A global method for calculating plant CSR ecological strategies applied across biomes world-wide

Summary Competitor, stress‐tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (r...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 31; no. 2; pp. 444 - 457
Main Authors Pierce, Simon, Negreiros, Daniel, Cerabolini, Bruno E. L., Kattge, Jens, Díaz, Sandra, Kleyer, Michael, Shipley, Bill, Wright, Stuart Joseph, Soudzilovskaia, Nadejda A., Onipchenko, Vladimir G., van Bodegom, Peter M., Frenette-Dussault, Cedric, Weiher, Evan, Pinho, Bruno X., Cornelissen, Johannes H. C., Grime, John Philip, Thompson, Ken, Hunt, Roderick, Wilson, Peter J., Buffa, Gabriella, Nyakunga, Oliver C., Reich, Peter B., Caccianiga, Marco, Mangili, Federico, Ceriani, Roberta M., Luzzaro, Alessandra, Brusa, Guido, Siefert, Andrew, Barbosa, Newton P. U., Chapin, Francis Stuart, Cornwell, William K., Fang, Jingyun, Fernandes, Geraldo Wilson, Garnier, Eric, Le Stradic, Soizig, Peñuelas, Josep, Melo, Felipe P. L., Slaviero, Antonio, Tabarelli, Marcelo, Tampucci, Duccio
Format Journal Article
LanguageEnglish
Published London Wiley 01.02.2017
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Competitor, stress‐tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (representing, respectively, interspecific variation in plant size and conservative vs. acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity. We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy–environment relationships across biomes world‐wide. Due to disparity in trait availability globally, co‐inertia analysis was used to check correspondence between a ‘wide geographic coverage, few traits’ data set and a ‘restricted coverage, many traits’ subset of 371 species for which 14 whole‐plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth‐corner and RLQ analyses to determine strategy/climate specializations. Strong, significant concordance (RV = 0·597; P < 0·0001) was evident between the 14 trait multivariate space and when only LA, LDMC and SLA were used. Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS/CSR median; C:S:R = 43:42:15%), with CS‐selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S‐selected (C:S:R = 1:99:0%) and broadly R‐selected annual herbs (e.g. Claytonia perfoliata; R/CR‐selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs). The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy–environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use. Lay Summary
AbstractList Summary Competitor, stress-tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (representing, respectively, interspecific variation in plant size and conservative vs. acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity. We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy-environment relationships across biomes world-wide. Due to disparity in trait availability globally, co-inertia analysis was used to check correspondence between a 'wide geographic coverage, few traits' data set and a 'restricted coverage, many traits' subset of 371 species for which 14 whole-plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth-corner and RLQ analyses to determine strategy/climate specializations. Strong, significant concordance (RV = 0·597; P < 0·0001) was evident between the 14 trait multivariate space and when only LA,LDMC and SLA were used. Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS/CSR median; C:S:R = 43:42:15%), with CS-selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S-selected (C:S:R = 1:99:0%) and broadly R-selected annual herbs (e.g. Claytonia perfoliata; R/CR-selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs). The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy-environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use.
Summary Competitor, stress‐tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (representing, respectively, interspecific variation in plant size and conservative vs. acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity. We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy–environment relationships across biomes world‐wide. Due to disparity in trait availability globally, co‐inertia analysis was used to check correspondence between a ‘wide geographic coverage, few traits’ data set and a ‘restricted coverage, many traits’ subset of 371 species for which 14 whole‐plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth‐corner and RLQ analyses to determine strategy/climate specializations. Strong, significant concordance (RV = 0·597; P < 0·0001) was evident between the 14 trait multivariate space and when only LA, LDMC and SLA were used. Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS/CSR median; C:S:R = 43:42:15%), with CS‐selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S‐selected (C:S:R = 1:99:0%) and broadly R‐selected annual herbs (e.g. Claytonia perfoliata; R/CR‐selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs). The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy–environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use. Lay Summary
1. Competitor, stress-tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (representing, respectively, interspecific variation in plant size and conservative vs. acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity. 2. We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy-environment relationships across biomes world-wide. 3. Due to disparity in trait availability globally, co-inertia analysis was used to check correspondence between a 'wide geographic coverage, few traits' data set and a 'restricted coverage, many traits' subset of 371 species for which 14 whole-plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth-corner and RLQ analyses to determine strategy/climate specializations. 4. Strong, significant concordance (RV = 0.597; P < 0.0001) was evident between the 14 trait multivariate space and when only LA, LDMC and SLA were used. 5. Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS/CSR median; C:S:R = 43:42:15%), with CS-selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S-selected (C:S:R = 1:99:0%) and broadly R-selected annual herbs (e.g. Claytonia perfoliata; R/CR-selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs). 6. The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy-environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use. Lay Summary
Competitor, stress‐tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA) (representing, respectively, interspecific variation in plant size and conservative vs. acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity.We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy–environment relationships across biomes world‐wide.Due to disparity in trait availability globally, co‐inertia analysis was used to check correspondence between a ‘wide geographic coverage, few traits’ data set and a ‘restricted coverage, many traits’ subset of 371 species for which 14 whole‐plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth‐corner and RLQ analyses to determine strategy/climate specializations.Strong, significant concordance (RV = 0·597; P < 0·0001) was evident between the 14 trait multivariate space and when only LA, LDMC and SLA were used.Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS/CSR median; C:S:R = 43:42:15%), with CS‐selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S‐selected (C:S:R = 1:99:0%) and broadly R‐selected annual herbs (e.g. Claytonia perfoliata; R/CR‐selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs).The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy–environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use.
Summary Competitor, stress‐tolerator, ruderal ( CSR ) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area ( LA ), leaf dry matter content ( LDMC ) and specific leaf area ( SLA ) (representing, respectively, interspecific variation in plant size and conservative vs . acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity. We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy–environment relationships across biomes world‐wide. Due to disparity in trait availability globally, co‐inertia analysis was used to check correspondence between a ‘wide geographic coverage, few traits’ data set and a ‘restricted coverage, many traits’ subset of 371 species for which 14 whole‐plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth‐corner and RLQ analyses to determine strategy/climate specializations. Strong, significant concordance ( RV = 0·597; P < 0·0001) was evident between the 14 trait multivariate space and when only LA , LDMC and SLA were used. Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS / CSR median; C:S:R = 43:42:15%), with CS ‐selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S‐selected (C:S:R = 1:99:0%) and broadly R‐selected annual herbs (e.g. Claytonia perfoliata ; R/ CR ‐selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs). The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy–environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use.
Competitor, stress‐tolerator, ruderal ( CSR ) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide geographic and phylogenetic coverage of available values of leaf area ( LA ), leaf dry matter content ( LDMC ) and specific leaf area ( SLA ) (representing, respectively, interspecific variation in plant size and conservative vs . acquisitive resource economics) promises the general application of CSR strategies across biomes, including the tropical forests hosting a large proportion of Earth's diversity. We used trait variation for 3068 tracheophytes (representing 198 families, six continents and 14 biomes) to create a globally calibrated CSR strategy calculator tool and investigate strategy–environment relationships across biomes world‐wide. Due to disparity in trait availability globally, co‐inertia analysis was used to check correspondence between a ‘wide geographic coverage, few traits’ data set and a ‘restricted coverage, many traits’ subset of 371 species for which 14 whole‐plant, flowering, seed and leaf traits (including leaf nitrogen content) were available. CSR strategy/environment relationships within biomes were investigated using fourth‐corner and RLQ analyses to determine strategy/climate specializations. Strong, significant concordance ( RV  = 0·597; P  < 0·0001) was evident between the 14 trait multivariate space and when only LA , LDMC and SLA were used. Biomes such as tropical moist broadleaf forests exhibited strategy convergence (i.e. clustered around a CS / CSR median; C:S:R = 43:42:15%), with CS ‐selection associated with warm, stable situations (lesser temperature seasonality), with greater annual precipitation and potential evapotranspiration. Other biomes were characterized by strategy divergence: for example, deserts varied between xeromorphic perennials such as Larrea divaricata, classified as S‐selected (C:S:R = 1:99:0%) and broadly R‐selected annual herbs (e.g. Claytonia perfoliata ; R/ CR ‐selected; C:S:R = 21:0:79%). Strategy convergence was evident for several growth habits (e.g. trees) but not others (forbs). The CSR strategies of vascular plants can now be compared quantitatively within and between biomes at the global scale. Through known linkages between underlying leaf traits and growth rates, herbivory and decomposition rates, this method and the strategy–environment relationships it elucidates will help to predict which kinds of species may assemble in response to changes in biogeochemical cycles, climate and land use.
Author Pierce, Simon
Barbosa, Newton P. U.
Ceriani, Roberta M.
Negreiros, Daniel
Wright, Stuart Joseph
Cornelissen, Johannes H. C.
Buffa, Gabriella
Peñuelas, Josep
Shipley, Bill
Mangili, Federico
Cornwell, William K.
Nyakunga, Oliver C.
Kattge, Jens
Garnier, Eric
Slaviero, Antonio
Reich, Peter B.
Thompson, Ken
Siefert, Andrew
Melo, Felipe P. L.
Kleyer, Michael
Fernandes, Geraldo Wilson
Grime, John Philip
Chapin, Francis Stuart
Frenette-Dussault, Cedric
Fang, Jingyun
Hunt, Roderick
Díaz, Sandra
Luzzaro, Alessandra
Brusa, Guido
Weiher, Evan
Tampucci, Duccio
Pinho, Bruno X.
Cerabolini, Bruno E. L.
Le Stradic, Soizig
Onipchenko, Vladimir G.
Caccianiga, Marco
van Bodegom, Peter M.
Wilson, Peter J.
Soudzilovskaia, Nadejda A.
Tabarelli, Marcelo
Author_xml – sequence: 1
  givenname: Simon
  surname: Pierce
  fullname: Pierce, Simon
– sequence: 2
  givenname: Daniel
  surname: Negreiros
  fullname: Negreiros, Daniel
– sequence: 3
  givenname: Bruno E. L.
  surname: Cerabolini
  fullname: Cerabolini, Bruno E. L.
– sequence: 4
  givenname: Jens
  surname: Kattge
  fullname: Kattge, Jens
– sequence: 5
  givenname: Sandra
  surname: Díaz
  fullname: Díaz, Sandra
– sequence: 6
  givenname: Michael
  surname: Kleyer
  fullname: Kleyer, Michael
– sequence: 7
  givenname: Bill
  surname: Shipley
  fullname: Shipley, Bill
– sequence: 8
  givenname: Stuart Joseph
  surname: Wright
  fullname: Wright, Stuart Joseph
– sequence: 9
  givenname: Nadejda A.
  surname: Soudzilovskaia
  fullname: Soudzilovskaia, Nadejda A.
– sequence: 10
  givenname: Vladimir G.
  surname: Onipchenko
  fullname: Onipchenko, Vladimir G.
– sequence: 11
  givenname: Peter M.
  surname: van Bodegom
  fullname: van Bodegom, Peter M.
– sequence: 12
  givenname: Cedric
  surname: Frenette-Dussault
  fullname: Frenette-Dussault, Cedric
– sequence: 13
  givenname: Evan
  surname: Weiher
  fullname: Weiher, Evan
– sequence: 14
  givenname: Bruno X.
  surname: Pinho
  fullname: Pinho, Bruno X.
– sequence: 15
  givenname: Johannes H. C.
  surname: Cornelissen
  fullname: Cornelissen, Johannes H. C.
– sequence: 16
  givenname: John Philip
  surname: Grime
  fullname: Grime, John Philip
– sequence: 17
  givenname: Ken
  surname: Thompson
  fullname: Thompson, Ken
– sequence: 18
  givenname: Roderick
  surname: Hunt
  fullname: Hunt, Roderick
– sequence: 19
  givenname: Peter J.
  surname: Wilson
  fullname: Wilson, Peter J.
– sequence: 20
  givenname: Gabriella
  surname: Buffa
  fullname: Buffa, Gabriella
– sequence: 21
  givenname: Oliver C.
  surname: Nyakunga
  fullname: Nyakunga, Oliver C.
– sequence: 22
  givenname: Peter B.
  surname: Reich
  fullname: Reich, Peter B.
– sequence: 23
  givenname: Marco
  surname: Caccianiga
  fullname: Caccianiga, Marco
– sequence: 24
  givenname: Federico
  surname: Mangili
  fullname: Mangili, Federico
– sequence: 25
  givenname: Roberta M.
  surname: Ceriani
  fullname: Ceriani, Roberta M.
– sequence: 26
  givenname: Alessandra
  surname: Luzzaro
  fullname: Luzzaro, Alessandra
– sequence: 27
  givenname: Guido
  surname: Brusa
  fullname: Brusa, Guido
– sequence: 28
  givenname: Andrew
  surname: Siefert
  fullname: Siefert, Andrew
– sequence: 29
  givenname: Newton P. U.
  surname: Barbosa
  fullname: Barbosa, Newton P. U.
– sequence: 30
  givenname: Francis Stuart
  surname: Chapin
  fullname: Chapin, Francis Stuart
– sequence: 31
  givenname: William K.
  surname: Cornwell
  fullname: Cornwell, William K.
– sequence: 32
  givenname: Jingyun
  surname: Fang
  fullname: Fang, Jingyun
– sequence: 33
  givenname: Geraldo Wilson
  surname: Fernandes
  fullname: Fernandes, Geraldo Wilson
– sequence: 34
  givenname: Eric
  surname: Garnier
  fullname: Garnier, Eric
– sequence: 35
  givenname: Soizig
  surname: Le Stradic
  fullname: Le Stradic, Soizig
– sequence: 36
  givenname: Josep
  surname: Peñuelas
  fullname: Peñuelas, Josep
– sequence: 37
  givenname: Felipe P. L.
  surname: Melo
  fullname: Melo, Felipe P. L.
– sequence: 38
  givenname: Antonio
  surname: Slaviero
  fullname: Slaviero, Antonio
– sequence: 39
  givenname: Marcelo
  surname: Tabarelli
  fullname: Tabarelli, Marcelo
– sequence: 40
  givenname: Duccio
  surname: Tampucci
  fullname: Tampucci, Duccio
BackLink https://hal.science/hal-04662099$$DView record in HAL
BookMark eNqFkc1vEzEQxS1UJNLCmROSJS5w2Hb8bR-jqKVIkZD4OBvvrjd15KyDvSHqf4_TQA49EF8szfyex2_eJboY0-gRekvgmtRzQ5gUDeVMXBOqKH2BZqfKBZoBlabRXLJX6LKUNQAYQekM_ZzjVUyti3jjp4fU4yFl3LnY7aKbwrjC2-jGCS--fcW-SzGtQm3iMmU3-VXwBbvtNgbfY9flVApuQ9rU6j7l2Df70PvX6OXgYvFv_t5X6Mfd7ffFfbP88unzYr5sOlF_2xgFTLTgheAMVCc8M4p60NyY3gFzwKkiQys71YOUDAxRIJTgZuDtQJVnV-jj8d0HF-02h43Ljza5YO_nS3uoAZeSgjG_SWU_HNltTr92vkx2E0rnY7Xq065YWtfDGSGan0WJVlRz4AYq-v4Zuk67PFbTljLFmdZEy_9RtS0BlNKsUjdH6mmr2Q8nSwTsIW57CNcewrVPcVeFeKbowlQjTGPNKsTzun2I_vHcGHt3u_ine3fUrcuU8knHtdCUKsX-AIO1w5E
CODEN FECOE5
CitedBy_id crossref_primary_10_1111_1365_2435_14613
crossref_primary_10_1093_biosci_biaa014
crossref_primary_10_1093_aobpla_plad077
crossref_primary_10_3390_biology12121479
crossref_primary_10_1088_2752_5295_accbe2
crossref_primary_10_1111_oik_05090
crossref_primary_10_3832_ifor3730_014
crossref_primary_10_1016_j_flora_2022_152089
crossref_primary_10_1016_j_flora_2023_152247
crossref_primary_10_1016_j_soilbio_2021_108415
crossref_primary_10_1080_11263504_2018_1435576
crossref_primary_10_1002_ece3_3547
crossref_primary_10_1016_j_ecoleng_2020_105880
crossref_primary_10_1029_2018JG004969
crossref_primary_10_3897_pls2022592_04
crossref_primary_10_1111_1365_2435_14051
crossref_primary_10_1111_jvs_12744
crossref_primary_10_1016_j_flora_2019_151419
crossref_primary_10_1134_S1067413624602938
crossref_primary_10_1139_cjb_2024_0041
crossref_primary_10_7717_peerj_12517
crossref_primary_10_1007_s11629_024_8859_6
crossref_primary_10_1111_jvs_12749
crossref_primary_10_3390_f13070973
crossref_primary_10_1111_oik_07273
crossref_primary_10_1002_ldr_3050
crossref_primary_10_1093_aob_mcy165
crossref_primary_10_3390_su15129414
crossref_primary_10_1016_j_envres_2024_120030
crossref_primary_10_1038_s41467_024_45667_4
crossref_primary_10_55959_MSU0137_0952_16_79_1_3
crossref_primary_10_1016_j_ecolind_2023_110066
crossref_primary_10_1093_jxb_erad499
crossref_primary_10_1111_geb_13309
crossref_primary_10_3389_frsc_2021_654618
crossref_primary_10_1111_mec_14817
crossref_primary_10_1016_j_actao_2017_12_002
crossref_primary_10_1111_ddi_12978
crossref_primary_10_1111_oik_08907
crossref_primary_10_1111_avsc_12803
crossref_primary_10_1002_ecy_2924
crossref_primary_10_1111_1365_2745_13575
crossref_primary_10_1016_j_tim_2019_06_003
crossref_primary_10_1007_s40415_020_00660_1
crossref_primary_10_1111_rec_13650
crossref_primary_10_3389_fevo_2023_1230819
crossref_primary_10_1002_ecy_3454
crossref_primary_10_1080_07352689_2023_2233232
crossref_primary_10_1016_j_ecoleng_2024_107279
crossref_primary_10_1111_avsc_12494
crossref_primary_10_3389_fevo_2022_841824
crossref_primary_10_1007_s11258_018_0879_2
crossref_primary_10_3390_d15090973
crossref_primary_10_1038_s41598_020_60166_4
crossref_primary_10_1007_s10531_019_01915_4
crossref_primary_10_1093_aob_mcx084
crossref_primary_10_1134_S1062359021060170
crossref_primary_10_1038_s41598_021_03235_6
crossref_primary_10_1016_j_flora_2024_152627
crossref_primary_10_1186_s12870_023_04375_9
crossref_primary_10_1016_j_ecolmodel_2020_109345
crossref_primary_10_1016_j_ecolind_2022_109144
crossref_primary_10_1007_s12374_024_09449_1
crossref_primary_10_1086_706238
crossref_primary_10_1007_s11258_024_01422_9
crossref_primary_10_1016_j_jsames_2021_103629
crossref_primary_10_3390_su14116825
crossref_primary_10_1016_j_ppees_2024_125826
crossref_primary_10_1111_oik_10219
crossref_primary_10_1002_ece3_7925
crossref_primary_10_1111_ecog_05476
crossref_primary_10_3389_fpls_2023_1323766
crossref_primary_10_1002_ecs2_4291
crossref_primary_10_1007_s10750_021_04785_6
crossref_primary_10_1111_jvs_12525
crossref_primary_10_1111_jvs_12768
crossref_primary_10_1134_S2079086421010035
crossref_primary_10_1016_j_scitotenv_2022_156512
crossref_primary_10_1016_j_scitotenv_2020_138529
crossref_primary_10_1038_s41586_024_07657_w
crossref_primary_10_3103_S0096392519030039
crossref_primary_10_1002_ecs2_4972
crossref_primary_10_1093_aob_mcab149
crossref_primary_10_1016_j_ecolind_2023_111015
crossref_primary_10_1016_j_envexpbot_2019_103903
crossref_primary_10_1002_ecs2_3508
crossref_primary_10_1007_s11258_021_01203_8
crossref_primary_10_1016_j_flora_2023_152337
crossref_primary_10_1080_23818107_2021_1884899
crossref_primary_10_3389_fpls_2019_01265
crossref_primary_10_1038_s41467_024_52468_2
crossref_primary_10_1073_pnas_2211531120
crossref_primary_10_1007_s42974_020_00012_9
crossref_primary_10_1002_ece3_9435
crossref_primary_10_1111_jse_12840
crossref_primary_10_1016_j_ecolmodel_2018_02_013
crossref_primary_10_1111_jvs_12651
crossref_primary_10_1134_S2075111720020071
crossref_primary_10_1016_j_gecco_2024_e03132
crossref_primary_10_1007_s11104_022_05562_7
crossref_primary_10_1007_s40415_022_00827_y
crossref_primary_10_1016_j_scitotenv_2023_164044
crossref_primary_10_1093_aob_mcy194
crossref_primary_10_1111_2041_210X_13587
crossref_primary_10_1007_s11258_020_01001_8
crossref_primary_10_1109_JSTARS_2018_2824901
crossref_primary_10_3390_plants13172378
crossref_primary_10_1016_j_plaphy_2025_109813
crossref_primary_10_1139_cjb_2020_0235
crossref_primary_10_1016_j_flora_2019_03_013
crossref_primary_10_1007_s11104_020_04641_x
crossref_primary_10_1007_s11252_024_01657_4
crossref_primary_10_1186_s12870_024_05173_7
crossref_primary_10_1111_1365_2435_13608
crossref_primary_10_1590_0102_33062017abb0075
crossref_primary_10_1038_s41586_025_08692_x
crossref_primary_10_1016_j_flora_2018_12_004
crossref_primary_10_1002_ece3_7824
crossref_primary_10_1007_s11104_024_07083_x
crossref_primary_10_1016_j_ecss_2025_109158
crossref_primary_10_1007_s11104_022_05303_w
crossref_primary_10_1111_1365_2745_14115
crossref_primary_10_1111_1365_2745_13264
crossref_primary_10_1093_aob_mcad002
crossref_primary_10_1111_gcb_14046
crossref_primary_10_1007_s11258_022_01282_1
crossref_primary_10_1002_ece3_8124
crossref_primary_10_5194_bg_21_4909_2024
crossref_primary_10_3390_land10111158
crossref_primary_10_1007_s11258_022_01223_y
crossref_primary_10_1002_ece3_5895
crossref_primary_10_1016_j_baae_2023_05_008
crossref_primary_10_1071_FP20396
crossref_primary_10_1111_1365_2745_12726
crossref_primary_10_1016_j_flora_2023_152399
crossref_primary_10_1002_ece3_5778
crossref_primary_10_1111_1365_2745_12843
crossref_primary_10_3897_pls2020572_03
crossref_primary_10_1007_s11104_020_04690_2
crossref_primary_10_1007_s00035_018_0199_0
crossref_primary_10_1111_1365_2745_13136
crossref_primary_10_1186_s12870_024_05026_3
crossref_primary_10_3389_fpls_2022_836488
crossref_primary_10_1016_j_sctalk_2024_100405
crossref_primary_10_3389_fpls_2024_1484744
crossref_primary_10_1016_j_flora_2025_152712
crossref_primary_10_1111_nph_15998
crossref_primary_10_1038_s41598_019_43011_1
crossref_primary_10_1016_j_ecolind_2023_110664
crossref_primary_10_1093_jpe_rtab060
crossref_primary_10_3390_plants13131764
crossref_primary_10_1007_s12298_021_00973_9
crossref_primary_10_1111_btp_12992
crossref_primary_10_18307_2023_0213
crossref_primary_10_1111_1365_2435_12894
crossref_primary_10_1134_S2079086423030064
crossref_primary_10_1016_j_scitotenv_2021_149572
crossref_primary_10_1111_wre_12549
crossref_primary_10_1016_j_jhydrol_2024_131038
crossref_primary_10_3389_fevo_2023_1082661
crossref_primary_10_1016_j_agrformet_2023_109833
crossref_primary_10_1002_ecy_3986
crossref_primary_10_1002_ecy_2652
crossref_primary_10_1002_ecy_4395
crossref_primary_10_1371_journal_pone_0299981
crossref_primary_10_1016_j_ecolind_2024_112316
crossref_primary_10_1111_1365_2435_12898
crossref_primary_10_1007_s11104_024_07039_1
crossref_primary_10_1016_j_baae_2022_03_013
crossref_primary_10_1007_s40415_022_00809_0
crossref_primary_10_1016_j_agee_2024_108954
crossref_primary_10_1016_j_ecolind_2023_111173
crossref_primary_10_1080_1540496X_2023_2226323
crossref_primary_10_1093_aob_mcad005
crossref_primary_10_1007_s11676_024_01780_0
crossref_primary_10_1371_journal_ppat_1008557
crossref_primary_10_1016_j_jenvman_2018_06_018
crossref_primary_10_1016_j_flora_2024_152554
crossref_primary_10_1016_j_flora_2019_04_001
crossref_primary_10_3390_f13081272
crossref_primary_10_1016_j_ecolind_2020_106970
crossref_primary_10_1111_jvs_12732
crossref_primary_10_3390_ecologies2030015
crossref_primary_10_3390_plants11192471
crossref_primary_10_1111_jbi_13993
crossref_primary_10_1111_jvs_12978
crossref_primary_10_1007_s11258_022_01270_5
crossref_primary_10_1007_s10722_022_01514_3
crossref_primary_10_3390_plants12183198
crossref_primary_10_1016_j_ecocom_2020_100833
crossref_primary_10_1111_ele_14446
crossref_primary_10_1016_j_flora_2020_151710
crossref_primary_10_1016_j_ecolind_2024_112370
crossref_primary_10_1093_aob_mcaa206
crossref_primary_10_1134_S2079086418050031
crossref_primary_10_1093_ismeco_ycae108
crossref_primary_10_1134_S199542552401013X
crossref_primary_10_1016_j_baae_2019_08_002
crossref_primary_10_1016_j_scitotenv_2024_176051
crossref_primary_10_1016_j_ppees_2021_125611
crossref_primary_10_3390_f15081412
crossref_primary_10_1111_jvs_13311
crossref_primary_10_1007_s11104_024_06543_8
crossref_primary_10_1016_j_ecoleng_2023_107148
crossref_primary_10_1016_j_ecolind_2020_106364
crossref_primary_10_1007_s10530_024_03359_6
crossref_primary_10_1007_s10750_019_04072_5
crossref_primary_10_1016_j_jaridenv_2022_104908
crossref_primary_10_1016_j_biocon_2024_110502
crossref_primary_10_1016_j_resenv_2022_100050
crossref_primary_10_1111_btp_12721
crossref_primary_10_1002_rse2_86
crossref_primary_10_1111_1365_2435_13011
crossref_primary_10_1371_journal_pone_0294159
crossref_primary_10_1007_s11104_024_07092_w
crossref_primary_10_1111_jbi_13848
crossref_primary_10_1016_j_agee_2022_108014
crossref_primary_10_1111_jvs_12592
crossref_primary_10_1007_s10722_019_00755_z
crossref_primary_10_1016_j_scitotenv_2022_159174
crossref_primary_10_1111_geb_13706
crossref_primary_10_1016_j_baae_2019_01_004
crossref_primary_10_1016_j_gecco_2022_e02341
crossref_primary_10_1038_s41598_024_56099_x
crossref_primary_10_2478_biorc_2020_0009
crossref_primary_10_1038_s41598_023_39772_5
crossref_primary_10_1098_rsbm_2021_0021
crossref_primary_10_1016_j_flora_2020_151605
crossref_primary_10_1016_j_gecco_2021_e01754
crossref_primary_10_1016_j_ecoleng_2021_106284
crossref_primary_10_1111_aje_12524
crossref_primary_10_1002_pan3_10413
crossref_primary_10_1016_j_scitotenv_2023_168131
crossref_primary_10_1016_j_scitotenv_2023_169100
crossref_primary_10_3103_S0096392524600534
crossref_primary_10_1007_s00468_024_02508_7
crossref_primary_10_3389_fpls_2022_807369
crossref_primary_10_1002_ece3_7522
crossref_primary_10_1016_j_foreco_2025_122517
crossref_primary_10_1007_s10531_022_02477_8
crossref_primary_10_1093_jue_juaa037
crossref_primary_10_1080_21683565_2024_2438081
crossref_primary_10_1111_1365_2745_13641
crossref_primary_10_18307_2024_0137
crossref_primary_10_3390_su12177190
crossref_primary_10_1088_1748_9326_ab0783
crossref_primary_10_1111_1440_1703_12218
crossref_primary_10_1111_oik_09754
crossref_primary_10_1007_s00442_021_05066_8
crossref_primary_10_1111_oik_09751
crossref_primary_10_1111_ele_13104
crossref_primary_10_1111_njb_02386
crossref_primary_10_1093_jpe_rtab114
crossref_primary_10_1007_s10750_024_05593_4
crossref_primary_10_1016_j_scitotenv_2024_176962
crossref_primary_10_1186_s42408_024_00267_x
crossref_primary_10_1002_ldr_3789
crossref_primary_10_3390_plants12233990
crossref_primary_10_1016_j_flora_2023_152297
crossref_primary_10_1038_s41477_024_01790_0
crossref_primary_10_1016_j_ecolind_2021_107759
crossref_primary_10_1016_j_gecco_2023_e02383
crossref_primary_10_1371_journal_pone_0219908
crossref_primary_10_7717_peerj_8683
crossref_primary_10_1111_jvs_13227
crossref_primary_10_1093_insilicoplants_diab015
crossref_primary_10_1016_j_foreco_2022_120233
crossref_primary_10_1002_2688_8319_12133
crossref_primary_10_1111_brv_12995
crossref_primary_10_1093_jxb_ery447
crossref_primary_10_1016_j_actao_2020_103585
crossref_primary_10_5194_bg_21_381_2024
crossref_primary_10_3390_d14080597
crossref_primary_10_1007_s00442_019_04442_9
crossref_primary_10_1016_j_ecolind_2021_108111
crossref_primary_10_3389_frsc_2024_1451930
crossref_primary_10_3897_BDJ_12_e118128
crossref_primary_10_1016_j_ufug_2019_126580
crossref_primary_10_31857_S0044459624020015
crossref_primary_10_3390_ecologies5030028
crossref_primary_10_3390_fire6070265
crossref_primary_10_1038_s41598_021_93722_7
crossref_primary_10_1134_S2079086424700130
crossref_primary_10_1093_biolinnean_blaa181
crossref_primary_10_1371_journal_pone_0238916
crossref_primary_10_1111_jvs_12787
crossref_primary_10_1007_s10681_024_03372_9
crossref_primary_10_3390_agronomy14091899
crossref_primary_10_3390_plants9060689
crossref_primary_10_1007_s11104_024_06583_0
crossref_primary_10_3389_fpls_2023_1240591
crossref_primary_10_1177_20530196221149120
crossref_primary_10_3389_ffgc_2023_1236933
crossref_primary_10_1002_ecm_1631
crossref_primary_10_1016_j_agee_2021_107809
crossref_primary_10_1016_j_flora_2023_152319
crossref_primary_10_1016_j_flora_2023_152437
crossref_primary_10_1093_jxb_erae428
crossref_primary_10_1002_ece3_8882
crossref_primary_10_1038_s41597_021_01104_5
crossref_primary_10_1093_aobpla_plad021
crossref_primary_10_1002_ece3_11580
crossref_primary_10_1007_s10531_022_02427_4
crossref_primary_10_1007_s11104_023_05996_7
crossref_primary_10_1016_j_ecolind_2021_107812
crossref_primary_10_1007_s12237_025_01512_5
crossref_primary_10_1371_journal_pone_0175404
crossref_primary_10_1016_j_catena_2023_107341
crossref_primary_10_31857_S0367059724060033
crossref_primary_10_1016_j_gecco_2024_e02825
crossref_primary_10_1071_BT21100
crossref_primary_10_1093_aob_mcae164
crossref_primary_10_1016_j_actao_2021_103738
crossref_primary_10_1016_j_flora_2022_152109
crossref_primary_10_17129_botsci_2214
crossref_primary_10_1016_j_funeco_2018_11_013
crossref_primary_10_1007_s11284_017_1501_0
crossref_primary_10_1111_avsc_12356
crossref_primary_10_1080_11263504_2018_1559250
crossref_primary_10_1111_1365_2435_13221
crossref_primary_10_3390_rs14102401
crossref_primary_10_1111_ele_14063
crossref_primary_10_1016_j_ecofro_2025_01_003
crossref_primary_10_3390_f14061258
crossref_primary_10_1016_j_sajb_2022_03_033
crossref_primary_10_1186_s42408_024_00292_w
crossref_primary_10_60027_ijsasr_2023_3454
crossref_primary_10_1016_j_ppees_2022_125675
crossref_primary_10_1590_0001_3765202120200119
crossref_primary_10_1111_1365_2664_13094
crossref_primary_10_1016_j_baae_2023_07_006
crossref_primary_10_1086_716510
crossref_primary_10_1111_geb_12882
crossref_primary_10_1007_s00442_022_05297_3
crossref_primary_10_1111_geb_13056
crossref_primary_10_1038_s41598_023_42738_2
crossref_primary_10_1093_aob_mcab121
crossref_primary_10_1016_j_ufug_2023_127996
crossref_primary_10_1111_geb_13176
crossref_primary_10_1016_j_gecco_2023_e02759
crossref_primary_10_1093_aob_mcaa151
crossref_primary_10_1002_iroh_202102097
crossref_primary_10_1007_s11252_023_01380_6
crossref_primary_10_1111_geb_13603
crossref_primary_10_1016_j_ecolind_2023_110002
crossref_primary_10_1016_j_ecolind_2024_112168
crossref_primary_10_1016_j_flora_2023_152415
crossref_primary_10_1080_17429145_2020_1738570
crossref_primary_10_1002_ece3_8301
crossref_primary_10_1134_S2079086418050043
crossref_primary_10_1371_journal_pone_0249573
crossref_primary_10_1002_ece3_6928
crossref_primary_10_3390_f11111145
crossref_primary_10_1002_imt2_66
crossref_primary_10_1007_s10530_021_02660_y
crossref_primary_10_1111_1365_2435_14684
crossref_primary_10_1007_s11104_020_04780_1
crossref_primary_10_1016_j_biocon_2021_109152
crossref_primary_10_1186_s12870_022_03818_z
crossref_primary_10_1007_s11427_020_1766_1
crossref_primary_10_1016_j_ancene_2025_100466
crossref_primary_10_1111_avsc_12591
Cites_doi 10.1002/9781118223246
10.1080/11263504.2014.987848
10.1038/35012228
10.1007/s11258-014-0302-6
10.1007/978-94-017-1094-7
10.1111/j.1469-8137.2005.01349.x
10.2307/3546494
10.1086/283244
10.1111/j.1365-2745.2007.01242.x
10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
10.1127/0340-269X/2014/0044-0574
10.1111/1365-2435.12095
10.1111/1365-2745.12208
10.1111/j.1654-109X.2004.tb00607.x
10.1890/10-0340.1
10.1890/13-0196.1
10.1002/ece3.1087
10.1007/BF00120678
10.1038/250026a0
10.1007/s10531-015-0904-x
10.1007/s11258-014-0392-1
10.1111/nph.13623
10.1111/j.1365-2435.2007.01374.x
10.1007/s11258-014-0318-y
10.1111/j.1365-2435.2006.01218.x
10.1111/j.0030-1299.2006.14107.x
10.1111/j.1365-2486.2011.02451.x
10.1038/nature16489
10.1111/j.1365-2745.2008.01430.x
10.1007/s00442-004-1551-1
10.1093/aob/mcs021
10.1002/joc.1276
10.1073/pnas.0608361104
10.1111/1365-2745.12217
10.1111/j.1466-8238.2011.00717.x
10.1890/03-0178
10.1111/j.1654-1103.2011.01370.x
10.1007/s11258-010-9753-6
10.1080/11263500701627695
10.1073/pnas.1310700110
10.1111/1365-2745.12211
10.1038/nature05747
10.1111/j.1365-2311.2004.00572.x
10.1111/j.1461-0248.2008.01219.x
10.18637/jss.v022.i04
ContentType Journal Article
Copyright 2016 The Authors. © 2016 British Ecological Society
2016 The Authors. Functional Ecology © 2016 British Ecological Society
Functional Ecology © 2017 British Ecological Society
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 The Authors. © 2016 British Ecological Society
– notice: 2016 The Authors. Functional Ecology © 2016 British Ecological Society
– notice: Functional Ecology © 2017 British Ecological Society
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
1XC
VOOES
DOI 10.1111/1365-2435.12722
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts

Ecology Abstracts
Entomology Abstracts
AGRICOLA

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
Economics
EISSN 1365-2435
EndPage 457
ExternalDocumentID oai_HAL_hal_04662099v1
4312817791
10_1111_1365_2435_12722
FEC12722
48582277
Genre article
GrantInformation_xml – fundername: UK Natural Environment Research Council (NERC)
– fundername: IGBP
– fundername: Global Land Project
– fundername: DIVERSITAS
– fundername: French Foundation for Biodiversity Research (FRB)
– fundername: GIS ‘Climat, Environnement et Société’ France
GroupedDBID .3N
.GA
05W
0R~
10A
1OC
24P
29H
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAISJ
AAKGQ
AAMMB
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AHBTC
AHXOZ
AIAGR
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
ZCA
ZZTAW
~02
~IA
~KM
~WT
.Y3
31~
42X
53G
AAHHS
ABEFU
ABTAH
ACCFJ
ACCMX
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
JSODD
MVM
VOH
WRC
ZY4
AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c5722-97035b0e554307c5e3972e08499da03a04271fb6c7d06630917057549f4bf27e3
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Thu Aug 14 06:48:38 EDT 2025
Fri Jul 11 18:33:33 EDT 2025
Fri Jul 11 05:54:39 EDT 2025
Fri Jul 25 03:59:24 EDT 2025
Fri Jul 25 02:35:14 EDT 2025
Thu Apr 24 22:48:46 EDT 2025
Tue Jul 01 01:15:45 EDT 2025
Wed Jan 22 16:21:44 EST 2025
Thu Jul 03 22:08:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5722-97035b0e554307c5e3972e08499da03a04271fb6c7d06630917057549f4bf27e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2643-3544
0000-0002-9392-5154
OpenAccessLink https://hal.science/hal-04662099
PQID 1866007783
PQPubID 1066355
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_04662099v1
proquest_miscellaneous_2000431184
proquest_miscellaneous_1872840490
proquest_journals_2374388186
proquest_journals_1866007783
crossref_primary_10_1111_1365_2435_12722
crossref_citationtrail_10_1111_1365_2435_12722
wiley_primary_10_1111_1365_2435_12722_FEC12722
jstor_primary_48582277
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2017
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: February 2017
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2017
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2007; 104
2014; 215
2013; 27
2007b; 141
1982; 50
2004; 7
2014a; 215
1999; 85
1994; 26
2011; 17
2005; 25
2014; 4
2001
2000; 405
2008; 22
2013; 110
2014; 95
2007; 21
2003; 84
2007; 22
2012; 23
2012; 21
2001; 51
1974; 250
2016; 150
1988
2007; 447
2012
2016; 209
2004; 141
2016; 529
2007a; 95
2009
1997
2007
2008; 11
2008; 96
2004; 428
2006; 112
2014; 44
2012; 109
1999
2015; 24
2014b; 215
2011; 92
1997; 79
2010; 210
2013
1977; 111
1925; 70
2014; 102
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Podani J. (e_1_2_7_43_1) 2007
Tomaselli M. (e_1_2_7_50_1) 1994; 26
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Bunce R.G.H. (e_1_2_7_5_1) 1999
Braun‐Blanquet J. (e_1_2_7_4_1) 1925; 70
e_1_2_7_51_1
Grime J.P. (e_1_2_7_23_1) 2001
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
R Development Core Team (e_1_2_7_44_1) 2013
References_xml – volume: 102
  start-page: 345
  year: 2014
  end-page: 356
  article-title: Functional distinctiveness of major plant lineages
  publication-title: Journal of Ecology
– year: 2009
– volume: 150
  start-page: 550
  year: 2016
  end-page: 557
  article-title: Why are many anthropogenic agroecosystems particularly species rich?
  publication-title: Plant Biosystems
– volume: 95
  start-page: 698
  year: 2007a
  end-page: 706
  article-title: Disturbance is the principal α‐scale filter determining niche differentiation, coexistence and biodiversity in an alpine community
  publication-title: Journal of Ecology
– volume: 104
  start-page: 5925
  year: 2007
  end-page: 5930
  article-title: Global patterns and determinants of vascular plant diversity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 215
  start-page: 1351
  year: 2014a
  end-page: 1359
  article-title: How well do seed production traits correlate with leaf traits, whole plant traits and plant ecological strategies?
  publication-title: Plant Ecology
– volume: 250
  start-page: 26
  year: 1974
  end-page: 31
  article-title: Vegetation classification by reference to strategies
  publication-title: Nature
– year: 2001
– volume: 27
  start-page: 1002
  year: 2013
  end-page: 1010
  article-title: Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants
  publication-title: Functional Ecology
– volume: 215
  start-page: 495
  year: 2014b
  end-page: 505
  article-title: The intimacy between sexual traits and Grime's CSR strategies for orchids coexisting in semi‐natural calcareous grassland at the Olive Lawn
  publication-title: Plant Ecology
– volume: 112
  start-page: 10
  year: 2006
  end-page: 20
  article-title: The functional basis of a primary succession resolved by CSR classification
  publication-title: Oikos
– volume: 7
  start-page: 163
  year: 2004
  end-page: 170
  article-title: A new practical tool for deriving a functional signature for herbaceous vegetation
  publication-title: Applied Vegetation Science
– volume: 529
  start-page: 167
  year: 2016
  end-page: 171
  article-title: The global spectrum of plant form and function
  publication-title: Nature
– volume: 102
  start-page: 269
  year: 2014
  end-page: 274
  article-title: The Tree of Life in ecosystems: evolution of plant effects on carbon and nutrient cycling
  publication-title: Journal of Ecology
– volume: 21
  start-page: 19
  year: 2007
  end-page: 27
  article-title: Leaf functional traits of tropical forest plants in relation to growth form
  publication-title: Functional Ecology
– volume: 84
  start-page: 3078
  year: 2003
  end-page: 3089
  article-title: Co‐inertia analysis and the linking of ecological data tables
  publication-title: Ecology
– volume: 26
  start-page: 51
  year: 1994
  end-page: 62
  article-title: Phytosociology and ecology of vegetation in the northern Apennines (N Italy)
  publication-title: Fitosociologia
– volume: 95
  start-page: 14
  year: 2014
  end-page: 21
  article-title: Combining the fourth‐corner and the RLQ methods for assessing trait responses to environmental variation
  publication-title: Ecology
– volume: 50
  start-page: 53
  year: 1982
  end-page: 63
  article-title: Community stability, complexity and species life history strategies
  publication-title: Vegetation
– volume: 102
  start-page: 275
  year: 2014
  end-page: 301
  article-title: The world‐wide ‘fast‐slow’ plant economics spectrum: a traits manifesto
  publication-title: Journal of Ecology
– volume: 92
  start-page: 3
  year: 2011
  end-page: 10
  article-title: The arcsine is asinine: the analysis of proportions in ecology
  publication-title: Ecology
– volume: 141
  start-page: 236
  year: 2004
  end-page: 253
  article-title: Resource pulses, species interactions, and diversity maintenance in arid and semi‐arid environments
  publication-title: Oecologia
– volume: 96
  start-page: 1266
  year: 2008
  end-page: 1274
  article-title: The LEDA Traitbase: a database of life‐history traits of the Northwest European flora
  publication-title: Journal of Ecology
– volume: 23
  start-page: 395
  year: 2012
  end-page: 405
  article-title: Mapping plant strategy types using remote sensing
  publication-title: Journal of Vegetation Science
– volume: 215
  start-page: 379
  year: 2014
  end-page: 388
  article-title: CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments
  publication-title: Plant Ecology
– year: 2007
– volume: 11
  start-page: 1065
  year: 2008
  end-page: 1071
  article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide
  publication-title: Ecology Letters
– volume: 17
  start-page: 2905
  year: 2011
  end-page: 2935
  article-title: TRY – a global database of plant traits
  publication-title: Global Change Biology
– volume: 21
  start-page: 625
  year: 2012
  end-page: 636
  article-title: Going beyond the limitations of plant functional types when predicting global ecosystem‐atmosphere fluxes: exploring the merits of traits‐based approaches
  publication-title: Global Ecology and Biogeography
– volume: 70
  start-page: 122
  year: 1925
  end-page: 149
  article-title: Zur wertung der gesellschaftstreue in der pflanzensoziologie
  publication-title: Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich
– volume: 447
  start-page: 80
  year: 2007
  end-page: 82
  article-title: Drought sensitivity shapes species distribution patterns in tropical forests
  publication-title: Nature
– volume: 428
  start-page: 821
  year: 2004
  end-page: 827
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
– volume: 405
  start-page: 220
  year: 2000
  end-page: 227
  article-title: Global patterns in biodiversity
  publication-title: Nature
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– year: 2012
– volume: 44
  start-page: 55
  year: 2014
  end-page: 80
  article-title: The ‐rich communities in the Northern Apennines (N‐Italy): a phytosociological, ecological and phytogeographical study
  publication-title: Phytocoenologia
– volume: 111
  start-page: 1169
  year: 1977
  end-page: 1194
  article-title: Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory
  publication-title: American Naturalist
– volume: 51
  start-page: 933
  year: 2001
  end-page: 938
  article-title: Terrestrial ecoregions of the world: a new map of life on Earth
  publication-title: BioScience
– volume: 24
  start-page: 2239
  year: 2015
  end-page: 2253
  article-title: Functional ecology as a missing link for conservation of a resource‐limited flora in the Atlantic Forest
  publication-title: Biodiversity and Conservation
– volume: 22
  start-page: 221
  year: 2008
  end-page: 231
  article-title: The role of desiccation tolerance in determining tree species distributions along the Malay‐Thai Peninsula
  publication-title: Functional Ecology
– volume: 109
  start-page: 1047
  year: 2012
  end-page: 1053
  article-title: Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies
  publication-title: Annals of Botany
– volume: 141
  start-page: 337
  year: 2007b
  end-page: 343
  article-title: The leaf economics spectrum of Poaceae reflects variation in survival strategies
  publication-title: Plant Biosystems
– volume: 79
  start-page: 259
  year: 1997
  end-page: 281
  article-title: Integrated screening validates primary axes of specialisation in plants
  publication-title: Oikos
– year: 1988
– volume: 210
  start-page: 253
  year: 2010
  end-page: 261
  article-title: Can CSR classification be generally applied outside Britain?
  publication-title: Plant Ecology
– volume: 4
  start-page: 2799
  year: 2014
  end-page: 2811
  article-title: An evolutionary perspective on leaf economics in vascular plants: phylogenetic patterns in LMA
  publication-title: Ecology and Evolution
– start-page: 335
  year: 1997
  end-page: 346
– volume: 22
  start-page: 1
  year: 2007
  end-page: 20
  article-title: The ade4 package: implementing the duality diagram for ecologists
  publication-title: Journal of Statistical Software
– volume: 110
  start-page: 18180
  year: 2013
  end-page: 18184
  article-title: Functional traits predict relationship between plant abundance dynamic and long‐term climate warming
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 85
  start-page: 282
  year: 1999
  end-page: 294
  article-title: Allocating CSR plant functional types: a soft approach to a hard problem
  publication-title: Oikos
– volume: 209
  start-page: 563
  year: 2016
  end-page: 575
  article-title: Variation in trait trade‐offs allows differentiation among predefined plant functional types: implications for predictive ecology
  publication-title: New Phytologist
– year: 1999
– year: 2013
– ident: e_1_2_7_25_1
  doi: 10.1002/9781118223246
– ident: e_1_2_7_8_1
  doi: 10.1080/11263504.2014.987848
– ident: e_1_2_7_51_1
– ident: e_1_2_7_19_1
  doi: 10.1038/35012228
– volume-title: Plant Strategies, Vegetation Processes and Ecosystem Properties
  year: 2001
  ident: e_1_2_7_23_1
– volume: 26
  start-page: 51
  year: 1994
  ident: e_1_2_7_50_1
  article-title: Phytosociology and ecology of Caricion curvulae vegetation in the northern Apennines (N Italy)
  publication-title: Fitosociologia
– ident: e_1_2_7_34_1
  doi: 10.1007/s11258-014-0302-6
– ident: e_1_2_7_24_1
  doi: 10.1007/978-94-017-1094-7
– ident: e_1_2_7_54_1
  doi: 10.1111/j.1469-8137.2005.01349.x
– ident: e_1_2_7_28_1
  doi: 10.2307/3546494
– ident: e_1_2_7_22_1
  doi: 10.1086/283244
– ident: e_1_2_7_37_1
  doi: 10.1111/j.1365-2745.2007.01242.x
– ident: e_1_2_7_35_1
  doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
– ident: e_1_2_7_20_1
  doi: 10.1127/0340-269X/2014/0044-0574
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2013
  ident: e_1_2_7_44_1
– ident: e_1_2_7_40_1
  doi: 10.1111/1365-2435.12095
– ident: e_1_2_7_12_1
  doi: 10.1111/1365-2745.12208
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1654-109X.2004.tb00607.x
– ident: e_1_2_7_53_1
  doi: 10.1890/10-0340.1
– ident: e_1_2_7_16_1
  doi: 10.1890/13-0196.1
– ident: e_1_2_7_49_1
– ident: e_1_2_7_18_1
  doi: 10.1002/ece3.1087
– ident: e_1_2_7_33_1
  doi: 10.1007/BF00120678
– ident: e_1_2_7_21_1
  doi: 10.1038/250026a0
– ident: e_1_2_7_36_1
  doi: 10.1007/s10531-015-0904-x
– ident: e_1_2_7_41_1
  doi: 10.1007/s11258-014-0392-1
– ident: e_1_2_7_52_1
  doi: 10.1111/nph.13623
– ident: e_1_2_7_2_1
  doi: 10.1111/j.1365-2435.2007.01374.x
– ident: e_1_2_7_42_1
  doi: 10.1007/s11258-014-0318-y
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1365-2435.2006.01218.x
– ident: e_1_2_7_6_1
  doi: 10.1111/j.0030-1299.2006.14107.x
– ident: e_1_2_7_30_1
  doi: 10.1111/j.1365-2486.2011.02451.x
– ident: e_1_2_7_13_1
  doi: 10.1038/nature16489
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1365-2745.2008.01430.x
– volume: 70
  start-page: 122
  year: 1925
  ident: e_1_2_7_4_1
  article-title: Zur wertung der gesellschaftstreue in der pflanzensoziologie
  publication-title: Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich
– ident: e_1_2_7_9_1
  doi: 10.1007/s00442-004-1551-1
– ident: e_1_2_7_39_1
  doi: 10.1093/aob/mcs021
– volume-title: Analisi ed Esplorazione Multivariata dei Dati in Ecologia e Biologia
  year: 2007
  ident: e_1_2_7_43_1
– ident: e_1_2_7_27_1
  doi: 10.1002/joc.1276
– ident: e_1_2_7_32_1
  doi: 10.1073/pnas.0608361104
– ident: e_1_2_7_10_1
  doi: 10.1111/1365-2745.12217
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1466-8238.2011.00717.x
– ident: e_1_2_7_14_1
  doi: 10.1890/03-0178
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1654-1103.2011.01370.x
– volume-title: ECOFACT 2 ‐ Measuring Change in British vegetation
  year: 1999
  ident: e_1_2_7_5_1
– ident: e_1_2_7_7_1
  doi: 10.1007/s11258-010-9753-6
– ident: e_1_2_7_38_1
  doi: 10.1080/11263500701627695
– ident: e_1_2_7_48_1
  doi: 10.1073/pnas.1310700110
– ident: e_1_2_7_45_1
  doi: 10.1111/1365-2745.12211
– ident: e_1_2_7_17_1
  doi: 10.1038/nature05747
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1365-2311.2004.00572.x
– ident: e_1_2_7_11_1
  doi: 10.1111/j.1461-0248.2008.01219.x
– ident: e_1_2_7_15_1
  doi: 10.18637/jss.v022.i04
SSID ssj0009522
Score 2.6374397
Snippet Summary Competitor, stress‐tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the...
Competitor, stress‐tolerator, ruderal ( CSR ) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide...
Summary Competitor, stress-tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the...
Competitor, stress‐tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide...
1. Competitor, stress-tolerator, ruderal (CSR) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the wide...
Summary Competitor, stress‐tolerator, ruderal ( CSR ) theory is a prominent plant functional strategy scheme previously applied to local floras. Globally, the...
SourceID hal
proquest
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 444
SubjectTerms Annual precipitation
atmospheric precipitation
Biogeochemical cycles
Claytonia perfoliata
climate
Climate change
community assembly
Community ecology
comparative ecology
Convergence
Coverage
data collection
deciduous forests
deserts
Divergence
Dry matter
dry matter content
economics
Ecosystems
Environmental Sciences
Evapotranspiration
Flowering
Forbs
Grime's CSR triangle
Growth rate
herbivores
Herbivory
herbs
Interspecific
interspecific variation
Land use
Larrea
Larrea divaricata
Leaf area
leaves
Mathematical analysis
nitrogen content
perennials
Phylogeny
plant economics spectrum
plant functional type
Plants
Seasonal variations
Strategy
survival strategy
temperature
trees
Tropical forests
universal adaptive strategy theory
vascular plants
Title A global method for calculating plant CSR ecological strategies applied across biomes world-wide
URI https://www.jstor.org/stable/48582277
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.12722
https://www.proquest.com/docview/1866007783
https://www.proquest.com/docview/2374388186
https://www.proquest.com/docview/1872840490
https://www.proquest.com/docview/2000431184
https://hal.science/hal-04662099
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZKpUpcoC2sCC2VizhwySrxT5wcV6tdrRD00FKJWxQ7NiCqtGp2W8Gpj8Az8iSdsZOwragQ4mb5J4on45nP8fgbQt6kTmKmEB7LmvsNio01y0yMaF05aLApXnD-cJQtTsW7T7KPJsS7MIEfYvjhhivD22tc4JVu1xZ5iM8Cbz9OmWJohbEGYdExW6PdDecILCti8LS8I_fBWJ574-_4pUdfMCoyBCjegZ7rANZ7oPlTovt3D4En38arpR6bH_doHf9rctvkSYdP6SQo1A7ZsM0u2QoZK79DaWa60mj2-4ocDOhsRPuM6AkNLCM0ZKemAIspaILxicKaz_TiDL4mnZ4cU2t600vbZc9ZQasAjGnlJUU9QUBLPbXrr5uf119r-5yczmcfp4u4y-QQGwmvHxdgV6ROLGAXsClGWkBBzCY5bLfqKuEVJvxInc6MqhECAYZRiCNF4YR2TFk-IpvNeWNfEKpT5wCmcCfyQiiR5IVMaqcluFnNOa8jMu6_Y2k6mnPMtnFW9tsdlG2Jsi29bCPydhhwERg-Hu76GhRj6IXM3IvJ-xLrEpFleAv5Ko3IyOvN0E3kElCYUhHZ7xWp7AxFWyLfIFIq5fyPzYwDwsuRdTAih0MzWAA81qkae77CRyiYPJ7gPtyH-SNf2EwKkI9XvL_NtZzPpr7w8l8H7JHHDLGPD23fJ5vLy5V9BchtqQ_84rwFqXgxKg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCNFLea5IKWAQBy5ZJX7kcVytdrXAtofSSr1ZsWMXRJVW3V1Qe-In8Bv5JczYSdhWVAhxs2I7iifj8Tf2-BtC3qROYqYQHsuaewfFxpplJka0njuosClecN7dy2aH4v2RPFq7CxP4IfoNN5wZ3l7jBMcN6bVZHgK0YLkfpixnYIbvYF5v71btszXi3XCSwLIyhrWWt_Q-GM1z7QVXVqbbnzAuMoQoXgGf6xDWr0HT-8R0Xx9CT74MV0s9NJfXiB3_b3gPyFYLUeko6NRDcss2j8jdkLTyAkoT05YGk9-35KBDayYWj4ke0UA0QkOCagrImIIyGJ8rrDmmZyfwQ-n44z61prO-dLHsaCtoFbAxrbyoqOcIWFDP7vrz-49vn2v7hBxOJwfjWdwmc4iNhM-PSzAtUicW4AuYFSMtACFmkwI8rrpKeIU5P1KnM5PXiIIAxuQIJUXphHYst3xANprTxj4lVKfOAVLhThSlyEVSlDKpnZaw0mrOeR2RYfcjlWmZzjHhxonqPB6UrULZKi_biLztO5wFko-bm74GzehbITn3bDRX-CwRWYYXkb-mERl4xembiUICEMvziOx0mqRaW7FQSDmIrEoF_2M14wDyCiQejMirvhqMAJ7sVI09XeErchg8HuLe3Ib5U1_wJwXIx2ve38aqppOxL2z_a4eX5N7sYHeu5u_2PjwjmwyhkI903yEby_OVfQ5Abqlf-Jn6C8OONUU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagCMSF_xUpBQziwCWrxD9x9rja7mqBUqFCJW5W7NgFUaUrdrcITjwCz8iTMGMnYVtRIcTNiu0oHo9nPsfjbwh5lnuJmUJ4KmseNiguNaywKaJ15aHC5XjB-fV-MT8UL9_LLpoQ78JEfoj-hxuujGCvcYEvar-xyGN8Fnj7Yc4UAyt8RRRZiYq9e8A2eHfjQQIrRim4Wt6y-2Awz7kXnHFMlz9gWGSMUDyDPTcRbHBBs5vEdB8fI08-DdcrM7TfzvE6_tfobpEbLUCl46hRt8kl19whV2PKyq9Qmtq2NJj-viMHHVojsbxLzJhGmhEa01NTwMUUVMGGTGHNEV0cw3TSydsD6mxne-ly1ZFW0CoiY1oFSdHAELCkgdv15_cfXz7W7h45nE3fTeZpm8ohtRI-Px2BYZEmcwBewKhY6QAGMZeVsN-qq4xXmPEj96awqkYMBCBGIZAUIy-MZ8rxAdlqThp3n1CTew84hXtRjoQSMOUyq72R4GcN57xOyLCbR21bnnNMt3Gsu_0OylajbHWQbUKe9x0WkeLj4qZPQTH6VkjNPR_vaXyWiaLAa8ineUIGQW_6ZqKUAMOUSshOp0i6tRRLjYSDyKlU8j9WMw4Qr0TawYQ86avBBOC5TtW4kzW-QsHg8Qj34jYsnPnCblKAfILi_W2sejadhML2v3Z4TK692Z3pvRf7rx6Q6wxxUAhz3yFbq89r9xBQ3Mo8Cuv0F_yfM_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+global+method+for+calculating+plant+CSR+ecological+strategies+applied+across+biomes+world-wide&rft.jtitle=Functional+ecology&rft.au=Pierce%2C+Simon&rft.au=Negreiros%2C+Daniel&rft.au=Cerabolini%2C+Bruno+E+L&rft.au=Kattge%2C+Jens&rft.date=2017-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=31&rft.issue=2&rft.spage=444&rft_id=info:doi/10.1111%2F1365-2435.12722&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4312817791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon