Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor
We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide containing spiro-centers (PIM-6FDA-OH) by step-wise heat treatment to 440, 530, 600, 630 and 800°C, respectively. At 440°C, the PIM-6FDA-OH was...
Saved in:
Published in | Carbon (New York) Vol. 62; pp. 88 - 96 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.10.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide containing spiro-centers (PIM-6FDA-OH) by step-wise heat treatment to 440, 530, 600, 630 and 800°C, respectively. At 440°C, the PIM-6FDA-OH was converted to a polybenzoxazole and exhibited a 3-fold increase in CO2 permeability (from 251 to 683 Barrer) with a 50% reduction in selectivity over CH4 (from 28 to 14). At 530°C, a distinct intermediate amorphous carbon structure with superior gas separation properties was formed. A 56% increase in CO2-probed surface area accompanied a 16-fold increase in CO2 permeability (4110Barrer) over the pristine polymer. The graphitic carbon membrane, obtained by heat treatment at 600°C, exhibited excellent gas separation properties, including a remarkable CO2 permeability of 5040Barrer with a high selectivity over CH4 of 38. Above 600°C, the strong emergence of ultramicroporosity (<7Å) as evidenced by WAXD and CO2 adsorption studies elicits a prominent molecular sieving effect, yielding gas separation performance well above the permeability-selectivity trade-off curves of polymeric membranes. |
---|---|
AbstractList | We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide containing spiro-centers (PIM-6FDA-OH) by step-wise heat treatment to 440, 530, 600, 630 and 800 degree C, respectively. At 440 degree C, the PIM-6FDA-OH was converted to a polybenzoxazole and exhibited a 3-fold increase in CO2 permeability (from 251 to 683 Barrer) with a 50% reduction in selectivity over CH4 (from 28 to 14). At 530 degree C, a distinct intermediate amorphous carbon structure with superior gas separation properties was formed. A 56% increase in CO2-probed surface area accompanied a 16-fold increase in CO2 permeability (4110 Barrer) over the pristine polymer. The graphitic carbon membrane, obtained by heat treatment at 600 degree C, exhibited excellent gas separation properties, including a remarkable CO2 permeability of 5040 Barrer with a high selectivity over CH4 of 38. Above 600 degree C, the strong emergence of ultramicroporosity (<7 A) as evidenced by WAXD and CO2 adsorption studies elicits a prominent molecular sieving effect, yielding gas separation performance well above the permeability-selectivity trade-off curves of polymeric membranes. We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide containing spiro-centers (PIM-6FDA-OH) by step-wise heat treatment to 440, 530, 600, 630 and 800°C, respectively. At 440°C, the PIM-6FDA-OH was converted to a polybenzoxazole and exhibited a 3-fold increase in CO2 permeability (from 251 to 683 Barrer) with a 50% reduction in selectivity over CH4 (from 28 to 14). At 530°C, a distinct intermediate amorphous carbon structure with superior gas separation properties was formed. A 56% increase in CO2-probed surface area accompanied a 16-fold increase in CO2 permeability (4110Barrer) over the pristine polymer. The graphitic carbon membrane, obtained by heat treatment at 600°C, exhibited excellent gas separation properties, including a remarkable CO2 permeability of 5040Barrer with a high selectivity over CH4 of 38. Above 600°C, the strong emergence of ultramicroporosity (<7Å) as evidenced by WAXD and CO2 adsorption studies elicits a prominent molecular sieving effect, yielding gas separation performance well above the permeability-selectivity trade-off curves of polymeric membranes. We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide containing spiro-centers (PIM-6FDA-OH) by step-wise heat treatment to 440, 530, 600, 630 and 800°C, respectively. At 440°C, the PIM-6FDA-OH was converted to a polybenzoxazole and exhibited a 3-fold increase in CO₂ permeability (from 251 to 683 Barrer) with a 50% reduction in selectivity over CH₄ (from 28 to 14). At 530°C, a distinct intermediate amorphous carbon structure with superior gas separation properties was formed. A 56% increase in CO₂-probed surface area accompanied a 16-fold increase in CO₂ permeability (4110Barrer) over the pristine polymer. The graphitic carbon membrane, obtained by heat treatment at 600°C, exhibited excellent gas separation properties, including a remarkable CO₂ permeability of 5040Barrer with a high selectivity over CH₄ of 38. Above 600°C, the strong emergence of ultramicroporosity (<7Å) as evidenced by WAXD and CO₂ adsorption studies elicits a prominent molecular sieving effect, yielding gas separation performance well above the permeability-selectivity trade-off curves of polymeric membranes. We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide containing spiro-centers (PIM-6FDA-OH) by step-wise heat treatment to 440, 530, 600, 630 and 800 degree C, respectively. At 440 degree C, the PIM-6FDA-OH was converted to a polybenzoxazole and exhibited a 3-fold increase in CO sub(2) permeability (from 251 to 683 Barrer) with a 50% reduction in selectivity over CH sub(4) (from 28 to 14). At 530 degree C, a distinct intermediate amorphous carbon structure with superior gas separation properties was formed. A 56% increase in CO sub(2)-probed surface area accompanied a 16-fold increase in CO sub(2) permeability (4110 Barrer) over the pristine polymer. The graphitic carbon membrane, obtained by heat treatment at 600 degree C, exhibited excellent gas separation properties, including a remarkable CO sub(2) permeability of 5040 Barrer with a high selectivity over CH sub(4) of 38. Above 600 degree C, the strong emergence of ultramicroporosity (< 7 AA) as evidenced by WAXD and CO sub(2) adsorption studies elicits a prominent molecular sieving effect, yielding gas separation performance well above the permeability-selectivity trade-off curves of polymeric membranes. |
Author | Swaidan, Raja Tan, Hua Teng, Baiyang Pinnau, Ingo Han, Yu Litwiller, Eric Salinas, Octavio Ma, Xiaohua |
Author_xml | – sequence: 1 givenname: Xiaohua surname: Ma fullname: Ma, Xiaohua – sequence: 2 givenname: Raja surname: Swaidan fullname: Swaidan, Raja – sequence: 3 givenname: Baiyang surname: Teng fullname: Teng, Baiyang – sequence: 4 givenname: Hua surname: Tan fullname: Tan, Hua – sequence: 5 givenname: Octavio surname: Salinas fullname: Salinas, Octavio – sequence: 6 givenname: Eric surname: Litwiller fullname: Litwiller, Eric – sequence: 7 givenname: Yu surname: Han fullname: Han, Yu – sequence: 8 givenname: Ingo surname: Pinnau fullname: Pinnau, Ingo email: ingo.pinnau@kaust.edu.sa |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27584167$$DView record in Pascal Francis |
