Intracoronary Imaging for Detecting Vulnerable Plaque
It is now generally recognized that acute coronary syndromes most commonly result from disruption of thin-cap fibroatheroma (TCFA), which is characterized by a large necrotic core with an overlying thin-fibrous cap measuring <65μm. Recent advances in intracoronary imaging modalities have signific...
Saved in:
Published in | Circulation Journal Vol. 77; no. 3; pp. 588 - 595 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Japanese Circulation Society
2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is now generally recognized that acute coronary syndromes most commonly result from disruption of thin-cap fibroatheroma (TCFA), which is characterized by a large necrotic core with an overlying thin-fibrous cap measuring <65μm. Recent advances in intracoronary imaging modalities have significantly improved the ability to detect TCFA in vivo. Intravascular ultrasound (IVUS) is perhaps the most promising modality that has been used more than 15 years to evaluate atherosclerotic plaque. IVUS has revealed a lot of the clinical evidence regarding vulnerable plaque detection in live humans. Recently, by analyzing the IVUS acoustic signal before demodulation and scan conversion, IVUS radiofrequency analysis can be used to differentiate adjacent smaller areas of atherosclerotic plaque with heterogeneous composition. Coronary angioscopy allows direct visualization of the coronary artery wall and provides detailed information of the luminal surface of plaque, such as color, thrombus or disruption. Optical coherence tomography imaging, recently been introduced for in vivo human imaging, offers a higher resolution than any other available imaging modality, and can visualize a thin fibrous cap measuring <65μm. In this review, we will discuss the features and limitations of each imaging modalities for detecting TCFA. (Circ J 2013; 77: 588–595) |
---|---|
AbstractList | It is now generally recognized that acute coronary syndromes most commonly result from disruption of thin-cap fibroatheroma (TCFA), which is characterized by a large necrotic core with an overlying thin-fibrous cap measuring <65 μm. Recent advances in intracoronary imaging modalities have significantly improved the ability to detect TCFA in vivo. Intravascular ultrasound (IVUS) is perhaps the most promising modality that has been used more than 15 years to evaluate atherosclerotic plaque. IVUS has revealed a lot of the clinical evidence regarding vulnerable plaque detection in live humans. Recently, by analyzing the IVUS acoustic signal before demodulation and scan conversion, IVUS radiofrequency analysis can be used to differentiate adjacent smaller areas of atherosclerotic plaque with heterogeneous composition. Coronary angioscopy allows direct visualization of the coronary artery wall and provides detailed information of the luminal surface of plaque, such as color, thrombus or disruption. Optical coherence tomography imaging, recently been introduced for in vivo human imaging, offers a higher resolution than any other available imaging modality, and can visualize a thin fibrous cap measuring <65 μm. In this review, we will discuss the features and limitations of each imaging modalities for detecting TCFA. It is now generally recognized that acute coronary syndromes most commonly result from disruption of thin-cap fibroatheroma (TCFA), which is characterized by a large necrotic core with an overlying thin-fibrous cap measuring <65 μm. Recent advances in intracoronary imaging modalities have significantly improved the ability to detect TCFA in vivo. Intravascular ultrasound (IVUS) is perhaps the most promising modality that has been used more than 15 years to evaluate atherosclerotic plaque. IVUS has revealed a lot of the clinical evidence regarding vulnerable plaque detection in live humans. Recently, by analyzing the IVUS acoustic signal before demodulation and scan conversion, IVUS radiofrequency analysis can be used to differentiate adjacent smaller areas of atherosclerotic plaque with heterogeneous composition. Coronary angioscopy allows direct visualization of the coronary artery wall and provides detailed information of the luminal surface of plaque, such as color, thrombus or disruption. Optical coherence tomography imaging, recently been introduced for in vivo human imaging, offers a higher resolution than any other available imaging modality, and can visualize a thin fibrous cap measuring <65 μm. In this review, we will discuss the features and limitations of each imaging modalities for detecting TCFA. It is now generally recognized that acute coronary syndromes most commonly result from disruption of thin-cap fibroatheroma (TCFA), which is characterized by a large necrotic core with an overlying thin-fibrous cap measuring <65μm. Recent advances in intracoronary imaging modalities have significantly improved the ability to detect TCFA in vivo. Intravascular ultrasound (IVUS) is perhaps the most promising modality that has been used more than 15 years to evaluate atherosclerotic plaque. IVUS has revealed a lot of the clinical evidence regarding vulnerable plaque detection in live humans. Recently, by analyzing the IVUS acoustic signal before demodulation and scan conversion, IVUS radiofrequency analysis can be used to differentiate adjacent smaller areas of atherosclerotic plaque with heterogeneous composition. Coronary angioscopy allows direct visualization of the coronary artery wall and provides detailed information of the luminal surface of plaque, such as color, thrombus or disruption. Optical coherence tomography imaging, recently been introduced for in vivo human imaging, offers a higher resolution than any other available imaging modality, and can visualize a thin fibrous cap measuring <65μm. In this review, we will discuss the features and limitations of each imaging modalities for detecting TCFA. (Circ J 2013; 77: 588–595) |
Author | Hao, Hiroyuki Ohyanagi, Mitsumasa Masuyama, Tohru Fujii, Kenichi |
Author_xml | – sequence: 1 fullname: Fujii, Kenichi organization: Cardiovascular Division, Hyogo College of Medicine – sequence: 2 fullname: Hao, Hiroyuki organization: Department of Surgical Pathology, Hyogo College of Medicine – sequence: 3 fullname: Ohyanagi, Mitsumasa organization: Division of Coronary Heart Disease, Hyogo College of Medicine – sequence: 4 fullname: Masuyama, Tohru organization: Cardiovascular Division, Hyogo College of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23370454$$D View this record in MEDLINE/PubMed |
BookMark | eNpFkLtPwzAQxi1URB-wM6GMLCl-xvGIAoVWlWAAVstxLiVVHsVOBv57kra0yz2k3313903RqG5qQOiW4Dmhgj3YwtntPFmFhIZEKHWBJoRxGfKY4tG-jkIVczZGU--3GFOFhbpCY8qYxFzwCRLLunXGNq6pjfsNlpXZFPUmyBsXPEELth26r66swZm0hOC9ND8dXKPL3JQebo55hj4Xzx_Ja7h-e1kmj-vQCknaEAznKaU5llREsWUG4zTimGSZSo1SRLA0yhkIyGx_KqZpJonlEisVkRRzwmbo_qC7c02_1re6KryFsjQ1NJ3XhBEac8yjqEfxAbWu8d5BrneuqPqfNMF6MEvvzdLJqu_0YFY_cndU79IKstPAvzs9sDgAW9-aDZwA49rClnBUlFKzIZyVz8C3cRpq9gfwPH_6 |
CitedBy_id | crossref_primary_10_1253_circj_CJ_15_0718 crossref_primary_10_2459_JCM_0000000000000883 crossref_primary_10_1253_circj_CJ_15_0811 crossref_primary_10_1016_j_amjcard_2016_10_031 crossref_primary_10_1016_j_amjcard_2016_07_071 crossref_primary_10_1016_j_carrev_2019_08_010 crossref_primary_10_1097_CRD_0000000000000098 crossref_primary_10_1253_circj_CJ_14_0496 crossref_primary_10_1007_s12410_014_9311_z crossref_primary_10_1253_circj_CJ_14_1085 crossref_primary_10_1253_circj_CJ_15_0887 crossref_primary_10_1253_circj_CJ_13_0374 crossref_primary_10_1253_circj_CJ_16_0059 crossref_primary_10_1007_s11886_016_0705_1 crossref_primary_10_1007_s12350_015_0135_2 crossref_primary_10_1253_circj_CJ_15_0768 crossref_primary_10_1007_s40134_017_0252_6 crossref_primary_10_1109_TUFFC_2019_2956603 crossref_primary_10_1186_s12938_020_00832_w crossref_primary_10_1253_circj_CJ_15_0393 crossref_primary_10_1097_CRD_0000000000000100 crossref_primary_10_1253_circj_CJ_13_0708 crossref_primary_10_1253_circj_CJ_14_1375 crossref_primary_10_1007_s10554_018_1384_3 crossref_primary_10_1371_journal_pone_0168302 crossref_primary_10_1536_ihj_13_213 |
ContentType | Journal Article |
Copyright | 2013 THE JAPANESE CIRCULATION SOCIETY |
Copyright_xml | – notice: 2013 THE JAPANESE CIRCULATION SOCIETY |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1253/circj.CJ-12-1599 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1347-4820 |
EndPage | 595 |
ExternalDocumentID | 10_1253_circj_CJ_12_1599 23370454 article_circj_77_3_77_CJ_12_1599_article_char_en |
Genre | Journal Article Review |
GroupedDBID | --- .55 .GJ 29B 2WC 3O- 53G 5GY 5RE 6J9 AAUGY ACGFO ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GX1 JSF JSH KQ8 M~E OK1 P2P RJT RNS RYR RZJ TKC TR2 W2D X7M XSB ZXP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c571t-ea44b22f072568c3a00b6401dd9ba99153b6f3e5edc13402bd71c4709961b0413 |
ISSN | 1346-9843 |
IngestDate | Sun May 12 04:08:16 EDT 2024 Fri Dec 06 04:43:00 EST 2024 Thu May 23 23:48:26 EDT 2024 Thu Aug 17 20:28:44 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c571t-ea44b22f072568c3a00b6401dd9ba99153b6f3e5edc13402bd71c4709961b0413 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/circj/77/3/77_CJ-12-1599/_article/-char/en |
PMID | 23370454 |
PQID | 1312840466 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1312840466 crossref_primary_10_1253_circj_CJ_12_1599 pubmed_primary_23370454 jstage_primary_article_circj_77_3_77_CJ_12_1599_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2013-00-00 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 2013-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Circulation Journal |
PublicationTitleAlternate | Circ J |
PublicationYear | 2013 |
Publisher | The Japanese Circulation Society |
Publisher_xml | – name: The Japanese Circulation Society |
References | 20. Yamada R, Okura H, Kume T, Neishi Y, Kawamoto T, Watanabe N, et al. Histological characteristics of plaque with ultrasonic attenuation: A comparison between intravascular ultrasound and histology. J Cardiol 2007; 50: 223–228. 44. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science 1991; 254: 1178–1181. 50. Allen TJ, Hall A, Dhillon AP, Owen JS, Beard PC. Spectroscopic photoacoustic imaging of lipid-rich plaques in the human aorta in the 740 to 1400nm wavelength range. J Biomed Opt 2012; 17: 061209. 43. Ohtani T, Ueda Y, Mizote I, Oyabu J, Okada K, Hirayama A, et al. Number of yellow plaques detected in a coronary artery is associated with future risk of acute coronary syndrome: Detection of vulnerable patients by angioscopy. J Am Coll Cardiol 2006; 47: 2194–2200. 14. Burke AP, Kolodgie FD, Farb A, Weber D, Virmani R. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 2002; 105: 297–303. 11. Beckman JA, Ganz J, Creager MA, Ganz P, Kinlay S. Relationship of clinical presentation and calcification of culprit coronary artery stenoses. Arterioscler Thromb Vasc Biol 2001; 21: 1618–1622. 38. Sano K, Kawasaki M, Ishihara Y, Okubo M, Tsuchiya K, Nishigaki K, et al. Assessment of vulnerable plaques causing acute coronary syndrome using integrated backscatter intravascular ultrasound. J Am Coll Cardiol 2006; 47: 734–741. 9. Pasterkamp G, Schoneveld AH, van der Wal AC, Haudenschild CC, Clarijs RJ, Becker AE, et al. Relation of arterial geometry to luminal narrowing and histologic markers for plaque vulnerability: The remodeling paradox. J Am Coll Cardiol 1998; 32: 655–662. 33. Rodriguez-Granillo GA, García-García HM, Mc Fadden EP, Valgimigli M, Aoki J, de Feyter P, et al. In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J Am Coll Cardiol 2005; 46: 2038–2042. 4. Regar E, Serruys PW. Ten years after introduction of intravascular ultrasound in the catheterization laboratory: Tool or toy? Z Kardiol 2002; 91(Suppl 3): 89–97. 35. Hishikawa T, Iihara K, Ishibashi-Ueda H, Nagatsuka K, Yamada N, Miyamoto S. Virtual histology-intravascular ultrasound in assessment of carotid plaques: Ex vivo study. Neurosurgery 2009; 65: 146–152. 52. Hong MK, Mintz GS, Lee CW, Lee JW, Park JH, Park DW, et al. A three-vessel virtual histology intravascular ultrasound analysis of frequency and distribution of thin-cap fibroatheromas in patients with acute coronary syndrome or stable angina pectoris. Am J Cardiol 2008; 101: 568–572. 17. Okura H, Taguchi H, Kubo T, Toda I, Yoshida K, Yoshiyama M, et al. Atherosclerotic plaque with ultrasonic attenuation affects coronary reflow and infarct size in patients with acute coronary syndrome: An intravascular ultrasound study. Circ J 2007; 71: 648–653. 26. Hong MK, Mintz GS, Lee CW, Lee BK, Yang TH, Kim YH, et al. The site of plaque rupture in native coronary arteries: A three-vessel intravascular ultrasound analysis. J Am Coll Cardiol 2005; 46: 261–265. 1. Fuster V, Badimon L, Badimon JJ, Chesebro JH. The pathogenesis of coronary artery disease and the acute coronary syndromes. N Engl J Med 1992; 326: 242–250, 310–318. 30. Sathyanarayana S, Carlier S, Li W, Thomas L. Characterisation of atherosclerotic plaque by spectral similarity of radiofrequency intravascular ultrasound signals. EuroIntervention 2009; 5: 133–139. 51. Nakano M, Vorpahl M, Otsuka F, Taniwaki M, Yazdani SK, Finn AV, et al. Ex vivo assessment of vascular response to coronary stents by optical frequency domain imaging. JACC Cardiovasc Imaging 2012; 5: 71–82. 5. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987; 316: 1371–1375. 25. Rioufol G, Finet G, Ginon I, André-Fouët X, Rossi R, Vialle E, et al. Multiple atherosclerotic plaque rupture in acute coronary syndrome: A three-vessel intravascular ultrasound study. Circulation 2002; 106: 804–808. 47. Kume T, Akasaka T, Kawamoto T, Okura H, Watanabe N, Toyota E, et al. Measurement of the thickness of the fibrous cap by optical coherence tomography. Am Heart J 2006; 152: 755.e1–e4. 57. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W Jr, Rosenfeld ME, et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis: A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1994; 89: 2462–2478. 32. Nasu K, Tsuchikane E, Katoh O, Vince DG, Virmani R, Surmely JF, et al. Accuracy of in vivo coronary plaque morphology assessment: A validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol 2006; 47: 2405–2412. 18. Endo M, Hibi K, Shimizu T, Komura N, Kusama I, Otsuka F, et al. Impact of ultrasound attenuation and plaque rupture as detected by intravascular ultrasound on the incidence of no-reflow phenomenon after percutaneous coronary intervention in ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 2010; 3: 540–549. 54. Schmermund A, Schwartz RS, Adamzik M, Sangiorgi G, Pfeifer EA, Rumberger JA, et al. Coronary atherosclerosis in unheralded sudden coronary death under age 50: Histo-pathologic comparison with ‘healthy’ subjects dying out of hospital. Atherosclerosis 2001; 155: 499–508. 58. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995; 92: 1355–1374. 7. Smits PC, Pasterkamp G, de Jaegere PP, de Feyter PJ, Borst C. Angioscopic complex lesions are predominantly compensatory enlarged: An angioscopy and intracoronary ultrasound study. Cardiovasc Res 1999; 41: 458–464. 41. Ueda Y, Asakura M, Hirayama A, Komamura K, Hori M, Komada K. Intracoronary morphology of culprit lesions after reperfusion in acute myocardial infarction: Serial angioscopic observations. J Am Coll Cardiol 1996; 27: 606–610. 12. Ehara S, Kobayashi Y, Yoshiyama M, Shimada K, Shimada Y, Fukuda D, et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: An intravascular ultrasound study. Circulation 2004; 110: 3424–3429. 27. Nissen SE, Yock P. Intravascular ultrasound: Novel pathophysiological insights and current clinical applications. Circulation 2001; 103: 604–616. 49. Fujii K, Masutani M, Okumura T, Kawasaki D, Akagami T, Ezumi A, et al. Frequency and predictor of coronary thin-cap fibroatheroma in patients with acute myocardial infarction and stable angina pectoris a 3-vessel optical coherence tomography study. J Am Coll Cardiol 2008; 52: 787–788. 48. Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 2005; 111: 1551–1555. 34. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011; 364: 226–235. 2. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part II. Circulation 2003; 108: 1772–1778. 13. Fujii K, Carlier SG, Mintz GS, Takebayashi H, Yasuda T, Costa RA, et al. Intravascular ultrasound study of patterns of calcium in ruptured coronary plaques. Am J Cardiol 2005; 96: 352–357. 24. Kotani J, Mintz GS, Castagna MT, Pinnow E, Berzingi CO, Bui AB, et al. Intravascular ultrasound analysis of infarct-related and non-infarct-related arteries in patients who presented with an acute myocardial infarction. Circulation 2003; 107: 2889–2893. 8. Shah PK, Falk E, Badimon JJ, Fernandez-Ortiz A, Mailhac A, Villareal-Levy G, et al. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Circulation 1995; 92: 1565–1569. 42. Mizuno K, Miyamoto A, Satomura K, Kurita A, Arai T, Sakurada M, et al. Angioscopic coronary macromorphology in patients with acute coronary disorders. Lancet 1991; 337: 809–812. 29. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 2002; 106: 2200–2206. 37. Ohota M, Kawasaki M, Ismail TF, Hattori K, Serruys PW, Ozaki Y. A histological and clinical comparison of new and conventional integrated backscatter intravascular ultrasound (IB-IVUS). Circ J 2012; 76: 1678–1686. 46. Kume T, Akasaka T, Kawamoto T, Watanabe N, Toyota E, Neishi Y, et al. Assessment of coronary arterial plaque by optical coherence tomography. Am J Cardiol 2006; 97: 1172–1175. 53. Kato K, Yonetsu T, Kim SJ, Xing L, Lee H, McNulty I, et al. Nonculprit plaques in patients with acute coronary syndromes have more vulnerable features compared with those with non-acute coronary syndromes: A 3-vessel optical coherence tomography study. Circ Cardiovasc Imaging 2012; 5: 433–440. 15. Kimura BJ, Bhargava V, DeMaria AN. Value and limitations of intravascular ultrasound imaging in characterizing coronary atherosclerotic plaque. Am Heart J 1995; 130: 386–396. 45. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002; 106: 1640–1645. 21. Hara H, Tsunoda T, Moroi M, Kubota T, Kunimasa T, Shiba M, et al. Ultrasound attenuation behind coronary atheroma without calcification: Mechanism revealed by autopsy. Acute Card Care 2006; 8: 110–112. 22. Johnstone E, Friedl SE, Maheshwari A, Abela GS. Distinguishing characteristics of erythrocyte-rich and platelet-rich thrombus by intravascular ultrasound catheter system. J Thromb Thrombolysis 2007; 24: 233–239. 39. Thieme T, We |
References_xml | |
SSID | ssj0029059 |
Score | 2.2461567 |
SecondaryResourceType | review_article |
Snippet | It is now generally recognized that acute coronary syndromes most commonly result from disruption of thin-cap fibroatheroma (TCFA), which is characterized by a... |
SourceID | proquest crossref pubmed jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 588 |
SubjectTerms | Angioscopy Coronary angioscopy Coronary Artery Disease - diagnosis Coronary Artery Disease - diagnostic imaging Coronary Artery Disease - pathology Coronary Vessels - diagnostic imaging Coronary Vessels - pathology Humans Intravascular ultrasound Necrosis - diagnostic imaging Necrosis - pathology Optical coherence tomography Plaque, Atherosclerotic - diagnosis Plaque, Atherosclerotic - diagnostic imaging Plaque, Atherosclerotic - pathology Reproducibility of Results Tomography, Optical Coherence Ultrasonography, Interventional Vulnerable plaque |
Title | Intracoronary Imaging for Detecting Vulnerable Plaque |
URI | https://www.jstage.jst.go.jp/article/circj/77/3/77_CJ-12-1599/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/23370454 https://search.proquest.com/docview/1312840466 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Circulation Journal, 2013, Vol.77(3), pp.588-595 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbKghAXxJvyUpC4IJTi2I7TnBAqoG6lAocu6i1KHIem7LYobQ7lJ_CrmbFdN8tDYuEStZabOP6m4xl7Zj5CnkmqeBnFZVhyVoZCyyrMYdUOqVRiqPNhJSnmDk_fy_GJmMzjea_3vRO11G6Lgfr227ySf0EV2gBXzJK9ALL-ptAAnwFfuALCcP0rjI9xZ1ZhDQKMfTs-s4xDGDj4RuPhAH771J5iYWlMkPp4mtsQ60NtgrpRjr9rfzDtAW2Xde0yd2q1qA-qymyujutmvWu_-OYPi51hPLKh-FuYhXzjNf4037S7_MzYqbP1omm7ew02SXTg89Rg9UZWzBfdsbnY0o4G5UKG6dDWXhrofVsSiiGjXbXr2FvqrldudGhsef7cchxbDs5fND0zdB0KhrIcjCYYYAKGWXpY1XysoUMnM12zJMk4XkaTLGIZ_iTzHRZ5A1J1iVw2RRUxcXzuw4VYSg3xnn89d-QNw3j58yDOmThXlmDlf9Z_dmCMITO7Qa47mIPXdjw3SU-vbpGrUxdjcZvE56QqcFIVgFQFXqqCg1QFVqrukJN3b2ejcejINUIVJ9E21LkQBWMVTcDoHSqeU1pIcLbLMi1ycBpiXsiK61iXCt6ZsqJMIiUScChkVFAwfe6So9V6pe-TQMiCS6krgWQEZQU3SCKdwr9dq4JRmfbJ8_18ZF9tDZUMfU-YO4fKAY0-eWUnzPe8KH598nQ_0xmoSjz_ArFdt5ss4miMUSFln9yzEPinMM4TrEb54L-f_5BcY4YyBbfpHpGjbdPqx2C4bosnRqJ-AJv4n00 |
link.rule.ids | 314,780,784,4024,27923,27924,27925 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intracoronary+Imaging+for+Detecting+Vulnerable+Plaque&rft.jtitle=Circulation+Journal&rft.au=Fujii%2C+Kenichi&rft.au=Hao%2C+Hiroyuki&rft.au=Ohyanagi%2C+Mitsumasa&rft.au=Masuyama%2C+Tohru&rft.date=2013&rft.pub=The+Japanese+Circulation+Society&rft.issn=1346-9843&rft.eissn=1347-4820&rft.volume=77&rft.issue=3&rft.spage=588&rft.epage=595&rft_id=info:doi/10.1253%2Fcircj.CJ-12-1599&rft.externalDocID=article_circj_77_3_77_CJ_12_1599_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-9843&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-9843&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-9843&client=summon |