Intracoronary Imaging for Detecting Vulnerable Plaque

It is now generally recognized that acute coronary syndromes most commonly result from disruption of thin-cap fibroatheroma (TCFA), which is characterized by a large necrotic core with an overlying thin-fibrous cap measuring <65μm. Recent advances in intracoronary imaging modalities have signific...

Full description

Saved in:
Bibliographic Details
Published inCirculation Journal Vol. 77; no. 3; pp. 588 - 595
Main Authors Fujii, Kenichi, Hao, Hiroyuki, Ohyanagi, Mitsumasa, Masuyama, Tohru
Format Journal Article
LanguageEnglish
Published Japan The Japanese Circulation Society 2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is now generally recognized that acute coronary syndromes most commonly result from disruption of thin-cap fibroatheroma (TCFA), which is characterized by a large necrotic core with an overlying thin-fibrous cap measuring <65μm. Recent advances in intracoronary imaging modalities have significantly improved the ability to detect TCFA in vivo. Intravascular ultrasound (IVUS) is perhaps the most promising modality that has been used more than 15 years to evaluate atherosclerotic plaque. IVUS has revealed a lot of the clinical evidence regarding vulnerable plaque detection in live humans. Recently, by analyzing the IVUS acoustic signal before demodulation and scan conversion, IVUS radiofrequency analysis can be used to differentiate adjacent smaller areas of atherosclerotic plaque with heterogeneous composition. Coronary angioscopy allows direct visualization of the coronary artery wall and provides detailed information of the luminal surface of plaque, such as color, thrombus or disruption. Optical coherence tomography imaging, recently been introduced for in vivo human imaging, offers a higher resolution than any other available imaging modality, and can visualize a thin fibrous cap measuring <65μm. In this review, we will discuss the features and limitations of each imaging modalities for detecting TCFA.  (Circ J 2013; 77: 588–595)
AbstractList It is now generally recognized that acute coronary syndromes most commonly result from disruption of thin-cap fibroatheroma (TCFA), which is characterized by a large necrotic core with an overlying thin-fibrous cap measuring <65 μm. Recent advances in intracoronary imaging modalities have significantly improved the ability to detect TCFA in vivo. Intravascular ultrasound (IVUS) is perhaps the most promising modality that has been used more than 15 years to evaluate atherosclerotic plaque. IVUS has revealed a lot of the clinical evidence regarding vulnerable plaque detection in live humans. Recently, by analyzing the IVUS acoustic signal before demodulation and scan conversion, IVUS radiofrequency analysis can be used to differentiate adjacent smaller areas of atherosclerotic plaque with heterogeneous composition. Coronary angioscopy allows direct visualization of the coronary artery wall and provides detailed information of the luminal surface of plaque, such as color, thrombus or disruption. Optical coherence tomography imaging, recently been introduced for in vivo human imaging, offers a higher resolution than any other available imaging modality, and can visualize a thin fibrous cap measuring <65 μm. In this review, we will discuss the features and limitations of each imaging modalities for detecting TCFA.
It is now generally recognized that acute coronary syndromes most commonly result from disruption of thin-cap fibroatheroma (TCFA), which is characterized by a large necrotic core with an overlying thin-fibrous cap measuring &lt;65 μm. Recent advances in intracoronary imaging modalities have significantly improved the ability to detect TCFA in vivo. Intravascular ultrasound (IVUS) is perhaps the most promising modality that has been used more than 15 years to evaluate atherosclerotic plaque. IVUS has revealed a lot of the clinical evidence regarding vulnerable plaque detection in live humans. Recently, by analyzing the IVUS acoustic signal before demodulation and scan conversion, IVUS radiofrequency analysis can be used to differentiate adjacent smaller areas of atherosclerotic plaque with heterogeneous composition. Coronary angioscopy allows direct visualization of the coronary artery wall and provides detailed information of the luminal surface of plaque, such as color, thrombus or disruption. Optical coherence tomography imaging, recently been introduced for in vivo human imaging, offers a higher resolution than any other available imaging modality, and can visualize a thin fibrous cap measuring &lt;65 μm. In this review, we will discuss the features and limitations of each imaging modalities for detecting TCFA.