BookMark | eNqFUU1r3DAUFCWBbtL8gxx0KfTirWR9bg-FsvQLAr00Z_EsPxctsuVK3sD--8rZ9NJDFx4ISTOj0cwNuZrShITcc7bljOv3h62H3KVp2zIutkzVMa_IhlsjGmF3_IpsGGO20W0rXpObUg51Ky2XGxL2z0w6poj-GCHTEvAJ6S8otOAMGZawXuPYZZiw0A4K9rQewUTDtOQwleAhxhMdg89pTjkdC51TPIUx9EjnXHVzSfkNuR4gFrx7WW_J45fPP_ffmocfX7_vPz00Xhm-NKjR90baFmRnOZfIewbSGmUHkIMRZmeh0502Fo2WFhigN0PFabXTYmfFLXl31p1z-n3EsrgxFI8xVvvVmuOGKSlbyc1lqOJCKmW1uAyV1SPXXLAKffsChVKTGWpuPhQ35zBCPrm2fkVyvb7-4YyrsZWScXA-LM9xLxlCdJy5tV13cOd23dquY6rOSpb_kP_qX6B9PNOwNvAUMLviA04e-1B7Wlyfwv8F_gC9VcOZ |
CODEN | CRBNAH |
CitedBy_id | crossref_primary_10_1016_j_eurpolymj_2023_112189 crossref_primary_10_1021_acs_iecr_3c01004 crossref_primary_10_1016_j_memsci_2021_119519 crossref_primary_10_1016_j_jiec_2017_08_038 crossref_primary_10_1177_0954008315595276 crossref_primary_10_2139_ssrn_4063567 crossref_primary_10_1039_c4py00449c crossref_primary_10_1016_j_memsci_2023_121674 crossref_primary_10_1002_app_44889 crossref_primary_10_1073_pnas_2022202118 crossref_primary_10_3390_membranes13120903 crossref_primary_10_1039_D4TA02112F crossref_primary_10_1016_j_ijhydene_2017_08_071 crossref_primary_10_1021_acsanm_3c02516 crossref_primary_10_1021_acs_chemrev_7b00629 crossref_primary_10_3390_membranes12050501 crossref_primary_10_1021_acs_iecr_2c00296 crossref_primary_10_1016_j_seppur_2023_123548 crossref_primary_10_1016_S1872_5805_22_60613_9 crossref_primary_10_1016_j_seppur_2022_121982 crossref_primary_10_1016_j_mtnano_2018_11_003 crossref_primary_10_11605_j_pnrs_201802002 crossref_primary_10_1021_acsami_9b03825 crossref_primary_10_1002_anie_201906653 crossref_primary_10_1016_j_memsci_2023_121570 crossref_primary_10_1016_j_carbon_2022_02_033 crossref_primary_10_1002_pat_5763 crossref_primary_10_1039_D3CS00235G crossref_primary_10_1002_eem2_12843 crossref_primary_10_1016_j_carbon_2023_01_016 crossref_primary_10_1016_j_apsusc_2023_159127 crossref_primary_10_1016_j_jiec_2018_02_030 crossref_primary_10_1039_D0RA10775A crossref_primary_10_1021_acs_iecr_4c04107 crossref_primary_10_1002_ange_201906653 crossref_primary_10_1016_j_pmatsci_2024_101285 crossref_primary_10_1016_j_memsci_2025_123880 crossref_primary_10_1016_j_advmem_2021_100011 crossref_primary_10_1016_j_memsci_2025_123875 crossref_primary_10_3390_membranes8040097 crossref_primary_10_1016_j_memsci_2025_123878 crossref_primary_10_1007_s10853_014_8222_3 crossref_primary_10_1016_j_memsci_2023_122072 crossref_primary_10_1021_acs_macromol_2c00596 crossref_primary_10_1016_j_cej_2022_138513 crossref_primary_10_1016_j_polymer_2022_125092 crossref_primary_10_1016_j_cej_2020_126084 crossref_primary_10_1016_j_memsci_2021_119541 crossref_primary_10_1016_j_polymer_2017_06_006 crossref_primary_10_1016_j_carbon_2017_04_011 crossref_primary_10_1016_j_memsci_2016_02_036 crossref_primary_10_1016_j_seppur_2014_12_048 crossref_primary_10_1016_j_seppur_2023_125978 crossref_primary_10_1039_C7TA04015F crossref_primary_10_1016_j_memsci_2021_119825 crossref_primary_10_1016_j_carbon_2017_11_031 crossref_primary_10_1016_j_memsci_2020_118053 crossref_primary_10_1016_j_seppur_2025_132068 crossref_primary_10_3390_pr4030029 crossref_primary_10_1039_D3RA00617D crossref_primary_10_1016_j_cherd_2018_09_039 crossref_primary_10_1016_j_memsci_2024_122533 crossref_primary_10_1002_adma_202104606 crossref_primary_10_1016_j_seppur_2024_128597 crossref_primary_10_1002_app_42394 crossref_primary_10_1016_j_seppur_2017_12_032 crossref_primary_10_3390_polym12081851 crossref_primary_10_1016_j_carbon_2018_09_039 crossref_primary_10_1021_acsami_5b04747 crossref_primary_10_1016_j_seppur_2022_121808 crossref_primary_10_1039_D2IM00049K crossref_primary_10_1002_smll_202309409 crossref_primary_10_1016_j_memsci_2018_11_027 crossref_primary_10_1021_acssuschemeng_1c02784 crossref_primary_10_1016_j_memsci_2022_120548 crossref_primary_10_1016_j_cej_2014_04_115 crossref_primary_10_1002_sstr_202100049 crossref_primary_10_1002_macp_201600232 crossref_primary_10_1016_j_memsci_2022_120781 crossref_primary_10_1002_macp_201900532 crossref_primary_10_3390_polym13173012 crossref_primary_10_1038_s41467_024_54275_1 crossref_primary_10_1016_j_seppur_2024_126286 crossref_primary_10_1016_j_memsci_2019_05_020 crossref_primary_10_1016_j_coche_2021_100755 crossref_primary_10_1016_j_memsci_2023_121881 crossref_primary_10_1016_j_seppur_2023_126163 crossref_primary_10_1002_smll_202104698 crossref_primary_10_1039_C8PY00530C crossref_primary_10_15377_2409_983X_2016_03_01_3 crossref_primary_10_1016_j_memsci_2015_11_013 crossref_primary_10_1016_j_micromeso_2024_113466 crossref_primary_10_1080_01496395_2024_2343849 crossref_primary_10_1016_j_carbon_2018_11_037 crossref_primary_10_1002_smll_201800133 crossref_primary_10_1016_j_jechem_2020_03_008 crossref_primary_10_1016_j_memsci_2022_120497 crossref_primary_10_1016_j_memsci_2024_123649 crossref_primary_10_1016_j_memsci_2015_12_052 crossref_primary_10_1016_j_memsci_2025_123792 crossref_primary_10_1016_j_memsci_2023_121764 crossref_primary_10_1002_ceat_201500495 crossref_primary_10_1016_j_memsci_2024_123255 crossref_primary_10_1080_15422119_2014_908918 crossref_primary_10_1039_C5TA03706A crossref_primary_10_1002_cjce_23661 crossref_primary_10_1021_acsami_0c02789 crossref_primary_10_1016_j_memsci_2016_11_002 crossref_primary_10_1016_j_jgsce_2024_205472 crossref_primary_10_1021_acs_iecr_7b00573 crossref_primary_10_1039_D3TA01680C crossref_primary_10_1177_0954008315583705 crossref_primary_10_2139_ssrn_4128543 crossref_primary_10_1016_j_jece_2024_112275 crossref_primary_10_1016_j_matchemphys_2018_10_047 crossref_primary_10_1016_j_seppur_2025_132312 crossref_primary_10_1016_j_memsci_2023_121731 crossref_primary_10_1002_cssc_201702243 crossref_primary_10_1016_j_memsci_2019_02_070 crossref_primary_10_1016_j_memsci_2024_123287 crossref_primary_10_1016_j_memsci_2013_07_057 crossref_primary_10_1016_j_seppur_2023_124168 crossref_primary_10_1016_j_pecs_2021_100903 crossref_primary_10_1021_ma5011183 crossref_primary_10_1016_j_seppur_2024_126945 crossref_primary_10_1021_acsami_0c21338 crossref_primary_10_2139_ssrn_3991431 crossref_primary_10_1016_j_carbon_2018_03_036 crossref_primary_10_1016_j_memsci_2022_120639 crossref_primary_10_1002_apj_2251 crossref_primary_10_1021_acsnano_7b02523 crossref_primary_10_1016_j_memsci_2022_120596 crossref_primary_10_1002_cssc_202001572 crossref_primary_10_1021_ie403421u crossref_primary_10_1016_j_memsci_2017_06_082 crossref_primary_10_1016_j_memsci_2023_121464 crossref_primary_10_1080_01496395_2017_1321671 crossref_primary_10_1016_j_memsci_2025_123972 crossref_primary_10_1016_j_memsci_2019_117752 crossref_primary_10_1002_adma_202201472 crossref_primary_10_1002_cssc_202001567 crossref_primary_10_1016_j_memsci_2025_123689 crossref_primary_10_1039_C9EN01136F crossref_primary_10_1016_j_seppur_2024_128797 crossref_primary_10_1016_j_memsci_2016_08_057 crossref_primary_10_1016_j_seppur_2017_04_013 crossref_primary_10_1039_C6RA24699K crossref_primary_10_1016_j_carbon_2017_01_015 crossref_primary_10_1021_acs_macromol_7b01458 |
Cites_doi | 10.1016/S0376-7388(98)00156-2 10.1002/marc.200800795 10.1016/j.carbon.2005.02.028 10.1002/aenm.201200296 10.1016/j.carbon.2006.10.017 10.1021/ma101549z 10.1007/BF00486565 10.1016/S0008-6223(02)00309-3 10.1016/j.eurpolymj.2010.12.014 10.1021/ie0108088 10.1080/15422119.2011.555648 10.1016/j.memsci.2012.01.010 10.1021/ie950746j 10.1016/j.memsci.2008.04.030 10.1002/adma.200306053 10.1039/c1cc11717c 10.1016/j.memsci.2004.07.005 10.1016/j.memsci.2005.01.009 10.1002/adma.200702400 10.1016/j.carbon.2004.07.026 10.1021/ma101930x 10.1016/j.memsci.2010.04.013 10.1038/nmat2989 10.1021/ie8019032 10.1063/1.1674108 10.1021/ma071846r 10.1016/j.memsci.2011.06.037 10.1021/ma200918h 10.1021/ie071083w 10.1016/S0376-7388(01)00510-5 10.1016/j.memsci.2009.11.068 10.1016/j.memsci.2008.09.010 10.1126/science.285.5435.1902 10.1080/15422110601003481 10.1039/b311764b 10.1002/adma.201202393 10.1016/j.memsci.2004.03.024 10.1021/ma900898m 10.1021/jp963997u 10.1126/science.1146744 10.1021/ma9009017 10.1002/macp.201100089 10.1021/ma300549m 10.1016/j.eurpolymj.2009.08.014 10.1016/j.carbon.2004.01.037 10.1016/j.memsci.2013.01.011 10.1021/ma901220c 10.1016/0008-6223(94)90135-X 10.1016/j.memsci.2009.02.003 10.1021/ma801858d 10.1021/ma102878z 10.1016/j.memsci.2009.09.037 10.1016/j.memsci.2012.03.060 10.1021/ie010119w 10.1016/j.carbon.2011.06.012 10.1016/j.micromeso.2005.04.026 10.1016/j.memsci.2009.10.019 10.1016/S0376-7388(99)00083-6 10.1021/ma051354j |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.carbon.2013.05.057 |
DatabaseName | CrossRef Pascal-Francis Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1873-3891 |
EndPage | 96 |
ExternalDocumentID | 27584167 10_1016_j_carbon_2013_05_057 S0008622313004934 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SSM SSR SSZ T5K TWZ WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SR 8FD JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c571t-e6ecd7482a4b8114e1d0a48758fa4f73798ab6b678e7648a0aec7f14e65963983 |
IEDL.DBID | .~1 |
ISSN | 0008-6223 |
IngestDate | Fri Jul 11 13:59:56 EDT 2025 Thu Jul 10 17:17:59 EDT 2025 Fri Jul 11 08:09:22 EDT 2025 Mon Jul 21 09:15:25 EDT 2025 Thu Apr 24 23:07:49 EDT 2025 Tue Jul 01 01:14:30 EDT 2025 Fri Feb 23 02:24:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Methane Membranes Transport properties Separation Porous materials Carbon dioxide Selectivity Molecular gas Permeability Molecular sieves Carbon Precursor Heat treatments Chemical reduction Microporosity Polyimides Transport processes Surface area Polymers Amorphous state structure Inorganic membrane |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c571t-e6ecd7482a4b8114e1d0a48758fa4f73798ab6b678e7648a0aec7f14e65963983 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1448716130 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1705442417 proquest_miscellaneous_1513455863 proquest_miscellaneous_1448716130 pascalfrancis_primary_27584167 crossref_citationtrail_10_1016_j_carbon_2013_05_057 crossref_primary_10_1016_j_carbon_2013_05_057 elsevier_sciencedirect_doi_10_1016_j_carbon_2013_05_057 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Carbon (New York) |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Robeson (b0020) 2008; 320 Han, Misdan, Kim, Doherty, Hill, Lee (b0130) 2010; 43 Xu, Rungta, Koros (b0180) 2011; 380 Choi, Jung, Han, Park, Lee (b0135) 2010; 349 Sanders, Smith, Ribeiro, Guo, McGrath, Paul (b0265) 2012; 409 Kusakabe, Yamamoto, Morooka (b0190) 1998; 149 Steel, Koros (b0230) 2003; 41 Ghanem, McKeown, Budd, Fritsch (b0050) 2008; 41 Bezzu, Carta, Tonkins, Jansen, Bernardo, Bazzarelli (b0090) 2012; 24 Kiyono, Williams, Koros (b0300) 2010; 359 Yeong, Wang, Pramoda, Chung (b0280) 2012; 397 Budd, Elabas, Ghanem, Makhseed, McKeown, Msayib (b0025) 2004; 16 Ismail, David (b0150) 2001; 193 Geiszler, Koros (b0185) 1996; 35 Xiao, Dai, Chung, Guiver (b0255) 2005; 38 Hodgkin, Liu, Dao, Mardel, Hill (b0275) 2011; 47 Ritter, Antonietti, Thomas, Senkovska, Kaskel, Weber (b0245) 2009; 42 Baker, Lokhandwala (b0010) 2008; 47 Vu, Koros, Miller (b0170) 2002; 41 Fritsch, Bengtson, Carta, McKeown (b0080) 2011; 212 Jones, Koros (b0160) 1994; 32 Ghanem, McKeown, Budd, Selbie, Fritsch (b0060) 2008; 20 Teixeira, Campo, Pacheco Tanaka, Llosa Tanco, Magen, Mendes (b0205) 2011; 49 Budd, Ghanem, Makhseed, McKeown, Msayib, Tattershall (b0030) 2004; 2 Lozano-Castello, Cazorla-Amoros, Linares-Solano (b0240) 2004; 42 Suda, Haraya (b0260) 1997; 101 Tin, Chung, Liu, Wang (b0290) 2004; 42 Park, Han, Jung, Lee, Hill (b0125) 2010; 359 Shao, Chung, Wensley, Goh, Pramoda (b0295) 2004; 244 Centeno, Fuertes (b0200) 1999; 160 Du, Park, Robertson, Dal-Cin, Visser, Scoles (b0100) 2011; 10 Calle, Lee (b0120) 2011; 44 Shiflett, Foley (b0165) 1999; 285 Suda, Haraya (b0175) 1997 Steel, Koros (b0195) 2005; 43 Du, Robertson, Pinnau, Guiver (b0075) 2010; 43 Yoshimune, Fujiwara, Haraya (b0250) 2007; 45 Park, Jung, Lee, Hill, Pas, Mudie (b0115) 2007; 318 Du, Robertson, Pinnau, Thomas, Guiver (b0065) 2009; 30 Tin, Xiao, Chung (b0155) 2006; 35 Budd, McKeown, Ghanem, Msayib, Fritsch, Starannikova (b0040) 2008; 325 Olivier (b0220) 1995; 2 Barsema, Klijnstra, Balster, van der Vegt, Koops, Wessling (b0285) 2004; 238 Han, Lee, Lee, Park, Lee (b0140) 2010; 357 Ma, Swaidan, Belmabkhout, Zhu, Litwiller, Jouiad (b0215) 2012; 45 Baker (b0015) 2002; 41 Li, Xiao, Ong, Chung (b0110) 2012; 2 Hodgkin, Dao (b0270) 2009; 45 Bernardo, Drioli, Golemme (b0005) 2009; 48 Du, Robertson, Song, Pinnau, Thomas, Guiver (b0055) 2008; 41 Salleh, Ismail, Matsuura, Abdullah (b0210) 2011; 40 Short, Carta, Bezzu, Fritsch, Kariuki, McKeown (b0085) 2011; 47 Tuinstra, Koenig (b0225) 1970; 53 Du, Robertson, Song, Pinnau, Guiver (b0095) 2009; 42 Thomas, Pinnau, Du, Guiver (b0045) 2009; 333 Mason, Maynard-Atem, Al-Harbi, Budd, Bernardo, Bazzarelli (b0105) 2011; 44 Budd, Msayib, Tattershall, Ghanem, Reynolds, McKeown (b0035) 2005; 251 Du, Robertson, Pinnau, Guiver (b0070) 2009; 42 Shao, Chung, Pramoda (b0235) 2005; 84 Li, Jo, Han, Park, Kim, Budd (b0145) 2013; 434 Baker (10.1016/j.carbon.2013.05.057_b0015) 2002; 41 Xu (10.1016/j.carbon.2013.05.057_b0180) 2011; 380 Du (10.1016/j.carbon.2013.05.057_b0095) 2009; 42 Tin (10.1016/j.carbon.2013.05.057_b0155) 2006; 35 Mason (10.1016/j.carbon.2013.05.057_b0105) 2011; 44 Calle (10.1016/j.carbon.2013.05.057_b0120) 2011; 44 Salleh (10.1016/j.carbon.2013.05.057_b0210) 2011; 40 Du (10.1016/j.carbon.2013.05.057_b0075) 2010; 43 Short (10.1016/j.carbon.2013.05.057_b0085) 2011; 47 Shiflett (10.1016/j.carbon.2013.05.057_b0165) 1999; 285 Jones (10.1016/j.carbon.2013.05.057_b0160) 1994; 32 Han (10.1016/j.carbon.2013.05.057_b0140) 2010; 357 Geiszler (10.1016/j.carbon.2013.05.057_b0185) 1996; 35 Ma (10.1016/j.carbon.2013.05.057_b0215) 2012; 45 Han (10.1016/j.carbon.2013.05.057_b0130) 2010; 43 Choi (10.1016/j.carbon.2013.05.057_b0135) 2010; 349 Tin (10.1016/j.carbon.2013.05.057_b0290) 2004; 42 Budd (10.1016/j.carbon.2013.05.057_b0035) 2005; 251 Suda (10.1016/j.carbon.2013.05.057_b0175) 1997 Baker (10.1016/j.carbon.2013.05.057_b0010) 2008; 47 Teixeira (10.1016/j.carbon.2013.05.057_b0205) 2011; 49 Centeno (10.1016/j.carbon.2013.05.057_b0200) 1999; 160 Tuinstra (10.1016/j.carbon.2013.05.057_b0225) 1970; 53 Thomas (10.1016/j.carbon.2013.05.057_b0045) 2009; 333 Park (10.1016/j.carbon.2013.05.057_b0125) 2010; 359 Hodgkin (10.1016/j.carbon.2013.05.057_b0270) 2009; 45 Barsema (10.1016/j.carbon.2013.05.057_b0285) 2004; 238 Steel (10.1016/j.carbon.2013.05.057_b0195) 2005; 43 Li (10.1016/j.carbon.2013.05.057_b0110) 2012; 2 Suda (10.1016/j.carbon.2013.05.057_b0260) 1997; 101 Ghanem (10.1016/j.carbon.2013.05.057_b0050) 2008; 41 Fritsch (10.1016/j.carbon.2013.05.057_b0080) 2011; 212 Kusakabe (10.1016/j.carbon.2013.05.057_b0190) 1998; 149 Kiyono (10.1016/j.carbon.2013.05.057_b0300) 2010; 359 Ghanem (10.1016/j.carbon.2013.05.057_b0060) 2008; 20 Robeson (10.1016/j.carbon.2013.05.057_b0020) 2008; 320 Yeong (10.1016/j.carbon.2013.05.057_b0280) 2012; 397 Hodgkin (10.1016/j.carbon.2013.05.057_b0275) 2011; 47 Budd (10.1016/j.carbon.2013.05.057_b0025) 2004; 16 Vu (10.1016/j.carbon.2013.05.057_b0170) 2002; 41 Bezzu (10.1016/j.carbon.2013.05.057_b0090) 2012; 24 Yoshimune (10.1016/j.carbon.2013.05.057_b0250) 2007; 45 Li (10.1016/j.carbon.2013.05.057_b0145) 2013; 434 Budd (10.1016/j.carbon.2013.05.057_b0040) 2008; 325 Bernardo (10.1016/j.carbon.2013.05.057_b0005) 2009; 48 Du (10.1016/j.carbon.2013.05.057_b0055) 2008; 41 Du (10.1016/j.carbon.2013.05.057_b0065) 2009; 30 Xiao (10.1016/j.carbon.2013.05.057_b0255) 2005; 38 Park (10.1016/j.carbon.2013.05.057_b0115) 2007; 318 Olivier (10.1016/j.carbon.2013.05.057_b0220) 1995; 2 Ismail (10.1016/j.carbon.2013.05.057_b0150) 2001; 193 Steel (10.1016/j.carbon.2013.05.057_b0230) 2003; 41 Du (10.1016/j.carbon.2013.05.057_b0100) 2011; 10 Shao (10.1016/j.carbon.2013.05.057_b0235) 2005; 84 Lozano-Castello (10.1016/j.carbon.2013.05.057_b0240) 2004; 42 Shao (10.1016/j.carbon.2013.05.057_b0295) 2004; 244 Budd (10.1016/j.carbon.2013.05.057_b0030) 2004; 2 Sanders (10.1016/j.carbon.2013.05.057_b0265) 2012; 409 Du (10.1016/j.carbon.2013.05.057_b0070) 2009; 42 Ritter (10.1016/j.carbon.2013.05.057_b0245) 2009; 42 |
References_xml | – volume: 44 start-page: 1156 year: 2011 end-page: 1165 ident: b0120 article-title: Thermally rearranged (TR) poly(ether−benzoxazole) membranes for gas separation publication-title: Macromolecules – volume: 380 start-page: 138 year: 2011 end-page: 147 ident: b0180 article-title: Matrimid (R) derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation publication-title: J Membr Sci – volume: 349 start-page: 358 year: 2010 end-page: 368 ident: b0135 article-title: Thermally rearranged (TR) poly(benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity publication-title: J Membr Sci – volume: 16 start-page: 456 year: 2004 end-page: 459 ident: b0025 article-title: Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity publication-title: Adv Mater – volume: 47 start-page: 6822 year: 2011 end-page: 6824 ident: b0085 article-title: Hexaphenylbenzene-based polymers of intrinsic microporosity publication-title: Chem Commun – volume: 149 start-page: 59 year: 1998 end-page: 67 ident: b0190 article-title: Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation publication-title: J Membr Sci – volume: 434 start-page: 137 year: 2013 end-page: 147 ident: b0145 article-title: Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation publication-title: J Membr Sci – volume: 285 start-page: 1902 year: 1999 end-page: 1905 ident: b0165 article-title: Ultrasonic deposition of high-selectivity nanoporous carbon membranes publication-title: Science – volume: 24 start-page: 5930 year: 2012 end-page: 5933 ident: b0090 article-title: A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation publication-title: Adv Mater – volume: 41 start-page: 1640 year: 2008 end-page: 1646 ident: b0050 article-title: Polymers of intrinsic microporosity derived from bis(phenazyl) monomers publication-title: Macromolecules – volume: 43 start-page: 8580 year: 2010 end-page: 8587 ident: b0075 article-title: Polymers of intrinsic microporosity with dinaphthyl and thianthrene segments publication-title: Macromolecules – volume: 20 start-page: 2766 year: 2008 end-page: 2768 ident: b0060 article-title: High-performance membranes from polyimides with intrinsic microporosity publication-title: Adv Mater – volume: 44 start-page: 6471 year: 2011 end-page: 6479 ident: b0105 article-title: Polymer of intrinsic microporosity incorporating thioamide functionality: preparation and gas transport properties publication-title: Macromolecules – volume: 325 start-page: 851 year: 2008 end-page: 860 ident: b0040 article-title: Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1 publication-title: J Membr Sci – volume: 32 start-page: 1419 year: 1994 end-page: 1425 ident: b0160 article-title: Carbon molecular-sieve gas separation membranes. 1. preparation and characterization based on polyimide precursors publication-title: Carbon – volume: 101 start-page: 3988 year: 1997 end-page: 3994 ident: b0260 article-title: Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide publication-title: J Phys Chem B – volume: 10 start-page: 372 year: 2011 end-page: 375 ident: b0100 article-title: Polymer nanosieve membranes for CO publication-title: Nat Mater – volume: 193 start-page: 1 year: 2001 end-page: 18 ident: b0150 article-title: A review on the latest development of carbon membranes for gas separation publication-title: J Membr Sci – volume: 320 start-page: 390 year: 2008 end-page: 400 ident: b0020 article-title: The upper bound revisited publication-title: J Membr Sci – volume: 40 start-page: 261 year: 2011 end-page: 311 ident: b0210 article-title: Precursor selection and process conditions in the preparation of carbon membrane for gas separation: a review publication-title: Sep Purif Rev – volume: 53 start-page: 1126 year: 1970 end-page: 1130 ident: b0225 article-title: Raman spectrum of graphite publication-title: J Chem Phys – volume: 359 start-page: 2 year: 2010 end-page: 10 ident: b0300 article-title: Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes publication-title: J Membr Sci – volume: 42 start-page: 6038 year: 2009 end-page: 6043 ident: b0095 article-title: High-performance carboxylated polymers of intrinsic microporosity (PIMs) with tunable gas transport properties publication-title: Macromolecules – volume: 42 start-page: 1233 year: 2004 end-page: 1242 ident: b0240 article-title: Usefulness of CO publication-title: Carbon – volume: 2 start-page: 1456 year: 2012 end-page: 1466 ident: b0110 article-title: UV-rearranged PIM-1 polymeric membranes for advanced hydrogen purification and production publication-title: Adv Energy Mater – volume: 48 start-page: 4638 year: 2009 end-page: 4663 ident: b0005 article-title: Membrane gas separation: a review/state of the art publication-title: Ind Eng Chem Res – volume: 47 start-page: 2109 year: 2008 end-page: 2121 ident: b0010 article-title: Natural gas processing with membranes: an overview publication-title: Ind Eng Chem Res – volume: 43 start-page: 7657 year: 2010 end-page: 7667 ident: b0130 article-title: Thermally rearranged (TR) polybenzoxazole: effects of diverse imidization routes on physical properties and gas transport behaviors publication-title: Macromolecules – volume: 84 start-page: 59 year: 2005 end-page: 68 ident: b0235 article-title: The evolution of physicochemical and transport properties of 6FDA-durene toward carbon membranes; from polymer, intermediate to carbon publication-title: Microporous Mesoporous Mater – volume: 38 start-page: 10042 year: 2005 end-page: 10049 ident: b0255 article-title: Effects of brominating Matrimid polyimide on the physical and gas transport properties of derived carbon membranes publication-title: Macromolecules – volume: 42 start-page: 6023 year: 2009 end-page: 6030 ident: b0070 article-title: Polymers of intrinsic microporosity derived from novel disulfone-based monomers publication-title: Macromolecules – volume: 41 start-page: 367 year: 2002 end-page: 380 ident: b0170 article-title: High pressure CO publication-title: Ind.Eng Chem Res – volume: 244 start-page: 77 year: 2004 end-page: 87 ident: b0295 article-title: Casting solvent effects on morphologies, gas transport properties of a novel 6FDA/PMDA-TMMDA copolyimide membrane and its derived carbon membranes publication-title: J Membr Sci – volume: 409 start-page: 232 year: 2012 end-page: 241 ident: b0265 article-title: Gas permeability, diffusivity, and free volume of thermally rearranged polymers based on 3,3′-dihydroxyl-4,4′-diamino-biphenyl (HAB) and 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) publication-title: J Membr Sci – volume: 318 start-page: 254 year: 2007 end-page: 258 ident: b0115 article-title: Polymers with cavities tuned for fast selective transport of small molecules and ions publication-title: Science – volume: 35 start-page: 285 year: 2006 end-page: 318 ident: b0155 article-title: Polyimide-carbonized membranes for gas separation: structural, composition, and morphological control of precursors publication-title: Sep Purif Rev – volume: 41 start-page: 1393 year: 2002 end-page: 1411 ident: b0015 article-title: Future directions of membrane gas separation technology publication-title: Ind Eng Chem Res – volume: 2 start-page: 230 year: 2004 end-page: 231 ident: b0030 article-title: Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials publication-title: Chem Commun – volume: 41 start-page: 9656 year: 2008 end-page: 9662 ident: b0055 article-title: Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation publication-title: Macromolecules – volume: 45 start-page: 3081 year: 2009 end-page: 3092 ident: b0270 article-title: Thermal conversion of hydroxyl-containing polyimides to polybenzoxazoles. Does this reaction really occur? publication-title: Eur Polym J – volume: 397 start-page: 51 year: 2012 end-page: 65 ident: b0280 article-title: Thermal induced structural rearrangement of cardo-copolybenzoxazole membranes for enhanced gas transport properties publication-title: J Membr Sci – volume: 42 start-page: 3123 year: 2004 end-page: 3131 ident: b0290 article-title: Separation of CO publication-title: Carbon – start-page: 9394 year: 1997 ident: b0175 article-title: Alkene/alkane permselectivities of a carbon molecular sieve membrane publication-title: Chem Commun – volume: 212 start-page: 1137 year: 2011 end-page: 1146 ident: b0080 article-title: Synthesis and gas permeation properties of spirobischromane-based polymers of intrinsic microporosity publication-title: Macromol Chem Phys – volume: 359 start-page: 11 year: 2010 end-page: 24 ident: b0125 article-title: Thermally rearranged (TR) polymer membranes for CO publication-title: J Membr Sci – volume: 47 start-page: 394 year: 2011 end-page: 400 ident: b0275 article-title: Reaction mechanism and products of the thermal conversion of hydroxyl-containing polyimides publication-title: Eur Polym J – volume: 238 start-page: 93 year: 2004 end-page: 102 ident: b0285 article-title: Intermediate polymer to carbon gas separation membranes based on Matrimid PI publication-title: J Membr Sci – volume: 45 start-page: 553 year: 2007 end-page: 560 ident: b0250 article-title: Carbon molecular sieve membranes derived from trimethylsilyl substituted poly(phenylene oxide) for gas separation publication-title: Carbon – volume: 357 start-page: 143 year: 2010 end-page: 151 ident: b0140 article-title: Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement publication-title: J Membr Sci – volume: 333 start-page: 125 year: 2009 end-page: 131 ident: b0045 article-title: Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1) publication-title: J Membr Sci – volume: 42 start-page: 8017 year: 2009 end-page: 8020 ident: b0245 article-title: Binaphthalene-based, soluble polyimides: the limits of intrinsic microporosity publication-title: Macromolecules – volume: 2 start-page: 9 year: 1995 end-page: 17 ident: b0220 article-title: Modeling physical adsorption on porous and nonporous solids using density functional theory publication-title: J Porous Mater – volume: 35 start-page: 2999 year: 1996 end-page: 3003 ident: b0185 article-title: Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties publication-title: Ind Eng Chem Res – volume: 43 start-page: 1843 year: 2005 end-page: 1856 ident: b0195 article-title: An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials publication-title: Carbon – volume: 251 start-page: 263 year: 2005 end-page: 269 ident: b0035 article-title: Gas separation membranes from polymers of intrinsic microporosity publication-title: J Membr Sci – volume: 30 start-page: 584 year: 2009 end-page: 588 ident: b0065 article-title: Copolymers of intrinsic microporosity based on 2,2′,3,3′-tetrahydroxyl-1,1′-dinaphthyl publication-title: Macromol Rapid Commun – volume: 49 start-page: 4348 year: 2011 end-page: 4358 ident: b0205 article-title: Composite phenolic resin-based carbon molecular sieve membranes for gas separation publication-title: Carbon – volume: 160 start-page: 201 year: 1999 end-page: 211 ident: b0200 article-title: Supported carbon molecular sieve membranes based on a phenolic resin publication-title: J Membr Sci – volume: 41 start-page: 253 year: 2003 end-page: 266 ident: b0230 article-title: Investigation of porosity of carbon materials and related effects on gas separation properties publication-title: Carbon – volume: 45 start-page: 3841 year: 2012 end-page: 3849 ident: b0215 article-title: Synthesis and gas transport properties of hydroxyl-functionalized polyimides with intrinsic microporosity publication-title: Macromolecules – volume: 149 start-page: 59 issue: 1 year: 1998 ident: 10.1016/j.carbon.2013.05.057_b0190 article-title: Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation publication-title: J Membr Sci doi: 10.1016/S0376-7388(98)00156-2 – volume: 30 start-page: 584 issue: 8 year: 2009 ident: 10.1016/j.carbon.2013.05.057_b0065 article-title: Copolymers of intrinsic microporosity based on 2,2′,3,3′-tetrahydroxyl-1,1′-dinaphthyl publication-title: Macromol Rapid Commun doi: 10.1002/marc.200800795 – volume: 43 start-page: 1843 issue: 9 year: 2005 ident: 10.1016/j.carbon.2013.05.057_b0195 article-title: An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials publication-title: Carbon doi: 10.1016/j.carbon.2005.02.028 – volume: 2 start-page: 1456 year: 2012 ident: 10.1016/j.carbon.2013.05.057_b0110 article-title: UV-rearranged PIM-1 polymeric membranes for advanced hydrogen purification and production publication-title: Adv Energy Mater doi: 10.1002/aenm.201200296 – volume: 45 start-page: 553 issue: 3 year: 2007 ident: 10.1016/j.carbon.2013.05.057_b0250 article-title: Carbon molecular sieve membranes derived from trimethylsilyl substituted poly(phenylene oxide) for gas separation publication-title: Carbon doi: 10.1016/j.carbon.2006.10.017 – volume: 43 start-page: 7657 issue: 18 year: 2010 ident: 10.1016/j.carbon.2013.05.057_b0130 article-title: Thermally rearranged (TR) polybenzoxazole: effects of diverse imidization routes on physical properties and gas transport behaviors publication-title: Macromolecules doi: 10.1021/ma101549z – volume: 2 start-page: 9 issue: 1 year: 1995 ident: 10.1016/j.carbon.2013.05.057_b0220 article-title: Modeling physical adsorption on porous and nonporous solids using density functional theory publication-title: J Porous Mater doi: 10.1007/BF00486565 – volume: 41 start-page: 253 issue: 2 year: 2003 ident: 10.1016/j.carbon.2013.05.057_b0230 article-title: Investigation of porosity of carbon materials and related effects on gas separation properties publication-title: Carbon doi: 10.1016/S0008-6223(02)00309-3 – volume: 47 start-page: 394 issue: 3 year: 2011 ident: 10.1016/j.carbon.2013.05.057_b0275 article-title: Reaction mechanism and products of the thermal conversion of hydroxyl-containing polyimides publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2010.12.014 – volume: 41 start-page: 1393 issue: 6 year: 2002 ident: 10.1016/j.carbon.2013.05.057_b0015 article-title: Future directions of membrane gas separation technology publication-title: Ind Eng Chem Res doi: 10.1021/ie0108088 – volume: 40 start-page: 261 issue: 4 year: 2011 ident: 10.1016/j.carbon.2013.05.057_b0210 article-title: Precursor selection and process conditions in the preparation of carbon membrane for gas separation: a review publication-title: Sep Purif Rev doi: 10.1080/15422119.2011.555648 – volume: 397 start-page: 51 year: 2012 ident: 10.1016/j.carbon.2013.05.057_b0280 article-title: Thermal induced structural rearrangement of cardo-copolybenzoxazole membranes for enhanced gas transport properties publication-title: J Membr Sci doi: 10.1016/j.memsci.2012.01.010 – start-page: 9394 year: 1997 ident: 10.1016/j.carbon.2013.05.057_b0175 article-title: Alkene/alkane permselectivities of a carbon molecular sieve membrane publication-title: Chem Commun – volume: 35 start-page: 2999 issue: 9 year: 1996 ident: 10.1016/j.carbon.2013.05.057_b0185 article-title: Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties publication-title: Ind Eng Chem Res doi: 10.1021/ie950746j – volume: 320 start-page: 390 issue: 1–2 year: 2008 ident: 10.1016/j.carbon.2013.05.057_b0020 article-title: The upper bound revisited publication-title: J Membr Sci doi: 10.1016/j.memsci.2008.04.030 – volume: 16 start-page: 456 issue: 5 year: 2004 ident: 10.1016/j.carbon.2013.05.057_b0025 article-title: Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity publication-title: Adv Mater doi: 10.1002/adma.200306053 – volume: 47 start-page: 6822 issue: 24 year: 2011 ident: 10.1016/j.carbon.2013.05.057_b0085 article-title: Hexaphenylbenzene-based polymers of intrinsic microporosity publication-title: Chem Commun doi: 10.1039/c1cc11717c – volume: 244 start-page: 77 issue: 1–2 year: 2004 ident: 10.1016/j.carbon.2013.05.057_b0295 article-title: Casting solvent effects on morphologies, gas transport properties of a novel 6FDA/PMDA-TMMDA copolyimide membrane and its derived carbon membranes publication-title: J Membr Sci doi: 10.1016/j.memsci.2004.07.005 – volume: 251 start-page: 263 issue: 1–2 year: 2005 ident: 10.1016/j.carbon.2013.05.057_b0035 article-title: Gas separation membranes from polymers of intrinsic microporosity publication-title: J Membr Sci doi: 10.1016/j.memsci.2005.01.009 – volume: 20 start-page: 2766 issue: 14 year: 2008 ident: 10.1016/j.carbon.2013.05.057_b0060 article-title: High-performance membranes from polyimides with intrinsic microporosity publication-title: Adv Mater doi: 10.1002/adma.200702400 – volume: 42 start-page: 3123 issue: 15 year: 2004 ident: 10.1016/j.carbon.2013.05.057_b0290 article-title: Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide publication-title: Carbon doi: 10.1016/j.carbon.2004.07.026 – volume: 43 start-page: 8580 issue: 20 year: 2010 ident: 10.1016/j.carbon.2013.05.057_b0075 article-title: Polymers of intrinsic microporosity with dinaphthyl and thianthrene segments publication-title: Macromolecules doi: 10.1021/ma101930x – volume: 357 start-page: 143 issue: 1–2 year: 2010 ident: 10.1016/j.carbon.2013.05.057_b0140 article-title: Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement publication-title: J Membr Sci doi: 10.1016/j.memsci.2010.04.013 – volume: 10 start-page: 372 issue: 5 year: 2011 ident: 10.1016/j.carbon.2013.05.057_b0100 article-title: Polymer nanosieve membranes for CO2-capture applications publication-title: Nat Mater doi: 10.1038/nmat2989 – volume: 48 start-page: 4638 issue: 10 year: 2009 ident: 10.1016/j.carbon.2013.05.057_b0005 article-title: Membrane gas separation: a review/state of the art publication-title: Ind Eng Chem Res doi: 10.1021/ie8019032 – volume: 53 start-page: 1126 issue: 3 year: 1970 ident: 10.1016/j.carbon.2013.05.057_b0225 article-title: Raman spectrum of graphite publication-title: J Chem Phys doi: 10.1063/1.1674108 – volume: 41 start-page: 1640 issue: 5 year: 2008 ident: 10.1016/j.carbon.2013.05.057_b0050 article-title: Polymers of intrinsic microporosity derived from bis(phenazyl) monomers publication-title: Macromolecules doi: 10.1021/ma071846r – volume: 380 start-page: 138 issue: 1–2 year: 2011 ident: 10.1016/j.carbon.2013.05.057_b0180 article-title: Matrimid (R) derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation publication-title: J Membr Sci doi: 10.1016/j.memsci.2011.06.037 – volume: 44 start-page: 6471 issue: 16 year: 2011 ident: 10.1016/j.carbon.2013.05.057_b0105 article-title: Polymer of intrinsic microporosity incorporating thioamide functionality: preparation and gas transport properties publication-title: Macromolecules doi: 10.1021/ma200918h – volume: 47 start-page: 2109 issue: 7 year: 2008 ident: 10.1016/j.carbon.2013.05.057_b0010 article-title: Natural gas processing with membranes: an overview publication-title: Ind Eng Chem Res doi: 10.1021/ie071083w – volume: 193 start-page: 1 issue: 1 year: 2001 ident: 10.1016/j.carbon.2013.05.057_b0150 article-title: A review on the latest development of carbon membranes for gas separation publication-title: J Membr Sci doi: 10.1016/S0376-7388(01)00510-5 – volume: 349 start-page: 358 issue: 1–2 year: 2010 ident: 10.1016/j.carbon.2013.05.057_b0135 article-title: Thermally rearranged (TR) poly(benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity publication-title: J Membr Sci doi: 10.1016/j.memsci.2009.11.068 – volume: 325 start-page: 851 issue: 2 year: 2008 ident: 10.1016/j.carbon.2013.05.057_b0040 article-title: Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1 publication-title: J Membr Sci doi: 10.1016/j.memsci.2008.09.010 – volume: 285 start-page: 1902 issue: 5435 year: 1999 ident: 10.1016/j.carbon.2013.05.057_b0165 article-title: Ultrasonic deposition of high-selectivity nanoporous carbon membranes publication-title: Science doi: 10.1126/science.285.5435.1902 – volume: 35 start-page: 285 issue: 4 year: 2006 ident: 10.1016/j.carbon.2013.05.057_b0155 article-title: Polyimide-carbonized membranes for gas separation: structural, composition, and morphological control of precursors publication-title: Sep Purif Rev doi: 10.1080/15422110601003481 – volume: 2 start-page: 230 year: 2004 ident: 10.1016/j.carbon.2013.05.057_b0030 article-title: Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials publication-title: Chem Commun doi: 10.1039/b311764b – volume: 24 start-page: 5930 year: 2012 ident: 10.1016/j.carbon.2013.05.057_b0090 article-title: A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation publication-title: Adv Mater doi: 10.1002/adma.201202393 – volume: 238 start-page: 93 issue: 1–2 year: 2004 ident: 10.1016/j.carbon.2013.05.057_b0285 article-title: Intermediate polymer to carbon gas separation membranes based on Matrimid PI publication-title: J Membr Sci doi: 10.1016/j.memsci.2004.03.024 – volume: 42 start-page: 6023 issue: 16 year: 2009 ident: 10.1016/j.carbon.2013.05.057_b0070 article-title: Polymers of intrinsic microporosity derived from novel disulfone-based monomers publication-title: Macromolecules doi: 10.1021/ma900898m – volume: 101 start-page: 3988 issue: 20 year: 1997 ident: 10.1016/j.carbon.2013.05.057_b0260 article-title: Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide publication-title: J Phys Chem B doi: 10.1021/jp963997u – volume: 318 start-page: 254 issue: 5848 year: 2007 ident: 10.1016/j.carbon.2013.05.057_b0115 article-title: Polymers with cavities tuned for fast selective transport of small molecules and ions publication-title: Science doi: 10.1126/science.1146744 – volume: 42 start-page: 6038 issue: 16 year: 2009 ident: 10.1016/j.carbon.2013.05.057_b0095 article-title: High-performance carboxylated polymers of intrinsic microporosity (PIMs) with tunable gas transport properties publication-title: Macromolecules doi: 10.1021/ma9009017 – volume: 212 start-page: 1137 issue: 11 year: 2011 ident: 10.1016/j.carbon.2013.05.057_b0080 article-title: Synthesis and gas permeation properties of spirobischromane-based polymers of intrinsic microporosity publication-title: Macromol Chem Phys doi: 10.1002/macp.201100089 – volume: 45 start-page: 3841 issue: 9 year: 2012 ident: 10.1016/j.carbon.2013.05.057_b0215 article-title: Synthesis and gas transport properties of hydroxyl-functionalized polyimides with intrinsic microporosity publication-title: Macromolecules doi: 10.1021/ma300549m – volume: 45 start-page: 3081 issue: 11 year: 2009 ident: 10.1016/j.carbon.2013.05.057_b0270 article-title: Thermal conversion of hydroxyl-containing polyimides to polybenzoxazoles. Does this reaction really occur? publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2009.08.014 – volume: 42 start-page: 1233 issue: 7 year: 2004 ident: 10.1016/j.carbon.2013.05.057_b0240 article-title: Usefulness of CO2 adsorption at 273K for the characterization of porous carbons publication-title: Carbon doi: 10.1016/j.carbon.2004.01.037 – volume: 434 start-page: 137 year: 2013 ident: 10.1016/j.carbon.2013.05.057_b0145 article-title: Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation publication-title: J Membr Sci doi: 10.1016/j.memsci.2013.01.011 – volume: 42 start-page: 8017 issue: 21 year: 2009 ident: 10.1016/j.carbon.2013.05.057_b0245 article-title: Binaphthalene-based, soluble polyimides: the limits of intrinsic microporosity publication-title: Macromolecules doi: 10.1021/ma901220c – volume: 32 start-page: 1419 issue: 8 year: 1994 ident: 10.1016/j.carbon.2013.05.057_b0160 article-title: Carbon molecular-sieve gas separation membranes. 1. preparation and characterization based on polyimide precursors publication-title: Carbon doi: 10.1016/0008-6223(94)90135-X – volume: 333 start-page: 125 issue: 1–2 year: 2009 ident: 10.1016/j.carbon.2013.05.057_b0045 article-title: Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1) publication-title: J Membr Sci doi: 10.1016/j.memsci.2009.02.003 – volume: 41 start-page: 9656 issue: 24 year: 2008 ident: 10.1016/j.carbon.2013.05.057_b0055 article-title: Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation publication-title: Macromolecules doi: 10.1021/ma801858d – volume: 44 start-page: 1156 issue: 5 year: 2011 ident: 10.1016/j.carbon.2013.05.057_b0120 article-title: Thermally rearranged (TR) poly(ether−benzoxazole) membranes for gas separation publication-title: Macromolecules doi: 10.1021/ma102878z – volume: 359 start-page: 11 issue: 1–2 year: 2010 ident: 10.1016/j.carbon.2013.05.057_b0125 article-title: Thermally rearranged (TR) polymer membranes for CO2 separation publication-title: J Membr Sci doi: 10.1016/j.memsci.2009.09.037 – volume: 409 start-page: 232 year: 2012 ident: 10.1016/j.carbon.2013.05.057_b0265 article-title: Gas permeability, diffusivity, and free volume of thermally rearranged polymers based on 3,3′-dihydroxyl-4,4′-diamino-biphenyl (HAB) and 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) publication-title: J Membr Sci doi: 10.1016/j.memsci.2012.03.060 – volume: 41 start-page: 367 issue: 3 year: 2002 ident: 10.1016/j.carbon.2013.05.057_b0170 article-title: High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes publication-title: Ind.Eng Chem Res doi: 10.1021/ie010119w – volume: 49 start-page: 4348 issue: 13 year: 2011 ident: 10.1016/j.carbon.2013.05.057_b0205 article-title: Composite phenolic resin-based carbon molecular sieve membranes for gas separation publication-title: Carbon doi: 10.1016/j.carbon.2011.06.012 – volume: 84 start-page: 59 issue: 1–3 year: 2005 ident: 10.1016/j.carbon.2013.05.057_b0235 article-title: The evolution of physicochemical and transport properties of 6FDA-durene toward carbon membranes; from polymer, intermediate to carbon publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2005.04.026 – volume: 359 start-page: 2 issue: 1–2 year: 2010 ident: 10.1016/j.carbon.2013.05.057_b0300 article-title: Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes publication-title: J Membr Sci doi: 10.1016/j.memsci.2009.10.019 – volume: 160 start-page: 201 issue: 2 year: 1999 ident: 10.1016/j.carbon.2013.05.057_b0200 article-title: Supported carbon molecular sieve membranes based on a phenolic resin publication-title: J Membr Sci doi: 10.1016/S0376-7388(99)00083-6 – volume: 38 start-page: 10042 issue: 24 year: 2005 ident: 10.1016/j.carbon.2013.05.057_b0255 article-title: Effects of brominating Matrimid polyimide on the physical and gas transport properties of derived carbon membranes publication-title: Macromolecules doi: 10.1021/ma051354j |
SSID | ssj0004814 |
Score | 2.4894907 |
Snippet | We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 88 |
SubjectTerms | adsorption Amorphous semiconductors, metals, and alloys Carbon Carbon dioxide Chemistry Colloidal state and disperse state Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science; rheology Disordered solids Exact sciences and technology Fullerenes and related materials; diamonds, graphite Gas separation General and physical chemistry Heat treatment Materials science Membranes methane Permeability Physics Polyimide resins polymers Porous materials Selectivity Specific materials Structure of solids and liquids; crystallography surface area |
Title | Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor |
URI | https://dx.doi.org/10.1016/j.carbon.2013.05.057 https://www.proquest.com/docview/1448716130 https://www.proquest.com/docview/1513455863 https://www.proquest.com/docview/1705442417 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-iDwrHcefdcat3S4R77blt0iR9lEXZU_RJwbeSNFPpsduWdhV8ub_dmX4ocqIg9KXphLQzyXw0k98w9sskocwdpVWAiAKZWxM4ZcNARUmmwizLfYcze36hFlfy9Dq-3mDz8SwMpVUOur_X6Z22HloOB24e1kVBZ3zJHUf_hECjEkGYoFJqmuW__z2leUjT43vTNj9Rj8fnuhyvzDauIhTUUHT4nWSkXjZPH2rbItPyvtrFf4q7s0Ynn9jHwY3kR_2bfmYbUO6y7flYve0LK-bdoHw1lr_lbQF3wG9sy1voAb_pMawwXEZ1x8mceY5NtuRFuW6KspPf8p6vKGcP3fTqtuV1tbwvVoUHXjf0p76tmq_s6uT4cr4IhrIKQRbrcB2AgsxraSIrncFwCEI_sxS3mNzKXAudGOuUQysGWkljZxYynSOdinG1JkZ8Y5tlVcJ3xpUC7XMnjKdCut7b0IISQmkROYgjN2Fi5GaaDZjjVPpimY7JZX_TXgYpySCdxXjpCQsee9U95sYb9HoUVPps7qRoFt7oOX0m18fhIuQGuqpIcDAKOkUB0mYKygT5jSGTpFgTJ98rNHEoZBwbJV6h0eg0S_Sj9N67P2Of7dBdn2P4g22um1v4ib7S2k27xTBlW0d_zhYXD9GyFhI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORSpQjzVAi1GgmPoJnZs58ChWqi29HFqpd6CHU9Q0G4SJVvQXvhT_EFm8iiqQK2EVCmnZJzHfPY8lM8zjL01SShzR7QKEFEgc2sCp2wYqCjJVJhlue_qzJ6cqtm5_HwRX6yxX-NeGKJVDra_t-mdtR7O7A3a3KuLgvb4UjiO8QkVjUqEHJiVR7D6gXlb--HwI4L8LooOPp1NZ8HQWiDIYh0uA1CQeS1NZKUzmBJA6CeWYneTW5lroRNjnXJoyUEraezEQqZzlFMxztjECLzvPXZformgtgnvf_7hlUjTFxQnXgG93rhfryOVZbZxFZVdDUVXMJS84r_94WZtW0Qp79tr_OUpOvd38Ig9HOJWvt-r5jFbg_IJ25iO7eKesmLaPZQvxn67vC3gO_CvtuUt9BXG6TIsMD9H-8rJf3qOp2zJi3LZFGU3YeYrviCSIOYF1WXL62q-KhaFB1439GugrZpn7PxOlP2crZdVCVuMKwXa504YT517vbehBSWE0iJyEEdum4lRm2k2FDmnXhvzdGSzfUt7DFLCIJ3EeOhtFlyNqvsiH7fI6xGo9NpkTdEP3TJy9xquV4-LUBsYG6PAmxHoFAGkvzeICeobczRJyS3O9htk4lDIODZK3CCjMUqXGLjpF__9Ga_Zxuzs5Dg9Pjw9eske0JWe4PiKrS-bS9jBQG3pdruFwdmXu16JvwHBxFEI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+molecular+sieve+gas+separation+membranes+based+on+an+intrinsically+microporous+polyimide+precursor&rft.jtitle=Carbon+%28New+York%29&rft.au=Ma%2C+Xiaohua&rft.au=Swaidan%2C+Raja&rft.au=Teng%2C+Baiyang&rft.au=Tan%2C+Hua&rft.date=2013-10-01&rft.issn=0008-6223&rft.volume=62&rft.spage=88&rft.epage=96&rft_id=info:doi/10.1016%2Fj.carbon.2013.05.057&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |