An analytical model for steady coextrusion of viscoplastic fluids in thin slit dies with wall slip

Coextrusion is widely used to fabricate multilayered products with each layer providing a separate functionality, including barrier resistance to gases, strength, and printability. Here an analytical model of the coextrusion die flow of two incompressible, viscoplastic fluids in a slit die, subject...

Full description

Saved in:
Bibliographic Details
Published inPolymer engineering and science Vol. 50; no. 4; pp. 652 - 664
Main Author Kalyon, Dilhan M.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2010
Wiley
Society of Plastics Engineers, Inc
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coextrusion is widely used to fabricate multilayered products with each layer providing a separate functionality, including barrier resistance to gases, strength, and printability. Here an analytical model of the coextrusion die flow of two incompressible, viscoplastic fluids in a slit die, subject to nonlinear wall slip and under fully developed and isothermal conditions, is developed to allow the prediction of the steady‐state velocity and shear stress distributions and the flow rate versus pressure gradient relationship. The resulting model is applied to the coextrusion of two layers of viscoplastic fluids in a thin rectangular slit die (slit gap, h ≪ slit width, W). The analytical solution recognizes a number of distinct flow conditions (eleven cases) that need to be treated separately. The solutions for all eleven cases are provided along with an apriori identification methodology for the determination of the applicable case, given the shear viscosity and wall slip parameters of the two viscoplastic fluids, the slit geometry and the flow conditions. Simplifications of the model would provide the solutions for the fully developed and isothermal coextrusion flows of any combination of Hershel‐Bulkley, Bingham, power‐law and Newtonian fluids with or without wall slip at one or both walls of the slit die. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers
AbstractList Coextrusion is widely used to fabricate multilayered products with each layer providing a separate functionality, including barrier resistance to gases, strength, and printability. Here an analytical model of the coextrusion die flow of two incompressible, viscoplastic fluids in a slit die, subject to nonlinear wall slip and under fully developed and isothermal conditions, is developed to allow the prediction of the steady-state velocity and shear stress distributions and the flow rate versus pressure gradient relationship. The resulting model is applied to the coextrusion of two layers of viscoplastic fluids in a thin rectangular slit die (slit gap, h ≪ slit width, W). The analytical solution recognizes a number of distinct flow conditions (eleven cases) that need to be treated separately. The solutions for all eleven cases are provided along with an apriori identification methodology for the determination of the applicable case, given the shear viscosity and wall slip parameters of the two viscoplastic fluids, the slit geometry and the flow conditions. Simplifications of the model would provide the solutions for the fully developed and isothermal coextrusion flows of any combination of Hershel-Bulkley, Bingham, power-law and Newtonian fluids with or without wall slip at one or both walls of the slit die. POLYM. ENG. SCI., 50:652-664, 2010. [C] 2009 Society of Plastics Engineers
Coextrusion is widely used to fabricate multilayered products with each layer providing a separate functionality, including barrier resistance to gases, strength, and printability. Here an analytical model of the coextrusion die flow of two incompressible, viscoplastic fluids in a slit die, subject to nonlinear wall slip and under fully developed and isothermal conditions, is developed to allow the prediction of the steady‐state velocity and shear stress distributions and the flow rate versus pressure gradient relationship. The resulting model is applied to the coextrusion of two layers of viscoplastic fluids in a thin rectangular slit die (slit gap, h ≪ slit width, W). The analytical solution recognizes a number of distinct flow conditions (eleven cases) that need to be treated separately. The solutions for all eleven cases are provided along with an apriori identification methodology for the determination of the applicable case, given the shear viscosity and wall slip parameters of the two viscoplastic fluids, the slit geometry and the flow conditions. Simplifications of the model would provide the solutions for the fully developed and isothermal coextrusion flows of any combination of Hershel‐Bulkley, Bingham, power‐law and Newtonian fluids with or without wall slip at one or both walls of the slit die. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers
Coextrusion is widely used to fabricate multilayered products with each layer providing a separate functionality, including barrier resistance to gases, strength, and printability. Here an analytical model of the coextrusion die flow of two incompressible, viscoplastic fluids in a slit die, subject to nonlinear wall slip and under fully developed and isothermal conditions, is developed to allow the prediction of the steady-state velocity and shear stress distributions and the flow rate versus pressure gradient relationship. The resulting model is applied to the coextrusion of two layers of viscoplastic fluids in a thin rectangular slit die (slit gap, h « slit width, W). The analytical solution recognizes a number of distinct flow conditions (eleven cases) that need to be treated separately. The solutions for all eleven cases are provided along with an apriori identification methodology for the determination of the applicable case, given the shear viscosity and wall slip parameters of the two viscoplastic fluids, the slit geometry and the flow conditions. Simplifications of the model would provide the solutions for the fully developed and isothermal coextrusion flows of any combination of Hershel-Bulkley, Bingham, power-law and Newtonian fluids with or without wall slip at one or both walls of the slit die. [PUBLICATION ABSTRACT]
Coextrusion is widely used to fabricate multilayered products with each layer providing a separate functionality, including barrier resistance to gases, strength, and printability. Here an analytical model of the coextrusion die flow of two incompressible, viscoplastic fluids in a slit die, subject to nonlinear wall slip and under fully developed and isothermal conditions, is developed to allow the prediction of the steady-state velocity and shear stress distributions and the flow rate versus pressure gradient relationship. The resulting model is applied to the coextrusion of two layers of viscoplastic fluids in a thin rectangular slit die (slit gap, h ' slit width, W). The analytical solution recognizes a number of distinct flow conditions (eleven cases) that need to be treated separately. The solutions for all eleven cases are provided along with an apriori identification methodology for the determination of the applicable case, given the shear viscosity and wall slip parameters of the two viscoplastic fluids, the slit geometry and the flow conditions. Simplifications of the model would provide the solutions for the fully developed and isothermal coextrusion flows of any combination of Hershel-Bulkley, Bingham, power-law and Newtonian fluids with or without wall slip at one or both walls of the slit die. [PUBLICATION ABSTRACT]
Audience Academic
Author Kalyon, Dilhan M.
Author_xml – sequence: 1
  givenname: Dilhan M.
  surname: Kalyon
  fullname: Kalyon, Dilhan M.
  email: dkalyon@stevens.edu
  organization: Department of Chemical, Biomedical and Materials Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22545084$$DView record in Pascal Francis
BookMark eNp10m1v0zAQAOAIDYlu8IF_YIEQQiKdX5I4_ViNbUyaBoy3j5br2K2HaxfbWdd_z5V2g6KiSI5kPXc6391hceCD10XxnOAhwZgeL7QfUlK3-FExIHXVlrRh1UExwJjRkrVt-6Q4TOkGg2X1aFBMxh5JL90qWyUdmodOO2RCRClr2a2QCvouxz7Z4FEw6NYmFRZOJuDIuN52CVmP8gyO5GxGndUJLW2eoaV0bn23eFo8NtIl_Wz7Pyq-np1-OXlfXn44vzgZX5aq5hSXpFIdJ21NeEMnykyaCZOSmobipqsVVbpl2Egy4h2uRowY1RCNm1bWo6ahmnbsqHi9ybuI4WevUxZzqFY7J70OfRK8YpwwyinIF__Im9BH6EISFCrggGpALzdoKp0W1puQo1TrlGJMKQNERxxUuUdNtddROhiNsXC944d7PHydnlu1N-DNTgCYDCOZyj4lcfH5ete-_ctOYGpeJziSnc5y2oTs8FfbNsgEwzdRemWTWEQ7l3ElKK2rGrcVuOONUzGkFLURymaZYSWgdusEwWK9ewJ2T_zevT9FP0TcJ91nt9mX8PLV_6H4eHp1H7HtuYUlvXuIkPGHaDjjtfh-dS6-NZ8wb6-5eMd-Adco9a0
CODEN PYESAZ
CitedBy_id crossref_primary_10_1002_jbm_a_33190
crossref_primary_10_1122_1_4945820
crossref_primary_10_1155_2015_714136
crossref_primary_10_1039_C6SM01775D
crossref_primary_10_1122_1_4998177
crossref_primary_10_1146_annurev_chembioeng_060713_040211
crossref_primary_10_3390_gels8040230
crossref_primary_10_1080_15583724_2011_615961
crossref_primary_10_3139_217_3680
crossref_primary_10_3390_pr4020019
crossref_primary_10_4325_seikeikakou_23_379
Cites_doi 10.1122/1.1595098
10.1002/pen.11673
10.1122/1.1562156
10.1002/app.1993.070500707
10.1016/j.jnnfm.2007.02.010
10.1002/pen.760320308
10.1122/1.1339248
10.1122/1.2963135
10.1122/1.1574023
10.1122/1.2116364
10.1007/BF01331511
10.1007/s00397-003-0322-y
10.1080/00986449308936153
10.1002/pen.760280707
10.1147/rd.494.0699
10.1002/pen.760180304
10.3139/217.1822
10.1122/1.550435
10.1002/pen.760161008
10.1002/pen.760180303
10.1146/annurev.fluid.33.1.265
10.1002/aic.690340111
10.1007/BF00369067
10.1515/POLYENG.1985.5.4.293
10.1016/0377-0257(88)85048-1
10.1122/1.550958
10.1002/app.1973.070170417
10.1122/1.1446882
10.1122/1.2964199
10.1122/1.1795193
10.1122/1.2955508
10.1122/1.550877
10.1122/1.551003
10.1122/1.550313
10.1122/1.550049
10.1122/1.550537
10.1002/pen.760341906
10.1002/pen.760151202
10.1122/1.1879043
10.1122/1.2837104
10.1002/pen.760291507
10.1122/1.549963
ContentType Journal Article
Copyright Copyright © 2009 Society of Plastics Engineers
2015 INIST-CNRS
COPYRIGHT 2010 Society of Plastics Engineers, Inc.
Copyright Society of Plastics Engineers Apr 2010
Copyright_xml – notice: Copyright © 2009 Society of Plastics Engineers
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2010 Society of Plastics Engineers, Inc.
– notice: Copyright Society of Plastics Engineers Apr 2010
DBID BSCLL
AAYXX
CITATION
IQODW
N95
ISR
3V.
7SR
7XB
88I
8AF
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
GNUQQ
GUQSH
HCIFZ
JG9
KB.
L6V
M2O
M2P
M7S
MBDVC
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0X
DOI 10.1002/pen.21580
DatabaseName Istex
CrossRef
Pascal-Francis
Gale Business: Insights
Gale In Context: Science
ProQuest Central (Corporate)
Engineered Materials Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
STEM Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Materials Research Database
Materials Science Database
ProQuest Engineering Collection
Research Library (ProQuest)
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
Materials Research Database
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SIRS Editorial
Materials Science Collection
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Research Library
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Materials Research Database
Materials Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Applied Sciences
EISSN 1548-2634
EndPage 664
ExternalDocumentID 2005874541
A223732297
22545084
10_1002_pen_21580
PEN21580
ark_67375_WNG_V6Q078R7_D
Genre article
Feature
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: ARDEC
  funderid: DAAE30‐00‐D‐1011‐T23
GroupedDBID -~X
.-4
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
29O
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
88I
8AF
8FE
8FG
8G5
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDEX
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABTAH
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AIXEN
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAAKF
BAFTC
BDRZF
BENPR
BES
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
FOJGT
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IAO
ICW
IEA
IOF
ISR
ITC
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M2Q
M6K
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N95
N9A
NDZJH
NEJ
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
P62
PALCI
PDBOC
PQQKQ
PROAC
PTHSS
PV9
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RWL
RWM
RX1
RXW
RYL
RZL
S0X
SAMSI
SUPJJ
TUS
U5U
UB1
V2E
W8V
W99
WBKPD
WFSAM
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
XI7
XV2
ZE2
ZY4
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
PQGLB
PMFND
7SR
7XB
8FD
8FK
JG9
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c5720-14cd71851762bcfb6b3aa2f6206d5c2ce830fa197d04931fc61e068a59662e2d3
IEDL.DBID DR2
ISSN 0032-3888
IngestDate Fri Jul 11 00:14:16 EDT 2025
Sat Aug 16 21:42:48 EDT 2025
Tue Jun 17 21:24:00 EDT 2025
Thu Jun 12 23:43:13 EDT 2025
Tue Jun 10 20:20:51 EDT 2025
Fri Jun 27 04:01:33 EDT 2025
Fri May 23 01:59:07 EDT 2025
Mon Jul 21 09:15:08 EDT 2025
Thu Apr 24 22:52:18 EDT 2025
Tue Jul 01 01:44:37 EDT 2025
Wed Jan 22 16:23:12 EST 2025
Wed Oct 30 10:01:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Printability
Rheological model
Pipe flow
Isothermal flow
Theoretical study
Multiple layer
Polymer
Viscoplastic fluid
Coextrusion
Modeling
Shear viscosity
Extrusion die
Technological properties
Rheological properties
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5720-14cd71851762bcfb6b3aa2f6206d5c2ce830fa197d04931fc61e068a59662e2d3
Notes ARDEC - No. DAAE30-00-D-1011-T23
ark:/67375/WNG-V6Q078R7-D
istex:D709557AF313D4C8A1EFF872A84EC9078D2468B6
ArticleID:PEN21580
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 218573275
PQPubID 41843
PageCount 13
ParticipantIDs proquest_miscellaneous_743713272
proquest_journals_218573275
gale_infotracmisc_A223732297
gale_infotracgeneralonefile_A223732297
gale_infotracacademiconefile_A223732297
gale_incontextgauss_ISR_A223732297
gale_businessinsightsgauss_A223732297
pascalfrancis_primary_22545084
crossref_citationtrail_10_1002_pen_21580
crossref_primary_10_1002_pen_21580
wiley_primary_10_1002_pen_21580_PEN21580
istex_primary_ark_67375_WNG_V6Q078R7_D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2010
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: April 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: Newtown
PublicationTitle Polymer engineering and science
PublicationTitleAlternate Polym Eng Sci
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Society of Plastics Engineers, Inc
Blackwell Publishing Ltd
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: Society of Plastics Engineers, Inc
– name: Blackwell Publishing Ltd
References M.R. Kamal,S.K. Goyal, and E. Chu, AIChE J., 34, 94( 1988).
J.J. Benbow and P. Lamb, SPE Trans., 3, 7( 1963).
T.Q. Jiang,A.C. Young, and A.B. Metzner, Rheol Acta, 25, 397( 1986).
M. Reimers and J. Dealy, J. Rheol., 42, 527( 1998).
D.M. Kalyon and H. Tang, J. Non-Newtonian Fluid Mech., 143, 133( 2007).
Y. Chen,D.M. Kalyon, and E. Bayramli, J. Appl. Polym. Sci., 50, 1169( 1993).
H.S. Tang and D.M. Kalyon, J. Rheol., 52, 507( 2008).
D.M. Kalyon,H. Gevgilili, and A. Shah, Int. Polym. Proc., 19, 129( 2004).
M. Denn, Annu. Rev. Fluid Mech., 33, 265( 2001).
P.J.A. Hartman Kok,S.G. Kazarian,C.J. Lawrence, and B.J. Briscoe, J. Rheol., 46, 481( 2002).
T.C. Yu and C.D. Han, J. Appl. Polym. Sci., 17, 1203( 1973).
M.E. Nordberg and H.H. Winter, Polym. Eng. Sci., 28, 444( 1988).
C. Feger,J.D. Gelorme,M. McGlashan-Powell, and D.M. Kalyon, IBM J. Res. Dev., 49, 699( 2005).
D.G. Baird and D.I. Collias, Eds., Polymer Processing-Principles and Design, John Wiley and Sons, New York( 1998).
A. Lawal,D.M. Kalyon, and U. Yilmazer, Chem. Eng. Commun., 122, 127( 1993).
C.D. Han and R. Shetty, Polym. Eng. Sci., 18, 187( 1978).
M.R. Kamal and T. Mutel, J. Polym. Eng., 5, 293( 1985).
W.H. Herschel and R. Bulkley, Am. Soc. Test. Proc., 26, 621( 1926).
D. Kalyon, J. Rheol., 49, 621( 2005).
M. Mooney, J. Rheol., 2, 210( 1931).
H. Tang and D.M. Kalyon, Rheol. Acta., 43, 80( 2004).
Z. Tadmor and C. Gogos, Principles of Polymer Processing, 2nd ed., Wiley-Interscience, Hoboken, NJ( 2006).
T.J. Person and M.M. Denn, J. Rheol., 41, 249( 1997).
A. Torres,A.N. Hrymak,J. Vlachopoulos,J. Dooley, and B. T. Hilton, Rheologica Acta, 32, 513( 1993).
S. Puissant,B. Vergnes,Y. Demay, and J.F. Agassant, Polym. Eng. Sci., 32, 213( 1992).
C.D. Han and R. Shetty, Polym. Eng. Sci., 16, 697( 1976).
C.D. Han and R. Shetty, Polym. Eng. Sci., 18, 180( 1978).
W.R. Schowalter, J. Non-Newtonian Fluid Mech., 29, 25( 1988).
H.J. Walls,S.B. Caines,A.M. Sanchez, and S.A. Khan, J. Rheol., 47, 847( 2003).
D.M. Kalyon,P. Yaras,B. Aral, and U. Yilmazer, J. Rheol., 37, 35( 1993).
S. Adams,W.J. Frith, and J.R. Stokes, J. Rheol., 48, 1195( 2004).
B. Bird,R. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, 1, 2nd ed., Wiley, New York( 1987).
U. Yilmazer and D.M. Kalyon, J. Rheol., 33, 1197( 1989).
B. Aral and D.M. Kalyon, J. Rheol., 38, 957( 1994).
S.G. Hatzikiriakos and J.M. Dealy, J. Rheol., 36, 703( 1992).
D.M. Kalyon and H. Gevgilili, J. Rheol., 47, 683( 2003).
J. Seth,M. Cloitre, and R.T. Bonnecaze, J. Rheol., 52, 1241( 2008).
H. Gevgilili and D.M. Kalyon, J. Rheol., 45, 467( 2001).
W.A. Gifford, Polym. Eng. Sci., 37, 315( 1997).
N. Minagawa and J.L. White, Polym. Eng. Sci., 15, 825( 1975).
V. Bertola,F. Bertrand,H. Tabuteau,D. Bonn, and P. Coussot, J. Rheol., 47, 1211( 2003).
H. Tang and D.M. Kalyon, J. Rheol., 52, 1069( 2008).
H. Park,S. Taek Lim,F. Smillo,J.M. Dealy, and C.G. Robertson, J. Rheol., 52, 1201( 2008).
M. Perez and J.R. Collier, Polym. Eng. Sci., 29, 1010( 1989).
A. Lawal and D.M. Kalyon, Polym. Eng. Sci., 34, 1471( 1994).
A. Yoshimura and R.K. Prud'homme, J. Rheol., 32, 53( 1988).
R. Luckner and R.T. Bonnecaze, J. Rheol., 43, 735( 1999).
2004; 43
1985; 5
1997; 41
2007; 143
2004; 48
1973; 17
1998
1988; 32
1978; 18
1975; 15
1988; 34
2006
1999; 43
1992; 36
2008; 52
1992; 32
2001; 45
2005; 49
1998; 42
1989; 29
1993; 122
1993; 37
1989; 33
1988; 29
1993; 50
2004; 19
1997; 37
1993; 32
2002; 46
1986; 25
1988; 28
1963; 3
1987
1994; 34
2003; 47
1994; 38
1926; 26
2001; 33
1976; 16
1931; 2
Tang (10.1002/pen.21580-BIB39|cit39) 2004; 43
Puissant (10.1002/pen.21580-BIB9|cit9) 1992; 32
Han (10.1002/pen.21580-BIB5|cit5) 1978; 18
Minagawa (10.1002/pen.21580-BIB12|cit12) 1975; 15
Walls (10.1002/pen.21580-BIB29|cit29) 2003; 47
Lawal (10.1002/pen.21580-BIB47|cit47) 1994; 34
Gevgilili (10.1002/pen.21580-BIB23|cit23) 2001; 45
Kamal (10.1002/pen.21580-BIB32|cit32) 1985; 5
Denn (10.1002/pen.21580-BIB22|cit22) 2001; 33
Benbow (10.1002/pen.21580-BIB15|cit15) 1963; 3
Bird (10.1002/pen.21580-BIB1|cit1) 1987
Kalyon (10.1002/pen.21580-BIB40|cit40) 2005; 49
Reimers (10.1002/pen.21580-BIB21|cit21) 1998; 42
Hartman Kok (10.1002/pen.21580-BIB36|cit36) 2002; 46
Han (10.1002/pen.21580-BIB4|cit4) 1976; 16
Yoshimura (10.1002/pen.21580-BIB28|cit28) 1988; 32
Tang (10.1002/pen.21580-BIB43|cit43) 2008; 52
Bertola (10.1002/pen.21580-BIB38|cit38) 2003; 47
Nordberg (10.1002/pen.21580-BIB7|cit7) 1988; 28
Han (10.1002/pen.21580-BIB13|cit13) 1978; 18
Chen (10.1002/pen.21580-BIB19|cit19) 1993; 50
Park (10.1002/pen.21580-BIB26|cit26) 2008; 52
Kalyon (10.1002/pen.21580-BIB42|cit42) 2007; 143
Adams (10.1002/pen.21580-BIB30|cit30) 2004; 48
Seth (10.1002/pen.21580-BIB31|cit31) 2008; 52
Schowalter (10.1002/pen.21580-BIB16|cit16) 1988; 29
Tang (10.1002/pen.21580-BIB44|cit44) 2008; 52
Mooney (10.1002/pen.21580-BIB14|cit14) 1931; 2
Person (10.1002/pen.21580-BIB20|cit20) 1997; 41
Kalyon (10.1002/pen.21580-BIB24|cit24) 2003; 47
Aral (10.1002/pen.21580-BIB35|cit35) 1994; 38
(10.1002/pen.21580-BIB3|cit3) 1998
Perez (10.1002/pen.21580-BIB8|cit8) 1989; 29
Jiang (10.1002/pen.21580-BIB27|cit27) 1986; 25
Gifford (10.1002/pen.21580-BIB11|cit11) 1997; 37
Lawal (10.1002/pen.21580-BIB46|cit46) 1993; 122
Yilmazer (10.1002/pen.21580-BIB33|cit33) 1989; 33
Torres (10.1002/pen.21580-BIB10|cit10) 1993; 32
Kalyon (10.1002/pen.21580-BIB25|cit25) 2004; 19
Tadmor (10.1002/pen.21580-BIB2|cit2) 2006
Kamal (10.1002/pen.21580-BIB17|cit17) 1988; 34
Yu (10.1002/pen.21580-BIB6|cit6) 1973; 17
Hatzikiriakos (10.1002/pen.21580-BIB18|cit18) 1992; 36
Luckner (10.1002/pen.21580-BIB37|cit37) 1999; 43
Feger (10.1002/pen.21580-BIB41|cit41) 2005; 49
Herschel (10.1002/pen.21580-BIB45|cit45) 1926; 26
Kalyon (10.1002/pen.21580-BIB34|cit34) 1993; 37
References_xml – reference: Y. Chen,D.M. Kalyon, and E. Bayramli, J. Appl. Polym. Sci., 50, 1169( 1993).
– reference: H.J. Walls,S.B. Caines,A.M. Sanchez, and S.A. Khan, J. Rheol., 47, 847( 2003).
– reference: B. Aral and D.M. Kalyon, J. Rheol., 38, 957( 1994).
– reference: S.G. Hatzikiriakos and J.M. Dealy, J. Rheol., 36, 703( 1992).
– reference: W.A. Gifford, Polym. Eng. Sci., 37, 315( 1997).
– reference: J. Seth,M. Cloitre, and R.T. Bonnecaze, J. Rheol., 52, 1241( 2008).
– reference: T.C. Yu and C.D. Han, J. Appl. Polym. Sci., 17, 1203( 1973).
– reference: N. Minagawa and J.L. White, Polym. Eng. Sci., 15, 825( 1975).
– reference: W.R. Schowalter, J. Non-Newtonian Fluid Mech., 29, 25( 1988).
– reference: M. Reimers and J. Dealy, J. Rheol., 42, 527( 1998).
– reference: H. Park,S. Taek Lim,F. Smillo,J.M. Dealy, and C.G. Robertson, J. Rheol., 52, 1201( 2008).
– reference: M.R. Kamal,S.K. Goyal, and E. Chu, AIChE J., 34, 94( 1988).
– reference: D.G. Baird and D.I. Collias, Eds., Polymer Processing-Principles and Design, John Wiley and Sons, New York( 1998).
– reference: U. Yilmazer and D.M. Kalyon, J. Rheol., 33, 1197( 1989).
– reference: T.J. Person and M.M. Denn, J. Rheol., 41, 249( 1997).
– reference: S. Puissant,B. Vergnes,Y. Demay, and J.F. Agassant, Polym. Eng. Sci., 32, 213( 1992).
– reference: C.D. Han and R. Shetty, Polym. Eng. Sci., 18, 180( 1978).
– reference: D.M. Kalyon,H. Gevgilili, and A. Shah, Int. Polym. Proc., 19, 129( 2004).
– reference: J.J. Benbow and P. Lamb, SPE Trans., 3, 7( 1963).
– reference: H. Gevgilili and D.M. Kalyon, J. Rheol., 45, 467( 2001).
– reference: A. Torres,A.N. Hrymak,J. Vlachopoulos,J. Dooley, and B. T. Hilton, Rheologica Acta, 32, 513( 1993).
– reference: R. Luckner and R.T. Bonnecaze, J. Rheol., 43, 735( 1999).
– reference: P.J.A. Hartman Kok,S.G. Kazarian,C.J. Lawrence, and B.J. Briscoe, J. Rheol., 46, 481( 2002).
– reference: V. Bertola,F. Bertrand,H. Tabuteau,D. Bonn, and P. Coussot, J. Rheol., 47, 1211( 2003).
– reference: D. Kalyon, J. Rheol., 49, 621( 2005).
– reference: H.S. Tang and D.M. Kalyon, J. Rheol., 52, 507( 2008).
– reference: C. Feger,J.D. Gelorme,M. McGlashan-Powell, and D.M. Kalyon, IBM J. Res. Dev., 49, 699( 2005).
– reference: A. Yoshimura and R.K. Prud'homme, J. Rheol., 32, 53( 1988).
– reference: H. Tang and D.M. Kalyon, Rheol. Acta., 43, 80( 2004).
– reference: D.M. Kalyon and H. Tang, J. Non-Newtonian Fluid Mech., 143, 133( 2007).
– reference: T.Q. Jiang,A.C. Young, and A.B. Metzner, Rheol Acta, 25, 397( 1986).
– reference: D.M. Kalyon,P. Yaras,B. Aral, and U. Yilmazer, J. Rheol., 37, 35( 1993).
– reference: W.H. Herschel and R. Bulkley, Am. Soc. Test. Proc., 26, 621( 1926).
– reference: M. Mooney, J. Rheol., 2, 210( 1931).
– reference: S. Adams,W.J. Frith, and J.R. Stokes, J. Rheol., 48, 1195( 2004).
– reference: M.R. Kamal and T. Mutel, J. Polym. Eng., 5, 293( 1985).
– reference: C.D. Han and R. Shetty, Polym. Eng. Sci., 18, 187( 1978).
– reference: C.D. Han and R. Shetty, Polym. Eng. Sci., 16, 697( 1976).
– reference: H. Tang and D.M. Kalyon, J. Rheol., 52, 1069( 2008).
– reference: M. Perez and J.R. Collier, Polym. Eng. Sci., 29, 1010( 1989).
– reference: B. Bird,R. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, 1, 2nd ed., Wiley, New York( 1987).
– reference: Z. Tadmor and C. Gogos, Principles of Polymer Processing, 2nd ed., Wiley-Interscience, Hoboken, NJ( 2006).
– reference: M. Denn, Annu. Rev. Fluid Mech., 33, 265( 2001).
– reference: D.M. Kalyon and H. Gevgilili, J. Rheol., 47, 683( 2003).
– reference: M.E. Nordberg and H.H. Winter, Polym. Eng. Sci., 28, 444( 1988).
– reference: A. Lawal,D.M. Kalyon, and U. Yilmazer, Chem. Eng. Commun., 122, 127( 1993).
– reference: A. Lawal and D.M. Kalyon, Polym. Eng. Sci., 34, 1471( 1994).
– volume: 52
  start-page: 1241
  year: 2008
  publication-title: J. Rheol.
– volume: 38
  start-page: 957
  year: 1994
  publication-title: J. Rheol.
– volume: 46
  start-page: 481
  year: 2002
  publication-title: J. Rheol.
– volume: 52
  start-page: 1069
  year: 2008
  publication-title: J. Rheol.
– volume: 34
  start-page: 1471
  year: 1994
  publication-title: Polym. Eng. Sci.
– volume: 33
  start-page: 265
  year: 2001
  publication-title: Annu. Rev. Fluid Mech.
– volume: 48
  start-page: 1195
  year: 2004
  publication-title: J. Rheol.
– volume: 42
  start-page: 527
  year: 1998
  publication-title: J. Rheol.
– volume: 29
  start-page: 1010
  year: 1989
  publication-title: Polym. Eng. Sci.
– volume: 47
  start-page: 683
  year: 2003
  publication-title: J. Rheol.
– volume: 47
  start-page: 1211
  year: 2003
  publication-title: J. Rheol.
– year: 1987
– volume: 3
  start-page: 7
  year: 1963
  publication-title: SPE Trans.
– volume: 41
  start-page: 249
  year: 1997
  publication-title: J. Rheol.
– volume: 32
  start-page: 513
  year: 1993
  publication-title: Rheologica Acta
– volume: 37
  start-page: 35
  year: 1993
  publication-title: J. Rheol.
– volume: 18
  start-page: 187
  year: 1978
  publication-title: Polym. Eng. Sci.
– volume: 49
  start-page: 699
  year: 2005
  publication-title: IBM J. Res. Dev.
– volume: 47
  start-page: 847
  year: 2003
  publication-title: J. Rheol.
– volume: 26
  start-page: 621
  year: 1926
  publication-title: Am. Soc. Test. Proc.
– volume: 122
  start-page: 127
  year: 1993
  publication-title: Chem. Eng. Commun.
– volume: 37
  start-page: 315
  year: 1997
  publication-title: Polym. Eng. Sci.
– volume: 32
  start-page: 53
  year: 1988
  publication-title: J. Rheol.
– volume: 43
  start-page: 735
  year: 1999
  publication-title: J. Rheol.
– year: 1998
– volume: 2
  start-page: 210
  year: 1931
  publication-title: J. Rheol.
– volume: 25
  start-page: 397
  year: 1986
  publication-title: Rheol Acta
– volume: 52
  start-page: 507
  year: 2008
  publication-title: J. Rheol.
– volume: 32
  start-page: 213
  year: 1992
  publication-title: Polym. Eng. Sci.
– volume: 15
  start-page: 825
  year: 1975
  publication-title: Polym. Eng. Sci.
– volume: 36
  start-page: 703
  year: 1992
  publication-title: J. Rheol.
– volume: 45
  start-page: 467
  year: 2001
  publication-title: J. Rheol.
– volume: 28
  start-page: 444
  year: 1988
  publication-title: Polym. Eng. Sci.
– volume: 18
  start-page: 180
  year: 1978
  publication-title: Polym. Eng. Sci.
– volume: 49
  start-page: 621
  year: 2005
  publication-title: J. Rheol.
– year: 2006
– volume: 5
  start-page: 293
  year: 1985
  publication-title: J. Polym. Eng.
– volume: 43
  start-page: 80
  year: 2004
  publication-title: Rheol. Acta.
– volume: 143
  start-page: 133
  year: 2007
  publication-title: J. Non‐Newtonian Fluid Mech.
– volume: 52
  start-page: 1201
  year: 2008
  publication-title: J. Rheol.
– volume: 29
  start-page: 25
  year: 1988
  publication-title: J. Non‐Newtonian Fluid Mech.
– volume: 16
  start-page: 697
  year: 1976
  publication-title: Polym. Eng. Sci.
– volume: 50
  start-page: 1169
  year: 1993
  publication-title: J. Appl. Polym. Sci.
– volume: 17
  start-page: 1203
  year: 1973
  publication-title: J. Appl. Polym. Sci.
– volume: 19
  start-page: 129
  year: 2004
  publication-title: Int. Polym. Proc.
– volume: 33
  start-page: 1197
  year: 1989
  publication-title: J. Rheol.
– volume: 34
  start-page: 94
  year: 1988
  publication-title: AIChE J.
– volume: 47
  start-page: 1211
  year: 2003
  ident: 10.1002/pen.21580-BIB38|cit38
  publication-title: J. Rheol.
  doi: 10.1122/1.1595098
– volume: 37
  start-page: 315
  year: 1997
  ident: 10.1002/pen.21580-BIB11|cit11
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.11673
– volume: 47
  start-page: 683
  year: 2003
  ident: 10.1002/pen.21580-BIB24|cit24
  publication-title: J. Rheol.
  doi: 10.1122/1.1562156
– volume: 50
  start-page: 1169
  year: 1993
  ident: 10.1002/pen.21580-BIB19|cit19
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1993.070500707
– volume: 143
  start-page: 133
  year: 2007
  ident: 10.1002/pen.21580-BIB42|cit42
  publication-title: J. Non-Newtonian Fluid Mech.
  doi: 10.1016/j.jnnfm.2007.02.010
– volume: 32
  start-page: 213
  year: 1992
  ident: 10.1002/pen.21580-BIB9|cit9
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760320308
– volume: 45
  start-page: 467
  year: 2001
  ident: 10.1002/pen.21580-BIB23|cit23
  publication-title: J. Rheol.
  doi: 10.1122/1.1339248
– volume: 52
  start-page: 1241
  year: 2008
  ident: 10.1002/pen.21580-BIB31|cit31
  publication-title: J. Rheol.
  doi: 10.1122/1.2963135
– volume: 47
  start-page: 847
  year: 2003
  ident: 10.1002/pen.21580-BIB29|cit29
  publication-title: J. Rheol.
  doi: 10.1122/1.1574023
– volume-title: Polymer Processing-Principles and Design
  year: 1998
  ident: 10.1002/pen.21580-BIB3|cit3
– volume: 2
  start-page: 210
  year: 1931
  ident: 10.1002/pen.21580-BIB14|cit14
  publication-title: J. Rheol.
  doi: 10.1122/1.2116364
– volume: 25
  start-page: 397
  year: 1986
  ident: 10.1002/pen.21580-BIB27|cit27
  publication-title: Rheol Acta
  doi: 10.1007/BF01331511
– volume: 43
  start-page: 80
  year: 2004
  ident: 10.1002/pen.21580-BIB39|cit39
  publication-title: Rheol. Acta.
  doi: 10.1007/s00397-003-0322-y
– volume: 122
  start-page: 127
  year: 1993
  ident: 10.1002/pen.21580-BIB46|cit46
  publication-title: Chem. Eng. Commun.
  doi: 10.1080/00986449308936153
– volume: 28
  start-page: 444
  year: 1988
  ident: 10.1002/pen.21580-BIB7|cit7
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760280707
– volume: 49
  start-page: 699
  year: 2005
  ident: 10.1002/pen.21580-BIB41|cit41
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.494.0699
– volume: 18
  start-page: 187
  year: 1978
  ident: 10.1002/pen.21580-BIB5|cit5
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760180304
– volume: 19
  start-page: 129
  year: 2004
  ident: 10.1002/pen.21580-BIB25|cit25
  publication-title: Int. Polym. Proc.
  doi: 10.3139/217.1822
– volume-title: Dynamics of Polymeric Liquids
  year: 1987
  ident: 10.1002/pen.21580-BIB1|cit1
– volume: 37
  start-page: 35
  year: 1993
  ident: 10.1002/pen.21580-BIB34|cit34
  publication-title: J. Rheol.
  doi: 10.1122/1.550435
– volume: 16
  start-page: 697
  year: 1976
  ident: 10.1002/pen.21580-BIB4|cit4
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760161008
– volume: 18
  start-page: 180
  year: 1978
  ident: 10.1002/pen.21580-BIB13|cit13
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760180303
– volume: 33
  start-page: 265
  year: 2001
  ident: 10.1002/pen.21580-BIB22|cit22
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.33.1.265
– volume: 26
  start-page: 621
  year: 1926
  ident: 10.1002/pen.21580-BIB45|cit45
  publication-title: Am. Soc. Test. Proc.
– volume: 34
  start-page: 94
  year: 1988
  ident: 10.1002/pen.21580-BIB17|cit17
  publication-title: AIChE J.
  doi: 10.1002/aic.690340111
– volume: 32
  start-page: 513
  year: 1993
  ident: 10.1002/pen.21580-BIB10|cit10
  publication-title: Rheologica Acta
  doi: 10.1007/BF00369067
– volume: 5
  start-page: 293
  year: 1985
  ident: 10.1002/pen.21580-BIB32|cit32
  publication-title: J. Polym. Eng.
  doi: 10.1515/POLYENG.1985.5.4.293
– volume: 29
  start-page: 25
  year: 1988
  ident: 10.1002/pen.21580-BIB16|cit16
  publication-title: J. Non-Newtonian Fluid Mech.
  doi: 10.1016/0377-0257(88)85048-1
– volume: 42
  start-page: 527
  year: 1998
  ident: 10.1002/pen.21580-BIB21|cit21
  publication-title: J. Rheol.
  doi: 10.1122/1.550958
– volume: 17
  start-page: 1203
  year: 1973
  ident: 10.1002/pen.21580-BIB6|cit6
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1973.070170417
– volume: 46
  start-page: 481
  year: 2002
  ident: 10.1002/pen.21580-BIB36|cit36
  publication-title: J. Rheol.
  doi: 10.1122/1.1446882
– volume: 52
  start-page: 1201
  year: 2008
  ident: 10.1002/pen.21580-BIB26|cit26
  publication-title: J. Rheol.
  doi: 10.1122/1.2964199
– volume: 48
  start-page: 1195
  year: 2004
  ident: 10.1002/pen.21580-BIB30|cit30
  publication-title: J. Rheol.
  doi: 10.1122/1.1795193
– volume: 52
  start-page: 1069
  year: 2008
  ident: 10.1002/pen.21580-BIB44|cit44
  publication-title: J. Rheol.
  doi: 10.1122/1.2955508
– volume: 41
  start-page: 249
  year: 1997
  ident: 10.1002/pen.21580-BIB20|cit20
  publication-title: J. Rheol.
  doi: 10.1122/1.550877
– volume: 43
  start-page: 735
  year: 1999
  ident: 10.1002/pen.21580-BIB37|cit37
  publication-title: J. Rheol.
  doi: 10.1122/1.551003
– volume: 3
  start-page: 7
  year: 1963
  ident: 10.1002/pen.21580-BIB15|cit15
  publication-title: SPE Trans.
– volume: 36
  start-page: 703
  year: 1992
  ident: 10.1002/pen.21580-BIB18|cit18
  publication-title: J. Rheol.
  doi: 10.1122/1.550313
– volume: 33
  start-page: 1197
  year: 1989
  ident: 10.1002/pen.21580-BIB33|cit33
  publication-title: J. Rheol.
  doi: 10.1122/1.550049
– volume: 38
  start-page: 957
  year: 1994
  ident: 10.1002/pen.21580-BIB35|cit35
  publication-title: J. Rheol.
  doi: 10.1122/1.550537
– volume: 34
  start-page: 1471
  year: 1994
  ident: 10.1002/pen.21580-BIB47|cit47
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760341906
– volume: 15
  start-page: 825
  year: 1975
  ident: 10.1002/pen.21580-BIB12|cit12
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760151202
– volume-title: Principles of Polymer Processing
  year: 2006
  ident: 10.1002/pen.21580-BIB2|cit2
– volume: 49
  start-page: 621
  year: 2005
  ident: 10.1002/pen.21580-BIB40|cit40
  publication-title: J. Rheol.
  doi: 10.1122/1.1879043
– volume: 52
  start-page: 507
  year: 2008
  ident: 10.1002/pen.21580-BIB43|cit43
  publication-title: J. Rheol.
  doi: 10.1122/1.2837104
– volume: 29
  start-page: 1010
  year: 1989
  ident: 10.1002/pen.21580-BIB8|cit8
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760291507
– volume: 32
  start-page: 53
  year: 1988
  ident: 10.1002/pen.21580-BIB28|cit28
  publication-title: J. Rheol.
  doi: 10.1122/1.549963
SSID ssj0002359
Score 2.0087945
Snippet Coextrusion is widely used to fabricate multilayered products with each layer providing a separate functionality, including barrier resistance to gases,...
SourceID proquest
gale
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 652
SubjectTerms Applied sciences
Equipment and supplies
Exact sciences and technology
Extrusion dies
Extrusion moulding
Extrusion process
Flow velocity
Fluid mechanics
Fluids
Machinery and processing
Mechanical properties
Moulding
Plastics
Polymer industry, paints, wood
Production processes
Shear stress
Technology of polymers
Viscosity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BcwAOCAqobku1QrwupvaunycU0oSCRFRS-rit9uUSNbJD3Ujw75mxN1YsFS5RlHxJ7J3x7DeT8TeEvE5iybiRiW9ZJv1Ic-urODV-YUPNlcxz1ZQGvk2T47Po62V86XpzatdWuY6JTaA2lcYa-SFD0SLO0vjj8pePQ6Pwz1U3QeM-GUAEziD3GnwaT09mXShmPG75L2c-h1xvLS0UsMOlLT_AdodykBsbkgvLA1zi39gnKWtYqqKdcdEjoZtUttmLJk_IY0ci6bC1-lNyz5bb5MFoPbttmzzakBl8RtSwpI34SFO3pjj-bEGBrFJs5jV_6KiCCH2zwroZrQp6PsdbVYBVA5xOFqu5qem8pDjhk54Ca6dHkF3Ti_ntT4pleHxt-ZycTcY_Rse-m63g6ziFjDGMtIFtKQ4hGCpdqERxKVmRsCAxsWbaZjwoZJinBlIIHhY6CW2QZDKG9IhZZvgLslVWpd0hNFMsR10_a3gSBSbK8iwtFPAgq1XEbeGR9-sFFtoJj-P8i4VoJZOZAFuIxhYeedVBl63axl2gN2gl4aZ0wkONdYz6Sq7qWgyB74CfsDyFL2twqHJRYhtNC_hyOuuB3jlQUcFBaenuSoBTQ2GsHvJtD3nVyoLfBdzvAcH0uv89jXd1JyhvrrG7Lo3FxfSzOE--A2ubpeLIIwc99-s-ACE4Al4deWRv7Y_CRZ5adNeJR2j3Lh4CNtOVtlrVAkhjGgKEgWUaL_73WouT8bR5svvf39ojD9uuCuxo2idb4LP2JZC1W3XgLsm_Xwk7GQ
  priority: 102
  providerName: ProQuest
Title An analytical model for steady coextrusion of viscoplastic fluids in thin slit dies with wall slip
URI https://api.istex.fr/ark:/67375/WNG-V6Q078R7-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpen.21580
https://www.proquest.com/docview/218573275
https://www.proquest.com/docview/743713272
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbG9gA8cBkgykZlIW4v6RI7V_FURruBRDUKY3tAsmzHHtWqdFpabr-ec5zLFjQkxEtUtV_S-OTk-PPR8XcIeRpHkvFcxp5hqfRCzY2noiT3rAk0VzLLlEsNvJ_E-4fhu-PoeI28avbCVPoQbcIN3wwXr_EFl6rcuRANhdX-AOarFNfrWKuFhGh6IR3FeFRRX848Dsu8RlXIZzvtmZ25qI7IG2jdH1giKUuwkq3aW3T452UW66ah8W3ypRlAVX1yOlgt1UD_-kPb8T9HeIfcqukpHVb-dJesmWKTXN9tusJtkpuXBAzvETUsqERZE5cRp66tDgUaTJ3v_KR6AbH_fIUZObqw9NsMN8EAXwc4tfPVLC_prKDLr3AAvrukWNJIMTVMv8v5HL87u08Ox6NPu_te3bXB01ECa9Eg1DlMeFEAYVZpq2LFpWQ2Zn6cR5ppk3LfyiBLclic8MDqODB-nMoIFl7MsJw_IOvFojAPCU0Vy1Ax0OQ8Dv08TLM0sQoYltEq5Mb2yMvm-QldS5pjZ425qMSYmQATCmfCHnnSQs8qHY-rQM_QCUTd_xMOJWZIyhO5KksxBCaVQPzLEriYw6F-RoEFOhXg7cdpB_SiBtkF3JSW9X4HGBpKbnWQzzvIk0pw_CrgdgcIj153r-Octx2gPD_Fur0kEkeTPfE5_gB8cJqINz3S73h3ewIE9xAYe9gjW427izqmlWCiNII_SqIeoe2veAtYpleYxaoUQEeTACAMnozz7L_bWhyMJu7Do3-HbpEbVfEGFk5tk3VwYPMYOOFS9cm1dLzXJxuvR5ODad-Fgt9qYV4y
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeygcEBQQoaVYiAKXpVl7nweEoqRpStsI-r4Zr-0tEdFu6DaC_ij-IzPeh7JS4dZLFCVfvLue8fibyXiGkDeBLxnXMnAMi6TjKW6cxA-1kxpX8UTGcWJDA4fjYHTqfb7wL5bIn_osDKZV1jbRGmqdK4yRbzMsWsRZ6H-a_XSwaRT-uVp30Ci1Yt_c_AKPrfi4NwDxbjE23Dnpj5yqqYCj_BBcJddTGuyx74IVSFSaBAmXkqUB6wbaV0yZiHdT6cahBu7M3VQFrukGkfTBL2CGaQ7j3iMrHucxLqhouNsYfsb9km1z5nDwLOtCRl22PTPZB9hcsfjkwvZXbQIrKNDfmJUpCxBMWnbUaFHeReJsd77hI_Kwoqy0V-rYY7JksjWy2q87xa2RBwtFDZ-QpJdRW-rERskpNlubUqDGFFOH9Q3t57AfXM0xSkfzlJ5N8GAMcHiA0-F0PtEFnWQU-4nSY_AR6AB8eXo-uf5OMeiPn82ektM7mfRnZDnLM_Oc0ChhMVYRNJoHXld7URyFaQKsy6jE4ybtkPf1BAtVlTnHbhtTURZoZgJkIawsOuR1A52VtT1uA22hlETVExReCoyaFJdyXhSiB-wKtJLFIQxmcVhTI8OknRKwd3zUAr2rQGkON6VkdQYCHg3LcLWQb1vIy7II-W3AjRYQRK_a41jtah5QXv3AXL7QF-fjXXEWfAWOeBSKQYdsttSv-QEYfA9YvNch67U-isrOFaJZlR1Cm2_xFjB1LzP5vBBAUUMXIAwkY7X433MtvuyM7ZsX_73WK7I6Ojk8EAd74_11cr_M58Bcqg2yDPprXgJNvE427eKk5NtdW4O_z211ZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VRIJyQFBADS1lhShwMbF3_TwgFPKgoRCFlD5uy3q9LhGRHepG0J_Gv2PGL8VS4dZLFCVfHHtnPPvNevYbQl64jmQ8kq6hmS8NW3FthI4XGbG2FA9lEIT50sDniXtwbH88c842yJ9qLwyWVVYxMQ_UUapwjbzLULSIM8_pxmVVxHQwerf8aWADKXzQWnXTKDzkUF_9guwtezsegKn3GRsNv_YPjLLBgKEcD9Imy1YRxGbHgogQqjh0Qy4li11mupGjmNI-N2NpBV4EPJpbsXItbbq-dCBHYJpFHI57i7Q9SIrMFmm_H06ms3oaYNwpuDdnBoc8s5I1Mll3qZM3MNWiFOXaZFhOCW0072-s0ZQZmCku-ms0CPA6jc7nwdF9cq8ksLRXeNwDsqGTLXKnX_WN2yJ31yQOH5Kwl9Bc-CRfM6fYem1BgShTLCSOrmg_hTG-WOGaHU1jejLHbTLA6AFOR4vVPMroPKHYXZQeQcZAB5DZ09P55XeKjwDws-Ujcnwjw_6YtJI00duE-iELUFNQR9y1zcj2A9-LQ-BgWoU213GHvK4GWKhS9Bx7byxEIdfMBNhC5LbokOc1dFkofVwH2kcribJDKLxkuIaSnctVlokecC3wURZ4cLAchwobCTprARgfzRqgVyUoTuGklCx3RMCloShXA_mygTwvJMmvA-42gGB61TxO7l31BcqLH1jZ5znidPJBnLhfgDHOPDHokL2G-9U_gPBvA6e3O2Sn8kdRRr1M1Pdoh9D6WzwFLORLdLrKBBBWzwIIA8vkXvzvsRbT4SR_8-S___WM3IZIID6NJ4c7ZLMo7sDCql3SAvfVT4EzXoZ75d1JybebDgh_AdBJevc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+analytical+model+for+steady+coextrusion+of+viscoplastic+fluids+in+thin+slit+dies+with+wall+slip&rft.jtitle=Polymer+engineering+and+science&rft.au=Kalyon%2C+Dilhan+M&rft.date=2010-04-01&rft.pub=Society+of+Plastics+Engineers%2C+Inc&rft.issn=0032-3888&rft.volume=50&rft.issue=4&rft.spage=652&rft_id=info:doi/10.1002%2Fpen.21580&rft.externalDocID=A223732297
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-3888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-3888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-3888&client=summon