It is now generally recognized that acute coronary syndromes most commonly result from disruption of thin-cap fibroatheroma (TCFA), which is characterized by a large necrotic core with an overlying thin-fibrous cap measuring <65μm. Recent advances in intracoronary imaging modalities have significantly improved the ability to detect TCFA in vivo. Intravascular ultrasound (IVUS) is perhaps the most promising modality that has been used more than 15 years to evaluate atherosclerotic plaque. IVUS has revealed a lot of the clinical evidence regarding vulnerable plaque detection in live humans. Recently, by analyzing the IVUS acoustic signal before demodulation and scan conversion, IVUS radiofrequency analysis can be used to differentiate adjacent smaller areas of atherosclerotic plaque with heterogeneous composition. Coronary angioscopy allows direct visualization of the coronary artery wall and provides detailed information of the luminal surface of plaque, such as color, thrombus or disruption. Optical coherence tomography imaging, recently been introduced for in vivo human imaging, offers a higher resolution than any other available imaging modality, and can visualize a thin fibrous cap measuring <65μm. In this review, we will discuss the features and limitations of each imaging modalities for detecting TCFA.  (Circ J 2013; 77: 588–595)
Author Hao, Hiroyuki
Ohyanagi, Mitsumasa
Masuyama, Tohru
Fujii, Kenichi
Author_xml – sequence: 1
  fullname: Fujii, Kenichi
  organization: Cardiovascular Division, Hyogo College of Medicine
– sequence: 2
  fullname: Hao, Hiroyuki
  organization: Department of Surgical Pathology, Hyogo College of Medicine
– sequence: 3
  fullname: Ohyanagi, Mitsumasa
  organization: Division of Coronary Heart Disease, Hyogo College of Medicine
– sequence: 4
  fullname: Masuyama, Tohru
  organization: Cardiovascular Division, Hyogo College of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23370454$$D View this record in MEDLINE/PubMed
BookMark eNpFkLtPwzAQxi1URB-wM6GMLCl-xvGIAoVWlWAAVstxLiVVHsVOBv57kra0yz2k3313903RqG5qQOiW4Dmhgj3YwtntPFmFhIZEKHWBJoRxGfKY4tG-jkIVczZGU--3GFOFhbpCY8qYxFzwCRLLunXGNq6pjfsNlpXZFPUmyBsXPEELth26r66swZm0hOC9ND8dXKPL3JQebo55hj4Xzx_Ja7h-e1kmj-vQCknaEAznKaU5llREsWUG4zTimGSZSo1SRLA0yhkIyGx_KqZpJonlEisVkRRzwmbo_qC7c02_1re6KryFsjQ1NJ3XhBEac8yjqEfxAbWu8d5BrneuqPqfNMF6MEvvzdLJqu_0YFY_cndU79IKstPAvzs9sDgAW9-aDZwA49rClnBUlFKzIZyVz8C3cRpq9gfwPH_6
CitedBy_id crossref_primary_10_1253_circj_CJ_15_0718
crossref_primary_10_2459_JCM_0000000000000883
crossref_primary_10_1253_circj_CJ_15_0811
crossref_primary_10_1016_j_amjcard_2016_10_031
crossref_primary_10_1016_j_amjcard_2016_07_071
crossref_primary_10_1016_j_carrev_2019_08_010
crossref_primary_10_1097_CRD_0000000000000098
crossref_primary_10_1253_circj_CJ_14_0496
crossref_primary_10_1007_s12410_014_9311_z
crossref_primary_10_1253_circj_CJ_14_1085
crossref_primary_10_1253_circj_CJ_15_0887
crossref_primary_10_1253_circj_CJ_13_0374
crossref_primary_10_1253_circj_CJ_16_0059
crossref_primary_10_1007_s11886_016_0705_1
crossref_primary_10_1007_s12350_015_0135_2
crossref_primary_10_1253_circj_CJ_15_0768
crossref_primary_10_1007_s40134_017_0252_6
crossref_primary_10_1109_TUFFC_2019_2956603
crossref_primary_10_1186_s12938_020_00832_w
crossref_primary_10_1253_circj_CJ_15_0393
crossref_primary_10_1097_CRD_0000000000000100
crossref_primary_10_1253_circj_CJ_13_0708
crossref_primary_10_1253_circj_CJ_14_1375
crossref_primary_10_1007_s10554_018_1384_3
crossref_primary_10_1371_journal_pone_0168302
crossref_primary_10_1536_ihj_13_213
ContentType Journal Article
Copyright 2013 THE JAPANESE CIRCULATION SOCIETY
Copyright_xml – notice: 2013 THE JAPANESE CIRCULATION SOCIETY
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1253/circj.CJ-12-1599
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1347-4820
EndPage 595
ExternalDocumentID 10_1253_circj_CJ_12_1599
23370454
article_circj_77_3_77_CJ_12_1599_article_char_en
Genre Journal Article
Review
GroupedDBID ---
.55
.GJ
29B
2WC
3O-
53G
5GY
5RE
6J9
AAUGY
ACGFO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
JSF
JSH
KQ8
M~E
OK1
P2P
RJT
RNS
RYR
RZJ
TKC
TR2
W2D
X7M
XSB
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c571t-ea44b22f072568c3a00b6401dd9ba99153b6f3e5edc13402bd71c4709961b0413
ISSN 1346-9843
IngestDate Sun May 12 04:08:16 EDT 2024
Fri Dec 06 04:43:00 EST 2024
Thu May 23 23:48:26 EDT 2024
Thu Aug 17 20:28:44 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c571t-ea44b22f072568c3a00b6401dd9ba99153b6f3e5edc13402bd71c4709961b0413
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://www.jstage.jst.go.jp/article/circj/77/3/77_CJ-12-1599/_article/-char/en
PMID 23370454
PQID 1312840466
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1312840466
crossref_primary_10_1253_circj_CJ_12_1599
pubmed_primary_23370454
jstage_primary_article_circj_77_3_77_CJ_12_1599_article_char_en
PublicationCentury 2000
PublicationDate 2013-00-00
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Circulation Journal
PublicationTitleAlternate Circ J
PublicationYear 2013
Publisher The Japanese Circulation Society
Publisher_xml – name: The Japanese Circulation Society
References 20. Yamada R, Okura H, Kume T, Neishi Y, Kawamoto T, Watanabe N, et al. Histological characteristics of plaque with ultrasonic attenuation: A comparison between intravascular ultrasound and histology. J Cardiol 2007; 50: 223–228.
44. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science 1991; 254: 1178–1181.
50. Allen TJ, Hall A, Dhillon AP, Owen JS, Beard PC. Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400nm wavelength range. J Biomed Opt 2012; 17: 061209.
43. Ohtani T, Ueda Y, Mizote I, Oyabu J, Okada K, Hirayama A, et al. Number of yellow plaques detected in a coronary artery is associated with future risk of acute coronary syndrome: Detection of vulnerable patients by angioscopy. J Am Coll Cardiol 2006; 47: 2194–2200.
14. Burke AP, Kolodgie FD, Farb A, Weber D, Virmani R. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 2002; 105: 297–303.
11. Beckman JA, Ganz J, Creager MA, Ganz P, Kinlay S. Relationship of clinical presentation and calcification of culprit coronary artery stenoses. Arterioscler Thromb Vasc Biol 2001; 21: 1618–1622.
38. Sano K, Kawasaki M, Ishihara Y, Okubo M, Tsuchiya K, Nishigaki K, et al. Assessment of vulnerable plaques causing acute coronary syndrome using integrated backscatter intravascular ultrasound. J Am Coll Cardiol 2006; 47: 734–741.
9. Pasterkamp G, Schoneveld AH, van der Wal AC, Haudenschild CC, Clarijs RJ, Becker AE, et al. Relation of arterial geometry to luminal narrowing and histologic markers for plaque vulnerability: The remodeling paradox. J Am Coll Cardiol 1998; 32: 655–662.
33. Rodriguez-Granillo GA, García-García HM, Mc Fadden EP, Valgimigli M, Aoki J, de Feyter P, et al. In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J Am Coll Cardiol 2005; 46: 2038–2042.
4. Regar E, Serruys PW. Ten years after introduction of intravascular ultrasound in the catheterization laboratory: Tool or toy? Z Kardiol 2002; 91(Suppl 3): 89–97.
35. Hishikawa T, Iihara K, Ishibashi-Ueda H, Nagatsuka K, Yamada N, Miyamoto S. Virtual histology-intravascular ultrasound in assessment of carotid plaques: Ex vivo study. Neurosurgery 2009; 65: 146–152.
52. Hong MK, Mintz GS, Lee CW, Lee JW, Park JH, Park DW, et al. A three-vessel virtual histology intravascular ultrasound analysis of frequency and distribution of thin-cap fibroatheromas in patients with acute coronary syndrome or stable angina pectoris. Am J Cardiol 2008; 101: 568–572.
17. Okura H, Taguchi H, Kubo T, Toda I, Yoshida K, Yoshiyama M, et al. Atherosclerotic plaque with ultrasonic attenuation affects coronary reflow and infarct size in patients with acute coronary syndrome: An intravascular ultrasound study. Circ J 2007; 71: 648–653.
26. Hong MK, Mintz GS, Lee CW, Lee BK, Yang TH, Kim YH, et al. The site of plaque rupture in native coronary arteries: A three-vessel intravascular ultrasound analysis. J Am Coll Cardiol 2005; 46: 261–265.
1. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 1992; 326: 242–250, 310–318.
30. Sathyanarayana S, Carlier S, Li W, Thomas L. Characterisation of atherosclerotic plaque by spectral similarity of radiofrequency intravascular ultrasound signals. EuroIntervention 2009; 5: 133–139.
51. Nakano M, Vorpahl M, Otsuka F, Taniwaki M, Yazdani SK, Finn AV, et al. Ex vivo assessment of vascular response to coronary stents by optical frequency domain imaging. JACC Cardiovasc Imaging 2012; 5: 71–82.
5. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987; 316: 1371–1375.
25. Rioufol G, Finet G, Ginon I, André-Fouët X, Rossi R, Vialle E, et al. Multiple atherosclerotic plaque rupture in acute coronary syndrome: A three-vessel intravascular ultrasound study. Circulation 2002; 106: 804–808.
47. Kume T, Akasaka T, Kawamoto T, Okura H, Watanabe N, Toyota E, et al. Measurement of the thickness of the fibrous cap by optical coherence tomography. Am Heart J 2006; 152: 755.e1–e4.
57. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W Jr, Rosenfeld ME, et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis: A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1994; 89: 2462–2478.
32. Nasu K, Tsuchikane E, Katoh O, Vince DG, Virmani R, Surmely JF, et al. Accuracy of in vivo coronary plaque morphology assessment: A validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol 2006; 47: 2405–2412.
18. Endo M, Hibi K, Shimizu T, Komura N, Kusama I, Otsuka F, et al. Impact of ultrasound attenuation and plaque rupture as detected by intravascular ultrasound on the incidence of no-reflow phenomenon after percutaneous coronary intervention in ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 2010; 3: 540–549.
54. Schmermund A, Schwartz RS, Adamzik M, Sangiorgi G, Pfeifer EA, Rumberger JA, et al. Coronary atherosclerosis in unheralded sudden coronary death under age 50: Histo-pathologic comparison with ‘healthy’ subjects dying out of hospital. Atherosclerosis 2001; 155: 499–508.
58. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995; 92: 1355–1374.
7. Smits PC, Pasterkamp G, de Jaegere PP, de Feyter PJ, Borst C. Angioscopic complex lesions are predominantly compensatory enlarged: An angioscopy and intracoronary ultrasound study. Cardiovasc Res 1999; 41: 458–464.
41. Ueda Y, Asakura M, Hirayama A, Komamura K, Hori M, Komada K. Intracoronary morphology of culprit lesions after reperfusion in acute myocardial infarction: Serial angioscopic observations. J Am Coll Cardiol 1996; 27: 606–610.
12. Ehara S, Kobayashi Y, Yoshiyama M, Shimada K, Shimada Y, Fukuda D, et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: An intravascular ultrasound study. Circulation 2004; 110: 3424–3429.
27. Nissen SE, Yock P. Intravascular ultrasound: Novel pathophysiological insights and current clinical applications. Circulation 2001; 103: 604–616.
49. Fujii K, Masutani M, Okumura T, Kawasaki D, Akagami T, Ezumi A, et al. Frequency and predictor of coronary thin-cap fibroatheroma in patients with acute myocardial infarction and stable angina pectoris a 3-vessel optical coherence tomography study. J Am Coll Cardiol 2008; 52: 787–788.
48. Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 2005; 111: 1551–1555.
34. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011; 364: 226–235.
2. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part II. Circulation 2003; 108: 1772–1778.
13. Fujii K, Carlier SG, Mintz GS, Takebayashi H, Yasuda T, Costa RA, et al. Intravascular ultrasound study of patterns of calcium in ruptured coronary plaques. Am J Cardiol 2005; 96: 352–357.
24. Kotani J, Mintz GS, Castagna MT, Pinnow E, Berzingi CO, Bui AB, et al. Intravascular ultrasound analysis of infarct-related and non-infarct-related arteries in patients who presented with an acute myocardial infarction. Circulation 2003; 107: 2889–2893.
8. Shah PK, Falk E, Badimon JJ, Fernandez-Ortiz A, Mailhac A, Villareal-Levy G, et al. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Circulation 1995; 92: 1565–1569.
42. Mizuno K, Miyamoto A, Satomura K, Kurita A, Arai T, Sakurada M, et al. Angioscopic coronary macromorphology in patients with acute coronary disorders. Lancet 1991; 337: 809–812.
29. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 2002; 106: 2200–2206.
37. Ohota M, Kawasaki M, Ismail TF, Hattori K, Serruys PW, Ozaki Y. A histological and clinical comparison of new and conventional integrated backscatter intravascular ultrasound (IB-IVUS). Circ J 2012; 76: 1678–1686.
46. Kume T, Akasaka T, Kawamoto T, Watanabe N, Toyota E, Neishi Y, et al. Assessment of coronary arterial plaque by optical coherence tomography. Am J Cardiol 2006; 97: 1172–1175.
53. Kato K, Yonetsu T, Kim SJ, Xing L, Lee H, McNulty I, et al. Nonculprit plaques in patients with acute coronary syndromes have more vulnerable features compared with those with non-acute coronary syndromes: A 3-vessel optical coherence tomography study. Circ Cardiovasc Imaging 2012; 5: 433–440.
15. Kimura BJ, Bhargava V, DeMaria AN. Value and limitations of intravascular ultrasound imaging in characterizing coronary atherosclerotic plaque. Am Heart J 1995; 130: 386–396.
45. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002; 106: 1640–1645.
21. Hara H, Tsunoda T, Moroi M, Kubota T, Kunimasa T, Shiba M, et al. Ultrasound attenuation behind coronary atheroma without calcification: Mechanism revealed by autopsy. Acute Card Care 2006; 8: 110–112.
22. Johnstone E, Friedl SE, Maheshwari A, Abela GS. Distinguishing characteristics of erythrocyte-rich and platelet-rich thrombus by intravascular ultrasound catheter system. J Thromb Thrombolysis 2007; 24: 233–239.
39. Thieme T, We
References_xml
SSID ssj0029059
Score 2.2461567
SecondaryResourceType review_article
Snippet It is now generally recognized that acute coronary syndromes most commonly result from disruption of thin-cap fibroatheroma (TCFA), which is characterized by a...
SourceID proquest
crossref
pubmed
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 588
SubjectTerms Angioscopy
Coronary angioscopy
Coronary Artery Disease - diagnosis
Coronary Artery Disease - diagnostic imaging
Coronary Artery Disease - pathology
Coronary Vessels - diagnostic imaging
Coronary Vessels - pathology
Humans
Intravascular ultrasound
Necrosis - diagnostic imaging
Necrosis - pathology
Optical coherence tomography
Plaque, Atherosclerotic - diagnosis
Plaque, Atherosclerotic - diagnostic imaging
Plaque, Atherosclerotic - pathology
Reproducibility of Results
Tomography, Optical Coherence
Ultrasonography, Interventional
Vulnerable plaque
Title Intracoronary Imaging for Detecting Vulnerable Plaque
URI https://www.jstage.jst.go.jp/article/circj/77/3/77_CJ-12-1599/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/23370454
https://search.proquest.com/docview/1312840466
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Circulation Journal, 2013, Vol.77(3), pp.588-595
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKghAXxJvyUpC4IJTi2I7TnBAqoG6lAocu6i1KHIem7LYobQ7lJ_CrmbFdN8tDYuEStZabOP6m4xl7Zj5CnkmqeBnFZVhyVoZCyyrMYdUOqVRiqPNhJSnmDk_fy_GJmMzjea_3vRO11G6Lgfr227ySf0EV2gBXzJK9ALL-ptAAnwFfuALCcP0rjI9xZ1ZhDQKMfTs-s4xDGDj4RuPhAH771J5iYWlMkPp4mtsQ60NtgrpRjr9rfzDtAW2Xde0yd2q1qA-qymyujutmvWu_-OYPi51hPLKh-FuYhXzjNf4037S7_MzYqbP1omm7ew02SXTg89Rg9UZWzBfdsbnY0o4G5UKG6dDWXhrofVsSiiGjXbXr2FvqrldudGhsef7cchxbDs5fND0zdB0KhrIcjCYYYAKGWXpY1XysoUMnM12zJMk4XkaTLGIZ_iTzHRZ5A1J1iVw2RRUxcXzuw4VYSg3xnn89d-QNw3j58yDOmThXlmDlf9Z_dmCMITO7Qa47mIPXdjw3SU-vbpGrUxdjcZvE56QqcFIVgFQFXqqCg1QFVqrukJN3b2ejcejINUIVJ9E21LkQBWMVTcDoHSqeU1pIcLbLMi1ycBpiXsiK61iXCt6ZsqJMIiUScChkVFAwfe6So9V6pe-TQMiCS6krgWQEZQU3SCKdwr9dq4JRmfbJ8_18ZF9tDZUMfU-YO4fKAY0-eWUnzPe8KH598nQ_0xmoSjz_ArFdt5ss4miMUSFln9yzEPinMM4TrEb54L-f_5BcY4YyBbfpHpGjbdPqx2C4bosnRqJ-AJv4n00
link.rule.ids 314,780,784,4024,27923,27924,27925
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intracoronary+Imaging+for+Detecting+Vulnerable+Plaque&rft.jtitle=Circulation+Journal&rft.au=Fujii%2C+Kenichi&rft.au=Hao%2C+Hiroyuki&rft.au=Ohyanagi%2C+Mitsumasa&rft.au=Masuyama%2C+Tohru&rft.date=2013&rft.pub=The+Japanese+Circulation+Society&rft.issn=1346-9843&rft.eissn=1347-4820&rft.volume=77&rft.issue=3&rft.spage=588&rft.epage=595&rft_id=info:doi/10.1253%2Fcircj.CJ-12-1599&rft.externalDocID=article_circj_77_3_77_CJ_12_1599_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon