A global method for calculating plant CSR ecological strategies applied across biomes world-wide
Summary Competitor, stress‐tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (r...
Saved in:
Published in | Functional ecology Vol. 31; no. 2; pp. 444 - 457 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley
01.02.2017
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Competitor, stress‐tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (representing, respectively, interspecific variation in plant size and conservative vs. acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity.
We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy–environment relationships across biomes world‐wide.
Due to disparity in trait availability globally, co‐inertia analysis was used to check correspondence between a ‘wide geographic coverage, few traits’ data set and a ‘restricted coverage, many traits’ subset of 371 species for which 14 whole‐plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth‐corner and RLQ analyses to determine strategy/climate specializations.
Strong, significant concordance (RV = 0·597; P < 0·0001) was evident between the 14 trait multivariate space and when only LA, LDMC and SLA were used.
Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS/CSR median; C:S:R = 43:42:15%), with CS‐selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S‐selected (C:S:R = 1:99:0%) and broadly R‐selected annual herbs (e.g. Claytonia perfoliata; R/CR‐selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs).
The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy–environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use.
Lay Summary |
---|---|
AbstractList | Summary Competitor, stress-tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (representing, respectively, interspecific variation in plant size and conservative vs. acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity. We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy-environment relationships across biomes world-wide. Due to disparity in trait availability globally, co-inertia analysis was used to check correspondence between a 'wide geographic coverage, few traits' data set and a 'restricted coverage, many traits' subset of 371 species for which 14 whole-plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth-corner and RLQ analyses to determine strategy/climate specializations. Strong, significant concordance (RV = 0·597; P < 0·0001) was evident between the 14 trait multivariate space and when only LA,LDMC and SLA were used. Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS/CSR median; C:S:R = 43:42:15%), with CS-selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S-selected (C:S:R = 1:99:0%) and broadly R-selected annual herbs (e.g. Claytonia perfoliata; R/CR-selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs). The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy-environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use. Summary Competitor, stress‐tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (representing, respectively, interspecific variation in plant size and conservative vs. acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity. We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy–environment relationships across biomes world‐wide. Due to disparity in trait availability globally, co‐inertia analysis was used to check correspondence between a ‘wide geographic coverage, few traits’ data set and a ‘restricted coverage, many traits’ subset of 371 species for which 14 whole‐plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth‐corner and RLQ analyses to determine strategy/climate specializations. Strong, significant concordance (RV = 0·597; P < 0·0001) was evident between the 14 trait multivariate space and when only LA, LDMC and SLA were used. Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS/CSR median; C:S:R = 43:42:15%), with CS‐selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S‐selected (C:S:R = 1:99:0%) and broadly R‐selected annual herbs (e.g. Claytonia perfoliata; R/CR‐selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs). The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy–environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use. Lay Summary 1. Competitor, stress-tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (representing, respectively, interspecific variation in plant size and conservative vs. acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity. 2. We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy-environment relationships across biomes world-wide. 3. Due to disparity in trait availability globally, co-inertia analysis was used to check correspondence between a 'wide geographic coverage, few traits' data set and a 'restricted coverage, many traits' subset of 371 species for which 14 whole-plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth-corner and RLQ analyses to determine strategy/climate specializations. 4. Strong, significant concordance (RV = 0.597; P < 0.0001) was evident between the 14 trait multivariate space and when only LA, LDMC and SLA were used. 5. Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS/CSR median; C:S:R = 43:42:15%), with CS-selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S-selected (C:S:R = 1:99:0%) and broadly R-selected annual herbs (e.g. Claytonia perfoliata; R/CR-selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs). 6. The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy-environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use. Lay Summary Competitor, stress‐tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (representing, respectively, interspecific variation in plant size and conservative vs. acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity.We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy–environment relationships across biomes world‐wide.Due to disparity in trait availability globally, co‐inertia analysis was used to check correspondence between a ‘wide geographic coverage, few traits’ data set and a ‘restricted coverage, many traits’ subset of 371 species for which 14 whole‐plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth‐corner and RLQ analyses to determine strategy/climate specializations.Strong, significant concordance (RV = 0·597; P < 0·0001) was evident between the 14 trait multivariate space and when only LA, LDMC and SLA were used.Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS/CSR median; C:S:R = 43:42:15%), with CS‐selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S‐selected (C:S:R = 1:99:0%) and broadly R‐selected annual herbs (e.g. Claytonia perfoliata; R/CR‐selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs).The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy–environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use. Summary Competitor, stress‐tolerator, ruderal ( CSR ) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area ( LA ), leaf dry matter content ( LDMC ) and specific leaf area ( SLA ) (representing, respectively, interspecific variation in plant size and conservative vs . acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity. We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy–environment relationships across biomes world‐wide. Due to disparity in trait availability globally, co‐inertia analysis was used to check correspondence between a ‘wide geographic coverage, few traits’ data set and a ‘restricted coverage, many traits’ subset of 371 species for which 14 whole‐plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth‐corner and RLQ analyses to determine strategy/climate specializations. Strong, significant concordance ( RV = 0·597; P < 0·0001) was evident between the 14 trait multivariate space and when only LA , LDMC and SLA were used. Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS / CSR median; C:S:R = 43:42:15%), with CS ‐selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S‐selected (C:S:R = 1:99:0%) and broadly R‐selected annual herbs (e.g. Claytonia perfoliata ; R/ CR ‐selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs). The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy–environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use. Competitor, stress‐tolerator, ruderal ( CSR ) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area ( LA ), leaf dry matter content ( LDMC ) and specific leaf area ( SLA ) (representing, respectively, interspecific variation in plant size and conservative vs . acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity. We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy–environment relationships across biomes world‐wide. Due to disparity in trait availability globally, co‐inertia analysis was used to check correspondence between a ‘wide geographic coverage, few traits’ data set and a ‘restricted coverage, many traits’ subset of 371 species for which 14 whole‐plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth‐corner and RLQ analyses to determine strategy/climate specializations. Strong, significant concordance ( RV = 0·597; P < 0·0001) was evident between the 14 trait multivariate space and when only LA , LDMC and SLA were used. Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS / CSR median; C:S:R = 43:42:15%), with CS ‐selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S‐selected (C:S:R = 1:99:0%) and broadly R‐selected annual herbs (e.g. Claytonia perfoliata ; R/ CR ‐selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs). The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy–environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use. |
Author | Pierce, Simon Barbosa, Newton P. U. Ceriani, Roberta M. Negreiros, Daniel Wright, Stuart Joseph Cornelissen, Johannes H. C. Buffa, Gabriella Peñuelas, Josep Shipley, Bill Mangili, Federico Cornwell, William K. Nyakunga, Oliver C. Kattge, Jens Garnier, Eric Slaviero, Antonio Reich, Peter B. Thompson, Ken Siefert, Andrew Melo, Felipe P. L. Kleyer, Michael Fernandes, Geraldo Wilson Grime, John Philip Chapin, Francis Stuart Frenette-Dussault, Cedric Fang, Jingyun Hunt, Roderick Díaz, Sandra Luzzaro, Alessandra Brusa, Guido Weiher, Evan Tampucci, Duccio Pinho, Bruno X. Cerabolini, Bruno E. L. Le Stradic, Soizig Onipchenko, Vladimir G. Caccianiga, Marco van Bodegom, Peter M. Wilson, Peter J. Soudzilovskaia, Nadejda A. Tabarelli, Marcelo |
Author_xml | – sequence: 1 givenname: Simon surname: Pierce fullname: Pierce, Simon – sequence: 2 givenname: Daniel surname: Negreiros fullname: Negreiros, Daniel – sequence: 3 givenname: Bruno E. L. surname: Cerabolini fullname: Cerabolini, Bruno E. L. – sequence: 4 givenname: Jens surname: Kattge fullname: Kattge, Jens – sequence: 5 givenname: Sandra surname: Díaz fullname: Díaz, Sandra – sequence: 6 givenname: Michael surname: Kleyer fullname: Kleyer, Michael – sequence: 7 givenname: Bill surname: Shipley fullname: Shipley, Bill – sequence: 8 givenname: Stuart Joseph surname: Wright fullname: Wright, Stuart Joseph – sequence: 9 givenname: Nadejda A. surname: Soudzilovskaia fullname: Soudzilovskaia, Nadejda A. – sequence: 10 givenname: Vladimir G. surname: Onipchenko fullname: Onipchenko, Vladimir G. – sequence: 11 givenname: Peter M. surname: van Bodegom fullname: van Bodegom, Peter M. – sequence: 12 givenname: Cedric surname: Frenette-Dussault fullname: Frenette-Dussault, Cedric – sequence: 13 givenname: Evan surname: Weiher fullname: Weiher, Evan – sequence: 14 givenname: Bruno X. surname: Pinho fullname: Pinho, Bruno X. – sequence: 15 givenname: Johannes H. C. surname: Cornelissen fullname: Cornelissen, Johannes H. C. – sequence: 16 givenname: John Philip surname: Grime fullname: Grime, John Philip – sequence: 17 givenname: Ken surname: Thompson fullname: Thompson, Ken – sequence: 18 givenname: Roderick surname: Hunt fullname: Hunt, Roderick – sequence: 19 givenname: Peter J. surname: Wilson fullname: Wilson, Peter J. – sequence: 20 givenname: Gabriella surname: Buffa fullname: Buffa, Gabriella – sequence: 21 givenname: Oliver C. surname: Nyakunga fullname: Nyakunga, Oliver C. – sequence: 22 givenname: Peter B. surname: Reich fullname: Reich, Peter B. – sequence: 23 givenname: Marco surname: Caccianiga fullname: Caccianiga, Marco – sequence: 24 givenname: Federico surname: Mangili fullname: Mangili, Federico – sequence: 25 givenname: Roberta M. surname: Ceriani fullname: Ceriani, Roberta M. – sequence: 26 givenname: Alessandra surname: Luzzaro fullname: Luzzaro, Alessandra – sequence: 27 givenname: Guido surname: Brusa fullname: Brusa, Guido – sequence: 28 