in less biased estimates.
When using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available historical data differs among subjects, investigators must choose between using all available historical data versus data from a fixed window to assess C. Our purpose was to compare estimation under these two approaches.PURPOSEWhen using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available historical data differs among subjects, investigators must choose between using all available historical data versus data from a fixed window to assess C. Our purpose was to compare estimation under these two approaches.We simulated cohorts of 20,000 subjects with dichotomous variables representing exposure (E), outcome (D), and a single time-invariant C, as well as varying availability of historical data. C was operationally defined under each paradigm and used to estimate the adjusted risk ratio of E on D via Mantel-Haenszel methods.METHODSWe simulated cohorts of 20,000 subjects with dichotomous variables representing exposure (E), outcome (D), and a single time-invariant C, as well as varying availability of historical data. C was operationally defined under each paradigm and used to estimate the adjusted risk ratio of E on D via Mantel-Haenszel methods.In the base case scenario, less bias and lower mean square error were observed using all available information compared with a fixed window; differences were magnified at higher modeled confounder strength. Upon introduction of an unmeasured covariate (F), the all-available approach remained less biased in most circumstances and rendered estimates that better approximated those that were adjusted for the true (modeled) value of C in all instances.RESULTSIn the base case scenario, less bias and lower mean square error were observed using all available information compared with a fixed window; differences were magnified at higher modeled confounder strength. Upon introduction of an unmeasured covariate (F), the all-available approach remained less biased in most circumstances and rendered estimates that better approximated those that were adjusted for the true (modeled) value of C in all instances.In most instances considered, operationally defining time-invariant dichotomous C based on all available historical data, rather than on data observed over a commonly shared fixed historical window, results in less biased estimates.CONCLUSIONSIn most instances considered, operationally defining time-invariant dichotomous C based on all available historical data, rather than on data observed over a commonly shared fixed historical window, results in less biased estimates.
ABSTRACT Purpose When using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available historical data differs among subjects, investigators must choose between using all available historical data versus data from a fixed window to assess C. Our purpose was to compare estimation under these two approaches. Methods We simulated cohorts of 20 000 subjects with dichotomous variables representing exposure (E), outcome (D), and a single time‐invariant C, as well as varying availability of historical data. C was operationally defined under each paradigm and used to estimate the adjusted risk ratio of E on D via Mantel–Haenszel methods. Results In the base case scenario, less bias and lower mean square error were observed using all available information compared with a fixed window; differences were magnified at higher modeled confounder strength. Upon introduction of an unmeasured covariate (F), the all‐available approach remained less biased in most circumstances and rendered estimates that better approximated those that were adjusted for the true (modeled) value of C in all instances. Conclusions In most instances considered, operationally defining time‐invariant dichotomous C based on all available historical data, rather than on data observed over a commonly shared fixed historical window, results in less biased estimates. Copyright © 2013 John Wiley & Sons, Ltd.
Author Huybrechts, Krista F.
Patrick, Amanda R.
Seeger, John D.
Brunelli, Steven M.
Wang, Shirley V.
Gagne, Joshua J.
Rothman, Kenneth J.
Author_xml – sequence: 1
  givenname: Steven M.
  surname: Brunelli
  fullname: Brunelli, Steven M.
  email: sbrunelli@partners.org
  organization: Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School
– sequence: 2
  givenname: Joshua J.
  surname: Gagne
  fullname: Gagne, Joshua J.
  organization: Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School
– sequence: 3
  givenname: Krista F.
  surname: Huybrechts
  fullname: Huybrechts, Krista F.
  organization: Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School
– sequence: 4
  givenname: Shirley V.
  surname: Wang
  fullname: Wang, Shirley V.
  organization: Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School
– sequence: 5
  givenname: Amanda R.
  surname: Patrick
  fullname: Patrick, Amanda R.
  organization: Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School
– sequence: 6
  givenname: Kenneth J.
  surname: Rothman
  fullname: Rothman, Kenneth J.
  organization: Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School
– sequence: 7
  givenname: John D.
  surname: Seeger
  fullname: Seeger, John D.
  organization: Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27368224$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23526818$$D View this record in MEDLINE/PubMed
BookMark eNp10ltv0zAYBmALDbGtIPELkCWEtJsUOz4lN0iobANpjCFOl5br2JtX1y520m7_Hpd2HUOgXCSSn7z2K3-HYC_EYAB4jtEYI1S_XnR5TCihj8ABRm1bYcbE3vqbkaphvN0HhzlfI1TWWvoE7NeE1bzBzQGIx7l3c9W7GOCQXbiEynuolsp5NfUG6rhUyaneQBdsTFu5NCkPGSpo3Y3poI9xVk2VnsGVC11cwSJh5_RV7OM8FrhLyU_BY6t8Ns-27xH4dnL8dfK-Ovt0-mHy9qzSTNS00pR1AluDWGtNbWslBMbWco1b0mhCTEc40rRFRNi6naIp5xg3ne0o11RxTkbgzSZ3MUznptMm9El5uUilbLqVUTn5cCW4K3kZl5JwRnB5RuBoG5Diz8HkXs5d1sZ7FUypJDGhDSvbC1boy7_odRxSKPUkphRjTBpKi3rx54l2R7m7iwJebYHKWnmbVNAu3ztBeFPX66DxxukUc07GSu363_dSijgvMZLroZBlKOR6KO6r7H64y_wHrTZ05by5_a-TF---PPQu9-Zm51WaSS6IYPLH-an8OLk4bz8TIr-TX6C21hY
CODEN PDSAEA
CitedBy_id crossref_primary_10_1007_s11606_023_08306_0
crossref_primary_10_1016_j_jacc_2015_10_104
crossref_primary_10_1024_0301_1526_a000823
crossref_primary_10_1177_15333175231199566
crossref_primary_10_2217_cer_2019_0070
crossref_primary_10_2217_cer_2019_0191
crossref_primary_10_1007_s10742_020_00235_3
crossref_primary_10_1007_s40264_014_0220_5
crossref_primary_10_1093_aje_kwy292
crossref_primary_10_7326_M20_6315
crossref_primary_10_1002_acr2_11124
crossref_primary_10_1007_s40471_017_0131_y
crossref_primary_10_1186_s41927_020_00138_3
crossref_primary_10_1002_pds_4435
crossref_primary_10_1097_EDE_0000000000000729
crossref_primary_10_1136_bmjopen_2018_024909
crossref_primary_10_1371_journal_pdig_0000633
crossref_primary_10_3820_jjpe_28_39
crossref_primary_10_1093_aje_kwv116
crossref_primary_10_1136_bmjopen_2016_012997
crossref_primary_10_1007_s00198_014_3022_9
crossref_primary_10_1097_AOG_0000000000005117
crossref_primary_10_1002_pds_70090
crossref_primary_10_1016_j_ejim_2014_06_017
crossref_primary_10_2217_cer_14_53
crossref_primary_10_2217_cer_14_16
crossref_primary_10_1007_s40620_016_0374_6
crossref_primary_10_1016_j_ijcard_2015_03_328
crossref_primary_10_1093_gerona_glab071
crossref_primary_10_1016_j_jpeds_2015_04_004
crossref_primary_10_1093_sleep_zsad083
crossref_primary_10_1161_JAHA_122_029865
crossref_primary_10_1002_acr_22454
crossref_primary_10_1007_s40471_018_0164_x
crossref_primary_10_1214_20_AOAS1342
crossref_primary_10_1093_rheumatology_kez320
crossref_primary_10_1097_MLR_0000000000001058
crossref_primary_10_1001_jamanetworkopen_2022_9191
crossref_primary_10_1016_j_ejca_2015_02_001
crossref_primary_10_1161_STROKEAHA_114_006866
crossref_primary_10_1053_j_gastro_2021_09_064
crossref_primary_10_1093_aje_kwae252
crossref_primary_10_1002_pds_4210
crossref_primary_10_1001_jamanetworkopen_2021_48474
crossref_primary_10_1002_pds_3766
crossref_primary_10_1136_bmjment_2023_300728
crossref_primary_10_1002_pds_3922
crossref_primary_10_1016_j_bone_2023_116954
crossref_primary_10_1161_JAHA_114_001356
crossref_primary_10_1002_pds_4729
crossref_primary_10_1097_EDE_0000000000001007
crossref_primary_10_1371_journal_pone_0247687
crossref_primary_10_1016_j_pmedr_2023_102175
crossref_primary_10_1007_s40264_015_0338_0
crossref_primary_10_1681_ASN_2015111232
crossref_primary_10_1007_s40471_014_0027_z
crossref_primary_10_1016_j_joca_2016_12_010
crossref_primary_10_1016_j_ajog_2021_01_003
crossref_primary_10_1038_s44220_024_00270_w
crossref_primary_10_1002_pds_3557
crossref_primary_10_1002_pds_4445
crossref_primary_10_1210_jc_2018_01010
Cites_doi 10.1002/pds.2061
10.2105/AJPH.82.2.243
10.1093/oxfordjournals.aje.a113025
10.1097/00001648-199205000-00005
10.1093/ije/21.3.537
10.1002/sim.4780100803
10.1111/j.0006-341X.2002.00878.x
10.1093/oxfordjournals.aje.a115210
10.2105/AJPH.88.3.364
10.1093/oxfordjournals.aje.a116026
10.1093/oxfordjournals.aje.a116396
10.1111/j.1525-1497.2005.0242.x
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
2014 INIST-CNRS
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
– notice: 2014 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
DOI 10.1002/pds.3434
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1099-1557
EndPage 550
ExternalDocumentID PMC3653131
3095439411
23526818
27368224
10_1002_pds_3434
PDS3434
ark_67375_WNG_MCPN9Q33_V
Genre article
Journal Article
Comparative Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Diabetes and Digestive and Kidney Diseases
  funderid: DK079056
– fundername: NIDDK NIH HHS
  grantid: K23 DK079056
– fundername: NIDDK NIH HHS
  grantid: DK079056
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: K23 DK079056 || DK
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
GWYGA
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
M6Q
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WWP
WXI
WXSBR
XG1
XV2
YCJ
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
5PM
ID FETCH-LOGICAL-c5724-c45d71fe059fe2f2a7711ff6c1938c33ed360c49037f29b0b66118dfd46c4a663
IEDL.DBID DR2
ISSN 1053-8569
1099-1557
IngestDate Thu Aug 21 18:08:47 EDT 2025
Fri Jul 11 08:22:55 EDT 2025
Sat Aug 23 13:26:29 EDT 2025
Wed Feb 19 02:16:09 EST 2025
Mon Jul 21 09:15:22 EDT 2025
Thu Apr 24 23:02:13 EDT 2025
Tue Jul 01 04:21:45 EDT 2025
Wed Jan 22 17:10:28 EST 2025
Wed Oct 30 09:48:27 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Data analysis
statistical
Bias
confounding variables
Methodological bias
Pharmacovigilance
Information
Confounding factor
Epidemiology
Comparative study
pharmacoepidemiology
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2013 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5724-c45d71fe059fe2f2a7711ff6c1938c33ed360c49037f29b0b66118dfd46c4a663
Notes istex:22D6B29E34DC801776AD4207F6773D8BDA974EB7
ArticleID:PDS3434
National Institute of Diabetes and Digestive and Kidney Diseases - No. DK079056
ark:/67375/WNG-MCPN9Q33-V
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3653131
PMID 23526818
PQID 1441113844
PQPubID 105383
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3653131
proquest_miscellaneous_1348503775
proquest_journals_1441113844
pubmed_primary_23526818
pascalfrancis_primary_27368224
crossref_citationtrail_10_1002_pds_3434
crossref_primary_10_1002_pds_3434
wiley_primary_10_1002_pds_3434_PDS3434
istex_primary_ark_67375_WNG_MCPN9Q33_V
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2013
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: May 2013
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
– name: England
– name: Bethesda
PublicationTitle Pharmacoepidemiology and drug safety
PublicationTitleAlternate Pharmacoepidemiol Drug Saf
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Weissman G, Melchior L, Huba G, et al. Women living with substance abuse and HIV disease: medical care access issues. J Am Med Womens Assoc 1995; 50: 115-120.
Walker AM, Lanes SF. Misclassification of covariates. Stat Med 1991; 10: 1181-1196.
Sox CM, Swartz K, Burstin HR, Brennan TA. Insurance or a regular physician: which is the most powerful predictor of health care? Am J Public Health 1998; 88: 364-370.
Wacholder S, McLaughlin JK, Silverman DT, Mandel JS. Selection of controls in case-control studies. I. Principles. Am J Epidemiol 1992; 135: 1019-1028.
Fisher ES, Whaley FS, Krushat WM, et al. The accuracy of Medicare's hospital claims data: progress has been made, but problems remain. Am J Public Health 1992; 82: 243-248.
Brenner H, Loomis D. Varied forms of bias due to nondifferential error in measuring exposure. Epidemiology 1994; 5: 510-517.
Greenland S. The effect of misclassification in the presence of covariates. Am J Epidemiol 1980; 112: 564-569.
Tagalakis V, Kahn SR. Determining the test characteristics of claims-based diagnostic codes for the diagnosis of venous thromboembolism in a medical service claims database. Pharmacoepidemiol Drug Saf 2011; 20: 304-307.
Chavance M, Dellatolas G, Lellouch J. Correlated nondifferential misclassifications of disease and exposure: application to a cross-sectional study of the relation between handedness and immune disorders. Int J Epidemiol 1992; 21: 537-546.
Kristensen P. Bias from nondifferential but dependent misclassification of exposure and outcome. Epidemiology 1992; 3: 210-215.
Savitz DA, Baron AE. Estimating and correcting for confounder misclassification. Am J Epidemiol 1989; 129: 1062-1071.
Schauer DP, Moomaw CJ, Wess M, Webb T, Eckman MH. Psychosocial risk factors for adverse outcomes in patients with nonvalvular atrial fibrillation receiving warfarin. J Gen Intern Med 2005; 20: 1114-1119.
Flegal KM, Keyl PM, Nieto FJ. Differential misclassification arising from nondifferential errors in exposure measurement. Am J Epidemiol 1991; 134: 1233-1244.
Gustafson P, Le Nhu D. Comparing the effects of continuous and discrete covariate mismeasurement, with emphasis on the dichotomization of mismeasured predictors. Biometrics 2002; 58: 878-887.
2002; 58
1995; 50
1989; 129
1991; 134
1991; 10
1992; 135
2011; 20
2005; 20
1992; 21
1992; 82
1994; 5
1980; 112
1998; 88
1992; 3
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_2_1
Brenner H (e_1_2_7_9_1) 1994; 5
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Weissman G (e_1_2_7_14_1) 1995; 50
21351312 - Pharmacoepidemiol Drug Saf. 2011 Mar;20(3):304-7
1634317 - Int J Epidemiol. 1992 Jun;21(3):537-46
1591319 - Epidemiology. 1992 May;3(3):210-5
1746532 - Am J Epidemiol. 1991 Nov 15;134(10):1233-44
7986865 - Epidemiology. 1994 Sep;5(5):510-7
12495142 - Biometrics. 2002 Dec;58(4):878-87
1595688 - Am J Epidemiol. 1992 May 1;135(9):1019-28
7657944 - J Am Med Womens Assoc. 1995 May-Aug;50(3-4):115-20
9518965 - Am J Public Health. 1998 Mar;88(3):364-70
16423100 - J Gen Intern Med. 2005 Dec;20(12):1114-9
1925151 - Stat Med. 1991 Aug;10(8):1181-96
7424903 - Am J Epidemiol. 1980 Oct;112(4):564-9
2705426 - Am J Epidemiol. 1989 May;129(5):1062-71
1739155 - Am J Public Health. 1992 Feb;82(2):243-8
References_xml – reference: Greenland S. The effect of misclassification in the presence of covariates. Am J Epidemiol 1980; 112: 564-569.
– reference: Kristensen P. Bias from nondifferential but dependent misclassification of exposure and outcome. Epidemiology 1992; 3: 210-215.
– reference: Flegal KM, Keyl PM, Nieto FJ. Differential misclassification arising from nondifferential errors in exposure measurement. Am J Epidemiol 1991; 134: 1233-1244.
– reference: Savitz DA, Baron AE. Estimating and correcting for confounder misclassification. Am J Epidemiol 1989; 129: 1062-1071.
– reference: Fisher ES, Whaley FS, Krushat WM, et al. The accuracy of Medicare's hospital claims data: progress has been made, but problems remain. Am J Public Health 1992; 82: 243-248.
– reference: Weissman G, Melchior L, Huba G, et al. Women living with substance abuse and HIV disease: medical care access issues. J Am Med Womens Assoc 1995; 50: 115-120.
– reference: Chavance M, Dellatolas G, Lellouch J. Correlated nondifferential misclassifications of disease and exposure: application to a cross-sectional study of the relation between handedness and immune disorders. Int J Epidemiol 1992; 21: 537-546.
– reference: Schauer DP, Moomaw CJ, Wess M, Webb T, Eckman MH. Psychosocial risk factors for adverse outcomes in patients with nonvalvular atrial fibrillation receiving warfarin. J Gen Intern Med 2005; 20: 1114-1119.
– reference: Brenner H, Loomis D. Varied forms of bias due to nondifferential error in measuring exposure. Epidemiology 1994; 5: 510-517.
– reference: Gustafson P, Le Nhu D. Comparing the effects of continuous and discrete covariate mismeasurement, with emphasis on the dichotomization of mismeasured predictors. Biometrics 2002; 58: 878-887.
– reference: Sox CM, Swartz K, Burstin HR, Brennan TA. Insurance or a regular physician: which is the most powerful predictor of health care? Am J Public Health 1998; 88: 364-370.
– reference: Walker AM, Lanes SF. Misclassification of covariates. Stat Med 1991; 10: 1181-1196.
– reference: Tagalakis V, Kahn SR. Determining the test characteristics of claims-based diagnostic codes for the diagnosis of venous thromboembolism in a medical service claims database. Pharmacoepidemiol Drug Saf 2011; 20: 304-307.
– reference: Wacholder S, McLaughlin JK, Silverman DT, Mandel JS. Selection of controls in case-control studies. I. Principles. Am J Epidemiol 1992; 135: 1019-1028.
– volume: 50
  start-page: 115
  year: 1995
  end-page: 120
  article-title: Women living with substance abuse and HIV disease: medical care access issues
  publication-title: J Am Med Womens Assoc
– volume: 88
  start-page: 364
  year: 1998
  end-page: 370
  article-title: Insurance or a regular physician: which is the most powerful predictor of health care?
  publication-title: Am J Public Health
– volume: 5
  start-page: 510
  year: 1994
  end-page: 517
  article-title: Varied forms of bias due to nondifferential error in measuring exposure
  publication-title: Epidemiology
– volume: 20
  start-page: 304
  year: 2011
  end-page: 307
  article-title: Determining the test characteristics of claims‐based diagnostic codes for the diagnosis of venous thromboembolism in a medical service claims database
  publication-title: Pharmacoepidemiol Drug Saf
– volume: 3
  start-page: 210
  year: 1992
  end-page: 215
  article-title: Bias from nondifferential but dependent misclassification of exposure and outcome
  publication-title: Epidemiology
– volume: 112
  start-page: 564
  year: 1980
  end-page: 569
  article-title: The effect of misclassification in the presence of covariates
  publication-title: Am J Epidemiol
– volume: 134
  start-page: 1233
  year: 1991
  end-page: 1244
  article-title: Differential misclassification arising from nondifferential errors in exposure measurement
  publication-title: Am J Epidemiol
– volume: 10
  start-page: 1181
  year: 1991
  end-page: 1196
  article-title: Misclassification of covariates
  publication-title: Stat Med
– volume: 21
  start-page: 537
  year: 1992
  end-page: 546
  article-title: Correlated nondifferential misclassifications of disease and exposure: application to a cross‐sectional study of the relation between handedness and immune disorders
  publication-title: Int J Epidemiol
– volume: 129
  start-page: 1062
  year: 1989
  end-page: 1071
  article-title: Estimating and correcting for confounder misclassification
  publication-title: Am J Epidemiol
– volume: 82
  start-page: 243
  year: 1992
  end-page: 248
  article-title: The accuracy of Medicare's hospital claims data: progress has been made, but problems remain
  publication-title: Am J Public Health
– volume: 58
  start-page: 878
  year: 2002
  end-page: 887
  article-title: Comparing the effects of continuous and discrete covariate mismeasurement, with emphasis on the dichotomization of mismeasured predictors
  publication-title: Biometrics
– volume: 135
  start-page: 1019
  year: 1992
  end-page: 1028
  article-title: Selection of controls in case–control studies. I. Principles
  publication-title: Am J Epidemiol
– volume: 20
  start-page: 1114
  year: 2005
  end-page: 1119
  article-title: Psychosocial risk factors for adverse outcomes in patients with nonvalvular atrial fibrillation receiving warfarin
  publication-title: J Gen Intern Med
– ident: e_1_2_7_3_1
  doi: 10.1002/pds.2061
– ident: e_1_2_7_2_1
  doi: 10.2105/AJPH.82.2.243
– ident: e_1_2_7_5_1
  doi: 10.1093/oxfordjournals.aje.a113025
– ident: e_1_2_7_11_1
  doi: 10.1097/00001648-199205000-00005
– volume: 5
  start-page: 510
  year: 1994
  ident: e_1_2_7_9_1
  article-title: Varied forms of bias due to nondifferential error in measuring exposure
  publication-title: Epidemiology
– ident: e_1_2_7_10_1
  doi: 10.1093/ije/21.3.537
– ident: e_1_2_7_12_1
  doi: 10.1002/sim.4780100803
– ident: e_1_2_7_13_1
  doi: 10.1111/j.0006-341X.2002.00878.x
– ident: e_1_2_7_4_1
  doi: 10.1093/oxfordjournals.aje.a115210
– ident: e_1_2_7_6_1
  doi: 10.2105/AJPH.88.3.364
– ident: e_1_2_7_7_1
  doi: 10.1093/oxfordjournals.aje.a116026
– volume: 50
  start-page: 115
  year: 1995
  ident: e_1_2_7_14_1
  article-title: Women living with substance abuse and HIV disease: medical care access issues
  publication-title: J Am Med Womens Assoc
– ident: e_1_2_7_8_1
  doi: 10.1093/oxfordjournals.aje.a116396
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1525-1497.2005.0242.x
– reference: 7424903 - Am J Epidemiol. 1980 Oct;112(4):564-9
– reference: 1925151 - Stat Med. 1991 Aug;10(8):1181-96
– reference: 1739155 - Am J Public Health. 1992 Feb;82(2):243-8
– reference: 1634317 - Int J Epidemiol. 1992 Jun;21(3):537-46
– reference: 1591319 - Epidemiology. 1992 May;3(3):210-5
– reference: 7657944 - J Am Med Womens Assoc. 1995 May-Aug;50(3-4):115-20
– reference: 9518965 - Am J Public Health. 1998 Mar;88(3):364-70
– reference: 16423100 - J Gen Intern Med. 2005 Dec;20(12):1114-9
– reference: 7986865 - Epidemiology. 1994 Sep;5(5):510-7
– reference: 1595688 - Am J Epidemiol. 1992 May 1;135(9):1019-28
– reference: 12495142 - Biometrics. 2002 Dec;58(4):878-87
– reference: 2705426 - Am J Epidemiol. 1989 May;129(5):1062-71
– reference: 21351312 - Pharmacoepidemiol Drug Saf. 2011 Mar;20(3):304-7
– reference: 1746532 - Am J Epidemiol. 1991 Nov 15;134(10):1233-44
SSID ssj0009994
Score 2.2848983
Snippet ABSTRACT Purpose When using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available...
When using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available historical data...
Purpose When using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 542
SubjectTerms Bias
Biological and medical sciences
Clinical trial. Drug monitoring
Cohort Studies
Confounding Factors (Epidemiology)
confounding variables
Data analysis
data analysis, statistical
Data collection
Data Collection - methods
Data Interpretation, Statistical
Databases, Factual - statistics & numerical data
Epidemiologic Methods
Epidemiology
General pharmacology
Humans
Medical sciences
Outcome Assessment (Health Care) - methods
pharmacoepidemiology
Pharmacoepidemiology - methods
Pharmacology. Drug treatments
statistical
Time Factors
Title Estimation using all available covariate information versus a fixed look-back window for dichotomous covariates
URI https://api.istex.fr/ark:/67375/WNG-MCPN9Q33-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpds.3434
https://www.ncbi.nlm.nih.gov/pubmed/23526818
https://www.proquest.com/docview/1441113844
https://www.proquest.com/docview/1348503775
https://pubmed.ncbi.nlm.nih.gov/PMC3653131
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQuXDh_QiUykhouTTbdWzncUSlpULqaoEWKnGwHDspq42ypdntgxM_gd_IL2HGebFQJMQp0mZixbNj55vkm28IeS4zgzJOsW8DIX1hY-0DKoJUJZJBoiX86rqW7I_DvUPx5kgeNaxKrIWp9SG6F264Mtx-jQtcp9VWLxp6YqshFxylQJGqhXjoXa8cBbjHfVCGGPNjGSat7uwo2GovXHkSXUenXiAzUlfgnLzuanEV7PyTPfkrqnWPpd1b5FM7oZqNMhsuF-nQfP1N6_H_Znyb3GzQKn1Zh9cdci0r75LBpJa7vtykB331VrVJB3TSC2Ff3iNfdmD_qEsjKfLrj6kuCqrP9LTAgi1q5meQqQPYpY18q7NEnsiyoprm04vM0gKygB_fvqfazOj5tLTzcwq21E6xeGyOLy76car75HB352B7z29aPPhGRoHwjZA2YnkGIC_PgjzQUcRYnocGcGVsOM8sD0dGJCMe5UGSjlKAEyy2uRWhERrQ0gOyVs7L7BGhiUg4E5FFEONaqJhQJ0zDCJB4pyn3yIv271am0T_HNhyFqpWbAwX-VehfjzzrLE9qzY8rbAYuYjoDfTpDjlwk1cfxa7W_PRknbzlXHzyysRJS3QWAG0Ok8HpkvY0x1ewflcI0lzEeC7yZ7jSsfPyco8sMnKsYF7EEx0TSIw_rkOwHx7YHgMU8Eq0Ea2eAquKrZ8rpZ6cuDmuJM85ggi4W_-oBNXn1Ho-P_9XwCbkRuF4iyBZdJ2uL02X2FBDdIt1wa_cnw-ZK9A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe4AL70egFCOh5dJsN7Gdhzih0rJAd7XAtvSAZDl2AqtdZUuz2wcnfgK_kV_CjLNJWCgS4hQpnljxZGx_48x8Q8gTkWqkcYpc43PhchMpF1ARuCqh8GMl4K6tWtLrB919_vpQHK6QZ1UuTMkPUR-44cyw6zVOcDyQ3mpYQ49M0Wac8UtkDQt6W3_qXcMdBcjH_lIGK3MjEcQV82zH36qeXNqL1lCtZxgbqQpQT1bWtbgIeP4ZP_krrrUb0-418rEaUhmPMm7PZ0lbf_2N7fE_x3ydXF0AVvq8tLAbZCXNb5LWoGS8Pt-kwyaBq9ikLTpouLDPb5EvO7CElNmRFEPsP1E1mVB1okYTzNmienoCzjrgXbpgcLWSGCoyL6ii2egsNXQCjsCPb98Tpcf0dJSb6SkFWWpGmD82xbOLpp_iNtnf3Rlud91FlQdXi9DnrubChF6WAs7LUj_zVRh6XpYFGqBlpBlLDQs6mscdFmZ-nHQSQBReZDLDA80VAKY7ZDWf5uk9QmMeM4-HBnGMraKiAxV7CnoA3ztJmEOeVt9b6gUFOlbimMiSvNmXoF-J-nXI41ryqKT9uECmZU2mFlDHYwyTC4X80H8pe9uDfvyWMXngkI0lm6ofAOgYYBSvQ9YrI5OLJaSQ6Ol6Hos4vkzdDJMf_-ioPAXlSo_xSIBiQuGQu6VNNp1j5QOAYw4Jl6y1FkBi8eWWfPTZEoyzAFZm5sEArTH-VQNy8OI9Xu__q-Ajcrk77O3JvVf9Nw_IFd-WFsHg0XWyOjuepw8B4M2SDTuRfwIxdE8P
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF1BKyFeuF8MpSwSCi91Gnt3fXlETUO5NArQ0ko8rNa7dhslckKd9MITn8A38iXMrB2bQJEQT5bi8co7mV2fsc-cIeS5SDXKOEWu8blwuYmUC6gIUpVQ-LES8KvtWrLbD3b2-ZtDcVixKrEWptSHqF-44cqw-zUu8KnJNhvR0Kkp2owzfpWs8qATYUR3PzTSUQB87BdlCDI3EkG8EJ7t-JuLK5ceRavo1XOkRqoCvJOVbS0uw51_0id_hbX2udS7ST4vZlTSUUbt-Sxp66-_iT3-35RvkRsVXKUvy_i6Ta6k-R3SGpR61xcbdK8p3yo2aIsOGiXsi7vkyzZsIGVtJEWC_RFV4zFVp2o4xootqienkKoD2qWVfqu1RKLIvKCKZsPz1NAxpAE_vn1PlB7Rs2FuJmcUbKkZYvXYBN9cNOMU98h-b3tva8etejy4WoQ-dzUXJvSyFFBelvqZr8LQ87Is0AAsI81YaljQ0TzusDDz46STAJ7wIpMZHmiuAC7dJyv5JE8fEhrzmHk8NIhibA8VHajYUzACZN5JwhzyYvF3S10JoGMfjrEspZt9Cf6V6F-HPKstp6XoxyU2LRsxtYE6GSFJLhTyoP9K7m4N-vF7xuQnh6wvhVR9AQDHADm8DllbxJisNpBCYp7reSzieDP1aVj6-D1H5Sk4V3qMRwIcEwqHPChDshkc-x4AGHNIuBSstQHKii-fyYfHVl6cBbAvMw8maGPxrx6Qg-5HPD76V8On5Nqg25PvXvffPibXfdtXBJmja2RldjJPnwC6myXrdhn_BDoCTcc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+using+all+available+covariate+information+versus+a+fixed+look-back+window+for+dichotomous+covariates&rft.jtitle=Pharmacoepidemiology+and+drug+safety&rft.au=BRUNELLI%2C+Steven+M&rft.au=GAGNE%2C+Joshua+J&rft.au=HUYBRECHTS%2C+Krista+F&rft.au=WANG%2C+Shirley+V&rft.date=2013-05-01&rft.pub=Wiley&rft.issn=1053-8569&rft.volume=22&rft.issue=5&rft.spage=542&rft.epage=550&rft_id=info:doi/10.1002%2Fpds.3434&rft.externalDBID=n%2Fa&rft.externalDocID=27368224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8569&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8569&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8569&client=summon