Estimation using all available covariate information versus a fixed look-back window for dichotomous covariates
ABSTRACT Purpose When using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available historical data differs among subjects, investigators must choose between using all available historical data versus data from a fixed windo...
Saved in:
Published in | Pharmacoepidemiology and drug safety Vol. 22; no. 5; pp. 542 - 550 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Blackwell Publishing Ltd
01.05.2013
Wiley Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Purpose
When using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available historical data differs among subjects, investigators must choose between using all available historical data versus data from a fixed window to assess C. Our purpose was to compare estimation under these two approaches.
Methods
We simulated cohorts of 20 000 subjects with dichotomous variables representing exposure (E), outcome (D), and a single time‐invariant C, as well as varying availability of historical data. C was operationally defined under each paradigm and used to estimate the adjusted risk ratio of E on D via Mantel–Haenszel methods.
Results
In the base case scenario, less bias and lower mean square error were observed using all available information compared with a fixed window; differences were magnified at higher modeled confounder strength. Upon introduction of an unmeasured covariate (F), the all‐available approach remained less biased in most circumstances and rendered estimates that better approximated those that were adjusted for the true (modeled) value of C in all instances.
Conclusions
In most instances considered, operationally defining time‐invariant dichotomous C based on all available historical data, rather than on data observed over a commonly shared fixed historical window, results in less biased estimates. Copyright © 2013 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Purpose When using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available historical data differs among subjects, investigators must choose between using all available historical data versus data from a fixed window to assess C. Our purpose was to compare estimation under these two approaches. Methods We simulated cohorts of 20000 subjects with dichotomous variables representing exposure (E), outcome (D), and a single time-invariant C, as well as varying availability of historical data. C was operationally defined under each paradigm and used to estimate the adjusted risk ratio of E on D via Mantel-Haenszel methods. Results In the base case scenario, less bias and lower mean square error were observed using all available information compared with a fixed window; differences were magnified at higher modeled confounder strength. Upon introduction of an unmeasured covariate (F), the all-available approach remained less biased in most circumstances and rendered estimates that better approximated those that were adjusted for the true (modeled) value of C in all instances. Conclusions In most instances considered, operationally defining time-invariant dichotomous C based on all available historical data, rather than on data observed over a commonly shared fixed historical window, results in less biased estimates. Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT] When using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available historical data differs among subjects, investigators must choose between using all available historical data versus data from a fixed window to assess C. Our purpose was to compare estimation under these two approaches. We simulated cohorts of 20,000 subjects with dichotomous variables representing exposure (E), outcome (D), and a single time-invariant C, as well as varying availability of historical data. C was operationally defined under each paradigm and used to estimate the adjusted risk ratio of E on D via Mantel-Haenszel methods. In the base case scenario, less bias and lower mean square error were observed using all available information compared with a fixed window; differences were magnified at higher modeled confounder strength. Upon introduction of an unmeasured covariate (F), the all-available approach remained less biased in most circumstances and rendered estimates that better approximated those that were adjusted for the true (modeled) value of C in all instances. In most instances considered, operationally defining time-invariant dichotomous C based on all available historical data, rather than on data observed over a commonly shared fixed historical window, results in less biased estimates. When using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available historical data differs among subjects, investigators must choose between using all available historical data versus data from a fixed window to assess C. Our purpose was to compare estimation under these two approaches.PURPOSEWhen using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available historical data differs among subjects, investigators must choose between using all available historical data versus data from a fixed window to assess C. Our purpose was to compare estimation under these two approaches.We simulated cohorts of 20,000 subjects with dichotomous variables representing exposure (E), outcome (D), and a single time-invariant C, as well as varying availability of historical data. C was operationally defined under each paradigm and used to estimate the adjusted risk ratio of E on D via Mantel-Haenszel methods.METHODSWe simulated cohorts of 20,000 subjects with dichotomous variables representing exposure (E), outcome (D), and a single time-invariant C, as well as varying availability of historical data. C was operationally defined under each paradigm and used to estimate the adjusted risk ratio of E on D via Mantel-Haenszel methods.In the base case scenario, less bias and lower mean square error were observed using all available information compared with a fixed window; differences were magnified at higher modeled confounder strength. Upon introduction of an unmeasured covariate (F), the all-available approach remained less biased in most circumstances and rendered estimates that better approximated those that were adjusted for the true (modeled) value of C in all instances.RESULTSIn the base case scenario, less bias and lower mean square error were observed using all available information compared with a fixed window; differences were magnified at higher modeled confounder strength. Upon introduction of an unmeasured covariate (F), the all-available approach remained less biased in most circumstances and rendered estimates that better approximated those that were adjusted for the true (modeled) value of C in all instances.In most instances considered, operationally defining time-invariant dichotomous C based on all available historical data, rather than on data observed over a commonly shared fixed historical window, results in less biased estimates.CONCLUSIONSIn most instances considered, operationally defining time-invariant dichotomous C based on all available historical data, rather than on data observed over a commonly shared fixed historical window, results in less biased estimates. ABSTRACT Purpose When using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available historical data differs among subjects, investigators must choose between using all available historical data versus data from a fixed window to assess C. Our purpose was to compare estimation under these two approaches. Methods We simulated cohorts of 20 000 subjects with dichotomous variables representing exposure (E), outcome (D), and a single time‐invariant C, as well as varying availability of historical data. C was operationally defined under each paradigm and used to estimate the adjusted risk ratio of E on D via Mantel–Haenszel methods. Results In the base case scenario, less bias and lower mean square error were observed using all available information compared with a fixed window; differences were magnified at higher modeled confounder strength. Upon introduction of an unmeasured covariate (F), the all‐available approach remained less biased in most circumstances and rendered estimates that better approximated those that were adjusted for the true (modeled) value of C in all instances. Conclusions In most instances considered, operationally defining time‐invariant dichotomous C based on all available historical data, rather than on data observed over a commonly shared fixed historical window, results in less biased estimates. Copyright © 2013 John Wiley & Sons, Ltd. |
Author | Huybrechts, Krista F. Patrick, Amanda R. Seeger, John D. Brunelli, Steven M. Wang, Shirley V. Gagne, Joshua J. Rothman, Kenneth J. |
Author_xml | – sequence: 1 givenname: Steven M. surname: Brunelli fullname: Brunelli, Steven M. email: sbrunelli@partners.org organization: Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School – sequence: 2 givenname: Joshua J. surname: Gagne fullname: Gagne, Joshua J. organization: Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School – sequence: 3 givenname: Krista F. surname: Huybrechts fullname: Huybrechts, Krista F. organization: Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School – sequence: 4 givenname: Shirley V. surname: Wang fullname: Wang, Shirley V. organization: Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School – sequence: 5 givenname: Amanda R. surname: Patrick fullname: Patrick, Amanda R. organization: Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School – sequence: 6 givenname: Kenneth J. surname: Rothman fullname: Rothman, Kenneth J. organization: Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School – sequence: 7 givenname: John D. surname: Seeger fullname: Seeger, John D. organization: Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27368224$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23526818$$D View this record in MEDLINE/PubMed |
BookMark | eNp10ltv0zAYBmALDbGtIPELkCWEtJsUOz4lN0iobANpjCFOl5br2JtX1y520m7_Hpd2HUOgXCSSn7z2K3-HYC_EYAB4jtEYI1S_XnR5TCihj8ABRm1bYcbE3vqbkaphvN0HhzlfI1TWWvoE7NeE1bzBzQGIx7l3c9W7GOCQXbiEynuolsp5NfUG6rhUyaneQBdsTFu5NCkPGSpo3Y3poI9xVk2VnsGVC11cwSJh5_RV7OM8FrhLyU_BY6t8Ns-27xH4dnL8dfK-Ovt0-mHy9qzSTNS00pR1AluDWGtNbWslBMbWco1b0mhCTEc40rRFRNi6naIp5xg3ne0o11RxTkbgzSZ3MUznptMm9El5uUilbLqVUTn5cCW4K3kZl5JwRnB5RuBoG5Diz8HkXs5d1sZ7FUypJDGhDSvbC1boy7_odRxSKPUkphRjTBpKi3rx54l2R7m7iwJebYHKWnmbVNAu3ztBeFPX66DxxukUc07GSu363_dSijgvMZLroZBlKOR6KO6r7H64y_wHrTZ05by5_a-TF---PPQu9-Zm51WaSS6IYPLH-an8OLk4bz8TIr-TX6C21hY |
CODEN | PDSAEA |
CitedBy_id | crossref_primary_10_1007_s11606_023_08306_0 crossref_primary_10_1016_j_jacc_2015_10_104 crossref_primary_10_1024_0301_1526_a000823 crossref_primary_10_1177_15333175231199566 crossref_primary_10_2217_cer_2019_0070 crossref_primary_10_2217_cer_2019_0191 crossref_primary_10_1007_s10742_020_00235_3 crossref_primary_10_1007_s40264_014_0220_5 crossref_primary_10_1093_aje_kwy292 crossref_primary_10_7326_M20_6315 crossref_primary_10_1002_acr2_11124 crossref_primary_10_1007_s40471_017_0131_y crossref_primary_10_1186_s41927_020_00138_3 crossref_primary_10_1002_pds_4435 crossref_primary_10_1097_EDE_0000000000000729 crossref_primary_10_1136_bmjopen_2018_024909 crossref_primary_10_1371_journal_pdig_0000633 crossref_primary_10_3820_jjpe_28_39 crossref_primary_10_1093_aje_kwv116 crossref_primary_10_1136_bmjopen_2016_012997 crossref_primary_10_1007_s00198_014_3022_9 crossref_primary_10_1097_AOG_0000000000005117 crossref_primary_10_1002_pds_70090 crossref_primary_10_1016_j_ejim_2014_06_017 crossref_primary_10_2217_cer_14_53 crossref_primary_10_2217_cer_14_16 crossref_primary_10_1007_s40620_016_0374_6 crossref_primary_10_1016_j_ijcard_2015_03_328 crossref_primary_10_1093_gerona_glab071 crossref_primary_10_1016_j_jpeds_2015_04_004 crossref_primary_10_1093_sleep_zsad083 crossref_primary_10_1161_JAHA_122_029865 crossref_primary_10_1002_acr_22454 crossref_primary_10_1007_s40471_018_0164_x crossref_primary_10_1214_20_AOAS1342 crossref_primary_10_1093_rheumatology_kez320 crossref_primary_10_1097_MLR_0000000000001058 crossref_primary_10_1001_jamanetworkopen_2022_9191 crossref_primary_10_1016_j_ejca_2015_02_001 crossref_primary_10_1161_STROKEAHA_114_006866 crossref_primary_10_1053_j_gastro_2021_09_064 crossref_primary_10_1093_aje_kwae252 crossref_primary_10_1002_pds_4210 crossref_primary_10_1001_jamanetworkopen_2021_48474 crossref_primary_10_1002_pds_3766 crossref_primary_10_1136_bmjment_2023_300728 crossref_primary_10_1002_pds_3922 crossref_primary_10_1016_j_bone_2023_116954 crossref_primary_10_1161_JAHA_114_001356 crossref_primary_10_1002_pds_4729 crossref_primary_10_1097_EDE_0000000000001007 crossref_primary_10_1371_journal_pone_0247687 crossref_primary_10_1016_j_pmedr_2023_102175 crossref_primary_10_1007_s40264_015_0338_0 crossref_primary_10_1681_ASN_2015111232 crossref_primary_10_1007_s40471_014_0027_z crossref_primary_10_1016_j_joca_2016_12_010 crossref_primary_10_1016_j_ajog_2021_01_003 crossref_primary_10_1038_s44220_024_00270_w crossref_primary_10_1002_pds_3557 crossref_primary_10_1002_pds_4445 crossref_primary_10_1210_jc_2018_01010 |
Cites_doi | 10.1002/pds.2061 10.2105/AJPH.82.2.243 10.1093/oxfordjournals.aje.a113025 10.1097/00001648-199205000-00005 10.1093/ije/21.3.537 10.1002/sim.4780100803 10.1111/j.0006-341X.2002.00878.x 10.1093/oxfordjournals.aje.a115210 10.2105/AJPH.88.3.364 10.1093/oxfordjournals.aje.a116026 10.1093/oxfordjournals.aje.a116396 10.1111/j.1525-1497.2005.0242.x |
ContentType | Journal Article |
Copyright | Copyright © 2013 John Wiley & Sons, Ltd. 2014 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2013 John Wiley & Sons, Ltd. – notice: 2014 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 5PM |
DOI | 10.1002/pds.3434 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1099-1557 |
EndPage | 550 |
ExternalDocumentID | PMC3653131 3095439411 23526818 27368224 10_1002_pds_3434 PDS3434 ark_67375_WNG_MCPN9Q33_V |
Genre | article Journal Article Comparative Study Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of Diabetes and Digestive and Kidney Diseases funderid: DK079056 – fundername: NIDDK NIH HHS grantid: K23 DK079056 – fundername: NIDDK NIH HHS grantid: DK079056 – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: K23 DK079056 || DK |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA GWYGA H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LSO LUTES LW6 LYRES M6Q MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WWP WXI WXSBR XG1 XV2 YCJ ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5724-c45d71fe059fe2f2a7711ff6c1938c33ed360c49037f29b0b66118dfd46c4a663 |
IEDL.DBID | DR2 |
ISSN | 1053-8569 1099-1557 |
IngestDate | Thu Aug 21 18:08:47 EDT 2025 Fri Jul 11 08:22:55 EDT 2025 Sat Aug 23 13:26:29 EDT 2025 Wed Feb 19 02:16:09 EST 2025 Mon Jul 21 09:15:22 EDT 2025 Thu Apr 24 23:02:13 EDT 2025 Tue Jul 01 04:21:45 EDT 2025 Wed Jan 22 17:10:28 EST 2025 Wed Oct 30 09:48:27 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Data analysis statistical Bias confounding variables Methodological bias Pharmacovigilance Information Confounding factor Epidemiology Comparative study pharmacoepidemiology |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2013 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5724-c45d71fe059fe2f2a7711ff6c1938c33ed360c49037f29b0b66118dfd46c4a663 |
Notes | istex:22D6B29E34DC801776AD4207F6773D8BDA974EB7 ArticleID:PDS3434 National Institute of Diabetes and Digestive and Kidney Diseases - No. DK079056 ark:/67375/WNG-MCPN9Q33-V ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3653131 |
PMID | 23526818 |
PQID | 1441113844 |
PQPubID | 105383 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3653131 proquest_miscellaneous_1348503775 proquest_journals_1441113844 pubmed_primary_23526818 pascalfrancis_primary_27368224 crossref_citationtrail_10_1002_pds_3434 crossref_primary_10_1002_pds_3434 wiley_primary_10_1002_pds_3434_PDS3434 istex_primary_ark_67375_WNG_MCPN9Q33_V |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2013 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: May 2013 |
PublicationDecade | 2010 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester – name: England – name: Bethesda |
PublicationTitle | Pharmacoepidemiology and drug safety |
PublicationTitleAlternate | Pharmacoepidemiol Drug Saf |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley – name: Wiley Subscription Services, Inc |
References | Weissman G, Melchior L, Huba G, et al. Women living with substance abuse and HIV disease: medical care access issues. J Am Med Womens Assoc 1995; 50: 115-120. Walker AM, Lanes SF. Misclassification of covariates. Stat Med 1991; 10: 1181-1196. Sox CM, Swartz K, Burstin HR, Brennan TA. Insurance or a regular physician: which is the most powerful predictor of health care? Am J Public Health 1998; 88: 364-370. Wacholder S, McLaughlin JK, Silverman DT, Mandel JS. Selection of controls in case-control studies. I. Principles. Am J Epidemiol 1992; 135: 1019-1028. Fisher ES, Whaley FS, Krushat WM, et al. The accuracy of Medicare's hospital claims data: progress has been made, but problems remain. Am J Public Health 1992; 82: 243-248. Brenner H, Loomis D. Varied forms of bias due to nondifferential error in measuring exposure. Epidemiology 1994; 5: 510-517. Greenland S. The effect of misclassification in the presence of covariates. Am J Epidemiol 1980; 112: 564-569. Tagalakis V, Kahn SR. Determining the test characteristics of claims-based diagnostic codes for the diagnosis of venous thromboembolism in a medical service claims database. Pharmacoepidemiol Drug Saf 2011; 20: 304-307. Chavance M, Dellatolas G, Lellouch J. Correlated nondifferential misclassifications of disease and exposure: application to a cross-sectional study of the relation between handedness and immune disorders. Int J Epidemiol 1992; 21: 537-546. Kristensen P. Bias from nondifferential but dependent misclassification of exposure and outcome. Epidemiology 1992; 3: 210-215. Savitz DA, Baron AE. Estimating and correcting for confounder misclassification. Am J Epidemiol 1989; 129: 1062-1071. Schauer DP, Moomaw CJ, Wess M, Webb T, Eckman MH. Psychosocial risk factors for adverse outcomes in patients with nonvalvular atrial fibrillation receiving warfarin. J Gen Intern Med 2005; 20: 1114-1119. Flegal KM, Keyl PM, Nieto FJ. Differential misclassification arising from nondifferential errors in exposure measurement. Am J Epidemiol 1991; 134: 1233-1244. Gustafson P, Le Nhu D. Comparing the effects of continuous and discrete covariate mismeasurement, with emphasis on the dichotomization of mismeasured predictors. Biometrics 2002; 58: 878-887. 2002; 58 1995; 50 1989; 129 1991; 134 1991; 10 1992; 135 2011; 20 2005; 20 1992; 21 1992; 82 1994; 5 1980; 112 1998; 88 1992; 3 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_2_1 Brenner H (e_1_2_7_9_1) 1994; 5 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 Weissman G (e_1_2_7_14_1) 1995; 50 21351312 - Pharmacoepidemiol Drug Saf. 2011 Mar;20(3):304-7 1634317 - Int J Epidemiol. 1992 Jun;21(3):537-46 1591319 - Epidemiology. 1992 May;3(3):210-5 1746532 - Am J Epidemiol. 1991 Nov 15;134(10):1233-44 7986865 - Epidemiology. 1994 Sep;5(5):510-7 12495142 - Biometrics. 2002 Dec;58(4):878-87 1595688 - Am J Epidemiol. 1992 May 1;135(9):1019-28 7657944 - J Am Med Womens Assoc. 1995 May-Aug;50(3-4):115-20 9518965 - Am J Public Health. 1998 Mar;88(3):364-70 16423100 - J Gen Intern Med. 2005 Dec;20(12):1114-9 1925151 - Stat Med. 1991 Aug;10(8):1181-96 7424903 - Am J Epidemiol. 1980 Oct;112(4):564-9 2705426 - Am J Epidemiol. 1989 May;129(5):1062-71 1739155 - Am J Public Health. 1992 Feb;82(2):243-8 |
References_xml | – reference: Greenland S. The effect of misclassification in the presence of covariates. Am J Epidemiol 1980; 112: 564-569. – reference: Kristensen P. Bias from nondifferential but dependent misclassification of exposure and outcome. Epidemiology 1992; 3: 210-215. – reference: Flegal KM, Keyl PM, Nieto FJ. Differential misclassification arising from nondifferential errors in exposure measurement. Am J Epidemiol 1991; 134: 1233-1244. – reference: Savitz DA, Baron AE. Estimating and correcting for confounder misclassification. Am J Epidemiol 1989; 129: 1062-1071. – reference: Fisher ES, Whaley FS, Krushat WM, et al. The accuracy of Medicare's hospital claims data: progress has been made, but problems remain. Am J Public Health 1992; 82: 243-248. – reference: Weissman G, Melchior L, Huba G, et al. Women living with substance abuse and HIV disease: medical care access issues. J Am Med Womens Assoc 1995; 50: 115-120. – reference: Chavance M, Dellatolas G, Lellouch J. Correlated nondifferential misclassifications of disease and exposure: application to a cross-sectional study of the relation between handedness and immune disorders. Int J Epidemiol 1992; 21: 537-546. – reference: Schauer DP, Moomaw CJ, Wess M, Webb T, Eckman MH. Psychosocial risk factors for adverse outcomes in patients with nonvalvular atrial fibrillation receiving warfarin. J Gen Intern Med 2005; 20: 1114-1119. – reference: Brenner H, Loomis D. Varied forms of bias due to nondifferential error in measuring exposure. Epidemiology 1994; 5: 510-517. – reference: Gustafson P, Le Nhu D. Comparing the effects of continuous and discrete covariate mismeasurement, with emphasis on the dichotomization of mismeasured predictors. Biometrics 2002; 58: 878-887. – reference: Sox CM, Swartz K, Burstin HR, Brennan TA. Insurance or a regular physician: which is the most powerful predictor of health care? Am J Public Health 1998; 88: 364-370. – reference: Walker AM, Lanes SF. Misclassification of covariates. Stat Med 1991; 10: 1181-1196. – reference: Tagalakis V, Kahn SR. Determining the test characteristics of claims-based diagnostic codes for the diagnosis of venous thromboembolism in a medical service claims database. Pharmacoepidemiol Drug Saf 2011; 20: 304-307. – reference: Wacholder S, McLaughlin JK, Silverman DT, Mandel JS. Selection of controls in case-control studies. I. Principles. Am J Epidemiol 1992; 135: 1019-1028. – volume: 50 start-page: 115 year: 1995 end-page: 120 article-title: Women living with substance abuse and HIV disease: medical care access issues publication-title: J Am Med Womens Assoc – volume: 88 start-page: 364 year: 1998 end-page: 370 article-title: Insurance or a regular physician: which is the most powerful predictor of health care? publication-title: Am J Public Health – volume: 5 start-page: 510 year: 1994 end-page: 517 article-title: Varied forms of bias due to nondifferential error in measuring exposure publication-title: Epidemiology – volume: 20 start-page: 304 year: 2011 end-page: 307 article-title: Determining the test characteristics of claims‐based diagnostic codes for the diagnosis of venous thromboembolism in a medical service claims database publication-title: Pharmacoepidemiol Drug Saf – volume: 3 start-page: 210 year: 1992 end-page: 215 article-title: Bias from nondifferential but dependent misclassification of exposure and outcome publication-title: Epidemiology – volume: 112 start-page: 564 year: 1980 end-page: 569 article-title: The effect of misclassification in the presence of covariates publication-title: Am J Epidemiol – volume: 134 start-page: 1233 year: 1991 end-page: 1244 article-title: Differential misclassification arising from nondifferential errors in exposure measurement publication-title: Am J Epidemiol – volume: 10 start-page: 1181 year: 1991 end-page: 1196 article-title: Misclassification of covariates publication-title: Stat Med – volume: 21 start-page: 537 year: 1992 end-page: 546 article-title: Correlated nondifferential misclassifications of disease and exposure: application to a cross‐sectional study of the relation between handedness and immune disorders publication-title: Int J Epidemiol – volume: 129 start-page: 1062 year: 1989 end-page: 1071 article-title: Estimating and correcting for confounder misclassification publication-title: Am J Epidemiol – volume: 82 start-page: 243 year: 1992 end-page: 248 article-title: The accuracy of Medicare's hospital claims data: progress has been made, but problems remain publication-title: Am J Public Health – volume: 58 start-page: 878 year: 2002 end-page: 887 article-title: Comparing the effects of continuous and discrete covariate mismeasurement, with emphasis on the dichotomization of mismeasured predictors publication-title: Biometrics – volume: 135 start-page: 1019 year: 1992 end-page: 1028 article-title: Selection of controls in case–control studies. I. Principles publication-title: Am J Epidemiol – volume: 20 start-page: 1114 year: 2005 end-page: 1119 article-title: Psychosocial risk factors for adverse outcomes in patients with nonvalvular atrial fibrillation receiving warfarin publication-title: J Gen Intern Med – ident: e_1_2_7_3_1 doi: 10.1002/pds.2061 – ident: e_1_2_7_2_1 doi: 10.2105/AJPH.82.2.243 – ident: e_1_2_7_5_1 doi: 10.1093/oxfordjournals.aje.a113025 – ident: e_1_2_7_11_1 doi: 10.1097/00001648-199205000-00005 – volume: 5 start-page: 510 year: 1994 ident: e_1_2_7_9_1 article-title: Varied forms of bias due to nondifferential error in measuring exposure publication-title: Epidemiology – ident: e_1_2_7_10_1 doi: 10.1093/ije/21.3.537 – ident: e_1_2_7_12_1 doi: 10.1002/sim.4780100803 – ident: e_1_2_7_13_1 doi: 10.1111/j.0006-341X.2002.00878.x – ident: e_1_2_7_4_1 doi: 10.1093/oxfordjournals.aje.a115210 – ident: e_1_2_7_6_1 doi: 10.2105/AJPH.88.3.364 – ident: e_1_2_7_7_1 doi: 10.1093/oxfordjournals.aje.a116026 – volume: 50 start-page: 115 year: 1995 ident: e_1_2_7_14_1 article-title: Women living with substance abuse and HIV disease: medical care access issues publication-title: J Am Med Womens Assoc – ident: e_1_2_7_8_1 doi: 10.1093/oxfordjournals.aje.a116396 – ident: e_1_2_7_15_1 doi: 10.1111/j.1525-1497.2005.0242.x – reference: 7424903 - Am J Epidemiol. 1980 Oct;112(4):564-9 – reference: 1925151 - Stat Med. 1991 Aug;10(8):1181-96 – reference: 1739155 - Am J Public Health. 1992 Feb;82(2):243-8 – reference: 1634317 - Int J Epidemiol. 1992 Jun;21(3):537-46 – reference: 1591319 - Epidemiology. 1992 May;3(3):210-5 – reference: 7657944 - J Am Med Womens Assoc. 1995 May-Aug;50(3-4):115-20 – reference: 9518965 - Am J Public Health. 1998 Mar;88(3):364-70 – reference: 16423100 - J Gen Intern Med. 2005 Dec;20(12):1114-9 – reference: 7986865 - Epidemiology. 1994 Sep;5(5):510-7 – reference: 1595688 - Am J Epidemiol. 1992 May 1;135(9):1019-28 – reference: 12495142 - Biometrics. 2002 Dec;58(4):878-87 – reference: 2705426 - Am J Epidemiol. 1989 May;129(5):1062-71 – reference: 21351312 - Pharmacoepidemiol Drug Saf. 2011 Mar;20(3):304-7 – reference: 1746532 - Am J Epidemiol. 1991 Nov 15;134(10):1233-44 |
SSID | ssj0009994 |
Score | 2.2848983 |
Snippet | ABSTRACT
Purpose
When using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available... When using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available historical data... Purpose When using claims data, dichotomous covariates (C) are often assumed to be absent unless a claim for the condition is observed. When available... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 542 |
SubjectTerms | Bias Biological and medical sciences Clinical trial. Drug monitoring Cohort Studies Confounding Factors (Epidemiology) confounding variables Data analysis data analysis, statistical Data collection Data Collection - methods Data Interpretation, Statistical Databases, Factual - statistics & numerical data Epidemiologic Methods Epidemiology General pharmacology Humans Medical sciences Outcome Assessment (Health Care) - methods pharmacoepidemiology Pharmacoepidemiology - methods Pharmacology. Drug treatments statistical Time Factors |
Title | Estimation using all available covariate information versus a fixed look-back window for dichotomous covariates |
URI | https://api.istex.fr/ark:/67375/WNG-MCPN9Q33-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpds.3434 https://www.ncbi.nlm.nih.gov/pubmed/23526818 https://www.proquest.com/docview/1441113844 https://www.proquest.com/docview/1348503775 https://pubmed.ncbi.nlm.nih.gov/PMC3653131 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQuXDh_QiUykhouTTbdWzncUSlpULqaoEWKnGwHDspq42ypdntgxM_gd_IL2HGebFQJMQp0mZixbNj55vkm28IeS4zgzJOsW8DIX1hY-0DKoJUJZJBoiX86rqW7I_DvUPx5kgeNaxKrIWp9SG6F264Mtx-jQtcp9VWLxp6YqshFxylQJGqhXjoXa8cBbjHfVCGGPNjGSat7uwo2GovXHkSXUenXiAzUlfgnLzuanEV7PyTPfkrqnWPpd1b5FM7oZqNMhsuF-nQfP1N6_H_Znyb3GzQKn1Zh9cdci0r75LBpJa7vtykB331VrVJB3TSC2Ff3iNfdmD_qEsjKfLrj6kuCqrP9LTAgi1q5meQqQPYpY18q7NEnsiyoprm04vM0gKygB_fvqfazOj5tLTzcwq21E6xeGyOLy76car75HB352B7z29aPPhGRoHwjZA2YnkGIC_PgjzQUcRYnocGcGVsOM8sD0dGJCMe5UGSjlKAEyy2uRWhERrQ0gOyVs7L7BGhiUg4E5FFEONaqJhQJ0zDCJB4pyn3yIv271am0T_HNhyFqpWbAwX-VehfjzzrLE9qzY8rbAYuYjoDfTpDjlwk1cfxa7W_PRknbzlXHzyysRJS3QWAG0Ok8HpkvY0x1ewflcI0lzEeC7yZ7jSsfPyco8sMnKsYF7EEx0TSIw_rkOwHx7YHgMU8Eq0Ea2eAquKrZ8rpZ6cuDmuJM85ggi4W_-oBNXn1Ho-P_9XwCbkRuF4iyBZdJ2uL02X2FBDdIt1wa_cnw-ZK9A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKe4AL70egFCOh5dJsN7Gdhzih0rJAd7XAtvSAZDl2AqtdZUuz2wcnfgK_kV_CjLNJWCgS4hQpnljxZGx_48x8Q8gTkWqkcYpc43PhchMpF1ARuCqh8GMl4K6tWtLrB919_vpQHK6QZ1UuTMkPUR-44cyw6zVOcDyQ3mpYQ49M0Wac8UtkDQt6W3_qXcMdBcjH_lIGK3MjEcQV82zH36qeXNqL1lCtZxgbqQpQT1bWtbgIeP4ZP_krrrUb0-418rEaUhmPMm7PZ0lbf_2N7fE_x3ydXF0AVvq8tLAbZCXNb5LWoGS8Pt-kwyaBq9ikLTpouLDPb5EvO7CElNmRFEPsP1E1mVB1okYTzNmienoCzjrgXbpgcLWSGCoyL6ii2egsNXQCjsCPb98Tpcf0dJSb6SkFWWpGmD82xbOLpp_iNtnf3Rlud91FlQdXi9DnrubChF6WAs7LUj_zVRh6XpYFGqBlpBlLDQs6mscdFmZ-nHQSQBReZDLDA80VAKY7ZDWf5uk9QmMeM4-HBnGMraKiAxV7CnoA3ztJmEOeVt9b6gUFOlbimMiSvNmXoF-J-nXI41ryqKT9uECmZU2mFlDHYwyTC4X80H8pe9uDfvyWMXngkI0lm6ofAOgYYBSvQ9YrI5OLJaSQ6Ol6Hos4vkzdDJMf_-ioPAXlSo_xSIBiQuGQu6VNNp1j5QOAYw4Jl6y1FkBi8eWWfPTZEoyzAFZm5sEArTH-VQNy8OI9Xu__q-Ajcrk77O3JvVf9Nw_IFd-WFsHg0XWyOjuepw8B4M2SDTuRfwIxdE8P |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF1BKyFeuF8MpSwSCi91Gnt3fXlETUO5NArQ0ko8rNa7dhslckKd9MITn8A38iXMrB2bQJEQT5bi8co7mV2fsc-cIeS5SDXKOEWu8blwuYmUC6gIUpVQ-LES8KvtWrLbD3b2-ZtDcVixKrEWptSHqF-44cqw-zUu8KnJNhvR0Kkp2owzfpWs8qATYUR3PzTSUQB87BdlCDI3EkG8EJ7t-JuLK5ceRavo1XOkRqoCvJOVbS0uw51_0id_hbX2udS7ST4vZlTSUUbt-Sxp66-_iT3-35RvkRsVXKUvy_i6Ta6k-R3SGpR61xcbdK8p3yo2aIsOGiXsi7vkyzZsIGVtJEWC_RFV4zFVp2o4xootqienkKoD2qWVfqu1RKLIvKCKZsPz1NAxpAE_vn1PlB7Rs2FuJmcUbKkZYvXYBN9cNOMU98h-b3tva8etejy4WoQ-dzUXJvSyFFBelvqZr8LQ87Is0AAsI81YaljQ0TzusDDz46STAJ7wIpMZHmiuAC7dJyv5JE8fEhrzmHk8NIhibA8VHajYUzACZN5JwhzyYvF3S10JoGMfjrEspZt9Cf6V6F-HPKstp6XoxyU2LRsxtYE6GSFJLhTyoP9K7m4N-vF7xuQnh6wvhVR9AQDHADm8DllbxJisNpBCYp7reSzieDP1aVj6-D1H5Sk4V3qMRwIcEwqHPChDshkc-x4AGHNIuBSstQHKii-fyYfHVl6cBbAvMw8maGPxrx6Qg-5HPD76V8On5Nqg25PvXvffPibXfdtXBJmja2RldjJPnwC6myXrdhn_BDoCTcc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+using+all+available+covariate+information+versus+a+fixed+look-back+window+for+dichotomous+covariates&rft.jtitle=Pharmacoepidemiology+and+drug+safety&rft.au=BRUNELLI%2C+Steven+M&rft.au=GAGNE%2C+Joshua+J&rft.au=HUYBRECHTS%2C+Krista+F&rft.au=WANG%2C+Shirley+V&rft.date=2013-05-01&rft.pub=Wiley&rft.issn=1053-8569&rft.volume=22&rft.issue=5&rft.spage=542&rft.epage=550&rft_id=info:doi/10.1002%2Fpds.3434&rft.externalDBID=n%2Fa&rft.externalDocID=27368224 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8569&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8569&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8569&client=summon |