givenname: Andrew surname: Siefert fullname: Siefert, Andrew – sequence: 29 givenname: Newton P. U. surname: Barbosa fullname: Barbosa, Newton P. U. – sequence: 30 givenname: Francis Stuart surname: Chapin fullname: Chapin, Francis Stuart – sequence: 31 givenname: William K. surname: Cornwell fullname: Cornwell, William K. – sequence: 32 givenname: Jingyun surname: Fang fullname: Fang, Jingyun – sequence: 33 givenname: Geraldo Wilson surname: Fernandes fullname: Fernandes, Geraldo Wilson – sequence: 34 givenname: Eric surname: Garnier fullname: Garnier, Eric – sequence: 35 givenname: Soizig surname: Le Stradic fullname: Le Stradic, Soizig – sequence: 36 givenname: Josep surname: Peñuelas fullname: Peñuelas, Josep – sequence: 37 givenname: Felipe P. L. surname: Melo fullname: Melo, Felipe P. L. – sequence: 38 givenname: Antonio surname: Slaviero fullname: Slaviero, Antonio – sequence: 39 givenname: Marcelo surname: Tabarelli fullname: Tabarelli, Marcelo – sequence: 40 givenname: Duccio surname: Tampucci fullname: Tampucci, Duccio |
BackLink | https://hal.science/hal-04662099$$DView record in HAL |
BookMark | eNqFkc1vEzEQxS1UJNLCmROSJS5w2Hb8bR-jqKVIkZD4OBvvrjd15KyDvSHqf4_TQA49EF8szfyex2_eJboY0-gRekvgmtRzQ5gUDeVMXBOqKH2BZqfKBZoBlabRXLJX6LKUNQAYQekM_ZzjVUyti3jjp4fU4yFl3LnY7aKbwrjC2-jGCS--fcW-SzGtQm3iMmU3-VXwBbvtNgbfY9flVApuQ9rU6j7l2Df70PvX6OXgYvFv_t5X6Mfd7ffFfbP88unzYr5sOlF_2xgFTLTgheAMVCc8M4p60NyY3gFzwKkiQys71YOUDAxRIJTgZuDtQJVnV-jj8d0HF-02h43Ljza5YO_nS3uoAZeSgjG_SWU_HNltTr92vkx2E0rnY7Xq065YWtfDGSGan0WJVlRz4AYq-v4Zuk67PFbTljLFmdZEy_9RtS0BlNKsUjdH6mmr2Q8nSwTsIW57CNcewrVPcVeFeKbowlQjTGPNKsTzun2I_vHcGHt3u_ine3fUrcuU8knHtdCUKsX-AIO1w5E |
CODEN | FECOE5 |
CitedBy_id | crossref_primary_10_1111_1365_2435_14613 crossref_primary_10_1093_biosci_biaa014 crossref_primary_10_1093_aobpla_plad077 crossref_primary_10_3390_biology12121479 crossref_primary_10_1088_2752_5295_accbe2 crossref_primary_10_1111_oik_05090 crossref_primary_10_3832_ifor3730_014 crossref_primary_10_1016_j_flora_2022_152089 crossref_primary_10_1016_j_flora_2023_152247 crossref_primary_10_1016_j_soilbio_2021_108415 crossref_primary_10_1080_11263504_2018_1435576 crossref_primary_10_1002_ece3_3547 crossref_primary_10_1016_j_ecoleng_2020_105880 crossref_primary_10_1029_2018JG004969 crossref_primary_10_3897_pls2022592_04 crossref_primary_10_1111_1365_2435_14051 crossref_primary_10_1111_jvs_12744 crossref_primary_10_1016_j_flora_2019_151419 crossref_primary_10_1134_S1067413624602938 crossref_primary_10_1139_cjb_2024_0041 crossref_primary_10_7717_peerj_12517 crossref_primary_10_1007_s11629_024_8859_6 crossref_primary_10_1111_jvs_12749 crossref_primary_10_3390_f13070973 crossref_primary_10_1111_oik_07273 crossref_primary_10_1002_ldr_3050 crossref_primary_10_1093_aob_mcy165 crossref_primary_10_3390_su15129414 crossref_primary_10_1016_j_envres_2024_120030 crossref_primary_10_1038_s41467_024_45667_4 crossref_primary_10_55959_MSU0137_0952_16_79_1_3 crossref_primary_10_1016_j_ecolind_2023_110066 crossref_primary_10_1093_jxb_erad499 crossref_primary_10_1111_geb_13309 crossref_primary_10_3389_frsc_2021_654618 crossref_primary_10_1111_mec_14817 crossref_primary_10_1016_j_actao_2017_12_002 crossref_primary_10_1111_ddi_12978 crossref_primary_10_1111_oik_08907 crossref_primary_10_1111_avsc_12803 crossref_primary_10_1002_ecy_2924 crossref_primary_10_1111_1365_2745_13575 crossref_primary_10_1016_j_tim_2019_06_003 crossref_primary_10_1007_s40415_020_00660_1 crossref_primary_10_1111_rec_13650 crossref_primary_10_3389_fevo_2023_1230819 crossref_primary_10_1002_ecy_3454 crossref_primary_10_1080_07352689_2023_2233232 crossref_primary_10_1016_j_ecoleng_2024_107279 crossref_primary_10_1111_avsc_12494 crossref_primary_10_3389_fevo_2022_841824 crossref_primary_10_1007_s11258_018_0879_2 crossref_primary_10_3390_d15090973 crossref_primary_10_1038_s41598_020_60166_4 crossref_primary_10_1007_s10531_019_01915_4 crossref_primary_10_1093_aob_mcx084 crossref_primary_10_1134_S1062359021060170 crossref_primary_10_1038_s41598_021_03235_6 crossref_primary_10_1016_j_flora_2024_152627 crossref_primary_10_1186_s12870_023_04375_9 crossref_primary_10_1016_j_ecolmodel_2020_109345 crossref_primary_10_1016_j_ecolind_2022_109144 crossref_primary_10_1007_s12374_024_09449_1 crossref_primary_10_1086_706238 crossref_primary_10_1007_s11258_024_01422_9 crossref_primary_10_1016_j_jsames_2021_103629 crossref_primary_10_3390_su14116825 crossref_primary_10_1016_j_ppees_2024_125826 crossref_primary_10_1111_oik_10219 crossref_primary_10_1002_ece3_7925 crossref_primary_10_1111_ecog_05476 crossref_primary_10_3389_fpls_2023_1323766 crossref_primary_10_1002_ecs2_4291 crossref_primary_10_1007_s10750_021_04785_6 crossref_primary_10_1111_jvs_12525 crossref_primary_10_1111_jvs_12768 crossref_primary_10_1134_S2079086421010035 crossref_primary_10_1016_j_scitotenv_2022_156512 crossref_primary_10_1016_j_scitotenv_2020_138529 crossref_primary_10_1038_s41586_024_07657_w crossref_primary_10_3103_S0096392519030039 crossref_primary_10_1002_ecs2_4972 crossref_primary_10_1093_aob_mcab149 crossref_primary_10_1016_j_ecolind_2023_111015 crossref_primary_10_1016_j_envexpbot_2019_103903 crossref_primary_10_1002_ecs2_3508 crossref_primary_10_1007_s11258_021_01203_8 crossref_primary_10_1016_j_flora_2023_152337 crossref_primary_10_1080_23818107_2021_1884899 crossref_primary_10_3389_fpls_2019_01265 crossref_primary_10_1038_s41467_024_52468_2 crossref_primary_10_1073_pnas_2211531120 crossref_primary_10_1007_s42974_020_00012_9 crossref_primary_10_1002_ece3_9435 crossref_primary_10_1111_jse_12840 crossref_primary_10_1016_j_ecolmodel_2018_02_013 crossref_primary_10_1111_jvs_12651 crossref_primary_10_1134_S2075111720020071 crossref_primary_10_1016_j_gecco_2024_e03132 crossref_primary_10_1007_s11104_022_05562_7 crossref_primary_10_1007_s40415_022_00827_y crossref_primary_10_1016_j_scitotenv_2023_164044 crossref_primary_10_1093_aob_mcy194 crossref_primary_10_1111_2041_210X_13587 crossref_primary_10_1007_s11258_020_01001_8 crossref_primary_10_1109_JSTARS_2018_2824901 crossref_primary_10_3390_plants13172378 crossref_primary_10_1016_j_plaphy_2025_109813 crossref_primary_10_1139_cjb_2020_0235 crossref_primary_10_1016_j_flora_2019_03_013 crossref_primary_10_1007_s11104_020_04641_x crossref_primary_10_1007_s11252_024_01657_4 crossref_primary_10_1186_s12870_024_05173_7 crossref_primary_10_1111_1365_2435_13608 crossref_primary_10_1590_0102_33062017abb0075 crossref_primary_10_1038_s41586_025_08692_x crossref_primary_10_1016_j_flora_2018_12_004 crossref_primary_10_1002_ece3_7824 crossref_primary_10_1007_s11104_024_07083_x crossref_primary_10_1016_j_ecss_2025_109158 crossref_primary_10_1007_s11104_022_05303_w crossref_primary_10_1111_1365_2745_14115 crossref_primary_10_1111_1365_2745_13264 crossref_primary_10_1093_aob_mcad002 crossref_primary_10_1111_gcb_14046 crossref_primary_10_1007_s11258_022_01282_1 crossref_primary_10_1002_ece3_8124 crossref_primary_10_5194_bg_21_4909_2024 crossref_primary_10_3390_land10111158 crossref_primary_10_1007_s11258_022_01223_y crossref_primary_10_1002_ece3_5895 crossref_primary_10_1016_j_baae_2023_05_008 crossref_primary_10_1071_FP20396 crossref_primary_10_1111_1365_2745_12726 crossref_primary_10_1016_j_flora_2023_152399 crossref_primary_10_1002_ece3_5778 crossref_primary_10_1111_1365_2745_12843 crossref_primary_10_3897_pls2020572_03 crossref_primary_10_1007_s11104_020_04690_2 crossref_primary_10_1007_s00035_018_0199_0 crossref_primary_10_1111_1365_2745_13136 crossref_primary_10_1186_s12870_024_05026_3 crossref_primary_10_3389_fpls_2022_836488 crossref_primary_10_1016_j_sctalk_2024_100405 crossref_primary_10_3389_fpls_2024_1484744 crossref_primary_10_1016_j_flora_2025_152712 crossref_primary_10_1111_nph_15998 crossref_primary_10_1038_s41598_019_43011_1 crossref_primary_10_1016_j_ecolind_2023_110664 crossref_primary_10_1093_jpe_rtab060 crossref_primary_10_3390_plants13131764 crossref_primary_10_1007_s12298_021_00973_9 crossref_primary_10_1111_btp_12992 crossref_primary_10_18307_2023_0213 crossref_primary_10_1111_1365_2435_12894 crossref_primary_10_1134_S2079086423030064 crossref_primary_10_1016_j_scitotenv_2021_149572 crossref_primary_10_1111_wre_12549 crossref_primary_10_1016_j_jhydrol_2024_131038 crossref_primary_10_3389_fevo_2023_1082661 crossref_primary_10_1016_j_agrformet_2023_109833 crossref_primary_10_1002_ecy_3986 crossref_primary_10_1002_ecy_2652 crossref_primary_10_1002_ecy_4395 crossref_primary_10_1371_journal_pone_0299981 crossref_primary_10_1016_j_ecolind_2024_112316 crossref_primary_10_1111_1365_2435_12898 crossref_primary_10_1007_s11104_024_07039_1 crossref_primary_10_1016_j_baae_2022_03_013 crossref_primary_10_1007_s40415_022_00809_0 crossref_primary_10_1016_j_agee_2024_108954 crossref_primary_10_1016_j_ecolind_2023_111173 crossref_primary_10_1080_1540496X_2023_2226323 crossref_primary_10_1093_aob_mcad005 crossref_primary_10_1007_s11676_024_01780_0 crossref_primary_10_1371_journal_ppat_1008557 crossref_primary_10_1016_j_jenvman_2018_06_018 crossref_primary_10_1016_j_flora_2024_152554 crossref_primary_10_1016_j_flora_2019_04_001 crossref_primary_10_3390_f13081272 crossref_primary_10_1016_j_ecolind_2020_106970 crossref_primary_10_1111_jvs_12732 crossref_primary_10_3390_ecologies2030015 crossref_primary_10_3390_plants11192471 crossref_primary_10_1111_jbi_13993 crossref_primary_10_1111_jvs_12978 crossref_primary_10_1007_s11258_022_01270_5 crossref_primary_10_1007_s10722_022_01514_3 crossref_primary_10_3390_plants12183198 crossref_primary_10_1016_j_ecocom_2020_100833 crossref_primary_10_1111_ele_14446 crossref_primary_10_1016_j_flora_2020_151710 crossref_primary_10_1016_j_ecolind_2024_112370 crossref_primary_10_1093_aob_mcaa206 crossref_primary_10_1134_S2079086418050031 crossref_primary_10_1093_ismeco_ycae108 crossref_primary_10_1134_S199542552401013X crossref_primary_10_1016_j_baae_2019_08_002 crossref_primary_10_1016_j_scitotenv_2024_176051 crossref_primary_10_1016_j_ppees_2021_125611 crossref_primary_10_3390_f15081412 crossref_primary_10_1111_jvs_13311 crossref_primary_10_1007_s11104_024_06543_8 crossref_primary_10_1016_j_ecoleng_2023_107148 crossref_primary_10_1016_j_ecolind_2020_106364 crossref_primary_10_1007_s10530_024_03359_6 crossref_primary_10_1007_s10750_019_04072_5 crossref_primary_10_1016_j_jaridenv_2022_104908 crossref_primary_10_1016_j_biocon_2024_110502 crossref_primary_10_1016_j_resenv_2022_100050 crossref_primary_10_1111_btp_12721 crossref_primary_10_1002_rse2_86 crossref_primary_10_1111_1365_2435_13011 crossref_primary_10_1371_journal_pone_0294159 crossref_primary_10_1007_s11104_024_07092_w crossref_primary_10_1111_jbi_13848 crossref_primary_10_1016_j_agee_2022_108014 crossref_primary_10_1111_jvs_12592 crossref_primary_10_1007_s10722_019_00755_z crossref_primary_10_1016_j_scitotenv_2022_159174 crossref_primary_10_1111_geb_13706 crossref_primary_10_1016_j_baae_2019_01_004 crossref_primary_10_1016_j_gecco_2022_e02341 crossref_primary_10_1038_s41598_024_56099_x crossref_primary_10_2478_biorc_2020_0009 crossref_primary_10_1038_s41598_023_39772_5 crossref_primary_10_1098_rsbm_2021_0021 crossref_primary_10_1016_j_flora_2020_151605 crossref_primary_10_1016_j_gecco_2021_e01754 crossref_primary_10_1016_j_ecoleng_2021_106284 crossref_primary_10_1111_aje_12524 crossref_primary_10_1002_pan3_10413 crossref_primary_10_1016_j_scitotenv_2023_168131 crossref_primary_10_1016_j_scitotenv_2023_169100 crossref_primary_10_3103_S0096392524600534 crossref_primary_10_1007_s00468_024_02508_7 crossref_primary_10_3389_fpls_2022_807369 crossref_primary_10_1002_ece3_7522 crossref_primary_10_1016_j_foreco_2025_122517 crossref_primary_10_1007_s10531_022_02477_8 crossref_primary_10_1093_jue_juaa037 crossref_primary_10_1080_21683565_2024_2438081 crossref_primary_10_1111_1365_2745_13641 crossref_primary_10_18307_2024_0137 crossref_primary_10_3390_su12177190 crossref_primary_10_1088_1748_9326_ab0783 crossref_primary_10_1111_1440_1703_12218 crossref_primary_10_1111_oik_09754 crossref_primary_10_1007_s00442_021_05066_8 crossref_primary_10_1111_oik_09751 crossref_primary_10_1111_ele_13104 crossref_primary_10_1111_njb_02386 crossref_primary_10_1093_jpe_rtab114 crossref_primary_10_1007_s10750_024_05593_4 crossref_primary_10_1016_j_scitotenv_2024_176962 crossref_primary_10_1186_s42408_024_00267_x crossref_primary_10_1002_ldr_3789 crossref_primary_10_3390_plants12233990 crossref_primary_10_1016_j_flora_2023_152297 crossref_primary_10_1038_s41477_024_01790_0 crossref_primary_10_1016_j_ecolind_2021_107759 crossref_primary_10_1016_j_gecco_2023_e02383 crossref_primary_10_1371_journal_pone_0219908 crossref_primary_10_7717_peerj_8683 crossref_primary_10_1111_jvs_13227 crossref_primary_10_1093_insilicoplants_diab015 crossref_primary_10_1016_j_foreco_2022_120233 crossref_primary_10_1002_2688_8319_12133 crossref_primary_10_1111_brv_12995 crossref_primary_10_1093_jxb_ery447 crossref_primary_10_1016_j_actao_2020_103585 crossref_primary_10_5194_bg_21_381_2024 crossref_primary_10_3390_d14080597 crossref_primary_10_1007_s00442_019_04442_9 crossref_primary_10_1016_j_ecolind_2021_108111 crossref_primary_10_3389_frsc_2024_1451930 crossref_primary_10_3897_BDJ_12_e118128 crossref_primary_10_1016_j_ufug_2019_126580 crossref_primary_10_31857_S0044459624020015 crossref_primary_10_3390_ecologies5030028 crossref_primary_10_3390_fire6070265 crossref_primary_10_1038_s41598_021_93722_7 crossref_primary_10_1134_S2079086424700130 crossref_primary_10_1093_biolinnean_blaa181 crossref_primary_10_1371_journal_pone_0238916 crossref_primary_10_1111_jvs_12787 crossref_primary_10_1007_s10681_024_03372_9 crossref_primary_10_3390_agronomy14091899 crossref_primary_10_3390_plants9060689 crossref_primary_10_1007_s11104_024_06583_0 crossref_primary_10_3389_fpls_2023_1240591 crossref_primary_10_1177_20530196221149120 crossref_primary_10_3389_ffgc_2023_1236933 crossref_primary_10_1002_ecm_1631 crossref_primary_10_1016_j_agee_2021_107809 crossref_primary_10_1016_j_flora_2023_152319 crossref_primary_10_1016_j_flora_2023_152437 crossref_primary_10_1093_jxb_erae428 crossref_primary_10_1002_ece3_8882 crossref_primary_10_1038_s41597_021_01104_5 crossref_primary_10_1093_aobpla_plad021 crossref_primary_10_1002_ece3_11580 crossref_primary_10_1007_s10531_022_02427_4 crossref_primary_10_1007_s11104_023_05996_7 crossref_primary_10_1016_j_ecolind_2021_107812 crossref_primary_10_1007_s12237_025_01512_5 crossref_primary_10_1371_journal_pone_0175404 crossref_primary_10_1016_j_catena_2023_107341 crossref_primary_10_31857_S0367059724060033 crossref_primary_10_1016_j_gecco_2024_e02825 crossref_primary_10_1071_BT21100 crossref_primary_10_1093_aob_mcae164 crossref_primary_10_1016_j_actao_2021_103738 crossref_primary_10_1016_j_flora_2022_152109 crossref_primary_10_17129_botsci_2214 crossref_primary_10_1016_j_funeco_2018_11_013 crossref_primary_10_1007_s11284_017_1501_0 crossref_primary_10_1111_avsc_12356 crossref_primary_10_1080_11263504_2018_1559250 crossref_primary_10_1111_1365_2435_13221 crossref_primary_10_3390_rs14102401 crossref_primary_10_1111_ele_14063 crossref_primary_10_1016_j_ecofro_2025_01_003 crossref_primary_10_3390_f14061258 crossref_primary_10_1016_j_sajb_2022_03_033 crossref_primary_10_1186_s42408_024_00292_w crossref_primary_10_60027_ijsasr_2023_3454 crossref_primary_10_1016_j_ppees_2022_125675 crossref_primary_10_1590_0001_3765202120200119 crossref_primary_10_1111_1365_2664_13094 crossref_primary_10_1016_j_baae_2023_07_006 crossref_primary_10_1086_716510 crossref_primary_10_1111_geb_12882 crossref_primary_10_1007_s00442_022_05297_3 crossref_primary_10_1111_geb_13056 crossref_primary_10_1038_s41598_023_42738_2 crossref_primary_10_1093_aob_mcab121 crossref_primary_10_1016_j_ufug_2023_127996 crossref_primary_10_1111_geb_13176 crossref_primary_10_1016_j_gecco_2023_e02759 crossref_primary_10_1093_aob_mcaa151 crossref_primary_10_1002_iroh_202102097 crossref_primary_10_1007_s11252_023_01380_6 crossref_primary_10_1111_geb_13603 crossref_primary_10_1016_j_ecolind_2023_110002 crossref_primary_10_1016_j_ecolind_2024_112168 crossref_primary_10_1016_j_flora_2023_152415 crossref_primary_10_1080_17429145_2020_1738570 crossref_primary_10_1002_ece3_8301 crossref_primary_10_1134_S2079086418050043 crossref_primary_10_1371_journal_pone_0249573 crossref_primary_10_1002_ece3_6928 crossref_primary_10_3390_f11111145 crossref_primary_10_1002_imt2_66 crossref_primary_10_1007_s10530_021_02660_y crossref_primary_10_1111_1365_2435_14684 crossref_primary_10_1007_s11104_020_04780_1 crossref_primary_10_1016_j_biocon_2021_109152 crossref_primary_10_1186_s12870_022_03818_z crossref_primary_10_1007_s11427_020_1766_1 crossref_primary_10_1016_j_ancene_2025_100466 crossref_primary_10_1111_avsc_12591 |
Cites_doi | 10.1002/9781118223246 10.1080/11263504.2014.987848 10.1038/35012228 10.1007/s11258-014-0302-6 10.1007/978-94-017-1094-7 10.1111/j.1469-8137.2005.01349.x 10.2307/3546494 10.1086/283244 10.1111/j.1365-2745.2007.01242.x 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 10.1127/0340-269X/2014/0044-0574 10.1111/1365-2435.12095 10.1111/1365-2745.12208 10.1111/j.1654-109X.2004.tb00607.x 10.1890/10-0340.1 10.1890/13-0196.1 10.1002/ece3.1087 10.1007/BF00120678 10.1038/250026a0 10.1007/s10531-015-0904-x 10.1007/s11258-014-0392-1 10.1111/nph.13623 10.1111/j.1365-2435.2007.01374.x 10.1007/s11258-014-0318-y 10.1111/j.1365-2435.2006.01218.x 10.1111/j.0030-1299.2006.14107.x 10.1111/j.1365-2486.2011.02451.x 10.1038/nature16489 10.1111/j.1365-2745.2008.01430.x 10.1007/s00442-004-1551-1 10.1093/aob/mcs021 10.1002/joc.1276 10.1073/pnas.0608361104 10.1111/1365-2745.12217 10.1111/j.1466-8238.2011.00717.x 10.1890/03-0178 10.1111/j.1654-1103.2011.01370.x 10.1007/s11258-010-9753-6 10.1080/11263500701627695 10.1073/pnas.1310700110 10.1111/1365-2745.12211 10.1038/nature05747 10.1111/j.1365-2311.2004.00572.x 10.1111/j.1461-0248.2008.01219.x 10.18637/jss.v022.i04 |
ContentType | Journal Article |
Copyright | 2016 The Authors. © 2016 British Ecological Society 2016 The Authors. Functional Ecology © 2016 British Ecological Society Functional Ecology © 2017 British Ecological Society Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2016 The Authors. © 2016 British Ecological Society – notice: 2016 The Authors. Functional Ecology © 2016 British Ecological Society – notice: Functional Ecology © 2017 British Ecological Society – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 1XC VOOES |
DOI | 10.1111/1365-2435.12722 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts Ecology Abstracts Entomology Abstracts AGRICOLA CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences Economics |
EISSN | 1365-2435 |
EndPage | 457 |
ExternalDocumentID | oai_HAL_hal_04662099v1 4312817791 10_1111_1365_2435_12722 FEC12722 48582277 |
Genre | article |
GrantInformation_xml | – fundername: UK Natural Environment Research Council (NERC) – fundername: IGBP – fundername: Global Land Project – fundername: DIVERSITAS – fundername: French Foundation for Biodiversity Research (FRB) – fundername: GIS ‘Climat, Environnement et Société’ France |
GroupedDBID | .3N .GA 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAISJ AAKGQ AAMMB AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGUYK AGXDD AHBTC AHXOZ AIAGR AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW ZCA ZZTAW ~02 ~IA ~KM ~WT .Y3 31~ 42X 53G AAHHS ABEFU ABTAH ACCFJ ACCMX ADULT ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX GTFYD HF~ HGD HGLYW HQ2 HTVGU JSODD MVM VOH WRC ZY4 AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c5722-97035b0e554307c5e3972e08499da03a04271fb6c7d06630917057549f4bf27e3 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Thu Aug 14 06:48:38 EDT 2025 Fri Jul 11 18:33:33 EDT 2025 Fri Jul 11 05:54:39 EDT 2025 Fri Jul 25 03:59:24 EDT 2025 Fri Jul 25 02:35:14 EDT 2025 Thu Apr 24 22:48:46 EDT 2025 Tue Jul 01 01:15:45 EDT 2025 Wed Jan 22 16:21:44 EST 2025 Thu Jul 03 22:08:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5722-97035b0e554307c5e3972e08499da03a04271fb6c7d06630917057549f4bf27e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2643-3544 0000-0002-9392-5154 |
OpenAccessLink | https://hal.science/hal-04662099 |
PQID | 1866007783 |
PQPubID | 1066355 |
PageCount | 14 |
ParticipantIDs | hal_primary_oai_HAL_hal_04662099v1 proquest_miscellaneous_2000431184 proquest_miscellaneous_1872840490 proquest_journals_2374388186 proquest_journals_1866007783 crossref_primary_10_1111_1365_2435_12722 crossref_citationtrail_10_1111_1365_2435_12722 wiley_primary_10_1111_1365_2435_12722_FEC12722 jstor_primary_48582277 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2017 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: February 2017 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2017 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2007; 104 2014; 215 2013; 27 2007b; 141 1982; 50 2004; 7 2014a; 215 1999; 85 1994; 26 2011; 17 2005; 25 2014; 4 2001 2000; 405 2008; 22 2013; 110 2014; 95 2007; 21 2003; 84 2007; 22 2012; 23 2012; 21 2001; 51 1974; 250 2016; 150 1988 2007; 447 2012 2016; 209 2004; 141 2016; 529 2007a; 95 2009 1997 2007 2008; 11 2008; 96 2004; 428 2006; 112 2014; 44 2012; 109 1999 2015; 24 2014b; 215 2011; 92 1997; 79 2010; 210 2013 1977; 111 1925; 70 2014; 102 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Podani J. (e_1_2_7_43_1) 2007 Tomaselli M. (e_1_2_7_50_1) 1994; 26 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Bunce R.G.H. (e_1_2_7_5_1) 1999 Braun‐Blanquet J. (e_1_2_7_4_1) 1925; 70 e_1_2_7_51_1 Grime J.P. (e_1_2_7_23_1) 2001 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 R Development Core Team (e_1_2_7_44_1) 2013 |
References_xml | – volume: 102 start-page: 345 year: 2014 end-page: 356 article-title: Functional distinctiveness of major plant lineages publication-title: Journal of Ecology – year: 2009 – volume: 150 start-page: 550 year: 2016 end-page: 557 article-title: Why are many anthropogenic agroecosystems particularly species rich? publication-title: Plant Biosystems – volume: 95 start-page: 698 year: 2007a end-page: 706 article-title: Disturbance is the principal α‐scale filter determining niche differentiation, coexistence and biodiversity in an alpine community publication-title: Journal of Ecology – volume: 104 start-page: 5925 year: 2007 end-page: 5930 article-title: Global patterns and determinants of vascular plant diversity publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 215 start-page: 1351 year: 2014a end-page: 1359 article-title: How well do seed production traits correlate with leaf traits, whole plant traits and plant ecological strategies? publication-title: Plant Ecology – volume: 250 start-page: 26 year: 1974 end-page: 31 article-title: Vegetation classification by reference to strategies publication-title: Nature – year: 2001 – volume: 27 start-page: 1002 year: 2013 end-page: 1010 article-title: Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants publication-title: Functional Ecology – volume: 215 start-page: 495 year: 2014b end-page: 505 article-title: The intimacy between sexual traits and Grime's CSR strategies for orchids coexisting in semi‐natural calcareous grassland at the Olive Lawn publication-title: Plant Ecology – volume: 112 start-page: 10 year: 2006 end-page: 20 article-title: The functional basis of a primary succession resolved by CSR classification publication-title: Oikos – volume: 7 start-page: 163 year: 2004 end-page: 170 article-title: A new practical tool for deriving a functional signature for herbaceous vegetation publication-title: Applied Vegetation Science – volume: 529 start-page: 167 year: 2016 end-page: 171 article-title: The global spectrum of plant form and function publication-title: Nature – volume: 102 start-page: 269 year: 2014 end-page: 274 article-title: The Tree of Life in ecosystems: evolution of plant effects on carbon and nutrient cycling publication-title: Journal of Ecology – volume: 21 start-page: 19 year: 2007 end-page: 27 article-title: Leaf functional traits of tropical forest plants in relation to growth form publication-title: Functional Ecology – volume: 84 start-page: 3078 year: 2003 end-page: 3089 article-title: Co‐inertia analysis and the linking of ecological data tables publication-title: Ecology – volume: 26 start-page: 51 year: 1994 end-page: 62 article-title: Phytosociology and ecology of vegetation in the northern Apennines (N Italy) publication-title: Fitosociologia – volume: 95 start-page: 14 year: 2014 end-page: 21 article-title: Combining the fourth‐corner and the RLQ methods for assessing trait responses to environmental variation publication-title: Ecology – volume: 50 start-page: 53 year: 1982 end-page: 63 article-title: Community stability, complexity and species life history strategies publication-title: Vegetation – volume: 102 start-page: 275 year: 2014 end-page: 301 article-title: The world‐wide ‘fast‐slow’ plant economics spectrum: a traits manifesto publication-title: Journal of Ecology – volume: 92 start-page: 3 year: 2011 end-page: 10 article-title: The arcsine is asinine: the analysis of proportions in ecology publication-title: Ecology – volume: 141 start-page: 236 year: 2004 end-page: 253 article-title: Resource pulses, species interactions, and diversity maintenance in arid and semi‐arid environments publication-title: Oecologia – volume: 96 start-page: 1266 year: 2008 end-page: 1274 article-title: The LEDA Traitbase: a database of life‐history traits of the Northwest European flora publication-title: Journal of Ecology – volume: 23 start-page: 395 year: 2012 end-page: 405 article-title: Mapping plant strategy types using remote sensing publication-title: Journal of Vegetation Science – volume: 215 start-page: 379 year: 2014 end-page: 388 article-title: CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments publication-title: Plant Ecology – year: 2007 – volume: 11 start-page: 1065 year: 2008 end-page: 1071 article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide publication-title: Ecology Letters – volume: 17 start-page: 2905 year: 2011 end-page: 2935 article-title: TRY – a global database of plant traits publication-title: Global Change Biology – volume: 21 start-page: 625 year: 2012 end-page: 636 article-title: Going beyond the limitations of plant functional types when predicting global ecosystem‐atmosphere fluxes: exploring the merits of traits‐based approaches publication-title: Global Ecology and Biogeography – volume: 70 start-page: 122 year: 1925 end-page: 149 article-title: Zur wertung der gesellschaftstreue in der pflanzensoziologie publication-title: Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich – volume: 447 start-page: 80 year: 2007 end-page: 82 article-title: Drought sensitivity shapes species distribution patterns in tropical forests publication-title: Nature – volume: 428 start-page: 821 year: 2004 end-page: 827 article-title: The worldwide leaf economics spectrum publication-title: Nature – volume: 405 start-page: 220 year: 2000 end-page: 227 article-title: Global patterns in biodiversity publication-title: Nature – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – year: 2012 – volume: 44 start-page: 55 year: 2014 end-page: 80 article-title: The ‐rich communities in the Northern Apennines (N‐Italy): a phytosociological, ecological and phytogeographical study publication-title: Phytocoenologia – volume: 111 start-page: 1169 year: 1977 end-page: 1194 article-title: Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory publication-title: American Naturalist – volume: 51 start-page: 933 year: 2001 end-page: 938 article-title: Terrestrial ecoregions of the world: a new map of life on Earth publication-title: BioScience – volume: 24 start-page: 2239 year: 2015 end-page: 2253 article-title: Functional ecology as a missing link for conservation of a resource‐limited flora in the Atlantic Forest publication-title: Biodiversity and Conservation – volume: 22 start-page: 221 year: 2008 end-page: 231 article-title: The role of desiccation tolerance in determining tree species distributions along the Malay‐Thai Peninsula publication-title: Functional Ecology – volume: 109 start-page: 1047 year: 2012 end-page: 1053 article-title: Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies publication-title: Annals of Botany – volume: 141 start-page: 337 year: 2007b end-page: 343 article-title: The leaf economics spectrum of Poaceae reflects variation in survival strategies publication-title: Plant Biosystems – volume: 79 start-page: 259 year: 1997 end-page: 281 article-title: Integrated screening validates primary axes of specialisation in plants publication-title: Oikos – year: 1988 – volume: 210 start-page: 253 year: 2010 end-page: 261 article-title: Can CSR classification be generally applied outside Britain? publication-title: Plant Ecology – volume: 4 start-page: 2799 year: 2014 end-page: 2811 article-title: An evolutionary perspective on leaf economics in vascular plants: phylogenetic patterns in LMA publication-title: Ecology and Evolution – start-page: 335 year: 1997 end-page: 346 – volume: 22 start-page: 1 year: 2007 end-page: 20 article-title: The ade4 package: implementing the duality diagram for ecologists publication-title: Journal of Statistical Software – volume: 110 start-page: 18180 year: 2013 end-page: 18184 article-title: Functional traits predict relationship between plant abundance dynamic and long‐term climate warming publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 85 start-page: 282 year: 1999 end-page: 294 article-title: Allocating CSR plant functional types: a soft approach to a hard problem publication-title: Oikos – volume: 209 start-page: 563 year: 2016 end-page: 575 article-title: Variation in trait trade‐offs allows differentiation among predefined plant functional types: implications for predictive ecology publication-title: New Phytologist – year: 1999 – year: 2013 – ident: e_1_2_7_25_1 doi: 10.1002/9781118223246 – ident: e_1_2_7_8_1 doi: 10.1080/11263504.2014.987848 – ident: e_1_2_7_51_1 – ident: e_1_2_7_19_1 doi: 10.1038/35012228 – volume-title: Plant Strategies, Vegetation Processes and Ecosystem Properties year: 2001 ident: e_1_2_7_23_1 – volume: 26 start-page: 51 year: 1994 ident: e_1_2_7_50_1 article-title: Phytosociology and ecology of Caricion curvulae vegetation in the northern Apennines (N Italy) publication-title: Fitosociologia – ident: e_1_2_7_34_1 doi: 10.1007/s11258-014-0302-6 – ident: e_1_2_7_24_1 doi: 10.1007/978-94-017-1094-7 – ident: e_1_2_7_54_1 doi: 10.1111/j.1469-8137.2005.01349.x – ident: e_1_2_7_28_1 doi: 10.2307/3546494 – ident: e_1_2_7_22_1 doi: 10.1086/283244 – ident: e_1_2_7_37_1 doi: 10.1111/j.1365-2745.2007.01242.x – ident: e_1_2_7_35_1 doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 – ident: e_1_2_7_20_1 doi: 10.1127/0340-269X/2014/0044-0574 – volume-title: R: A Language and Environment for Statistical Computing year: 2013 ident: e_1_2_7_44_1 – ident: e_1_2_7_40_1 doi: 10.1111/1365-2435.12095 – ident: e_1_2_7_12_1 doi: 10.1111/1365-2745.12208 – ident: e_1_2_7_29_1 doi: 10.1111/j.1654-109X.2004.tb00607.x – ident: e_1_2_7_53_1 doi: 10.1890/10-0340.1 – ident: e_1_2_7_16_1 doi: 10.1890/13-0196.1 – ident: e_1_2_7_49_1 – ident: e_1_2_7_18_1 doi: 10.1002/ece3.1087 – ident: e_1_2_7_33_1 doi: 10.1007/BF00120678 – ident: e_1_2_7_21_1 doi: 10.1038/250026a0 – ident: e_1_2_7_36_1 doi: 10.1007/s10531-015-0904-x – ident: e_1_2_7_41_1 doi: 10.1007/s11258-014-0392-1 – ident: e_1_2_7_52_1 doi: 10.1111/nph.13623 – ident: e_1_2_7_2_1 doi: 10.1111/j.1365-2435.2007.01374.x – ident: e_1_2_7_42_1 doi: 10.1007/s11258-014-0318-y – ident: e_1_2_7_46_1 doi: 10.1111/j.1365-2435.2006.01218.x – ident: e_1_2_7_6_1 doi: 10.1111/j.0030-1299.2006.14107.x – ident: e_1_2_7_30_1 doi: 10.1111/j.1365-2486.2011.02451.x – ident: e_1_2_7_13_1 doi: 10.1038/nature16489 – ident: e_1_2_7_31_1 doi: 10.1111/j.1365-2745.2008.01430.x – volume: 70 start-page: 122 year: 1925 ident: e_1_2_7_4_1 article-title: Zur wertung der gesellschaftstreue in der pflanzensoziologie publication-title: Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich – ident: e_1_2_7_9_1 doi: 10.1007/s00442-004-1551-1 – ident: e_1_2_7_39_1 doi: 10.1093/aob/mcs021 – volume-title: Analisi ed Esplorazione Multivariata dei Dati in Ecologia e Biologia year: 2007 ident: e_1_2_7_43_1 – ident: e_1_2_7_27_1 doi: 10.1002/joc.1276 – ident: e_1_2_7_32_1 doi: 10.1073/pnas.0608361104 – ident: e_1_2_7_10_1 doi: 10.1111/1365-2745.12217 – ident: e_1_2_7_3_1 doi: 10.1111/j.1466-8238.2011.00717.x – ident: e_1_2_7_14_1 doi: 10.1890/03-0178 – ident: e_1_2_7_47_1 doi: 10.1111/j.1654-1103.2011.01370.x – volume-title: ECOFACT 2 ‐ Measuring Change in British vegetation year: 1999 ident: e_1_2_7_5_1 – ident: e_1_2_7_7_1 doi: 10.1007/s11258-010-9753-6 – ident: e_1_2_7_38_1 doi: 10.1080/11263500701627695 – ident: e_1_2_7_48_1 doi: 10.1073/pnas.1310700110 – ident: e_1_2_7_45_1 doi: 10.1111/1365-2745.12211 – ident: e_1_2_7_17_1 doi: 10.1038/nature05747 – ident: e_1_2_7_26_1 doi: 10.1111/j.1365-2311.2004.00572.x – ident: e_1_2_7_11_1 doi: 10.1111/j.1461-0248.2008.01219.x – ident: e_1_2_7_15_1 doi: 10.18637/jss.v022.i04 |
SSID | ssj0009522 |
Score | 2.6374397 |
Snippet | Summary
Competitor, stress‐tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the... Competitor, stress‐tolerator, ruderal ( CSR ) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide... Summary Competitor, stress-tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the... Competitor, stress‐tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide... 1. Competitor, stress-tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide... Summary Competitor, stress‐tolerator, ruderal ( CSR ) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the... |
SourceID | hal proquest crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 444 |
SubjectTerms | Annual precipitation atmospheric precipitation Biogeochemical cycles Claytonia perfoliata climate Climate change community assembly Community ecology comparative ecology Convergence Coverage data collection deciduous forests deserts Divergence Dry matter dry matter content economics Ecosystems Environmental Sciences Evapotranspiration Flowering Forbs Grime's CSR triangle Growth rate herbivores Herbivory herbs Interspecific interspecific variation Land use Larrea Larrea divaricata Leaf area leaves Mathematical analysis nitrogen content perennials Phylogeny plant economics spectrum plant functional type Plants Seasonal variations Strategy survival strategy temperature trees Tropical forests universal adaptive strategy theory vascular plants |
Title | A global method for calculating plant CSR ecological strategies applied across biomes world-wide |
URI | https://www.jstor.org/stable/48582277 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12722 https://www.proquest.com/docview/1866007783 https://www.proquest.com/docview/2374388186 https://www.proquest.com/docview/1872840490 https://www.proquest.com/docview/2000431184 https://hal.science/hal-04662099 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZKpUpcoC2sCC2VizhwySrxT5wcV6tdrRD00FKJWxQ7NiCqtGp2W8Gpj8Az8iSdsZOwragQ4mb5J4on45nP8fgbQt6kTmKmEB7LmvsNio01y0yMaF05aLApXnD-cJQtTsW7T7KPJsS7MIEfYvjhhivD22tc4JVu1xZ5iM8Cbz9OmWJohbEGYdExW6PdDecILCti8LS8I_fBWJ574-_4pUdfMCoyBCjegZ7rANZ7oPlTovt3D4En38arpR6bH_doHf9rctvkSYdP6SQo1A7ZsM0u2QoZK79DaWa60mj2-4ocDOhsRPuM6AkNLCM0ZKemAIspaILxicKaz_TiDL4mnZ4cU2t600vbZc9ZQasAjGnlJUU9QUBLPbXrr5uf119r-5yczmcfp4u4y-QQGwmvHxdgV6ROLGAXsClGWkBBzCY5bLfqKuEVJvxInc6MqhECAYZRiCNF4YR2TFk-IpvNeWNfEKpT5wCmcCfyQiiR5IVMaqcluFnNOa8jMu6_Y2k6mnPMtnFW9tsdlG2Jsi29bCPydhhwERg-Hu76GhRj6IXM3IvJ-xLrEpFleAv5Ko3IyOvN0E3kElCYUhHZ7xWp7AxFWyLfIFIq5fyPzYwDwsuRdTAih0MzWAA81qkae77CRyiYPJ7gPtyH-SNf2EwKkI9XvL_NtZzPpr7w8l8H7JHHDLGPD23fJ5vLy5V9BchtqQ_84rwFqXgxKg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCNFLea5IKWAQBy5ZJX7kcVytdrXAtofSSr1ZsWMXRJVW3V1Qe-In8Bv5JczYSdhWVAhxs2I7iifj8Tf2-BtC3qROYqYQHsuaewfFxpplJka0njuosClecN7dy2aH4v2RPFq7CxP4IfoNN5wZ3l7jBMcN6bVZHgK0YLkfpixnYIbvYF5v71btszXi3XCSwLIyhrWWt_Q-GM1z7QVXVqbbnzAuMoQoXgGf6xDWr0HT-8R0Xx9CT74MV0s9NJfXiB3_b3gPyFYLUeko6NRDcss2j8jdkLTyAkoT05YGk9-35KBDayYWj4ke0UA0QkOCagrImIIyGJ8rrDmmZyfwQ-n44z61prO-dLHsaCtoFbAxrbyoqOcIWFDP7vrz-49vn2v7hBxOJwfjWdwmc4iNhM-PSzAtUicW4AuYFSMtACFmkwI8rrpKeIU5P1KnM5PXiIIAxuQIJUXphHYst3xANprTxj4lVKfOAVLhThSlyEVSlDKpnZaw0mrOeR2RYfcjlWmZzjHhxonqPB6UrULZKi_biLztO5wFko-bm74GzehbITn3bDRX-CwRWYYXkb-mERl4xembiUICEMvziOx0mqRaW7FQSDmIrEoF_2M14wDyCiQejMirvhqMAJ7sVI09XeErchg8HuLe3Ib5U1_wJwXIx2ve38aqppOxL2z_a4eX5N7sYHeu5u_2PjwjmwyhkI903yEby_OVfQ5Abqlf-Jn6C8OONUU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagCMSF_xUpBQziwCWrxD9x9rja7mqBUqFCJW5W7NgFUaUrdrcITjwCz8iTMGMnYVtRIcTNiu0oHo9nPsfjbwh5lnuJmUJ4KmseNiguNaywKaJ15aHC5XjB-fV-MT8UL9_LLpoQ78JEfoj-hxuujGCvcYEvar-xyGN8Fnj7Yc4UAyt8RRRZiYq9e8A2eHfjQQIrRim4Wt6y-2Awz7kXnHFMlz9gWGSMUDyDPTcRbHBBs5vEdB8fI08-DdcrM7TfzvE6_tfobpEbLUCl46hRt8kl19whV2PKyq9Qmtq2NJj-viMHHVojsbxLzJhGmhEa01NTwMUUVMGGTGHNEV0cw3TSydsD6mxne-ly1ZFW0CoiY1oFSdHAELCkgdv15_cfXz7W7h45nE3fTeZpm8ohtRI-Px2BYZEmcwBewKhY6QAGMZeVsN-qq4xXmPEj96awqkYMBCBGIZAUIy-MZ8rxAdlqThp3n1CTew84hXtRjoQSMOUyq72R4GcN57xOyLCbR21bnnNMt3Gsu_0OylajbHWQbUKe9x0WkeLj4qZPQTH6VkjNPR_vaXyWiaLAa8ineUIGQW_6ZqKUAMOUSshOp0i6tRRLjYSDyKlU8j9WMw4Qr0TawYQ86avBBOC5TtW4kzW-QsHg8Qj34jYsnPnCblKAfILi_W2sejadhML2v3Z4TK692Z3pvRf7rx6Q6wxxUAhz3yFbq89r9xBQ3Mo8Cuv0F_yfM_0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+global+method+for+calculating+plant+CSR+ecological+strategies+applied+across+biomes+world-wide&rft.jtitle=Functional+ecology&rft.au=Pierce%2C+Simon&rft.au=Negreiros%2C+Daniel&rft.au=Cerabolini%2C+Bruno+E+L&rft.au=Kattge%2C+Jens&rft.date=2017-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=31&rft.issue=2&rft.spage=444&rft_id=info:doi/10.1111%2F1365-2435.12722&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4312817791 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |