Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent

BACKGROUND: Chronic inflammation and oxidative stress are common risk factors for atherosclerosis. Zinc is an essential micronutrient that can function as an antiinflammatory and antioxidative agent, and as such, it may have atheroprotective properties. OBJECTIVE: We hypothesized that zinc down-regu...

Full description

Saved in:
Bibliographic Details
Published inThe American journal of clinical nutrition Vol. 91; no. 6; pp. 1634 - 1641
Main Authors Bao, Bin, Prasad, Ananda S, Beck, Frances WJ, Fitzgerald, James T, Snell, Diane, Bao, Ginny W, Singh, Tapinder, Cardozo, Lavoisier J
Format Journal Article
LanguageEnglish
Published Bethesda, MD American Society for Clinical Nutrition 01.06.2010
American Society for Nutrition
American Society for Clinical Nutrition, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND: Chronic inflammation and oxidative stress are common risk factors for atherosclerosis. Zinc is an essential micronutrient that can function as an antiinflammatory and antioxidative agent, and as such, it may have atheroprotective properties. OBJECTIVE: We hypothesized that zinc down-regulates the production of atherosclerosis-related cytokines/molecules in humans. DESIGN: To examine these effects, we conducted a randomized, double-blinded, placebo trial of zinc supplementation in elderly subjects. We recruited 40 healthy elderly subjects (aged 56-83 y) and randomly assigned them to 2 groups. One group was given an oral dose of 45 mg zinc/d as a gluconate for 6 mo. The other group was given a placebo. Cell culture models were conducted to study the mechanism of zinc as an atheroprotective agent. RESULTS: After 6 mo of supplementation, the intake of zinc, compared with intake of placebo, increased the concentrations of plasma zinc and decreased the concentrations of plasma high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-6, macrophage chemoattractant protein 1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1), secretory phospholipase A2, and malondialdehyde and hydroxyalkenals (MDA+HAE) in elderly subjects. Regression analysis showed that changes in concentrations of plasma zinc were inversely associated with changes in concentrations of plasma hsCRP, MCP-1, VCAM-1, and MDA+HAE after 6 mo of supplementation. In cell culture studies, we showed that zinc decreased the generation of tumor necrosis factor-α, IL-1β, VCAM-1, and MDA+HAE and the activation of nuclear transcription factor κB and increased antiinflammatory proteins A20 and peroxisome proliferator-activated receptor-α in human monocytic leukemia THP-1 cells and human aortic endothelial cells compared with zinc-deficient cells. CONCLUSION: These findings suggest that zinc may have a protective effect in atherosclerosis because of its antiinflammatory and antioxidant functions.
AbstractList Chronic inflammation and oxidative stress are common risk factors for atherosclerosis. Zinc is an essential micronutrient that can function as an antiinflammatory and antioxidative agent, and as such, it may have atheroprotective properties.BACKGROUNDChronic inflammation and oxidative stress are common risk factors for atherosclerosis. Zinc is an essential micronutrient that can function as an antiinflammatory and antioxidative agent, and as such, it may have atheroprotective properties.We hypothesized that zinc down-regulates the production of atherosclerosis-related cytokines/molecules in humans.OBJECTIVEWe hypothesized that zinc down-regulates the production of atherosclerosis-related cytokines/molecules in humans.To examine these effects, we conducted a randomized, double-blinded, placebo trial of zinc supplementation in elderly subjects. We recruited 40 healthy elderly subjects (aged 56-83 y) and randomly assigned them to 2 groups. One group was given an oral dose of 45 mg zinc/d as a gluconate for 6 mo. The other group was given a placebo. Cell culture models were conducted to study the mechanism of zinc as an atheroprotective agent.DESIGNTo examine these effects, we conducted a randomized, double-blinded, placebo trial of zinc supplementation in elderly subjects. We recruited 40 healthy elderly subjects (aged 56-83 y) and randomly assigned them to 2 groups. One group was given an oral dose of 45 mg zinc/d as a gluconate for 6 mo. The other group was given a placebo. Cell culture models were conducted to study the mechanism of zinc as an atheroprotective agent.After 6 mo of supplementation, the intake of zinc, compared with intake of placebo, increased the concentrations of plasma zinc and decreased the concentrations of plasma high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-6, macrophage chemoattractant protein 1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1), secretory phospholipase A2, and malondialdehyde and hydroxyalkenals (MDA+HAE) in elderly subjects. Regression analysis showed that changes in concentrations of plasma zinc were inversely associated with changes in concentrations of plasma hsCRP, MCP-1, VCAM-1, and MDA+HAE after 6 mo of supplementation. In cell culture studies, we showed that zinc decreased the generation of tumor necrosis factor-alpha, IL-1beta, VCAM-1, and MDA+HAE and the activation of nuclear transcription factor kappaB and increased antiinflammatory proteins A20 and peroxisome proliferator-activated receptor-alpha in human monocytic leukemia THP-1 cells and human aortic endothelial cells compared with zinc-deficient cells.RESULTSAfter 6 mo of supplementation, the intake of zinc, compared with intake of placebo, increased the concentrations of plasma zinc and decreased the concentrations of plasma high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-6, macrophage chemoattractant protein 1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1), secretory phospholipase A2, and malondialdehyde and hydroxyalkenals (MDA+HAE) in elderly subjects. Regression analysis showed that changes in concentrations of plasma zinc were inversely associated with changes in concentrations of plasma hsCRP, MCP-1, VCAM-1, and MDA+HAE after 6 mo of supplementation. In cell culture studies, we showed that zinc decreased the generation of tumor necrosis factor-alpha, IL-1beta, VCAM-1, and MDA+HAE and the activation of nuclear transcription factor kappaB and increased antiinflammatory proteins A20 and peroxisome proliferator-activated receptor-alpha in human monocytic leukemia THP-1 cells and human aortic endothelial cells compared with zinc-deficient cells.These findings suggest that zinc may have a protective effect in atherosclerosis because of its antiinflammatory and antioxidant functions.CONCLUSIONThese findings suggest that zinc may have a protective effect in atherosclerosis because of its antiinflammatory and antioxidant functions.
Chronic inflammation and oxidative stress are common risk factors for atherosclerosis. Zinc is an essential micronutrient that can function as an antiinflammatory and antioxidative agent, and as such, it may have atheroprotective properties. We hypothesized that zinc down-regulates the production of atherosclerosis-related cytokines/ molecules in humans. To examine these effects, we conducted a randomized, double-blinded, placebo trial of zinc supplementation in elderly subjects. We recruited 40 healthy elderly subjects (aged 56-83 y) and randomly assigned them to 2 groups. One group was given an oral dose of 45 mg zinc/d as a gluconate for 6 mo. The other group was given a placebo. Cell culture models were conducted to study the mechanism of zinc as an atheroprotective agent. After 6 mo of supplementation, the intake of zinc, compared with intake of placebo, increased the concentrations of plasma zinc and decreased the concentrations of plasma high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-6, macrophage chemoattractant protein 1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1), secretory phospholipase A2, and malondialdehyde and hydroxyalkenals (MDA+HAE) in elderly subjects. Regression analysis showed that changes in concentrations of plasma zinc were inversely associated with changes in concentrations of plasma hsCRP, MCP-1, VCAM-1, and MDA+HAE after 6 mo of supplementation. In cell culture studies, we showed that zinc decreased the generation of tumor necrosis factor-α, IL-1β, VCAM-1, and MDA+HAE and the activation of nuclear transcription factor ...B and increased antiinflammatory proteins A20 and peroxisome proliferator-activated receptor-α in human monocytic leukemia THP-1 cells and human aortic endothelial cells compared with zinc-deficient cells. These findings suggest that zinc may have a protective effect in atherosclerosis because of its antiinflammatory and antioxidant functions. (ProQuest: ... denotes formulae/symbols omitted.)
BACKGROUND: Chronic inflammation and oxidative stress are common risk factors for atherosclerosis. Zinc is an essential micronutrient that can function as an antiinflammatory and antioxidative agent, and as such, it may have atheroprotective properties. OBJECTIVE: We hypothesized that zinc down-regulates the production of atherosclerosis-related cytokines/molecules in humans. DESIGN: To examine these effects, we conducted a randomized, double-blinded, placebo trial of zinc supplementation in elderly subjects. We recruited 40 healthy elderly subjects (aged 56-83 y) and randomly assigned them to 2 groups. One group was given an oral dose of 45 mg zinc/d as a gluconate for 6 mo. The other group was given a placebo. Cell culture models were conducted to study the mechanism of zinc as an atheroprotective agent. RESULTS: After 6 mo of supplementation, the intake of zinc, compared with intake of placebo, increased the concentrations of plasma zinc and decreased the concentrations of plasma high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-6, macrophage chemoattractant protein 1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1), secretory phospholipase A2, and malondialdehyde and hydroxyalkenals (MDA+HAE) in elderly subjects. Regression analysis showed that changes in concentrations of plasma zinc were inversely associated with changes in concentrations of plasma hsCRP, MCP-1, VCAM-1, and MDA+HAE after 6 mo of supplementation. In cell culture studies, we showed that zinc decreased the generation of tumor necrosis factor-α, IL-1β, VCAM-1, and MDA+HAE and the activation of nuclear transcription factor κB and increased antiinflammatory proteins A20 and peroxisome proliferator-activated receptor-α in human monocytic leukemia THP-1 cells and human aortic endothelial cells compared with zinc-deficient cells. CONCLUSION: These findings suggest that zinc may have a protective effect in atherosclerosis because of its antiinflammatory and antioxidant functions.
Background: Chronic inflammation and oxidative stress are common risk factors for atherosclerosis. Zinc is an essential micronutrient that can function as an antiinflammatory and antioxidative agent, and as such, it may have atheroprotective properties. Objective: We hypothesized that zinc down-regulates the production of atherosclerosis-related cytokines/molecules in humans. Design: To examine these effects, we conducted a randomized, double-blinded, placebo trial of zinc supplementation in elderly subjects. We recruited 40 healthy elderly subjects (aged 56–83 y) and randomly assigned them to 2 groups. One group was given an oral dose of 45 mg zinc/d as a gluconate for 6 mo. The other group was given a placebo. Cell culture models were conducted to study the mechanism of zinc as an atheroprotective agent. Results: After 6 mo of supplementation, the intake of zinc, compared with intake of placebo, increased the concentrations of plasma zinc and decreased the concentrations of plasma high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-6, macrophage chemoattractant protein 1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1), secretory phospholipase A2, and malondialdehyde and hydroxyalkenals (MDA+HAE) in elderly subjects. Regression analysis showed that changes in concentrations of plasma zinc were inversely associated with changes in concentrations of plasma hsCRP, MCP-1, VCAM-1, and MDA+HAE after 6 mo of supplementation. In cell culture studies, we showed that zinc decreased the generation of tumor necrosis factor-α, IL-1β, VCAM-1, and MDA+HAE and the activation of nuclear transcription factor κB and increased antiinflammatory proteins A20 and peroxisome proliferator–activated receptor-α in human monocytic leukemia THP-1 cells and human aortic endothelial cells compared with zinc-deficient cells. Conclusion: These findings suggest that zinc may have a protective effect in atherosclerosis because of its antiinflammatory and antioxidant functions.
Chronic inflammation and oxidative stress are common risk factors for atherosclerosis. Zinc is an essential micronutrient that can function as an antiinflammatory and antioxidative agent, and as such, it may have atheroprotective properties. We hypothesized that zinc down-regulates the production of atherosclerosis-related cytokines/molecules in humans. To examine these effects, we conducted a randomized, double-blinded, placebo trial of zinc supplementation in elderly subjects. We recruited 40 healthy elderly subjects (aged 56-83 y) and randomly assigned them to 2 groups. One group was given an oral dose of 45 mg zinc/d as a gluconate for 6 mo. The other group was given a placebo. Cell culture models were conducted to study the mechanism of zinc as an atheroprotective agent. After 6 mo of supplementation, the intake of zinc, compared with intake of placebo, increased the concentrations of plasma zinc and decreased the concentrations of plasma high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-6, macrophage chemoattractant protein 1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1), secretory phospholipase A2, and malondialdehyde and hydroxyalkenals (MDA+HAE) in elderly subjects. Regression analysis showed that changes in concentrations of plasma zinc were inversely associated with changes in concentrations of plasma hsCRP, MCP-1, VCAM-1, and MDA+HAE after 6 mo of supplementation. In cell culture studies, we showed that zinc decreased the generation of tumor necrosis factor-alpha, IL-1beta, VCAM-1, and MDA+HAE and the activation of nuclear transcription factor kappaB and increased antiinflammatory proteins A20 and peroxisome proliferator-activated receptor-alpha in human monocytic leukemia THP-1 cells and human aortic endothelial cells compared with zinc-deficient cells. These findings suggest that zinc may have a protective effect in atherosclerosis because of its antiinflammatory and antioxidant functions.
Author Snell, Diane
Bao, Ginny W
Fitzgerald, James T
Singh, Tapinder
Cardozo, Lavoisier J
Prasad, Ananda S
Bao, Bin
Beck, Frances WJ
Author_xml – sequence: 1
  fullname: Bao, Bin
– sequence: 2
  fullname: Prasad, Ananda S
– sequence: 3
  fullname: Beck, Frances WJ
– sequence: 4
  fullname: Fitzgerald, James T
– sequence: 5
  fullname: Snell, Diane
– sequence: 6
  fullname: Bao, Ginny W
– sequence: 7
  fullname: Singh, Tapinder
– sequence: 8
  fullname: Cardozo, Lavoisier J
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22807179$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20427734$$D View this record in MEDLINE/PubMed
BookMark eNqFUklv1DAUjlARXeDMDSwkxIVMvSSxwwEJjdikShygFy7Wi_My9eCxg52pGP4OfxTPUpZKiJMj-9vy3ndaHPngsSgeMjoTbVWfw9L4Gae0nXGlRHOnOGGtUKXgVB4VJ5RSXrasqY-L05SWlDJeqeZeccxpxaUU1Unx47P1hvRoIkLCROZl_jCTvUYyxjCh9c-Js6PtyYgxfLM9TDbkO_A9sX5wsFrBFOKGmM0UvlifJawn6HqMbkPSuluimdILAmTMan6y4Ihdjc6anRAJA_m-TQApSxKYrrLLznifARaZc7-4O4BL-OBwnhWXb15_mr8rLz68fT9_dVGaWrKpHBAlHWjHK246lEp2DQrDG2S0x0EMrJcgOlnVsgHVt1xR3rWtaivJsQFAcVa83OuO626FvcnWEZweo11B3OgAVv_94u2VXoRrzVXT1oxngWcHgRi-rjFNemWTQefAY1gnLfPUqRKi-j9SCF43ea8Z-eQWchnW0ec5aCEaJWouaAY9-jP5r8g3e86ApwcAJANuiOCNTb9xeRiSya1bvceZGFKKOGhjp92m8g9bpxnV297pbe_0tnd617vMO7_Fu5H-N-PxnjFA0LCIOc3lR06ZoExVFa8r8RNVcuf5
CODEN AJCNAC
CitedBy_id crossref_primary_10_1080_15284336_2018_1459344
crossref_primary_10_3390_antiox8060164
crossref_primary_10_1002_biof_1247
crossref_primary_10_1590_0102_311x00175016
crossref_primary_10_18632_oncotarget_18351
crossref_primary_10_1155_2020_9207279
crossref_primary_10_3390_antiox12111942
crossref_primary_10_1111_all_15972
crossref_primary_10_1007_s12011_023_03913_8
crossref_primary_10_3390_nu9060624
crossref_primary_10_1007_s12011_020_02348_9
crossref_primary_10_3389_fnut_2024_1447167
crossref_primary_10_1016_j_jtemb_2014_07_019
crossref_primary_10_1016_j_joca_2021_02_564
crossref_primary_10_1016_j_trac_2017_11_007
crossref_primary_10_1016_j_mehy_2012_07_043
crossref_primary_10_1093_mtomcs_mfae012
crossref_primary_10_1007_s13679_022_00490_0
crossref_primary_10_1016_j_bioadv_2023_213503
crossref_primary_10_3390_biomedicines10010139
crossref_primary_10_1155_2018_7532507
crossref_primary_10_1080_10408398_2022_2119932
crossref_primary_10_1097_QAI_0000000000002129
crossref_primary_10_1016_j_ophtha_2013_07_039
crossref_primary_10_1016_j_domaniend_2021_106647
crossref_primary_10_1002_jpen_2638
crossref_primary_10_1155_2018_6872621
crossref_primary_10_2139_ssrn_4157455
crossref_primary_10_1016_j_lfs_2010_12_007
crossref_primary_10_3892_etm_2023_12307
crossref_primary_10_3390_ijms21072612
crossref_primary_10_3168_jds_2019_17037
crossref_primary_10_1371_journal_pone_0203074
crossref_primary_10_1155_2017_1024769
crossref_primary_10_1007_s12011_013_9738_0
crossref_primary_10_1093_nutrit_nuae072
crossref_primary_10_1007_s12263_013_0379_x
crossref_primary_10_1016_j_tjnut_2023_11_026
crossref_primary_10_1093_ije_dyz061
crossref_primary_10_1089_ars_2010_3111
crossref_primary_10_1089_ham_2020_0190
crossref_primary_10_1007_s12011_022_03148_z
crossref_primary_10_1093_jaoacint_qsac127
crossref_primary_10_1097_BOR_0000000000000949
crossref_primary_10_3389_fnut_2014_00014
crossref_primary_10_1007_s11894_017_0562_0
crossref_primary_10_1111_j_1600_0757_2012_00458_x
crossref_primary_10_1016_j_phrs_2020_105166
crossref_primary_10_33320_maced_pharm_bull_2020_66_02_006
crossref_primary_10_1016_j_biomaterials_2017_08_022
crossref_primary_10_1016_j_clnesp_2022_05_013
crossref_primary_10_1139_apnm_2018_0519
crossref_primary_10_1007_s00775_014_1139_0
crossref_primary_10_2174_0127722708282330240522100230
crossref_primary_10_1080_14767058_2019_1659769
crossref_primary_10_1038_s41598_024_60112_8
crossref_primary_10_1007_s10545_011_9417_2
crossref_primary_10_1149_1945_7111_abd918
crossref_primary_10_3389_fnut_2024_1417975
crossref_primary_10_1016_j_nut_2010_09_010
crossref_primary_10_1016_j_procbio_2020_11_022
crossref_primary_10_1001_jamanetworkopen_2020_4330
crossref_primary_10_1684_ecn_2020_0441
crossref_primary_10_1016_j_jtemb_2018_07_007
crossref_primary_10_1016_j_jtemb_2019_02_004
crossref_primary_10_1080_10408398_2020_1862048
crossref_primary_10_1017_S0954422423000227
crossref_primary_10_3390_nu4070676
crossref_primary_10_4236_fns_2021_129064
crossref_primary_10_1371_journal_pone_0130470
crossref_primary_10_1007_s12011_018_1346_6
crossref_primary_10_1007_s12011_023_03954_z
crossref_primary_10_1016_j_jtemb_2023_127244
crossref_primary_10_1016_j_freeradbiomed_2019_01_006
crossref_primary_10_1007_s11010_011_0852_z
crossref_primary_10_3390_nu13062023
crossref_primary_10_1002_mrc_2822
crossref_primary_10_1016_j_jad_2017_12_004
crossref_primary_10_1017_S0007114521000192
crossref_primary_10_5897_AJB2014_13629
crossref_primary_10_1016_j_jacadv_2025_101669
crossref_primary_10_1093_nutrit_nuae023
crossref_primary_10_1155_2015_375391
crossref_primary_10_1016_j_jnutbio_2014_10_005
crossref_primary_10_1016_j_jnutbio_2013_02_006
crossref_primary_10_3390_nu13114058
crossref_primary_10_1016_j_biochi_2020_11_019
crossref_primary_10_1016_j_biopha_2018_06_017
crossref_primary_10_3390_ma13102211
crossref_primary_10_3390_nu12072084
crossref_primary_10_5812_numonthly_28576
crossref_primary_10_1016_j_clnesp_2025_02_011
crossref_primary_10_3945_ajcn_110_008417
crossref_primary_10_1111_j_1747_0080_2011_01521_x
crossref_primary_10_1007_s11926_020_00962_z
crossref_primary_10_1177_02601060211015594
crossref_primary_10_5812_ijem_147892
crossref_primary_10_3390_nu14050942
crossref_primary_10_1111_1744_9987_13461
crossref_primary_10_1002_biof_1386
crossref_primary_10_3389_fnins_2019_01295
crossref_primary_10_3390_biom12101358
crossref_primary_10_1002_biof_1020
crossref_primary_10_1016_j_cytogfr_2017_12_002
crossref_primary_10_1016_j_jtemb_2013_09_007
crossref_primary_10_3390_nu10010088
crossref_primary_10_1007_s10557_014_6549_2
crossref_primary_10_3390_nu12061735
crossref_primary_10_37527_2020_70_1_007
crossref_primary_10_1038_s41392_023_01679_y
crossref_primary_10_3109_0886022X_2012_717479
crossref_primary_10_1016_j_arr_2021_101541
crossref_primary_10_3390_antiox11122331
crossref_primary_10_1007_s12011_013_9885_3
crossref_primary_10_1179_1476830513Y_0000000066
crossref_primary_10_1128_mSphere_00447_20
crossref_primary_10_1016_j_jtemb_2018_04_026
crossref_primary_10_1111_wrr_12537
crossref_primary_10_4103_jnbs_jnbs_5_23
crossref_primary_10_1007_s10787_017_0309_4
crossref_primary_10_1111_ics_12134
crossref_primary_10_3390_nu12051384
crossref_primary_10_1186_s12884_019_2258_y
crossref_primary_10_1302_2046_3758_129_BJR_2023_0118_R1
crossref_primary_10_1016_j_intimp_2024_113188
crossref_primary_10_1016_j_lfs_2015_08_008
crossref_primary_10_1017_S0007114521000738
crossref_primary_10_1097_PRS_0000000000010432
crossref_primary_10_1080_10408398_2017_1406332
crossref_primary_10_1007_s12011_014_0177_3
crossref_primary_10_1016_j_psychres_2017_02_006
crossref_primary_10_3389_fnut_2023_1032048
crossref_primary_10_3390_ijms252312630
crossref_primary_10_4012_dmj_2021_139
crossref_primary_10_1016_j_jtemb_2014_06_003
crossref_primary_10_1016_j_nut_2022_111892
crossref_primary_10_1080_19390211_2017_1304486
crossref_primary_10_1002_jcp_26747
crossref_primary_10_1016_j_bbcan_2011_11_002
crossref_primary_10_3945_an_112_003210
crossref_primary_10_1039_c8mt00136g
crossref_primary_10_23736_S0393_3660_18_03964_5
crossref_primary_10_1152_ajpcell_00570_2009
crossref_primary_10_1016_j_jtemb_2021_126753
crossref_primary_10_1007_s12011_018_1611_8
crossref_primary_10_1016_j_mvr_2021_104217
crossref_primary_10_1093_gerona_glac014
crossref_primary_10_3390_nu15245120
crossref_primary_10_1016_j_envpol_2020_116230
crossref_primary_10_1007_s00204_020_02702_9
crossref_primary_10_3389_fnut_2021_686078
crossref_primary_10_1186_s12903_023_02866_7
crossref_primary_10_1016_j_ejphar_2018_07_045
crossref_primary_10_1007_s40520_019_01208_4
crossref_primary_10_1111_sji_13142
crossref_primary_10_1007_s12263_014_0426_2
crossref_primary_10_1146_annurev_nutr_122019_120635
crossref_primary_10_1007_s12011_017_1085_0
crossref_primary_10_1093_ije_dyv301
crossref_primary_10_1016_j_jad_2019_02_041
crossref_primary_10_1007_s12576_017_0571_7
crossref_primary_10_1371_journal_pone_0148536
crossref_primary_10_1038_eye_2015_203
crossref_primary_10_1016_j_pcad_2020_02_007
crossref_primary_10_3390_nu9121286
crossref_primary_10_1039_C5FO00630A
crossref_primary_10_1016_j_jtemb_2014_09_002
crossref_primary_10_3390_nu13020562
crossref_primary_10_1016_j_jtemb_2021_126857
crossref_primary_10_1039_c9mt00079h
crossref_primary_10_1021_acs_chemrev_4c00577
crossref_primary_10_7759_cureus_77011
crossref_primary_10_1055_s_0035_1564146
crossref_primary_10_1002_1873_3468_70026
crossref_primary_10_1016_j_jpba_2013_05_048
crossref_primary_10_5812_ijpr_147887
crossref_primary_10_1007_s12011_018_1298_x
crossref_primary_10_1161_STROKEAHA_120_033187
crossref_primary_10_1108_00346651111181976
crossref_primary_10_1093_jalm_jfac079
crossref_primary_10_1007_s10534_024_00586_1
crossref_primary_10_1007_s10787_019_00669_3
crossref_primary_10_3164_jcbn_15_87
crossref_primary_10_1007_s12011_015_0367_7
crossref_primary_10_1007_s12263_014_0440_4
crossref_primary_10_1007_s10904_022_02406_w
crossref_primary_10_1016_j_avsg_2018_07_043
crossref_primary_10_1007_s12011_020_02548_3
crossref_primary_10_1002_iid3_70016
crossref_primary_10_1186_s13063_021_05178_9
crossref_primary_10_3390_antiox11101862
crossref_primary_10_51483_AFJPS_2_2_2022_1_33
crossref_primary_10_2174_0113816128302001240321044409
crossref_primary_10_1002_jcla_23470
crossref_primary_10_53879_id_53_05_10367
crossref_primary_10_1111_jnc_16252
crossref_primary_10_3390_ijerph14060591
crossref_primary_10_1002_hup_1245
crossref_primary_10_1016_j_ejphar_2018_07_019
crossref_primary_10_1021_acsbiomaterials_9b00427
crossref_primary_10_4103_neurol_india_Neurol_India_D_23_00337
crossref_primary_10_1007_s11064_011_0496_0
crossref_primary_10_3389_fcvm_2021_658400
crossref_primary_10_1093_toxsci_kfr331
crossref_primary_10_1016_j_nut_2017_03_009
crossref_primary_10_3390_biom12070862
crossref_primary_10_1016_j_biochi_2021_05_013
crossref_primary_10_1007_s12011_021_02575_8
crossref_primary_10_1016_j_pranut_2023_12_005
crossref_primary_10_1097_SHK_0000000000000127
crossref_primary_10_1007_s40266_021_00858_2
crossref_primary_10_1007_s12011_016_0919_5
crossref_primary_10_1016_j_jtemb_2020_126703
crossref_primary_10_1111_1541_4337_12312
crossref_primary_10_3389_fphys_2021_742425
crossref_primary_10_1016_j_ejphar_2016_09_013
crossref_primary_10_1155_2012_806285
crossref_primary_10_1097_JOM_0000000000002778
crossref_primary_10_1016_j_jtemb_2012_04_004
crossref_primary_10_3233_CH_151983
crossref_primary_10_1016_j_abb_2016_03_022
crossref_primary_10_1016_j_cca_2015_02_032
crossref_primary_10_1093_carcin_bgr004
crossref_primary_10_25259_AJBPS_9_2021
crossref_primary_10_1016_j_jtemb_2014_08_011
crossref_primary_10_1017_S1092852921000432
crossref_primary_10_3402_pba_v5_25592
crossref_primary_10_3390_nu11091980
crossref_primary_10_1016_j_envint_2022_107237
crossref_primary_10_3390_nu10050572
crossref_primary_10_1002_mnfr_201100511
crossref_primary_10_1007_s10157_021_02046_3
crossref_primary_10_3390_nu14204414
crossref_primary_10_51620_0869_2084_2022_67_5_271_276
crossref_primary_10_1097_MRM_0000000000000263
crossref_primary_10_1007_s12011_019_01892_3
crossref_primary_10_1093_cvr_cvt114
crossref_primary_10_3109_0886022X_2011_568144
crossref_primary_10_1016_j_pan_2021_12_006
crossref_primary_10_1016_j_mehy_2015_01_038
crossref_primary_10_3390_biom12040556
crossref_primary_10_1007_s00204_011_0775_1
crossref_primary_10_1007_s10534_024_00637_7
crossref_primary_10_3390_antiox6020024
crossref_primary_10_1007_s12011_015_0520_3
crossref_primary_10_3892_wasj_2024_285
crossref_primary_10_7762_cnr_2021_10_2_127
crossref_primary_10_1007_s12011_018_1507_7
crossref_primary_10_1016_j_jtemin_2025_100233
crossref_primary_10_3390_nu10050584
crossref_primary_10_1155_2021_6686803
crossref_primary_10_1152_ajpcell_00152_2019
crossref_primary_10_1007_s12011_011_9202_y
crossref_primary_10_1007_s12011_020_02410_6
crossref_primary_10_1111_j_1600_0625_2012_01467_x
crossref_primary_10_3390_nu11020389
crossref_primary_10_3390_nu15122721
crossref_primary_10_1097_TIN_0000000000000261
crossref_primary_10_1016_j_jad_2020_05_095
crossref_primary_10_1093_tas_txad113
crossref_primary_10_3390_nu8110707
crossref_primary_10_1089_jir_2020_0209
crossref_primary_10_1007_s12011_019_01860_x
crossref_primary_10_1016_j_actbio_2022_03_046
crossref_primary_10_3390_nu10010016
crossref_primary_10_1016_j_clnu_2019_06_024
crossref_primary_10_1007_s12011_020_02187_8
crossref_primary_10_1007_s12403_023_00566_9
crossref_primary_10_1017_S0007114512001912
crossref_primary_10_1007_s12011_021_02733_y
crossref_primary_10_1111_ijcp_14777
crossref_primary_10_3390_ijms18102222
crossref_primary_10_1002_mnfr_201100776
crossref_primary_10_1016_j_biopha_2017_08_081
crossref_primary_10_51745_najfnr_4_7_260_267
crossref_primary_10_1007_s12011_019_01757_9
crossref_primary_10_1017_S0007114511006027
crossref_primary_10_1016_j_mad_2013_12_007
Cites_doi 10.2165/00003495-199550020-00004
10.4037/ajcc1998.7.3.240
10.4049/jimmunol.156.3.1166
10.1001/jama.1978.03290200044019
10.1515/CCLM.2001.136
10.1007/s11906-005-0056-6
10.1080/07315724.1997.10718706
10.1001/archopht.119.10.1417
10.1056/NEJMra043430
10.1002/(SICI)1520-670X(1998)11:2/3<63::AID-JTRA2>3.0.CO;2-5
10.1016/j.freeradbiomed.2004.07.007
10.1074/jbc.274.45.32048
10.1016/S0899-9007(96)00125-6
10.1093/jn/133.8.2543
10.1139/y93-108
10.1093/jn/134.7.1711
10.1093/ajcn/85.3.837
10.1001/archopht.122.5.716
10.1590/S1807-59322005000500011
10.1172/JCI10373
10.1016/S0021-9258(18)52428-5
10.1161/01.CIR.99.16.2079
10.1161/01.ATV.0000191663.12164.77
10.1161/01.CIR.0000052939.59093.45
10.1073/pnas.93.13.6721
10.1590/S0100-879X2004000800018
10.1093/ajcn/68.2.447S
10.1161/circ.104.22.2638
10.1161/01.CIR.101.18.2149
10.1016/S0022-2143(96)90113-4
10.1007/s004310051154
10.1067/mlc.2001.118108
10.1056/NEJM200003233421202
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright American Society for Clinical Nutrition, Inc. Jun 1, 2010
2010 American Society for Nutrition 2010
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright American Society for Clinical Nutrition, Inc. Jun 1, 2010
– notice: 2010 American Society for Nutrition 2010
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T7
7TS
8FD
C1K
FR3
K9.
NAPCQ
P64
7X8
7S9
L.6
5PM
DOI 10.3945/ajcn.2009.28836
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Physical Education Index
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Nursing & Allied Health Premium


MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Diet & Clinical Nutrition
EISSN 1938-3207
EndPage 1641
ExternalDocumentID PMC2869512
2042105171
20427734
22807179
10_3945_ajcn_2009_28836
US201301844254
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: PHS HHS
  grantid: 5R01 A150698-04
GroupedDBID ---
-ET
-~X
..I
.55
.GJ
0R~
1HT
23M
2FS
2WC
3O-
4.4
48X
53G
5GY
5RE
5VS
6J9
85S
8R4
8R5
AABZA
AACZT
AAGQS
AAHBH
AAIKC
AAJQQ
AAMNW
AAPGJ
AAPQZ
AAUQX
AAUTI
AAVAP
AAWDT
AAWTL
AAXUO
AAYOK
ABBTP
ABDNZ
ABDPE
ABIME
ABJNI
ABLJU
ABOCM
ABPTD
ABWST
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACPRK
ACPVT
ACUFI
ACUTJ
ADBBV
ADGZP
ADHUB
ADMTO
ADRTK
ADUKH
ADVEK
ADVLN
AEGXH
AENEX
AETBJ
AFFDN
AFFNX
AFFZL
AFJKZ
AFOFC
AFRAH
AFXAL
AGINJ
AGKRT
AGNAY
AGQXC
AGUTN
AHMBA
AI.
AIAGR
AITUG
AJEEA
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANFBD
AQDSO
AQKUS
BAWUL
BAYMD
BKOMP
BTRTY
C1A
CDBKE
DAKXR
DIK
E3Z
EBS
EIHJH
EJD
ENERS
EX3
F5P
F9R
FBQ
FDB
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
FRP
GAUVT
GJXCC
GX1
H13
HF~
HZ~
IH2
J5H
KBUDW
KOP
KQ8
KSI
KSN
L7B
LPU
MBLQV
MHKGH
MV1
MVM
N4W
NEJ
NHB
NHCRO
NOMLY
NOYVH
NVLIB
O9-
ODMLO
OHT
OK1
OVD
P2P
P6G
PCD
PQQKQ
PRG
Q2X
R0Z
RHI
RNS
ROL
SJN
TCN
TEORI
TMA
TNT
TR2
TWZ
UBH
UHB
UKR
VH1
W2D
W8F
WH7
WHG
WOQ
WOW
X7M
XOL
XSW
YBU
YHG
YOJ
YQJ
YR5
YRY
YSK
YV5
YYQ
YZZ
ZCA
ZCG
ZGI
ZUP
ZXP
~KM
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AIGII
AKBMS
AKYEP
APXCP
CITATION
NU-
EFKBS
IQODW
A8Z
ABSAR
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
RHF
ROX
SV3
VXZ
Z5M
7QP
7T7
7TS
8FD
C1K
FR3
K9.
NAPCQ
P64
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c571t-fee70f0b242cbe787b6e3c26e10def3f1d7a3b74576a8d92802b9989472e6aae3
ISSN 0002-9165
1938-3207
IngestDate Thu Aug 21 18:32:40 EDT 2025
Fri Jul 11 09:07:27 EDT 2025
Fri Jul 11 09:35:45 EDT 2025
Sat Jul 26 02:23:45 EDT 2025
Wed Feb 19 02:24:39 EST 2025
Mon Jul 21 09:17:28 EDT 2025
Tue Jul 01 04:02:51 EDT 2025
Thu Apr 24 23:08:25 EDT 2025
Thu Apr 03 09:45:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Human
Decrease
Cytokine
Lipids
Inflammation
C reactive protein
Elderly
Zinc
Peroxidation
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c571t-fee70f0b242cbe787b6e3c26e10def3f1d7a3b74576a8d92802b9989472e6aae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
Supported by National Institutes of Health grant 5RO1 A150698-04 and Labcatal Laboratories, Paris, France. Labcatal Laboratories provided free zinc and placebo capsules.
OpenAccessLink https://academic.oup.com/ajcn/article-pdf/91/6/1634/23863205/1634.pdf
PMID 20427734
PQID 336835230
PQPubID 41076
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2869512
proquest_miscellaneous_742708334
proquest_miscellaneous_733256009
proquest_journals_336835230
pubmed_primary_20427734
pascalfrancis_primary_22807179
crossref_citationtrail_10_3945_ajcn_2009_28836
crossref_primary_10_3945_ajcn_2009_28836
fao_agris_US201301844254
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-06-01
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
– name: Bethesda
PublicationTitle The American journal of clinical nutrition
PublicationTitleAlternate Am J Clin Nutr
PublicationYear 2010
Publisher American Society for Clinical Nutrition
American Society for Nutrition
American Society for Clinical Nutrition, Inc
Publisher_xml – name: American Society for Clinical Nutrition
– name: American Society for Nutrition
– name: American Society for Clinical Nutrition, Inc
References Pearson (10.3945/ajcn.2009.28836_bib16) 2003; 107
Connell (10.3945/ajcn.2009.28836_bib29) 1997; 16
Bettger (10.3945/ajcn.2009.28836_bib27) 1993; 71
Brewer (10.3945/ajcn.2009.28836_bib12) 1995; 50
Song (10.3945/ajcn.2009.28836_bib31) 1996; 93
Ridker (10.3945/ajcn.2009.28836_bib19) 2000; 101
Reiterer (10.3945/ajcn.2009.28836_bib34) 2004; 134
Prasad (10.3945/ajcn.2009.28836_bib24) 2001; 138
Shankar (10.3945/ajcn.2009.28836_bib6) 1998; 68
Ohta (10.3945/ajcn.2009.28836_bib22) 1999; 158
Collins (10.3945/ajcn.2009.28836_bib26) 2001; 107
(10.3945/ajcn.2009.28836_bib13) 2001; 119
Blaschke (10.3945/ajcn.2009.28836_bib32) 2006; 26
Jaattela (10.3945/ajcn.2009.28836_bib30) 1996; 156
Ridker (10.3945/ajcn.2009.28836_bib15) 2000; 342
Ho (10.3945/ajcn.2009.28836_bib10) 2003; 133
Futterman (10.3945/ajcn.2009.28836_bib3) 1998; 7
Prasad (10.3945/ajcn.2009.28836_bib5) 2004; 37
Prasad (10.3945/ajcn.2009.28836_bib23) 1996; 128
Prasad (10.3945/ajcn.2009.28836_bib8) 1997; 109
Delerive (10.3945/ajcn.2009.28836_bib33) 1999; 274
Prasad (10.3945/ajcn.2009.28836_bib7) 2007; 85
Hennig (10.3945/ajcn.2009.28836_bib9) 1996; 12
Biasucci (10.3945/ajcn.2009.28836_bib20) 1999; 99
Hansson (10.3945/ajcn.2009.28836_bib1) 2005; 352
Prasad (10.3945/ajcn.2009.28836_bib11) 1978; 240
Touyz (10.3945/ajcn.2009.28836_bib17) 2004; 37
Clemons (10.3945/ajcn.2009.28836_bib14) 2004; 122
Prasad (10.3945/ajcn.2009.28836_bib4) 1998; 11
da Luz (10.3945/ajcn.2009.28836_bib2) 2005; 60
Schulman (10.3945/ajcn.2009.28836_bib25) 2005; 7
Mazzone (10.3945/ajcn.2009.28836_bib21) 2001; 39
Landmesser (10.3945/ajcn.2009.28836_bib18) 2001; 104
Zabel (10.3945/ajcn.2009.28836_bib28) 1991; 266
References_xml – volume: 50
  start-page: 240
  year: 1995
  ident: 10.3945/ajcn.2009.28836_bib12
  article-title: Practical recommendations and new therapies for Wilson’s disease
  publication-title: Drugs
  doi: 10.2165/00003495-199550020-00004
– volume: 7
  start-page: 240
  year: 1998
  ident: 10.3945/ajcn.2009.28836_bib3
  article-title: Fifty percent of patients with coronary artery disease do not have any of the conventional risk factors
  publication-title: Am J Crit Care
  doi: 10.4037/ajcc1998.7.3.240
– volume: 156
  start-page: 1166
  year: 1996
  ident: 10.3945/ajcn.2009.28836_bib30
  article-title: A20 zinc finger protein inhibits TNF and IL-1 signaling
  publication-title: J Immun
  doi: 10.4049/jimmunol.156.3.1166
– volume: 240
  start-page: 2166
  year: 1978
  ident: 10.3945/ajcn.2009.28836_bib11
  article-title: Hypocupremia induced by zinc therapy in adults
  publication-title: JAMA
  doi: 10.1001/jama.1978.03290200044019
– volume: 39
  start-page: 822
  year: 2001
  ident: 10.3945/ajcn.2009.28836_bib21
  article-title: Cigarette smoking and hypertension influence nitric oxide release and plasma levels of adhesion molecules
  publication-title: Clin Chem Lab Med
  doi: 10.1515/CCLM.2001.136
– volume: 109
  start-page: 68
  year: 1997
  ident: 10.3945/ajcn.2009.28836_bib8
  article-title: Zinc deficiency: changes in cytokine production and T-cell subpopulations in patients with head and neck cancer and in noncancer subjects
  publication-title: Proc Assoc Am Physicians
– volume: 7
  start-page: 61
  year: 2005
  ident: 10.3945/ajcn.2009.28836_bib25
  article-title: Nitric oxide, angiotensin II, and reactive oxygen species in hypertension and atherogenesis
  publication-title: Curr Hypertens Rep
  doi: 10.1007/s11906-005-0056-6
– volume: 16
  start-page: 411
  year: 1997
  ident: 10.3945/ajcn.2009.28836_bib29
  article-title: Zinc attenuates tumor necrosis factor-mediated activation of transcription factors in endothelial cells
  publication-title: J Am Coll Nutr
  doi: 10.1080/07315724.1997.10718706
– volume: 119
  start-page: 1417
  year: 2001
  ident: 10.3945/ajcn.2009.28836_bib13
  article-title: A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta-carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8
  publication-title: Arch Ophthalmol
  doi: 10.1001/archopht.119.10.1417
– volume: 352
  start-page: 1685
  year: 2005
  ident: 10.3945/ajcn.2009.28836_bib1
  article-title: Inflammation, atherosclerosis, and coronary artery disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra043430
– volume: 11
  start-page: 63
  year: 1998
  ident: 10.3945/ajcn.2009.28836_bib4
  article-title: Zinc in human health: an update
  publication-title: J Trace Elem Exp Med
  doi: 10.1002/(SICI)1520-670X(1998)11:2/3<63::AID-JTRA2>3.0.CO;2-5
– volume: 37
  start-page: 1182
  year: 2004
  ident: 10.3945/ajcn.2009.28836_bib5
  article-title: Anti-oxidant effect of zinc humans
  publication-title: Free Radic Biol Med
  doi: 10.1016/j.freeradbiomed.2004.07.007
– volume: 274
  start-page: 32048
  year: 1999
  ident: 10.3945/ajcn.2009.28836_bib33
  article-title: Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.45.32048
– volume: 12
  start-page: 711
  year: 1996
  ident: 10.3945/ajcn.2009.28836_bib9
  article-title: Antiatherogenic properties of zinc: implications in endothelial cell metabolism
  publication-title: Nutrition
  doi: 10.1016/S0899-9007(96)00125-6
– volume: 133
  start-page: 2543
  year: 2003
  ident: 10.3945/ajcn.2009.28836_bib10
  article-title: Zinc deficiency induces oxidative DNA damage and increases p53 expression in human lung fibroblasts
  publication-title: J Nutr
  doi: 10.1093/jn/133.8.2543
– volume: 71
  start-page: 721
  year: 1993
  ident: 10.3945/ajcn.2009.28836_bib27
  article-title: Zinc and selenium, site-specific versus general antioxidant
  publication-title: Can J Physiol Pharmacol
  doi: 10.1139/y93-108
– volume: 134
  start-page: 1711
  year: 2004
  ident: 10.3945/ajcn.2009.28836_bib34
  article-title: Peroxisome proliferator activated receptors alpha and gamma require zinc for their anti-inflammatory properties in porcine vascular endothelial cells
  publication-title: J Nutr
  doi: 10.1093/jn/134.7.1711
– volume: 85
  start-page: 837
  year: 2007
  ident: 10.3945/ajcn.2009.28836_bib7
  article-title: Zinc supplementation decreases incidence of infections in the elderly: effect of zinc in generation of cytokines and oxidative stress
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/85.3.837
– volume: 122
  start-page: 716
  year: 2004
  ident: 10.3945/ajcn.2009.28836_bib14
  article-title: Sperduto RD; AREDS Research Group. Associations of mortality with ocular disorders and an intervention of high-dose antioxidants and zinc in the Age-Related Eye Disease Study: AREDS report no. 13
  publication-title: Arch Ophthalmol
  doi: 10.1001/archopht.122.5.716
– volume: 60
  start-page: 415
  year: 2005
  ident: 10.3945/ajcn.2009.28836_bib2
  article-title: Noninvasive detection of coronary artery disease--challenges for prevention of disease and clinical events
  publication-title: Clinics
  doi: 10.1590/S1807-59322005000500011
– volume: 107
  start-page: 255
  year: 2001
  ident: 10.3945/ajcn.2009.28836_bib26
  article-title: NF-kappaB: pivotal mediator or innocent bystander in atherogenesis?
  publication-title: J Clin Invest
  doi: 10.1172/JCI10373
– volume: 266
  start-page: 252
  year: 1991
  ident: 10.3945/ajcn.2009.28836_bib28
  article-title: DNA binding of purified transcription factor NF-kappa B. Affinity, specificity, Zn2+ dependence, and differential half-site recognition
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)52428-5
– volume: 99
  start-page: 2079
  year: 1999
  ident: 10.3945/ajcn.2009.28836_bib20
  article-title: Increasing levels of interleukin (IL)-1Ra and IL-6 during the first 2 days of hospitalization in unstable angina are associated with increased risk of in-hospital coronary events
  publication-title: Circulation
  doi: 10.1161/01.CIR.99.16.2079
– volume: 26
  start-page: 28
  year: 2006
  ident: 10.3945/ajcn.2009.28836_bib32
  article-title: Obesity, peroxisome proliferators-activated receptor, and atherosclerosis in type 2 diabetes
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.0000191663.12164.77
– volume: 107
  start-page: 499
  year: 2003
  ident: 10.3945/ajcn.2009.28836_bib16
  article-title: Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000052939.59093.45
– volume: 93
  start-page: 6721
  year: 1996
  ident: 10.3945/ajcn.2009.28836_bib31
  article-title: The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-κB activation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.93.13.6721
– volume: 37
  start-page: 1263
  year: 2004
  ident: 10.3945/ajcn.2009.28836_bib17
  article-title: Reactive oxygen species and angiotensin II signaling in vascular cells – implications in cardiovascular disease
  publication-title: Braz J Med Biol Res
  doi: 10.1590/S0100-879X2004000800018
– volume: 68
  start-page: 447S
  year: 1998
  ident: 10.3945/ajcn.2009.28836_bib6
  article-title: Zinc and immune function: the biological basis of altered resistance to infection
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/68.2.447S
– volume: 104
  start-page: 2638
  year: 2001
  ident: 10.3945/ajcn.2009.28836_bib18
  article-title: Oxidant stress as a marker for cardiovascular events: Ox marks the spot
  publication-title: Circulation
  doi: 10.1161/circ.104.22.2638
– volume: 101
  start-page: 2149
  year: 2000
  ident: 10.3945/ajcn.2009.28836_bib19
  article-title: Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.18.2149
– volume: 128
  start-page: 51
  year: 1996
  ident: 10.3945/ajcn.2009.28836_bib23
  article-title: Zinc deficiency affects cell cycle and deoxythymidine kinase gene expression in HUT-78 cells
  publication-title: J Lab Clin Med
  doi: 10.1016/S0022-2143(96)90113-4
– volume: 158
  start-page: 592
  year: 1999
  ident: 10.3945/ajcn.2009.28836_bib22
  article-title: Soluble vascular cell-adhesion molecule-1 and soluble intercellular adhesion molecule-1 correlate with lipid and apolipoprotein risk factors for coronary artery disease in children
  publication-title: Eur J Pediatr
  doi: 10.1007/s004310051154
– volume: 138
  start-page: 250
  year: 2001
  ident: 10.3945/ajcn.2009.28836_bib24
  article-title: Zinc activates NF-κB in HUT 78 cells
  publication-title: J Lab Clin Med
  doi: 10.1067/mlc.2001.118108
– volume: 342
  start-page: 836
  year: 2000
  ident: 10.3945/ajcn.2009.28836_bib15
  article-title: C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women
  publication-title: N Engl J Med
  doi: 10.1056/NEJM200003233421202
SSID ssj0012486
Score 2.4960275
Snippet BACKGROUND: Chronic inflammation and oxidative stress are common risk factors for atherosclerosis. Zinc is an essential micronutrient that can function as an...
Chronic inflammation and oxidative stress are common risk factors for atherosclerosis. Zinc is an essential micronutrient that can function as an...
Background: Chronic inflammation and oxidative stress are common risk factors for atherosclerosis. Zinc is an essential micronutrient that can function as an...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1634
SubjectTerms administration & dosage
Aged
Aged, 80 and over
anti-inflammatory activity
antioxidant activity
atheroprotective activity
atherosclerosis
Atherosclerosis - blood
Atherosclerosis - immunology
Atherosclerosis - prevention & control
Biological and medical sciences
blood
C-reactive protein
C-Reactive Protein - metabolism
Chemokine CCL2
Chemokine CCL2 - blood
Cytokines
Cytokines - blood
dietary mineral supplements
dietary minerals
Dietary Supplements
DNA-Binding Proteins
Double-Blind Method
drug effects
elderly
elderly nutrition
Endothelial Cells
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Feeding. Feeding behavior
Female
Fundamental and applied biological sciences. Psychology
HL-60 Cells
Humans
immunology
inflammation
Interleukin-6
Interleukin-6 - blood
Intracellular Signaling Peptides and Proteins
Intracellular Signaling Peptides and Proteins - blood
lipid peroxidation
Lipid Peroxidation - drug effects
Lipids
Male
Malondialdehyde
Malondialdehyde - blood
metabolism
Middle Aged
NF-kappa B
NF-kappa B - blood
Nuclear Proteins
Nuclear Proteins - blood
Nutrition
Older people
Original Research Communications
oxidative stress
Oxidative Stress - drug effects
Phospholipases A2
Phospholipases A2 - blood
Plasma
PPAR alpha
PPAR alpha - blood
prevention & control
protective effect
Proteins
Risk factors
Tumor Necrosis Factor alpha-Induced Protein 3
Tumor Necrosis Factor-alpha
Tumor Necrosis Factor-alpha - blood
Vascular Cell Adhesion Molecule-1
Vascular Cell Adhesion Molecule-1 - blood
Veins & arteries
Vertebrates: anatomy and physiology, studies on body, several organs or systems
Vitamins, Minerals, and Phytochemicals
Zinc
Zinc - administration & dosage
Zinc - blood
Title Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent
URI https://www.ncbi.nlm.nih.gov/pubmed/20427734
https://www.proquest.com/docview/336835230
https://www.proquest.com/docview/733256009
https://www.proquest.com/docview/742708334
https://pubmed.ncbi.nlm.nih.gov/PMC2869512
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9UwFG8AE-OLH_jBREkfjDG5DHbX3X34JqBBDYREiMSXpdu66_Cy3bDdRPh3_Ec9p-26jaBRXpZl69ou5_xOT9vT3yHkVQ5K4IfMsz3wVm3PTwBz2SSxWSLygHmOcCRl_sGhv3_ifTqdnC4tP-hFLS2aZCu9uvFcyW2kCs9ArnhK9j8kayqFB3AP8oUrSBiu_yTjb0WZjjLp-NWiHu3acCPt10jSLyh6gFkxLzKkJ65-FiqBUhuxCV0AfThX--zpZVP9wBh4SSKCubtnl6N6keA6Ta2ORM-hzrKRWT66OHT0Nq-wHxzZnkfSoaw0-wP2hE_b0JqzTjHNPlGPuMKc0SzbBAHdKqtcz90pzJOjC15zHZCJSyHdAu6OUPZdJgyBn_narZgXzdVUrsCZ6GAdIa4XPXC_3h8EkLS97Ie2Hg5619l7cIDVvrlQJj4CE89clWu3HQNUxjCt632DDu6q13MOYHI5vmngYZGHHB38LC0VByomcfb7JUFQ83Ophy6mNwnaagdc30cHu27og9MLTsUdKORiTo69j5_Nvpjrydyl5r8UWRW2vn2tbWS51g0NXK7lnFcYAMxrkGiukrfcNLu6HiTc87qOH5L7erpE3yndf0SWRLlKrD2QBn1NNaftjBqZrJK7BzpY5DH5hfCgBh60gwfV8NikEhy0D45NCgpF-9CgBhrwmGpo0BYabymnBhi0Bwxa5RSBQXkNVdLrwKASGE_IyYf3x7v7ts5JYqeTYNzYuRCBkzsJeLZpIsDQJb5gqeuLsZOJnOXjLOAsCTyYxvMwi9zQcZMIkxwErvA5F-wpWSmrUqwROkndSQhlJ1nOvDBLcMPfydMwSkKeu35uka1WbHGqCfsxb8wshok7ijxGkWMe2SiWIrfIG_PBXHHV_LnoGuhBzKfgScQnX1yMXxiHHgzgnkU2BsphqpLEWTB-W2S91ZZYW4k6ZszHuRxzLELNWxipcPuRl6Ja1HHAmJxfRX8pAgoLgwODTjxT2te1rpXZIsFAL00B5MkfvimL75IvX0Pq-a2_XCf3OiP0gqw0FwvxEuYiTbIh4fkbOPg74g
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zinc+decreases+C-reactive+protein%2C+lipid+peroxidation%2C+and+inflammatory+cytokines+in+elderly+subjects%3A+a+potential+implication+of+zinc+as+an+atheroprotective+agent&rft.jtitle=The+American+journal+of+clinical+nutrition&rft.au=Bao%2C+Bin&rft.au=Prasad%2C+Ananda+S&rft.au=Beck%2C+Frances+WJ&rft.au=Fitzgerald%2C+James+T&rft.date=2010-06-01&rft.pub=American+Society+for+Nutrition&rft.issn=0002-9165&rft.eissn=1938-3207&rft.volume=91&rft.issue=6&rft.spage=1634&rft.epage=1641&rft_id=info:doi/10.3945%2Fajcn.2009.28836&rft_id=info%3Apmid%2F20427734&rft.externalDocID=PMC2869512
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9165&client=summon