An analytical model for steady coextrusion of viscoplastic fluids in thin slit dies with wall slip
Coextrusion is widely used to fabricate multilayered products with each layer providing a separate functionality, including barrier resistance to gases, strength, and printability. Here an analytical model of the coextrusion die flow of two incompressible, viscoplastic fluids in a slit die, subject...
Saved in:
Published in | Polymer engineering and science Vol. 50; no. 4; pp. 652 - 664 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.04.2010
Wiley Society of Plastics Engineers, Inc Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coextrusion is widely used to fabricate multilayered products with each layer providing a separate functionality, including barrier resistance to gases, strength, and printability. Here an analytical model of the coextrusion die flow of two incompressible, viscoplastic fluids in a slit die, subject to nonlinear wall slip and under fully developed and isothermal conditions, is developed to allow the prediction of the steady‐state velocity and shear stress distributions and the flow rate versus pressure gradient relationship. The resulting model is applied to the coextrusion of two layers of viscoplastic fluids in a thin rectangular slit die (slit gap, h ≪ slit width, W). The analytical solution recognizes a number of distinct flow conditions (eleven cases) that need to be treated separately. The solutions for all eleven cases are provided along with an apriori identification methodology for the determination of the applicable case, given the shear viscosity and wall slip parameters of the two viscoplastic fluids, the slit geometry and the flow conditions. Simplifications of the model would provide the solutions for the fully developed and isothermal coextrusion flows of any combination of Hershel‐Bulkley, Bingham, power‐law and Newtonian fluids with or without wall slip at one or both walls of the slit die. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers |
---|---|
AbstractList | Coextrusion is widely used to fabricate multilayered products with each layer providing a separate functionality, including barrier resistance to gases, strength, and printability. Here an analytical model of the coextrusion die flow of two incompressible, viscoplastic fluids in a slit die, subject to nonlinear wall slip and under fully developed and isothermal conditions, is developed to allow the prediction of the steady-state velocity and shear stress distributions and the flow rate versus pressure gradient relationship. The resulting model is applied to the coextrusion of two layers of viscoplastic fluids in a thin rectangular slit die (slit gap, h ≪ slit width, W). The analytical solution recognizes a number of distinct flow conditions (eleven cases) that need to be treated separately. The solutions for all eleven cases are provided along with an apriori identification methodology for the determination of the applicable case, given the shear viscosity and wall slip parameters of the two viscoplastic fluids, the slit geometry and the flow conditions. Simplifications of the model would provide the solutions for the fully developed and isothermal coextrusion flows of any combination of Hershel-Bulkley, Bingham, power-law and Newtonian fluids with or without wall slip at one or both walls of the slit die. POLYM. ENG. SCI., 50:652-664, 2010. [C] 2009 Society of Plastics Engineers Coextrusion is widely used to fabricate multilayered products with each layer providing a separate functionality, including barrier resistance to gases, strength, and printability. Here an analytical model of the coextrusion die flow of two incompressible, viscoplastic fluids in a slit die, subject to nonlinear wall slip and under fully developed and isothermal conditions, is developed to allow the prediction of the steady‐state velocity and shear stress distributions and the flow rate versus pressure gradient relationship. The resulting model is applied to the coextrusion of two layers of viscoplastic fluids in a thin rectangular slit die (slit gap, h ≪ slit width, W). The analytical solution recognizes a number of distinct flow conditions (eleven cases) that need to be treated separately. The solutions for all eleven cases are provided along with an apriori identification methodology for the determination of the applicable case, given the shear viscosity and wall slip parameters of the two viscoplastic fluids, the slit geometry and the flow conditions. Simplifications of the model would provide the solutions for the fully developed and isothermal coextrusion flows of any combination of Hershel‐Bulkley, Bingham, power‐law and Newtonian fluids with or without wall slip at one or both walls of the slit die. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers Coextrusion is widely used to fabricate multilayered products with each layer providing a separate functionality, including barrier resistance to gases, strength, and printability. Here an analytical model of the coextrusion die flow of two incompressible, viscoplastic fluids in a slit die, subject to nonlinear wall slip and under fully developed and isothermal conditions, is developed to allow the prediction of the steady-state velocity and shear stress distributions and the flow rate versus pressure gradient relationship. The resulting model is applied to the coextrusion of two layers of viscoplastic fluids in a thin rectangular slit die (slit gap, h « slit width, W). The analytical solution recognizes a number of distinct flow conditions (eleven cases) that need to be treated separately. The solutions for all eleven cases are provided along with an apriori identification methodology for the determination of the applicable case, given the shear viscosity and wall slip parameters of the two viscoplastic fluids, the slit geometry and the flow conditions. Simplifications of the model would provide the solutions for the fully developed and isothermal coextrusion flows of any combination of Hershel-Bulkley, Bingham, power-law and Newtonian fluids with or without wall slip at one or both walls of the slit die. [PUBLICATION ABSTRACT] Coextrusion is widely used to fabricate multilayered products with each layer providing a separate functionality, including barrier resistance to gases, strength, and printability. Here an analytical model of the coextrusion die flow of two incompressible, viscoplastic fluids in a slit die, subject to nonlinear wall slip and under fully developed and isothermal conditions, is developed to allow the prediction of the steady-state velocity and shear stress distributions and the flow rate versus pressure gradient relationship. The resulting model is applied to the coextrusion of two layers of viscoplastic fluids in a thin rectangular slit die (slit gap, h ' slit width, W). The analytical solution recognizes a number of distinct flow conditions (eleven cases) that need to be treated separately. The solutions for all eleven cases are provided along with an apriori identification methodology for the determination of the applicable case, given the shear viscosity and wall slip parameters of the two viscoplastic fluids, the slit geometry and the flow conditions. Simplifications of the model would provide the solutions for the fully developed and isothermal coextrusion flows of any combination of Hershel-Bulkley, Bingham, power-law and Newtonian fluids with or without wall slip at one or both walls of the slit die. [PUBLICATION ABSTRACT] |
Audience | Academic |
Author | Kalyon, Dilhan M. |
Author_xml | – sequence: 1 givenname: Dilhan M. surname: Kalyon fullname: Kalyon, Dilhan M. email: dkalyon@stevens.edu organization: Department of Chemical, Biomedical and Materials Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22545084$$DView record in Pascal Francis |
BookMark | eNp10m1v0zAQAOAIDYlu8IF_YIEQQiKdX5I4_ViNbUyaBoy3j5br2K2HaxfbWdd_z5V2g6KiSI5kPXc6391hceCD10XxnOAhwZgeL7QfUlK3-FExIHXVlrRh1UExwJjRkrVt-6Q4TOkGg2X1aFBMxh5JL90qWyUdmodOO2RCRClr2a2QCvouxz7Z4FEw6NYmFRZOJuDIuN52CVmP8gyO5GxGndUJLW2eoaV0bn23eFo8NtIl_Wz7Pyq-np1-OXlfXn44vzgZX5aq5hSXpFIdJ21NeEMnykyaCZOSmobipqsVVbpl2Egy4h2uRowY1RCNm1bWo6ahmnbsqHi9ybuI4WevUxZzqFY7J70OfRK8YpwwyinIF__Im9BH6EISFCrggGpALzdoKp0W1puQo1TrlGJMKQNERxxUuUdNtddROhiNsXC944d7PHydnlu1N-DNTgCYDCOZyj4lcfH5ete-_ctOYGpeJziSnc5y2oTs8FfbNsgEwzdRemWTWEQ7l3ElKK2rGrcVuOONUzGkFLURymaZYSWgdusEwWK9ewJ2T_zevT9FP0TcJ91nt9mX8PLV_6H4eHp1H7HtuYUlvXuIkPGHaDjjtfh-dS6-NZ8wb6-5eMd-Adco9a0 |
CODEN | PYESAZ |
CitedBy_id | crossref_primary_10_1002_jbm_a_33190 crossref_primary_10_1122_1_4945820 crossref_primary_10_1155_2015_714136 crossref_primary_10_1039_C6SM01775D crossref_primary_10_1122_1_4998177 crossref_primary_10_1146_annurev_chembioeng_060713_040211 crossref_primary_10_3390_gels8040230 crossref_primary_10_1080_15583724_2011_615961 crossref_primary_10_3139_217_3680 crossref_primary_10_3390_pr4020019 crossref_primary_10_4325_seikeikakou_23_379 |
Cites_doi | 10.1122/1.1595098 10.1002/pen.11673 10.1122/1.1562156 10.1002/app.1993.070500707 10.1016/j.jnnfm.2007.02.010 10.1002/pen.760320308 10.1122/1.1339248 10.1122/1.2963135 10.1122/1.1574023 10.1122/1.2116364 10.1007/BF01331511 10.1007/s00397-003-0322-y 10.1080/00986449308936153 10.1002/pen.760280707 10.1147/rd.494.0699 10.1002/pen.760180304 10.3139/217.1822 10.1122/1.550435 10.1002/pen.760161008 10.1002/pen.760180303 10.1146/annurev.fluid.33.1.265 10.1002/aic.690340111 10.1007/BF00369067 10.1515/POLYENG.1985.5.4.293 10.1016/0377-0257(88)85048-1 10.1122/1.550958 10.1002/app.1973.070170417 10.1122/1.1446882 10.1122/1.2964199 10.1122/1.1795193 10.1122/1.2955508 10.1122/1.550877 10.1122/1.551003 10.1122/1.550313 10.1122/1.550049 10.1122/1.550537 10.1002/pen.760341906 10.1002/pen.760151202 10.1122/1.1879043 10.1122/1.2837104 10.1002/pen.760291507 10.1122/1.549963 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Society of Plastics Engineers 2015 INIST-CNRS COPYRIGHT 2010 Society of Plastics Engineers, Inc. Copyright Society of Plastics Engineers Apr 2010 |
Copyright_xml | – notice: Copyright © 2009 Society of Plastics Engineers – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2010 Society of Plastics Engineers, Inc. – notice: Copyright Society of Plastics Engineers Apr 2010 |
DBID | BSCLL AAYXX CITATION IQODW N95 ISR 3V. 7SR 7XB 88I 8AF 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO GNUQQ GUQSH HCIFZ JG9 KB. L6V M2O M2P M7S MBDVC P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0X |
DOI | 10.1002/pen.21580 |
DatabaseName | Istex CrossRef Pascal-Francis Gale Business: Insights Gale In Context: Science ProQuest Central (Corporate) Engineered Materials Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Materials Research Database Materials Science Database ProQuest Engineering Collection Research Library (ProQuest) Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic SIRS Editorial |
DatabaseTitle | CrossRef Materials Research Database Research Library Prep ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SIRS Editorial Materials Science Collection ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Research Library ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Materials Research Database Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Applied Sciences |
EISSN | 1548-2634 |
EndPage | 664 |
ExternalDocumentID | 2005874541 A223732297 22545084 10_1002_pen_21580 PEN21580 ark_67375_WNG_V6Q078R7_D |
Genre | article Feature |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: ARDEC funderid: DAAE30‐00‐D‐1011‐T23 |
GroupedDBID | -~X .-4 .3N .4S .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 29O 31~ 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 88I 8AF 8FE 8FG 8G5 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDEX ABEML ABIJN ABJCF ABJNI ABPVW ABTAH ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AIXEN AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAAKF BAFTC BDRZF BENPR BES BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 DWQXO EBS EJD F00 F01 F04 FEDTE FOJGT G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IAO ICW IEA IOF ISR ITC IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M2Q M6K M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N95 N9A NDZJH NEJ NF~ NNB O66 O9- OIG P2P P2W P2X P4D P62 PALCI PDBOC PQQKQ PROAC PTHSS PV9 Q.N Q11 Q2X QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RWL RWM RX1 RXW RYL RZL S0X SAMSI SUPJJ TUS U5U UB1 V2E W8V W99 WBKPD WFSAM WH7 WIB WIH WIK WJL WOHZO WQJ WRC WTY WXSBR WYISQ XG1 XI7 XV2 ZE2 ZY4 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW PQGLB PMFND 7SR 7XB 8FD 8FK JG9 MBDVC PKEHL PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c5720-14cd71851762bcfb6b3aa2f6206d5c2ce830fa197d04931fc61e068a59662e2d3 |
IEDL.DBID | DR2 |
ISSN | 0032-3888 |
IngestDate | Fri Jul 11 00:14:16 EDT 2025 Sat Aug 16 21:42:48 EDT 2025 Tue Jun 17 21:24:00 EDT 2025 Thu Jun 12 23:43:13 EDT 2025 Tue Jun 10 20:20:51 EDT 2025 Fri Jun 27 04:01:33 EDT 2025 Fri May 23 01:59:07 EDT 2025 Mon Jul 21 09:15:08 EDT 2025 Thu Apr 24 22:52:18 EDT 2025 Tue Jul 01 01:44:37 EDT 2025 Wed Jan 22 16:23:12 EST 2025 Wed Oct 30 10:01:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Printability Rheological model Pipe flow Isothermal flow Theoretical study Multiple layer Polymer Viscoplastic fluid Coextrusion Modeling Shear viscosity Extrusion die Technological properties Rheological properties |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5720-14cd71851762bcfb6b3aa2f6206d5c2ce830fa197d04931fc61e068a59662e2d3 |
Notes | ARDEC - No. DAAE30-00-D-1011-T23 ark:/67375/WNG-V6Q078R7-D istex:D709557AF313D4C8A1EFF872A84EC9078D2468B6 ArticleID:PEN21580 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 218573275 |
PQPubID | 41843 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_743713272 proquest_journals_218573275 gale_infotracmisc_A223732297 gale_infotracgeneralonefile_A223732297 gale_infotracacademiconefile_A223732297 gale_incontextgauss_ISR_A223732297 gale_businessinsightsgauss_A223732297 pascalfrancis_primary_22545084 crossref_citationtrail_10_1002_pen_21580 crossref_primary_10_1002_pen_21580 wiley_primary_10_1002_pen_21580_PEN21580 istex_primary_ark_67375_WNG_V6Q078R7_D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2010 |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: April 2010 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: Newtown |
PublicationTitle | Polymer engineering and science |
PublicationTitleAlternate | Polym Eng Sci |
PublicationYear | 2010 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Society of Plastics Engineers, Inc Blackwell Publishing Ltd |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley – name: Society of Plastics Engineers, Inc – name: Blackwell Publishing Ltd |
References | M.R. Kamal,S.K. Goyal, and E. Chu, AIChE J., 34, 94( 1988). J.J. Benbow and P. Lamb, SPE Trans., 3, 7( 1963). T.Q. Jiang,A.C. Young, and A.B. Metzner, Rheol Acta, 25, 397( 1986). M. Reimers and J. Dealy, J. Rheol., 42, 527( 1998). D.M. Kalyon and H. Tang, J. Non-Newtonian Fluid Mech., 143, 133( 2007). Y. Chen,D.M. Kalyon, and E. Bayramli, J. Appl. Polym. Sci., 50, 1169( 1993). H.S. Tang and D.M. Kalyon, J. Rheol., 52, 507( 2008). D.M. Kalyon,H. Gevgilili, and A. Shah, Int. Polym. Proc., 19, 129( 2004). M. Denn, Annu. Rev. Fluid Mech., 33, 265( 2001). P.J.A. Hartman Kok,S.G. Kazarian,C.J. Lawrence, and B.J. Briscoe, J. Rheol., 46, 481( 2002). T.C. Yu and C.D. Han, J. Appl. Polym. Sci., 17, 1203( 1973). M.E. Nordberg and H.H. Winter, Polym. Eng. Sci., 28, 444( 1988). C. Feger,J.D. Gelorme,M. McGlashan-Powell, and D.M. Kalyon, IBM J. Res. Dev., 49, 699( 2005). D.G. Baird and D.I. Collias, Eds., Polymer Processing-Principles and Design, John Wiley and Sons, New York( 1998). A. Lawal,D.M. Kalyon, and U. Yilmazer, Chem. Eng. Commun., 122, 127( 1993). C.D. Han and R. Shetty, Polym. Eng. Sci., 18, 187( 1978). M.R. Kamal and T. Mutel, J. Polym. Eng., 5, 293( 1985). W.H. Herschel and R. Bulkley, Am. Soc. Test. Proc., 26, 621( 1926). D. Kalyon, J. Rheol., 49, 621( 2005). M. Mooney, J. Rheol., 2, 210( 1931). H. Tang and D.M. Kalyon, Rheol. Acta., 43, 80( 2004). Z. Tadmor and C. Gogos, Principles of Polymer Processing, 2nd ed., Wiley-Interscience, Hoboken, NJ( 2006). T.J. Person and M.M. Denn, J. Rheol., 41, 249( 1997). A. Torres,A.N. Hrymak,J. Vlachopoulos,J. Dooley, and B. T. Hilton, Rheologica Acta, 32, 513( 1993). S. Puissant,B. Vergnes,Y. Demay, and J.F. Agassant, Polym. Eng. Sci., 32, 213( 1992). C.D. Han and R. Shetty, Polym. Eng. Sci., 16, 697( 1976). C.D. Han and R. Shetty, Polym. Eng. Sci., 18, 180( 1978). W.R. Schowalter, J. Non-Newtonian Fluid Mech., 29, 25( 1988). H.J. Walls,S.B. Caines,A.M. Sanchez, and S.A. Khan, J. Rheol., 47, 847( 2003). D.M. Kalyon,P. Yaras,B. Aral, and U. Yilmazer, J. Rheol., 37, 35( 1993). S. Adams,W.J. Frith, and J.R. Stokes, J. Rheol., 48, 1195( 2004). B. Bird,R. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, 1, 2nd ed., Wiley, New York( 1987). U. Yilmazer and D.M. Kalyon, J. Rheol., 33, 1197( 1989). B. Aral and D.M. Kalyon, J. Rheol., 38, 957( 1994). S.G. Hatzikiriakos and J.M. Dealy, J. Rheol., 36, 703( 1992). D.M. Kalyon and H. Gevgilili, J. Rheol., 47, 683( 2003). J. Seth,M. Cloitre, and R.T. Bonnecaze, J. Rheol., 52, 1241( 2008). H. Gevgilili and D.M. Kalyon, J. Rheol., 45, 467( 2001). W.A. Gifford, Polym. Eng. Sci., 37, 315( 1997). N. Minagawa and J.L. White, Polym. Eng. Sci., 15, 825( 1975). V. Bertola,F. Bertrand,H. Tabuteau,D. Bonn, and P. Coussot, J. Rheol., 47, 1211( 2003). H. Tang and D.M. Kalyon, J. Rheol., 52, 1069( 2008). H. Park,S. Taek Lim,F. Smillo,J.M. Dealy, and C.G. Robertson, J. Rheol., 52, 1201( 2008). M. Perez and J.R. Collier, Polym. Eng. Sci., 29, 1010( 1989). A. Lawal and D.M. Kalyon, Polym. Eng. Sci., 34, 1471( 1994). A. Yoshimura and R.K. Prud'homme, J. Rheol., 32, 53( 1988). R. Luckner and R.T. Bonnecaze, J. Rheol., 43, 735( 1999). 2004; 43 1985; 5 1997; 41 2007; 143 2004; 48 1973; 17 1998 1988; 32 1978; 18 1975; 15 1988; 34 2006 1999; 43 1992; 36 2008; 52 1992; 32 2001; 45 2005; 49 1998; 42 1989; 29 1993; 122 1993; 37 1989; 33 1988; 29 1993; 50 2004; 19 1997; 37 1993; 32 2002; 46 1986; 25 1988; 28 1963; 3 1987 1994; 34 2003; 47 1994; 38 1926; 26 2001; 33 1976; 16 1931; 2 Tang (10.1002/pen.21580-BIB39|cit39) 2004; 43 Puissant (10.1002/pen.21580-BIB9|cit9) 1992; 32 Han (10.1002/pen.21580-BIB5|cit5) 1978; 18 Minagawa (10.1002/pen.21580-BIB12|cit12) 1975; 15 Walls (10.1002/pen.21580-BIB29|cit29) 2003; 47 Lawal (10.1002/pen.21580-BIB47|cit47) 1994; 34 Gevgilili (10.1002/pen.21580-BIB23|cit23) 2001; 45 Kamal (10.1002/pen.21580-BIB32|cit32) 1985; 5 Denn (10.1002/pen.21580-BIB22|cit22) 2001; 33 Benbow (10.1002/pen.21580-BIB15|cit15) 1963; 3 Bird (10.1002/pen.21580-BIB1|cit1) 1987 Kalyon (10.1002/pen.21580-BIB40|cit40) 2005; 49 Reimers (10.1002/pen.21580-BIB21|cit21) 1998; 42 Hartman Kok (10.1002/pen.21580-BIB36|cit36) 2002; 46 Han (10.1002/pen.21580-BIB4|cit4) 1976; 16 Yoshimura (10.1002/pen.21580-BIB28|cit28) 1988; 32 Tang (10.1002/pen.21580-BIB43|cit43) 2008; 52 Bertola (10.1002/pen.21580-BIB38|cit38) 2003; 47 Nordberg (10.1002/pen.21580-BIB7|cit7) 1988; 28 Han (10.1002/pen.21580-BIB13|cit13) 1978; 18 Chen (10.1002/pen.21580-BIB19|cit19) 1993; 50 Park (10.1002/pen.21580-BIB26|cit26) 2008; 52 Kalyon (10.1002/pen.21580-BIB42|cit42) 2007; 143 Adams (10.1002/pen.21580-BIB30|cit30) 2004; 48 Seth (10.1002/pen.21580-BIB31|cit31) 2008; 52 Schowalter (10.1002/pen.21580-BIB16|cit16) 1988; 29 Tang (10.1002/pen.21580-BIB44|cit44) 2008; 52 Mooney (10.1002/pen.21580-BIB14|cit14) 1931; 2 Person (10.1002/pen.21580-BIB20|cit20) 1997; 41 Kalyon (10.1002/pen.21580-BIB24|cit24) 2003; 47 Aral (10.1002/pen.21580-BIB35|cit35) 1994; 38 (10.1002/pen.21580-BIB3|cit3) 1998 Perez (10.1002/pen.21580-BIB8|cit8) 1989; 29 Jiang (10.1002/pen.21580-BIB27|cit27) 1986; 25 Gifford (10.1002/pen.21580-BIB11|cit11) 1997; 37 Lawal (10.1002/pen.21580-BIB46|cit46) 1993; 122 Yilmazer (10.1002/pen.21580-BIB33|cit33) 1989; 33 Torres (10.1002/pen.21580-BIB10|cit10) 1993; 32 Kalyon (10.1002/pen.21580-BIB25|cit25) 2004; 19 Tadmor (10.1002/pen.21580-BIB2|cit2) 2006 Kamal (10.1002/pen.21580-BIB17|cit17) 1988; 34 Yu (10.1002/pen.21580-BIB6|cit6) 1973; 17 Hatzikiriakos (10.1002/pen.21580-BIB18|cit18) 1992; 36 Luckner (10.1002/pen.21580-BIB37|cit37) 1999; 43 Feger (10.1002/pen.21580-BIB41|cit41) 2005; 49 Herschel (10.1002/pen.21580-BIB45|cit45) 1926; 26 Kalyon (10.1002/pen.21580-BIB34|cit34) 1993; 37 |
References_xml | – reference: Y. Chen,D.M. Kalyon, and E. Bayramli, J. Appl. Polym. Sci., 50, 1169( 1993). – reference: H.J. Walls,S.B. Caines,A.M. Sanchez, and S.A. Khan, J. Rheol., 47, 847( 2003). – reference: B. Aral and D.M. Kalyon, J. Rheol., 38, 957( 1994). – reference: S.G. Hatzikiriakos and J.M. Dealy, J. Rheol., 36, 703( 1992). – reference: W.A. Gifford, Polym. Eng. Sci., 37, 315( 1997). – reference: J. Seth,M. Cloitre, and R.T. Bonnecaze, J. Rheol., 52, 1241( 2008). – reference: T.C. Yu and C.D. Han, J. Appl. Polym. Sci., 17, 1203( 1973). – reference: N. Minagawa and J.L. White, Polym. Eng. Sci., 15, 825( 1975). – reference: W.R. Schowalter, J. Non-Newtonian Fluid Mech., 29, 25( 1988). – reference: M. Reimers and J. Dealy, J. Rheol., 42, 527( 1998). – reference: H. Park,S. Taek Lim,F. Smillo,J.M. Dealy, and C.G. Robertson, J. Rheol., 52, 1201( 2008). – reference: M.R. Kamal,S.K. Goyal, and E. Chu, AIChE J., 34, 94( 1988). – reference: D.G. Baird and D.I. Collias, Eds., Polymer Processing-Principles and Design, John Wiley and Sons, New York( 1998). – reference: U. Yilmazer and D.M. Kalyon, J. Rheol., 33, 1197( 1989). – reference: T.J. Person and M.M. Denn, J. Rheol., 41, 249( 1997). – reference: S. Puissant,B. Vergnes,Y. Demay, and J.F. Agassant, Polym. Eng. Sci., 32, 213( 1992). – reference: C.D. Han and R. Shetty, Polym. Eng. Sci., 18, 180( 1978). – reference: D.M. Kalyon,H. Gevgilili, and A. Shah, Int. Polym. Proc., 19, 129( 2004). – reference: J.J. Benbow and P. Lamb, SPE Trans., 3, 7( 1963). – reference: H. Gevgilili and D.M. Kalyon, J. Rheol., 45, 467( 2001). – reference: A. Torres,A.N. Hrymak,J. Vlachopoulos,J. Dooley, and B. T. Hilton, Rheologica Acta, 32, 513( 1993). – reference: R. Luckner and R.T. Bonnecaze, J. Rheol., 43, 735( 1999). – reference: P.J.A. Hartman Kok,S.G. Kazarian,C.J. Lawrence, and B.J. Briscoe, J. Rheol., 46, 481( 2002). – reference: V. Bertola,F. Bertrand,H. Tabuteau,D. Bonn, and P. Coussot, J. Rheol., 47, 1211( 2003). – reference: D. Kalyon, J. Rheol., 49, 621( 2005). – reference: H.S. Tang and D.M. Kalyon, J. Rheol., 52, 507( 2008). – reference: C. Feger,J.D. Gelorme,M. McGlashan-Powell, and D.M. Kalyon, IBM J. Res. Dev., 49, 699( 2005). – reference: A. Yoshimura and R.K. Prud'homme, J. Rheol., 32, 53( 1988). – reference: H. Tang and D.M. Kalyon, Rheol. Acta., 43, 80( 2004). – reference: D.M. Kalyon and H. Tang, J. Non-Newtonian Fluid Mech., 143, 133( 2007). – reference: T.Q. Jiang,A.C. Young, and A.B. Metzner, Rheol Acta, 25, 397( 1986). – reference: D.M. Kalyon,P. Yaras,B. Aral, and U. Yilmazer, J. Rheol., 37, 35( 1993). – reference: W.H. Herschel and R. Bulkley, Am. Soc. Test. Proc., 26, 621( 1926). – reference: M. Mooney, J. Rheol., 2, 210( 1931). – reference: S. Adams,W.J. Frith, and J.R. Stokes, J. Rheol., 48, 1195( 2004). – reference: M.R. Kamal and T. Mutel, J. Polym. Eng., 5, 293( 1985). – reference: C.D. Han and R. Shetty, Polym. Eng. Sci., 18, 187( 1978). – reference: C.D. Han and R. Shetty, Polym. Eng. Sci., 16, 697( 1976). – reference: H. Tang and D.M. Kalyon, J. Rheol., 52, 1069( 2008). – reference: M. Perez and J.R. Collier, Polym. Eng. Sci., 29, 1010( 1989). – reference: B. Bird,R. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, 1, 2nd ed., Wiley, New York( 1987). – reference: Z. Tadmor and C. Gogos, Principles of Polymer Processing, 2nd ed., Wiley-Interscience, Hoboken, NJ( 2006). – reference: M. Denn, Annu. Rev. Fluid Mech., 33, 265( 2001). – reference: D.M. Kalyon and H. Gevgilili, J. Rheol., 47, 683( 2003). – reference: M.E. Nordberg and H.H. Winter, Polym. Eng. Sci., 28, 444( 1988). – reference: A. Lawal,D.M. Kalyon, and U. Yilmazer, Chem. Eng. Commun., 122, 127( 1993). – reference: A. Lawal and D.M. Kalyon, Polym. Eng. Sci., 34, 1471( 1994). – volume: 52 start-page: 1241 year: 2008 publication-title: J. Rheol. – volume: 38 start-page: 957 year: 1994 publication-title: J. Rheol. – volume: 46 start-page: 481 year: 2002 publication-title: J. Rheol. – volume: 52 start-page: 1069 year: 2008 publication-title: J. Rheol. – volume: 34 start-page: 1471 year: 1994 publication-title: Polym. Eng. Sci. – volume: 33 start-page: 265 year: 2001 publication-title: Annu. Rev. Fluid Mech. – volume: 48 start-page: 1195 year: 2004 publication-title: J. Rheol. – volume: 42 start-page: 527 year: 1998 publication-title: J. Rheol. – volume: 29 start-page: 1010 year: 1989 publication-title: Polym. Eng. Sci. – volume: 47 start-page: 683 year: 2003 publication-title: J. Rheol. – volume: 47 start-page: 1211 year: 2003 publication-title: J. Rheol. – year: 1987 – volume: 3 start-page: 7 year: 1963 publication-title: SPE Trans. – volume: 41 start-page: 249 year: 1997 publication-title: J. Rheol. – volume: 32 start-page: 513 year: 1993 publication-title: Rheologica Acta – volume: 37 start-page: 35 year: 1993 publication-title: J. Rheol. – volume: 18 start-page: 187 year: 1978 publication-title: Polym. Eng. Sci. – volume: 49 start-page: 699 year: 2005 publication-title: IBM J. Res. Dev. – volume: 47 start-page: 847 year: 2003 publication-title: J. Rheol. – volume: 26 start-page: 621 year: 1926 publication-title: Am. Soc. Test. Proc. – volume: 122 start-page: 127 year: 1993 publication-title: Chem. Eng. Commun. – volume: 37 start-page: 315 year: 1997 publication-title: Polym. Eng. Sci. – volume: 32 start-page: 53 year: 1988 publication-title: J. Rheol. – volume: 43 start-page: 735 year: 1999 publication-title: J. Rheol. – year: 1998 – volume: 2 start-page: 210 year: 1931 publication-title: J. Rheol. – volume: 25 start-page: 397 year: 1986 publication-title: Rheol Acta – volume: 52 start-page: 507 year: 2008 publication-title: J. Rheol. – volume: 32 start-page: 213 year: 1992 publication-title: Polym. Eng. Sci. – volume: 15 start-page: 825 year: 1975 publication-title: Polym. Eng. Sci. – volume: 36 start-page: 703 year: 1992 publication-title: J. Rheol. – volume: 45 start-page: 467 year: 2001 publication-title: J. Rheol. – volume: 28 start-page: 444 year: 1988 publication-title: Polym. Eng. Sci. – volume: 18 start-page: 180 year: 1978 publication-title: Polym. Eng. Sci. – volume: 49 start-page: 621 year: 2005 publication-title: J. Rheol. – year: 2006 – volume: 5 start-page: 293 year: 1985 publication-title: J. Polym. Eng. – volume: 43 start-page: 80 year: 2004 publication-title: Rheol. Acta. – volume: 143 start-page: 133 year: 2007 publication-title: J. Non‐Newtonian Fluid Mech. – volume: 52 start-page: 1201 year: 2008 publication-title: J. Rheol. – volume: 29 start-page: 25 year: 1988 publication-title: J. Non‐Newtonian Fluid Mech. – volume: 16 start-page: 697 year: 1976 publication-title: Polym. Eng. Sci. – volume: 50 start-page: 1169 year: 1993 publication-title: J. Appl. Polym. Sci. – volume: 17 start-page: 1203 year: 1973 publication-title: J. Appl. Polym. Sci. – volume: 19 start-page: 129 year: 2004 publication-title: Int. Polym. Proc. – volume: 33 start-page: 1197 year: 1989 publication-title: J. Rheol. – volume: 34 start-page: 94 year: 1988 publication-title: AIChE J. – volume: 47 start-page: 1211 year: 2003 ident: 10.1002/pen.21580-BIB38|cit38 publication-title: J. Rheol. doi: 10.1122/1.1595098 – volume: 37 start-page: 315 year: 1997 ident: 10.1002/pen.21580-BIB11|cit11 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.11673 – volume: 47 start-page: 683 year: 2003 ident: 10.1002/pen.21580-BIB24|cit24 publication-title: J. Rheol. doi: 10.1122/1.1562156 – volume: 50 start-page: 1169 year: 1993 ident: 10.1002/pen.21580-BIB19|cit19 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1993.070500707 – volume: 143 start-page: 133 year: 2007 ident: 10.1002/pen.21580-BIB42|cit42 publication-title: J. Non-Newtonian Fluid Mech. doi: 10.1016/j.jnnfm.2007.02.010 – volume: 32 start-page: 213 year: 1992 ident: 10.1002/pen.21580-BIB9|cit9 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760320308 – volume: 45 start-page: 467 year: 2001 ident: 10.1002/pen.21580-BIB23|cit23 publication-title: J. Rheol. doi: 10.1122/1.1339248 – volume: 52 start-page: 1241 year: 2008 ident: 10.1002/pen.21580-BIB31|cit31 publication-title: J. Rheol. doi: 10.1122/1.2963135 – volume: 47 start-page: 847 year: 2003 ident: 10.1002/pen.21580-BIB29|cit29 publication-title: J. Rheol. doi: 10.1122/1.1574023 – volume-title: Polymer Processing-Principles and Design year: 1998 ident: 10.1002/pen.21580-BIB3|cit3 – volume: 2 start-page: 210 year: 1931 ident: 10.1002/pen.21580-BIB14|cit14 publication-title: J. Rheol. doi: 10.1122/1.2116364 – volume: 25 start-page: 397 year: 1986 ident: 10.1002/pen.21580-BIB27|cit27 publication-title: Rheol Acta doi: 10.1007/BF01331511 – volume: 43 start-page: 80 year: 2004 ident: 10.1002/pen.21580-BIB39|cit39 publication-title: Rheol. Acta. doi: 10.1007/s00397-003-0322-y – volume: 122 start-page: 127 year: 1993 ident: 10.1002/pen.21580-BIB46|cit46 publication-title: Chem. Eng. Commun. doi: 10.1080/00986449308936153 – volume: 28 start-page: 444 year: 1988 ident: 10.1002/pen.21580-BIB7|cit7 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760280707 – volume: 49 start-page: 699 year: 2005 ident: 10.1002/pen.21580-BIB41|cit41 publication-title: IBM J. Res. Dev. doi: 10.1147/rd.494.0699 – volume: 18 start-page: 187 year: 1978 ident: 10.1002/pen.21580-BIB5|cit5 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760180304 – volume: 19 start-page: 129 year: 2004 ident: 10.1002/pen.21580-BIB25|cit25 publication-title: Int. Polym. Proc. doi: 10.3139/217.1822 – volume-title: Dynamics of Polymeric Liquids year: 1987 ident: 10.1002/pen.21580-BIB1|cit1 – volume: 37 start-page: 35 year: 1993 ident: 10.1002/pen.21580-BIB34|cit34 publication-title: J. Rheol. doi: 10.1122/1.550435 – volume: 16 start-page: 697 year: 1976 ident: 10.1002/pen.21580-BIB4|cit4 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760161008 – volume: 18 start-page: 180 year: 1978 ident: 10.1002/pen.21580-BIB13|cit13 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760180303 – volume: 33 start-page: 265 year: 2001 ident: 10.1002/pen.21580-BIB22|cit22 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.33.1.265 – volume: 26 start-page: 621 year: 1926 ident: 10.1002/pen.21580-BIB45|cit45 publication-title: Am. Soc. Test. Proc. – volume: 34 start-page: 94 year: 1988 ident: 10.1002/pen.21580-BIB17|cit17 publication-title: AIChE J. doi: 10.1002/aic.690340111 – volume: 32 start-page: 513 year: 1993 ident: 10.1002/pen.21580-BIB10|cit10 publication-title: Rheologica Acta doi: 10.1007/BF00369067 – volume: 5 start-page: 293 year: 1985 ident: 10.1002/pen.21580-BIB32|cit32 publication-title: J. Polym. Eng. doi: 10.1515/POLYENG.1985.5.4.293 – volume: 29 start-page: 25 year: 1988 ident: 10.1002/pen.21580-BIB16|cit16 publication-title: J. Non-Newtonian Fluid Mech. doi: 10.1016/0377-0257(88)85048-1 – volume: 42 start-page: 527 year: 1998 ident: 10.1002/pen.21580-BIB21|cit21 publication-title: J. Rheol. doi: 10.1122/1.550958 – volume: 17 start-page: 1203 year: 1973 ident: 10.1002/pen.21580-BIB6|cit6 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1973.070170417 – volume: 46 start-page: 481 year: 2002 ident: 10.1002/pen.21580-BIB36|cit36 publication-title: J. Rheol. doi: 10.1122/1.1446882 – volume: 52 start-page: 1201 year: 2008 ident: 10.1002/pen.21580-BIB26|cit26 publication-title: J. Rheol. doi: 10.1122/1.2964199 – volume: 48 start-page: 1195 year: 2004 ident: 10.1002/pen.21580-BIB30|cit30 publication-title: J. Rheol. doi: 10.1122/1.1795193 – volume: 52 start-page: 1069 year: 2008 ident: 10.1002/pen.21580-BIB44|cit44 publication-title: J. Rheol. doi: 10.1122/1.2955508 – volume: 41 start-page: 249 year: 1997 ident: 10.1002/pen.21580-BIB20|cit20 publication-title: J. Rheol. doi: 10.1122/1.550877 – volume: 43 start-page: 735 year: 1999 ident: 10.1002/pen.21580-BIB37|cit37 publication-title: J. Rheol. doi: 10.1122/1.551003 – volume: 3 start-page: 7 year: 1963 ident: 10.1002/pen.21580-BIB15|cit15 publication-title: SPE Trans. – volume: 36 start-page: 703 year: 1992 ident: 10.1002/pen.21580-BIB18|cit18 publication-title: J. Rheol. doi: 10.1122/1.550313 – volume: 33 start-page: 1197 year: 1989 ident: 10.1002/pen.21580-BIB33|cit33 publication-title: J. Rheol. doi: 10.1122/1.550049 – volume: 38 start-page: 957 year: 1994 ident: 10.1002/pen.21580-BIB35|cit35 publication-title: J. Rheol. doi: 10.1122/1.550537 – volume: 34 start-page: 1471 year: 1994 ident: 10.1002/pen.21580-BIB47|cit47 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760341906 – volume: 15 start-page: 825 year: 1975 ident: 10.1002/pen.21580-BIB12|cit12 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760151202 – volume-title: Principles of Polymer Processing year: 2006 ident: 10.1002/pen.21580-BIB2|cit2 – volume: 49 start-page: 621 year: 2005 ident: 10.1002/pen.21580-BIB40|cit40 publication-title: J. Rheol. doi: 10.1122/1.1879043 – volume: 52 start-page: 507 year: 2008 ident: 10.1002/pen.21580-BIB43|cit43 publication-title: J. Rheol. doi: 10.1122/1.2837104 – volume: 29 start-page: 1010 year: 1989 ident: 10.1002/pen.21580-BIB8|cit8 publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760291507 – volume: 32 start-page: 53 year: 1988 ident: 10.1002/pen.21580-BIB28|cit28 publication-title: J. Rheol. doi: 10.1122/1.549963 |
SSID | ssj0002359 |
Score | 2.0087945 |
Snippet | Coextrusion is widely used to fabricate multilayered products with each layer providing a separate functionality, including barrier resistance to gases,... |
SourceID | proquest gale pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 652 |
SubjectTerms | Applied sciences Equipment and supplies Exact sciences and technology Extrusion dies Extrusion moulding Extrusion process Flow velocity Fluid mechanics Fluids Machinery and processing Mechanical properties Moulding Plastics Polymer industry, paints, wood Production processes Shear stress Technology of polymers Viscosity |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BcwAOCAqobku1QrwupvaunycU0oSCRFRS-rit9uUSNbJD3Ujw75mxN1YsFS5RlHxJ7J3x7DeT8TeEvE5iybiRiW9ZJv1Ic-urODV-YUPNlcxz1ZQGvk2T47Po62V86XpzatdWuY6JTaA2lcYa-SFD0SLO0vjj8pePQ6Pwz1U3QeM-GUAEziD3GnwaT09mXShmPG75L2c-h1xvLS0UsMOlLT_AdodykBsbkgvLA1zi39gnKWtYqqKdcdEjoZtUttmLJk_IY0ci6bC1-lNyz5bb5MFoPbttmzzakBl8RtSwpI34SFO3pjj-bEGBrFJs5jV_6KiCCH2zwroZrQp6PsdbVYBVA5xOFqu5qem8pDjhk54Ca6dHkF3Ti_ntT4pleHxt-ZycTcY_Rse-m63g6ziFjDGMtIFtKQ4hGCpdqERxKVmRsCAxsWbaZjwoZJinBlIIHhY6CW2QZDKG9IhZZvgLslVWpd0hNFMsR10_a3gSBSbK8iwtFPAgq1XEbeGR9-sFFtoJj-P8i4VoJZOZAFuIxhYeedVBl63axl2gN2gl4aZ0wkONdYz6Sq7qWgyB74CfsDyFL2twqHJRYhtNC_hyOuuB3jlQUcFBaenuSoBTQ2GsHvJtD3nVyoLfBdzvAcH0uv89jXd1JyhvrrG7Lo3FxfSzOE--A2ubpeLIIwc99-s-ACE4Al4deWRv7Y_CRZ5adNeJR2j3Lh4CNtOVtlrVAkhjGgKEgWUaL_73WouT8bR5svvf39ojD9uuCuxo2idb4LP2JZC1W3XgLsm_Xwk7GQ priority: 102 providerName: ProQuest |
Title | An analytical model for steady coextrusion of viscoplastic fluids in thin slit dies with wall slip |
URI | https://api.istex.fr/ark:/67375/WNG-V6Q078R7-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpen.21580 https://www.proquest.com/docview/218573275 https://www.proquest.com/docview/743713272 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbG9gA8cBkgykZlIW4v6RI7V_FURruBRDUKY3tAsmzHHtWqdFpabr-ec5zLFjQkxEtUtV_S-OTk-PPR8XcIeRpHkvFcxp5hqfRCzY2noiT3rAk0VzLLlEsNvJ_E-4fhu-PoeI28avbCVPoQbcIN3wwXr_EFl6rcuRANhdX-AOarFNfrWKuFhGh6IR3FeFRRX848Dsu8RlXIZzvtmZ25qI7IG2jdH1giKUuwkq3aW3T452UW66ah8W3ypRlAVX1yOlgt1UD_-kPb8T9HeIfcqukpHVb-dJesmWKTXN9tusJtkpuXBAzvETUsqERZE5cRp66tDgUaTJ3v_KR6AbH_fIUZObqw9NsMN8EAXwc4tfPVLC_prKDLr3AAvrukWNJIMTVMv8v5HL87u08Ox6NPu_te3bXB01ECa9Eg1DlMeFEAYVZpq2LFpWQ2Zn6cR5ppk3LfyiBLclic8MDqODB-nMoIFl7MsJw_IOvFojAPCU0Vy1Ax0OQ8Dv08TLM0sQoYltEq5Mb2yMvm-QldS5pjZ425qMSYmQATCmfCHnnSQs8qHY-rQM_QCUTd_xMOJWZIyhO5KksxBCaVQPzLEriYw6F-RoEFOhXg7cdpB_SiBtkF3JSW9X4HGBpKbnWQzzvIk0pw_CrgdgcIj153r-Octx2gPD_Fur0kEkeTPfE5_gB8cJqINz3S73h3ewIE9xAYe9gjW427izqmlWCiNII_SqIeoe2veAtYpleYxaoUQEeTACAMnozz7L_bWhyMJu7Do3-HbpEbVfEGFk5tk3VwYPMYOOFS9cm1dLzXJxuvR5ODad-Fgt9qYV4y |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeygcEBQQoaVYiAKXpVl7nweEoqRpStsI-r4Zr-0tEdFu6DaC_ij-IzPeh7JS4dZLFCVfvLue8fibyXiGkDeBLxnXMnAMi6TjKW6cxA-1kxpX8UTGcWJDA4fjYHTqfb7wL5bIn_osDKZV1jbRGmqdK4yRbzMsWsRZ6H-a_XSwaRT-uVp30Ci1Yt_c_AKPrfi4NwDxbjE23Dnpj5yqqYCj_BBcJddTGuyx74IVSFSaBAmXkqUB6wbaV0yZiHdT6cahBu7M3VQFrukGkfTBL2CGaQ7j3iMrHucxLqhouNsYfsb9km1z5nDwLOtCRl22PTPZB9hcsfjkwvZXbQIrKNDfmJUpCxBMWnbUaFHeReJsd77hI_Kwoqy0V-rYY7JksjWy2q87xa2RBwtFDZ-QpJdRW-rERskpNlubUqDGFFOH9Q3t57AfXM0xSkfzlJ5N8GAMcHiA0-F0PtEFnWQU-4nSY_AR6AB8eXo-uf5OMeiPn82ektM7mfRnZDnLM_Oc0ChhMVYRNJoHXld7URyFaQKsy6jE4ybtkPf1BAtVlTnHbhtTURZoZgJkIawsOuR1A52VtT1uA22hlETVExReCoyaFJdyXhSiB-wKtJLFIQxmcVhTI8OknRKwd3zUAr2rQGkON6VkdQYCHg3LcLWQb1vIy7II-W3AjRYQRK_a41jtah5QXv3AXL7QF-fjXXEWfAWOeBSKQYdsttSv-QEYfA9YvNch67U-isrOFaJZlR1Cm2_xFjB1LzP5vBBAUUMXIAwkY7X433MtvuyM7ZsX_73WK7I6Ojk8EAd74_11cr_M58Bcqg2yDPprXgJNvE427eKk5NtdW4O_z211ZQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VRIJyQFBADS1lhShwMbF3_TwgFPKgoRCFlD5uy3q9LhGRHepG0J_Gv2PGL8VS4dZLFCVfHHtnPPvNevYbQl64jmQ8kq6hmS8NW3FthI4XGbG2FA9lEIT50sDniXtwbH88c842yJ9qLwyWVVYxMQ_UUapwjbzLULSIM8_pxmVVxHQwerf8aWADKXzQWnXTKDzkUF_9guwtezsegKn3GRsNv_YPjLLBgKEcD9Imy1YRxGbHgogQqjh0Qy4li11mupGjmNI-N2NpBV4EPJpbsXItbbq-dCBHYJpFHI57i7Q9SIrMFmm_H06ms3oaYNwpuDdnBoc8s5I1Mll3qZM3MNWiFOXaZFhOCW0072-s0ZQZmCku-ms0CPA6jc7nwdF9cq8ksLRXeNwDsqGTLXKnX_WN2yJ31yQOH5Kwl9Bc-CRfM6fYem1BgShTLCSOrmg_hTG-WOGaHU1jejLHbTLA6AFOR4vVPMroPKHYXZQeQcZAB5DZ09P55XeKjwDws-Ujcnwjw_6YtJI00duE-iELUFNQR9y1zcj2A9-LQ-BgWoU213GHvK4GWKhS9Bx7byxEIdfMBNhC5LbokOc1dFkofVwH2kcribJDKLxkuIaSnctVlokecC3wURZ4cLAchwobCTprARgfzRqgVyUoTuGklCx3RMCloShXA_mygTwvJMmvA-42gGB61TxO7l31BcqLH1jZ5znidPJBnLhfgDHOPDHokL2G-9U_gPBvA6e3O2Sn8kdRRr1M1Pdoh9D6WzwFLORLdLrKBBBWzwIIA8vkXvzvsRbT4SR_8-S___WM3IZIID6NJ4c7ZLMo7sDCql3SAvfVT4EzXoZ75d1JybebDgh_AdBJevc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+analytical+model+for+steady+coextrusion+of+viscoplastic+fluids+in+thin+slit+dies+with+wall+slip&rft.jtitle=Polymer+engineering+and+science&rft.au=Kalyon%2C+Dilhan+M&rft.date=2010-04-01&rft.pub=Society+of+Plastics+Engineers%2C+Inc&rft.issn=0032-3888&rft.volume=50&rft.issue=4&rft.spage=652&rft_id=info:doi/10.1002%2Fpen.21580&rft.externalDocID=A223732297 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon |