Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor

We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide containing spiro-centers (PIM-6FDA-OH) by step-wise heat treatment to 440, 530, 600, 630 and 800°C, respectively. At 440°C, the PIM-6FDA-OH was...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 62; pp. 88 - 96
Main Authors Ma, Xiaohua, Swaidan, Raja, Teng, Baiyang, Tan, Hua, Salinas, Octavio, Litwiller, Eric, Han, Yu, Pinnau, Ingo
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.10.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide containing spiro-centers (PIM-6FDA-OH) by step-wise heat treatment to 440, 530, 600, 630 and 800°C, respectively. At 440°C, the PIM-6FDA-OH was converted to a polybenzoxazole and exhibited a 3-fold increase in CO2 permeability (from 251 to 683 Barrer) with a 50% reduction in selectivity over CH4 (from 28 to 14). At 530°C, a distinct intermediate amorphous carbon structure with superior gas separation properties was formed. A 56% increase in CO2-probed surface area accompanied a 16-fold increase in CO2 permeability (4110Barrer) over the pristine polymer. The graphitic carbon membrane, obtained by heat treatment at 600°C, exhibited excellent gas separation properties, including a remarkable CO2 permeability of 5040Barrer with a high selectivity over CH4 of 38. Above 600°C, the strong emergence of ultramicroporosity (<7Å) as evidenced by WAXD and CO2 adsorption studies elicits a prominent molecular sieving effect, yielding gas separation performance well above the permeability-selectivity trade-off curves of polymeric membranes.
AbstractList We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide containing spiro-centers (PIM-6FDA-OH) by step-wise heat treatment to 440, 530, 600, 630 and 800 degree C, respectively. At 440 degree C, the PIM-6FDA-OH was converted to a polybenzoxazole and exhibited a 3-fold increase in CO2 permeability (from 251 to 683 Barrer) with a 50% reduction in selectivity over CH4 (from 28 to 14). At 530 degree C, a distinct intermediate amorphous carbon structure with superior gas separation properties was formed. A 56% increase in CO2-probed surface area accompanied a 16-fold increase in CO2 permeability (4110 Barrer) over the pristine polymer. The graphitic carbon membrane, obtained by heat treatment at 600 degree C, exhibited excellent gas separation properties, including a remarkable CO2 permeability of 5040 Barrer with a high selectivity over CH4 of 38. Above 600 degree C, the strong emergence of ultramicroporosity (<7 A) as evidenced by WAXD and CO2 adsorption studies elicits a prominent molecular sieving effect, yielding gas separation performance well above the permeability-selectivity trade-off curves of polymeric membranes.
We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide containing spiro-centers (PIM-6FDA-OH) by step-wise heat treatment to 440, 530, 600, 630 and 800°C, respectively. At 440°C, the PIM-6FDA-OH was converted to a polybenzoxazole and exhibited a 3-fold increase in CO2 permeability (from 251 to 683 Barrer) with a 50% reduction in selectivity over CH4 (from 28 to 14). At 530°C, a distinct intermediate amorphous carbon structure with superior gas separation properties was formed. A 56% increase in CO2-probed surface area accompanied a 16-fold increase in CO2 permeability (4110Barrer) over the pristine polymer. The graphitic carbon membrane, obtained by heat treatment at 600°C, exhibited excellent gas separation properties, including a remarkable CO2 permeability of 5040Barrer with a high selectivity over CH4 of 38. Above 600°C, the strong emergence of ultramicroporosity (<7Å) as evidenced by WAXD and CO2 adsorption studies elicits a prominent molecular sieving effect, yielding gas separation performance well above the permeability-selectivity trade-off curves of polymeric membranes.
We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide containing spiro-centers (PIM-6FDA-OH) by step-wise heat treatment to 440, 530, 600, 630 and 800°C, respectively. At 440°C, the PIM-6FDA-OH was converted to a polybenzoxazole and exhibited a 3-fold increase in CO₂ permeability (from 251 to 683 Barrer) with a 50% reduction in selectivity over CH₄ (from 28 to 14). At 530°C, a distinct intermediate amorphous carbon structure with superior gas separation properties was formed. A 56% increase in CO₂-probed surface area accompanied a 16-fold increase in CO₂ permeability (4110Barrer) over the pristine polymer. The graphitic carbon membrane, obtained by heat treatment at 600°C, exhibited excellent gas separation properties, including a remarkable CO₂ permeability of 5040Barrer with a high selectivity over CH₄ of 38. Above 600°C, the strong emergence of ultramicroporosity (<7Å) as evidenced by WAXD and CO₂ adsorption studies elicits a prominent molecular sieving effect, yielding gas separation performance well above the permeability-selectivity trade-off curves of polymeric membranes.
We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide containing spiro-centers (PIM-6FDA-OH) by step-wise heat treatment to 440, 530, 600, 630 and 800 degree C, respectively. At 440 degree C, the PIM-6FDA-OH was converted to a polybenzoxazole and exhibited a 3-fold increase in CO sub(2) permeability (from 251 to 683 Barrer) with a 50% reduction in selectivity over CH sub(4) (from 28 to 14). At 530 degree C, a distinct intermediate amorphous carbon structure with superior gas separation properties was formed. A 56% increase in CO sub(2)-probed surface area accompanied a 16-fold increase in CO sub(2) permeability (4110 Barrer) over the pristine polymer. The graphitic carbon membrane, obtained by heat treatment at 600 degree C, exhibited excellent gas separation properties, including a remarkable CO sub(2) permeability of 5040 Barrer with a high selectivity over CH sub(4) of 38. Above 600 degree C, the strong emergence of ultramicroporosity (< 7 AA) as evidenced by WAXD and CO sub(2) adsorption studies elicits a prominent molecular sieving effect, yielding gas separation performance well above the permeability-selectivity trade-off curves of polymeric membranes.
Author Swaidan, Raja
Tan, Hua
Teng, Baiyang
Pinnau, Ingo
Han, Yu
Litwiller, Eric
Salinas, Octavio
Ma, Xiaohua
Author_xml – sequence: 1
  givenname: Xiaohua
  surname: Ma
  fullname: Ma, Xiaohua
– sequence: 2
  givenname: Raja
  surname: Swaidan
  fullname: Swaidan, Raja
– sequence: 3
  givenname: Baiyang
  surname: Teng
  fullname: Teng, Baiyang
– sequence: 4
  givenname: Hua
  surname: Tan
  fullname: Tan, Hua
– sequence: 5
  givenname: Octavio
  surname: Salinas
  fullname: Salinas, Octavio
– sequence: 6
  givenname: Eric
  surname: Litwiller
  fullname: Litwiller, Eric
– sequence: 7
  givenname: Yu
  surname: Han
  fullname: Han, Yu
– sequence: 8
  givenname: Ingo
  surname: Pinnau
  fullname: Pinnau, Ingo
  email: ingo.pinnau@kaust.edu.sa
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27584167$$DView record in Pascal Francis
BookMark eNqFUU1r3DAUFCWBbtL8gxx0KfTirWR9bg-FsvQLAr00Z_EsPxctsuVK3sD--8rZ9NJDFx4ISTOj0cwNuZrShITcc7bljOv3h62H3KVp2zIutkzVMa_IhlsjGmF3_IpsGGO20W0rXpObUg51Ky2XGxL2z0w6poj-GCHTEvAJ6S8otOAMGZawXuPYZZiw0A4K9rQewUTDtOQwleAhxhMdg89pTjkdC51TPIUx9EjnXHVzSfkNuR4gFrx7WW_J45fPP_ffmocfX7_vPz00Xhm-NKjR90baFmRnOZfIewbSGmUHkIMRZmeh0502Fo2WFhigN0PFabXTYmfFLXl31p1z-n3EsrgxFI8xVvvVmuOGKSlbyc1lqOJCKmW1uAyV1SPXXLAKffsChVKTGWpuPhQ35zBCPrm2fkVyvb7-4YyrsZWScXA-LM9xLxlCdJy5tV13cOd23dquY6rOSpb_kP_qX6B9PNOwNvAUMLviA04e-1B7Wlyfwv8F_gC9VcOZ
CODEN CRBNAH
CitedBy_id crossref_primary_10_1016_j_eurpolymj_2023_112189
crossref_primary_10_1021_acs_iecr_3c01004
crossref_primary_10_1016_j_memsci_2021_119519
crossref_primary_10_1016_j_jiec_2017_08_038
crossref_primary_10_1177_0954008315595276
crossref_primary_10_2139_ssrn_4063567
crossref_primary_10_1039_c4py00449c
crossref_primary_10_1016_j_memsci_2023_121674
crossref_primary_10_1002_app_44889
crossref_primary_10_1073_pnas_2022202118
crossref_primary_10_3390_membranes13120903
crossref_primary_10_1039_D4TA02112F
crossref_primary_10_1016_j_ijhydene_2017_08_071
crossref_primary_10_1021_acsanm_3c02516
crossref_primary_10_1021_acs_chemrev_7b00629
crossref_primary_10_3390_membranes12050501
crossref_primary_10_1021_acs_iecr_2c00296
crossref_primary_10_1016_j_seppur_2023_123548
crossref_primary_10_1016_S1872_5805_22_60613_9
crossref_primary_10_1016_j_seppur_2022_121982
crossref_primary_10_1016_j_mtnano_2018_11_003
crossref_primary_10_11605_j_pnrs_201802002
crossref_primary_10_1021_acsami_9b03825
crossref_primary_10_1002_anie_201906653
crossref_primary_10_1016_j_memsci_2023_121570
crossref_primary_10_1016_j_carbon_2022_02_033
crossref_primary_10_1002_pat_5763
crossref_primary_10_1039_D3CS00235G
crossref_primary_10_1002_eem2_12843
crossref_primary_10_1016_j_carbon_2023_01_016
crossref_primary_10_1016_j_apsusc_2023_159127
crossref_primary_10_1016_j_jiec_2018_02_030
crossref_primary_10_1039_D0RA10775A
crossref_primary_10_1021_acs_iecr_4c04107
crossref_primary_10_1002_ange_201906653
crossref_primary_10_1016_j_pmatsci_2024_101285
crossref_primary_10_1016_j_memsci_2025_123880
crossref_primary_10_1016_j_advmem_2021_100011
crossref_primary_10_1016_j_memsci_2025_123875
crossref_primary_10_3390_membranes8040097
crossref_primary_10_1016_j_memsci_2025_123878
crossref_primary_10_1007_s10853_014_8222_3
crossref_primary_10_1016_j_memsci_2023_122072
crossref_primary_10_1021_acs_macromol_2c00596
crossref_primary_10_1016_j_cej_2022_138513
crossref_primary_10_1016_j_polymer_2022_125092
crossref_primary_10_1016_j_cej_2020_126084
crossref_primary_10_1016_j_memsci_2021_119541
crossref_primary_10_1016_j_polymer_2017_06_006
crossref_primary_10_1016_j_carbon_2017_04_011
crossref_primary_10_1016_j_memsci_2016_02_036
crossref_primary_10_1016_j_seppur_2014_12_048
crossref_primary_10_1016_j_seppur_2023_125978
crossref_primary_10_1039_C7TA04015F
crossref_primary_10_1016_j_memsci_2021_119825
crossref_primary_10_1016_j_carbon_2017_11_031
crossref_primary_10_1016_j_memsci_2020_118053
crossref_primary_10_1016_j_seppur_2025_132068
crossref_primary_10_3390_pr4030029
crossref_primary_10_1039_D3RA00617D
crossref_primary_10_1016_j_cherd_2018_09_039
crossref_primary_10_1016_j_memsci_2024_122533
crossref_primary_10_1002_adma_202104606
crossref_primary_10_1016_j_seppur_2024_128597
crossref_primary_10_1002_app_42394
crossref_primary_10_1016_j_seppur_2017_12_032
crossref_primary_10_3390_polym12081851
crossref_primary_10_1016_j_carbon_2018_09_039
crossref_primary_10_1021_acsami_5b04747
crossref_primary_10_1016_j_seppur_2022_121808
crossref_primary_10_1039_D2IM00049K
crossref_primary_10_1002_smll_202309409
crossref_primary_10_1016_j_memsci_2018_11_027
crossref_primary_10_1021_acssuschemeng_1c02784
crossref_primary_10_1016_j_memsci_2022_120548
crossref_primary_10_1016_j_cej_2014_04_115
crossref_primary_10_1002_sstr_202100049
crossref_primary_10_1002_macp_201600232
crossref_primary_10_1016_j_memsci_2022_120781
crossref_primary_10_1002_macp_201900532
crossref_primary_10_3390_polym13173012
crossref_primary_10_1038_s41467_024_54275_1
crossref_primary_10_1016_j_seppur_2024_126286
crossref_primary_10_1016_j_memsci_2019_05_020
crossref_primary_10_1016_j_coche_2021_100755
crossref_primary_10_1016_j_memsci_2023_121881
crossref_primary_10_1016_j_seppur_2023_126163
crossref_primary_10_1002_smll_202104698
crossref_primary_10_1039_C8PY00530C
crossref_primary_10_15377_2409_983X_2016_03_01_3
crossref_primary_10_1016_j_memsci_2015_11_013
crossref_primary_10_1016_j_micromeso_2024_113466
crossref_primary_10_1080_01496395_2024_2343849
crossref_primary_10_1016_j_carbon_2018_11_037
crossref_primary_10_1002_smll_201800133
crossref_primary_10_1016_j_jechem_2020_03_008
crossref_primary_10_1016_j_memsci_2022_120497
crossref_primary_10_1016_j_memsci_2024_123649
crossref_primary_10_1016_j_memsci_2015_12_052
crossref_primary_10_1016_j_memsci_2025_123792
crossref_primary_10_1016_j_memsci_2023_121764
crossref_primary_10_1002_ceat_201500495
crossref_primary_10_1016_j_memsci_2024_123255
crossref_primary_10_1080_15422119_2014_908918
crossref_primary_10_1039_C5TA03706A
crossref_primary_10_1002_cjce_23661
crossref_primary_10_1021_acsami_0c02789
crossref_primary_10_1016_j_memsci_2016_11_002
crossref_primary_10_1016_j_jgsce_2024_205472
crossref_primary_10_1021_acs_iecr_7b00573
crossref_primary_10_1039_D3TA01680C
crossref_primary_10_1177_0954008315583705
crossref_primary_10_2139_ssrn_4128543
crossref_primary_10_1016_j_jece_2024_112275
crossref_primary_10_1016_j_matchemphys_2018_10_047
crossref_primary_10_1016_j_seppur_2025_132312
crossref_primary_10_1016_j_memsci_2023_121731
crossref_primary_10_1002_cssc_201702243
crossref_primary_10_1016_j_memsci_2019_02_070
crossref_primary_10_1016_j_memsci_2024_123287
crossref_primary_10_1016_j_memsci_2013_07_057
crossref_primary_10_1016_j_seppur_2023_124168
crossref_primary_10_1016_j_pecs_2021_100903
crossref_primary_10_1021_ma5011183
crossref_primary_10_1016_j_seppur_2024_126945
crossref_primary_10_1021_acsami_0c21338
crossref_primary_10_2139_ssrn_3991431
crossref_primary_10_1016_j_carbon_2018_03_036
crossref_primary_10_1016_j_memsci_2022_120639
crossref_primary_10_1002_apj_2251
crossref_primary_10_1021_acsnano_7b02523
crossref_primary_10_1016_j_memsci_2022_120596
crossref_primary_10_1002_cssc_202001572
crossref_primary_10_1021_ie403421u
crossref_primary_10_1016_j_memsci_2017_06_082
crossref_primary_10_1016_j_memsci_2023_121464
crossref_primary_10_1080_01496395_2017_1321671
crossref_primary_10_1016_j_memsci_2025_123972
crossref_primary_10_1016_j_memsci_2019_117752
crossref_primary_10_1002_adma_202201472
crossref_primary_10_1002_cssc_202001567
crossref_primary_10_1016_j_memsci_2025_123689
crossref_primary_10_1039_C9EN01136F
crossref_primary_10_1016_j_seppur_2024_128797
crossref_primary_10_1016_j_memsci_2016_08_057
crossref_primary_10_1016_j_seppur_2017_04_013
crossref_primary_10_1039_C6RA24699K
crossref_primary_10_1016_j_carbon_2017_01_015
crossref_primary_10_1021_acs_macromol_7b01458
Cites_doi 10.1016/S0376-7388(98)00156-2
10.1002/marc.200800795
10.1016/j.carbon.2005.02.028
10.1002/aenm.201200296
10.1016/j.carbon.2006.10.017
10.1021/ma101549z
10.1007/BF00486565
10.1016/S0008-6223(02)00309-3
10.1016/j.eurpolymj.2010.12.014
10.1021/ie0108088
10.1080/15422119.2011.555648
10.1016/j.memsci.2012.01.010
10.1021/ie950746j
10.1016/j.memsci.2008.04.030
10.1002/adma.200306053
10.1039/c1cc11717c
10.1016/j.memsci.2004.07.005
10.1016/j.memsci.2005.01.009
10.1002/adma.200702400
10.1016/j.carbon.2004.07.026
10.1021/ma101930x
10.1016/j.memsci.2010.04.013
10.1038/nmat2989
10.1021/ie8019032
10.1063/1.1674108
10.1021/ma071846r
10.1016/j.memsci.2011.06.037
10.1021/ma200918h
10.1021/ie071083w
10.1016/S0376-7388(01)00510-5
10.1016/j.memsci.2009.11.068
10.1016/j.memsci.2008.09.010
10.1126/science.285.5435.1902
10.1080/15422110601003481
10.1039/b311764b
10.1002/adma.201202393
10.1016/j.memsci.2004.03.024
10.1021/ma900898m
10.1021/jp963997u
10.1126/science.1146744
10.1021/ma9009017
10.1002/macp.201100089
10.1021/ma300549m
10.1016/j.eurpolymj.2009.08.014
10.1016/j.carbon.2004.01.037
10.1016/j.memsci.2013.01.011
10.1021/ma901220c
10.1016/0008-6223(94)90135-X
10.1016/j.memsci.2009.02.003
10.1021/ma801858d
10.1021/ma102878z
10.1016/j.memsci.2009.09.037
10.1016/j.memsci.2012.03.060
10.1021/ie010119w
10.1016/j.carbon.2011.06.012
10.1016/j.micromeso.2005.04.026
10.1016/j.memsci.2009.10.019
10.1016/S0376-7388(99)00083-6
10.1021/ma051354j
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SR
8FD
JG9
7S9
L.6
DOI 10.1016/j.carbon.2013.05.057
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database

AGRICOLA
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-3891
EndPage 96
ExternalDocumentID 27584167
10_1016_j_carbon_2013_05_057
S0008622313004934
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SR
8FD
JG9
7S9
L.6
ID FETCH-LOGICAL-c571t-e6ecd7482a4b8114e1d0a48758fa4f73798ab6b678e7648a0aec7f14e65963983
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Fri Jul 11 13:59:56 EDT 2025
Thu Jul 10 17:17:59 EDT 2025
Fri Jul 11 08:09:22 EDT 2025
Mon Jul 21 09:15:25 EDT 2025
Thu Apr 24 23:07:49 EDT 2025
Tue Jul 01 01:14:30 EDT 2025
Fri Feb 23 02:24:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Methane
Membranes
Transport properties
Separation
Porous materials
Carbon dioxide
Selectivity
Molecular gas
Permeability
Molecular sieves
Carbon
Precursor
Heat treatments
Chemical reduction
Microporosity
Polyimides
Transport processes
Surface area
Polymers
Amorphous state structure
Inorganic membrane
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c571t-e6ecd7482a4b8114e1d0a48758fa4f73798ab6b678e7648a0aec7f14e65963983
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1448716130
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1705442417
proquest_miscellaneous_1513455863
proquest_miscellaneous_1448716130
pascalfrancis_primary_27584167
crossref_citationtrail_10_1016_j_carbon_2013_05_057
crossref_primary_10_1016_j_carbon_2013_05_057
elsevier_sciencedirect_doi_10_1016_j_carbon_2013_05_057
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Carbon (New York)
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Robeson (b0020) 2008; 320
Han, Misdan, Kim, Doherty, Hill, Lee (b0130) 2010; 43
Xu, Rungta, Koros (b0180) 2011; 380
Choi, Jung, Han, Park, Lee (b0135) 2010; 349
Sanders, Smith, Ribeiro, Guo, McGrath, Paul (b0265) 2012; 409
Kusakabe, Yamamoto, Morooka (b0190) 1998; 149
Steel, Koros (b0230) 2003; 41
Ghanem, McKeown, Budd, Fritsch (b0050) 2008; 41
Bezzu, Carta, Tonkins, Jansen, Bernardo, Bazzarelli (b0090) 2012; 24
Kiyono, Williams, Koros (b0300) 2010; 359
Yeong, Wang, Pramoda, Chung (b0280) 2012; 397
Budd, Elabas, Ghanem, Makhseed, McKeown, Msayib (b0025) 2004; 16
Ismail, David (b0150) 2001; 193
Geiszler, Koros (b0185) 1996; 35
Xiao, Dai, Chung, Guiver (b0255) 2005; 38
Hodgkin, Liu, Dao, Mardel, Hill (b0275) 2011; 47
Ritter, Antonietti, Thomas, Senkovska, Kaskel, Weber (b0245) 2009; 42
Baker, Lokhandwala (b0010) 2008; 47
Vu, Koros, Miller (b0170) 2002; 41
Fritsch, Bengtson, Carta, McKeown (b0080) 2011; 212
Jones, Koros (b0160) 1994; 32
Ghanem, McKeown, Budd, Selbie, Fritsch (b0060) 2008; 20
Teixeira, Campo, Pacheco Tanaka, Llosa Tanco, Magen, Mendes (b0205) 2011; 49
Budd, Ghanem, Makhseed, McKeown, Msayib, Tattershall (b0030) 2004; 2
Lozano-Castello, Cazorla-Amoros, Linares-Solano (b0240) 2004; 42
Suda, Haraya (b0260) 1997; 101
Tin, Chung, Liu, Wang (b0290) 2004; 42
Park, Han, Jung, Lee, Hill (b0125) 2010; 359
Shao, Chung, Wensley, Goh, Pramoda (b0295) 2004; 244
Centeno, Fuertes (b0200) 1999; 160
Du, Park, Robertson, Dal-Cin, Visser, Scoles (b0100) 2011; 10
Calle, Lee (b0120) 2011; 44
Shiflett, Foley (b0165) 1999; 285
Suda, Haraya (b0175) 1997
Steel, Koros (b0195) 2005; 43
Du, Robertson, Pinnau, Guiver (b0075) 2010; 43
Yoshimune, Fujiwara, Haraya (b0250) 2007; 45
Park, Jung, Lee, Hill, Pas, Mudie (b0115) 2007; 318
Du, Robertson, Pinnau, Thomas, Guiver (b0065) 2009; 30
Tin, Xiao, Chung (b0155) 2006; 35
Budd, McKeown, Ghanem, Msayib, Fritsch, Starannikova (b0040) 2008; 325
Olivier (b0220) 1995; 2
Barsema, Klijnstra, Balster, van der Vegt, Koops, Wessling (b0285) 2004; 238
Han, Lee, Lee, Park, Lee (b0140) 2010; 357
Ma, Swaidan, Belmabkhout, Zhu, Litwiller, Jouiad (b0215) 2012; 45
Baker (b0015) 2002; 41
Li, Xiao, Ong, Chung (b0110) 2012; 2
Hodgkin, Dao (b0270) 2009; 45
Bernardo, Drioli, Golemme (b0005) 2009; 48
Du, Robertson, Song, Pinnau, Thomas, Guiver (b0055) 2008; 41
Salleh, Ismail, Matsuura, Abdullah (b0210) 2011; 40
Short, Carta, Bezzu, Fritsch, Kariuki, McKeown (b0085) 2011; 47
Tuinstra, Koenig (b0225) 1970; 53
Du, Robertson, Song, Pinnau, Guiver (b0095) 2009; 42
Thomas, Pinnau, Du, Guiver (b0045) 2009; 333
Mason, Maynard-Atem, Al-Harbi, Budd, Bernardo, Bazzarelli (b0105) 2011; 44
Budd, Msayib, Tattershall, Ghanem, Reynolds, McKeown (b0035) 2005; 251
Du, Robertson, Pinnau, Guiver (b0070) 2009; 42
Shao, Chung, Pramoda (b0235) 2005; 84
Li, Jo, Han, Park, Kim, Budd (b0145) 2013; 434
Baker (10.1016/j.carbon.2013.05.057_b0015) 2002; 41
Xu (10.1016/j.carbon.2013.05.057_b0180) 2011; 380
Du (10.1016/j.carbon.2013.05.057_b0095) 2009; 42
Tin (10.1016/j.carbon.2013.05.057_b0155) 2006; 35
Mason (10.1016/j.carbon.2013.05.057_b0105) 2011; 44
Calle (10.1016/j.carbon.2013.05.057_b0120) 2011; 44
Salleh (10.1016/j.carbon.2013.05.057_b0210) 2011; 40
Du (10.1016/j.carbon.2013.05.057_b0075) 2010; 43
Short (10.1016/j.carbon.2013.05.057_b0085) 2011; 47
Shiflett (10.1016/j.carbon.2013.05.057_b0165) 1999; 285
Jones (10.1016/j.carbon.2013.05.057_b0160) 1994; 32
Han (10.1016/j.carbon.2013.05.057_b0140) 2010; 357
Geiszler (10.1016/j.carbon.2013.05.057_b0185) 1996; 35
Ma (10.1016/j.carbon.2013.05.057_b0215) 2012; 45
Han (10.1016/j.carbon.2013.05.057_b0130) 2010; 43
Choi (10.1016/j.carbon.2013.05.057_b0135) 2010; 349
Tin (10.1016/j.carbon.2013.05.057_b0290) 2004; 42
Budd (10.1016/j.carbon.2013.05.057_b0035) 2005; 251
Suda (10.1016/j.carbon.2013.05.057_b0175) 1997
Baker (10.1016/j.carbon.2013.05.057_b0010) 2008; 47
Teixeira (10.1016/j.carbon.2013.05.057_b0205) 2011; 49
Centeno (10.1016/j.carbon.2013.05.057_b0200) 1999; 160
Tuinstra (10.1016/j.carbon.2013.05.057_b0225) 1970; 53
Thomas (10.1016/j.carbon.2013.05.057_b0045) 2009; 333
Park (10.1016/j.carbon.2013.05.057_b0125) 2010; 359
Hodgkin (10.1016/j.carbon.2013.05.057_b0270) 2009; 45
Barsema (10.1016/j.carbon.2013.05.057_b0285) 2004; 238
Steel (10.1016/j.carbon.2013.05.057_b0195) 2005; 43
Li (10.1016/j.carbon.2013.05.057_b0110) 2012; 2
Suda (10.1016/j.carbon.2013.05.057_b0260) 1997; 101
Ghanem (10.1016/j.carbon.2013.05.057_b0050) 2008; 41
Fritsch (10.1016/j.carbon.2013.05.057_b0080) 2011; 212
Kusakabe (10.1016/j.carbon.2013.05.057_b0190) 1998; 149
Kiyono (10.1016/j.carbon.2013.05.057_b0300) 2010; 359
Ghanem (10.1016/j.carbon.2013.05.057_b0060) 2008; 20
Robeson (10.1016/j.carbon.2013.05.057_b0020) 2008; 320
Yeong (10.1016/j.carbon.2013.05.057_b0280) 2012; 397
Hodgkin (10.1016/j.carbon.2013.05.057_b0275) 2011; 47
Budd (10.1016/j.carbon.2013.05.057_b0025) 2004; 16
Vu (10.1016/j.carbon.2013.05.057_b0170) 2002; 41
Bezzu (10.1016/j.carbon.2013.05.057_b0090) 2012; 24
Yoshimune (10.1016/j.carbon.2013.05.057_b0250) 2007; 45
Li (10.1016/j.carbon.2013.05.057_b0145) 2013; 434
Budd (10.1016/j.carbon.2013.05.057_b0040) 2008; 325
Bernardo (10.1016/j.carbon.2013.05.057_b0005) 2009; 48
Du (10.1016/j.carbon.2013.05.057_b0055) 2008; 41
Du (10.1016/j.carbon.2013.05.057_b0065) 2009; 30
Xiao (10.1016/j.carbon.2013.05.057_b0255) 2005; 38
Park (10.1016/j.carbon.2013.05.057_b0115) 2007; 318
Olivier (10.1016/j.carbon.2013.05.057_b0220) 1995; 2
Ismail (10.1016/j.carbon.2013.05.057_b0150) 2001; 193
Steel (10.1016/j.carbon.2013.05.057_b0230) 2003; 41
Du (10.1016/j.carbon.2013.05.057_b0100) 2011; 10
Shao (10.1016/j.carbon.2013.05.057_b0235) 2005; 84
Lozano-Castello (10.1016/j.carbon.2013.05.057_b0240) 2004; 42
Shao (10.1016/j.carbon.2013.05.057_b0295) 2004; 244
Budd (10.1016/j.carbon.2013.05.057_b0030) 2004; 2
Sanders (10.1016/j.carbon.2013.05.057_b0265) 2012; 409
Du (10.1016/j.carbon.2013.05.057_b0070) 2009; 42
Ritter (10.1016/j.carbon.2013.05.057_b0245) 2009; 42
References_xml – volume: 44
  start-page: 1156
  year: 2011
  end-page: 1165
  ident: b0120
  article-title: Thermally rearranged (TR) poly(ether−benzoxazole) membranes for gas separation
  publication-title: Macromolecules
– volume: 380
  start-page: 138
  year: 2011
  end-page: 147
  ident: b0180
  article-title: Matrimid (R) derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation
  publication-title: J Membr Sci
– volume: 349
  start-page: 358
  year: 2010
  end-page: 368
  ident: b0135
  article-title: Thermally rearranged (TR) poly(benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity
  publication-title: J Membr Sci
– volume: 16
  start-page: 456
  year: 2004
  end-page: 459
  ident: b0025
  article-title: Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity
  publication-title: Adv Mater
– volume: 47
  start-page: 6822
  year: 2011
  end-page: 6824
  ident: b0085
  article-title: Hexaphenylbenzene-based polymers of intrinsic microporosity
  publication-title: Chem Commun
– volume: 149
  start-page: 59
  year: 1998
  end-page: 67
  ident: b0190
  article-title: Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation
  publication-title: J Membr Sci
– volume: 434
  start-page: 137
  year: 2013
  end-page: 147
  ident: b0145
  article-title: Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation
  publication-title: J Membr Sci
– volume: 285
  start-page: 1902
  year: 1999
  end-page: 1905
  ident: b0165
  article-title: Ultrasonic deposition of high-selectivity nanoporous carbon membranes
  publication-title: Science
– volume: 24
  start-page: 5930
  year: 2012
  end-page: 5933
  ident: b0090
  article-title: A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation
  publication-title: Adv Mater
– volume: 41
  start-page: 1640
  year: 2008
  end-page: 1646
  ident: b0050
  article-title: Polymers of intrinsic microporosity derived from bis(phenazyl) monomers
  publication-title: Macromolecules
– volume: 43
  start-page: 8580
  year: 2010
  end-page: 8587
  ident: b0075
  article-title: Polymers of intrinsic microporosity with dinaphthyl and thianthrene segments
  publication-title: Macromolecules
– volume: 20
  start-page: 2766
  year: 2008
  end-page: 2768
  ident: b0060
  article-title: High-performance membranes from polyimides with intrinsic microporosity
  publication-title: Adv Mater
– volume: 44
  start-page: 6471
  year: 2011
  end-page: 6479
  ident: b0105
  article-title: Polymer of intrinsic microporosity incorporating thioamide functionality: preparation and gas transport properties
  publication-title: Macromolecules
– volume: 325
  start-page: 851
  year: 2008
  end-page: 860
  ident: b0040
  article-title: Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1
  publication-title: J Membr Sci
– volume: 32
  start-page: 1419
  year: 1994
  end-page: 1425
  ident: b0160
  article-title: Carbon molecular-sieve gas separation membranes. 1. preparation and characterization based on polyimide precursors
  publication-title: Carbon
– volume: 101
  start-page: 3988
  year: 1997
  end-page: 3994
  ident: b0260
  article-title: Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide
  publication-title: J Phys Chem B
– volume: 10
  start-page: 372
  year: 2011
  end-page: 375
  ident: b0100
  article-title: Polymer nanosieve membranes for CO
  publication-title: Nat Mater
– volume: 193
  start-page: 1
  year: 2001
  end-page: 18
  ident: b0150
  article-title: A review on the latest development of carbon membranes for gas separation
  publication-title: J Membr Sci
– volume: 320
  start-page: 390
  year: 2008
  end-page: 400
  ident: b0020
  article-title: The upper bound revisited
  publication-title: J Membr Sci
– volume: 40
  start-page: 261
  year: 2011
  end-page: 311
  ident: b0210
  article-title: Precursor selection and process conditions in the preparation of carbon membrane for gas separation: a review
  publication-title: Sep Purif Rev
– volume: 53
  start-page: 1126
  year: 1970
  end-page: 1130
  ident: b0225
  article-title: Raman spectrum of graphite
  publication-title: J Chem Phys
– volume: 359
  start-page: 2
  year: 2010
  end-page: 10
  ident: b0300
  article-title: Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes
  publication-title: J Membr Sci
– volume: 42
  start-page: 6038
  year: 2009
  end-page: 6043
  ident: b0095
  article-title: High-performance carboxylated polymers of intrinsic microporosity (PIMs) with tunable gas transport properties
  publication-title: Macromolecules
– volume: 42
  start-page: 1233
  year: 2004
  end-page: 1242
  ident: b0240
  article-title: Usefulness of CO
  publication-title: Carbon
– volume: 2
  start-page: 1456
  year: 2012
  end-page: 1466
  ident: b0110
  article-title: UV-rearranged PIM-1 polymeric membranes for advanced hydrogen purification and production
  publication-title: Adv Energy Mater
– volume: 48
  start-page: 4638
  year: 2009
  end-page: 4663
  ident: b0005
  article-title: Membrane gas separation: a review/state of the art
  publication-title: Ind Eng Chem Res
– volume: 47
  start-page: 2109
  year: 2008
  end-page: 2121
  ident: b0010
  article-title: Natural gas processing with membranes: an overview
  publication-title: Ind Eng Chem Res
– volume: 43
  start-page: 7657
  year: 2010
  end-page: 7667
  ident: b0130
  article-title: Thermally rearranged (TR) polybenzoxazole: effects of diverse imidization routes on physical properties and gas transport behaviors
  publication-title: Macromolecules
– volume: 84
  start-page: 59
  year: 2005
  end-page: 68
  ident: b0235
  article-title: The evolution of physicochemical and transport properties of 6FDA-durene toward carbon membranes; from polymer, intermediate to carbon
  publication-title: Microporous Mesoporous Mater
– volume: 38
  start-page: 10042
  year: 2005
  end-page: 10049
  ident: b0255
  article-title: Effects of brominating Matrimid polyimide on the physical and gas transport properties of derived carbon membranes
  publication-title: Macromolecules
– volume: 42
  start-page: 6023
  year: 2009
  end-page: 6030
  ident: b0070
  article-title: Polymers of intrinsic microporosity derived from novel disulfone-based monomers
  publication-title: Macromolecules
– volume: 41
  start-page: 367
  year: 2002
  end-page: 380
  ident: b0170
  article-title: High pressure CO
  publication-title: Ind.Eng Chem Res
– volume: 244
  start-page: 77
  year: 2004
  end-page: 87
  ident: b0295
  article-title: Casting solvent effects on morphologies, gas transport properties of a novel 6FDA/PMDA-TMMDA copolyimide membrane and its derived carbon membranes
  publication-title: J Membr Sci
– volume: 409
  start-page: 232
  year: 2012
  end-page: 241
  ident: b0265
  article-title: Gas permeability, diffusivity, and free volume of thermally rearranged polymers based on 3,3′-dihydroxyl-4,4′-diamino-biphenyl (HAB) and 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)
  publication-title: J Membr Sci
– volume: 318
  start-page: 254
  year: 2007
  end-page: 258
  ident: b0115
  article-title: Polymers with cavities tuned for fast selective transport of small molecules and ions
  publication-title: Science
– volume: 35
  start-page: 285
  year: 2006
  end-page: 318
  ident: b0155
  article-title: Polyimide-carbonized membranes for gas separation: structural, composition, and morphological control of precursors
  publication-title: Sep Purif Rev
– volume: 41
  start-page: 1393
  year: 2002
  end-page: 1411
  ident: b0015
  article-title: Future directions of membrane gas separation technology
  publication-title: Ind Eng Chem Res
– volume: 2
  start-page: 230
  year: 2004
  end-page: 231
  ident: b0030
  article-title: Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials
  publication-title: Chem Commun
– volume: 41
  start-page: 9656
  year: 2008
  end-page: 9662
  ident: b0055
  article-title: Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation
  publication-title: Macromolecules
– volume: 45
  start-page: 3081
  year: 2009
  end-page: 3092
  ident: b0270
  article-title: Thermal conversion of hydroxyl-containing polyimides to polybenzoxazoles. Does this reaction really occur?
  publication-title: Eur Polym J
– volume: 397
  start-page: 51
  year: 2012
  end-page: 65
  ident: b0280
  article-title: Thermal induced structural rearrangement of cardo-copolybenzoxazole membranes for enhanced gas transport properties
  publication-title: J Membr Sci
– volume: 42
  start-page: 3123
  year: 2004
  end-page: 3131
  ident: b0290
  article-title: Separation of CO
  publication-title: Carbon
– start-page: 9394
  year: 1997
  ident: b0175
  article-title: Alkene/alkane permselectivities of a carbon molecular sieve membrane
  publication-title: Chem Commun
– volume: 212
  start-page: 1137
  year: 2011
  end-page: 1146
  ident: b0080
  article-title: Synthesis and gas permeation properties of spirobischromane-based polymers of intrinsic microporosity
  publication-title: Macromol Chem Phys
– volume: 359
  start-page: 11
  year: 2010
  end-page: 24
  ident: b0125
  article-title: Thermally rearranged (TR) polymer membranes for CO
  publication-title: J Membr Sci
– volume: 47
  start-page: 394
  year: 2011
  end-page: 400
  ident: b0275
  article-title: Reaction mechanism and products of the thermal conversion of hydroxyl-containing polyimides
  publication-title: Eur Polym J
– volume: 238
  start-page: 93
  year: 2004
  end-page: 102
  ident: b0285
  article-title: Intermediate polymer to carbon gas separation membranes based on Matrimid PI
  publication-title: J Membr Sci
– volume: 45
  start-page: 553
  year: 2007
  end-page: 560
  ident: b0250
  article-title: Carbon molecular sieve membranes derived from trimethylsilyl substituted poly(phenylene oxide) for gas separation
  publication-title: Carbon
– volume: 357
  start-page: 143
  year: 2010
  end-page: 151
  ident: b0140
  article-title: Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement
  publication-title: J Membr Sci
– volume: 333
  start-page: 125
  year: 2009
  end-page: 131
  ident: b0045
  article-title: Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1)
  publication-title: J Membr Sci
– volume: 42
  start-page: 8017
  year: 2009
  end-page: 8020
  ident: b0245
  article-title: Binaphthalene-based, soluble polyimides: the limits of intrinsic microporosity
  publication-title: Macromolecules
– volume: 2
  start-page: 9
  year: 1995
  end-page: 17
  ident: b0220
  article-title: Modeling physical adsorption on porous and nonporous solids using density functional theory
  publication-title: J Porous Mater
– volume: 35
  start-page: 2999
  year: 1996
  end-page: 3003
  ident: b0185
  article-title: Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties
  publication-title: Ind Eng Chem Res
– volume: 43
  start-page: 1843
  year: 2005
  end-page: 1856
  ident: b0195
  article-title: An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials
  publication-title: Carbon
– volume: 251
  start-page: 263
  year: 2005
  end-page: 269
  ident: b0035
  article-title: Gas separation membranes from polymers of intrinsic microporosity
  publication-title: J Membr Sci
– volume: 30
  start-page: 584
  year: 2009
  end-page: 588
  ident: b0065
  article-title: Copolymers of intrinsic microporosity based on 2,2′,3,3′-tetrahydroxyl-1,1′-dinaphthyl
  publication-title: Macromol Rapid Commun
– volume: 49
  start-page: 4348
  year: 2011
  end-page: 4358
  ident: b0205
  article-title: Composite phenolic resin-based carbon molecular sieve membranes for gas separation
  publication-title: Carbon
– volume: 160
  start-page: 201
  year: 1999
  end-page: 211
  ident: b0200
  article-title: Supported carbon molecular sieve membranes based on a phenolic resin
  publication-title: J Membr Sci
– volume: 41
  start-page: 253
  year: 2003
  end-page: 266
  ident: b0230
  article-title: Investigation of porosity of carbon materials and related effects on gas separation properties
  publication-title: Carbon
– volume: 45
  start-page: 3841
  year: 2012
  end-page: 3849
  ident: b0215
  article-title: Synthesis and gas transport properties of hydroxyl-functionalized polyimides with intrinsic microporosity
  publication-title: Macromolecules
– volume: 149
  start-page: 59
  issue: 1
  year: 1998
  ident: 10.1016/j.carbon.2013.05.057_b0190
  article-title: Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation
  publication-title: J Membr Sci
  doi: 10.1016/S0376-7388(98)00156-2
– volume: 30
  start-page: 584
  issue: 8
  year: 2009
  ident: 10.1016/j.carbon.2013.05.057_b0065
  article-title: Copolymers of intrinsic microporosity based on 2,2′,3,3′-tetrahydroxyl-1,1′-dinaphthyl
  publication-title: Macromol Rapid Commun
  doi: 10.1002/marc.200800795
– volume: 43
  start-page: 1843
  issue: 9
  year: 2005
  ident: 10.1016/j.carbon.2013.05.057_b0195
  article-title: An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials
  publication-title: Carbon
  doi: 10.1016/j.carbon.2005.02.028
– volume: 2
  start-page: 1456
  year: 2012
  ident: 10.1016/j.carbon.2013.05.057_b0110
  article-title: UV-rearranged PIM-1 polymeric membranes for advanced hydrogen purification and production
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201200296
– volume: 45
  start-page: 553
  issue: 3
  year: 2007
  ident: 10.1016/j.carbon.2013.05.057_b0250
  article-title: Carbon molecular sieve membranes derived from trimethylsilyl substituted poly(phenylene oxide) for gas separation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2006.10.017
– volume: 43
  start-page: 7657
  issue: 18
  year: 2010
  ident: 10.1016/j.carbon.2013.05.057_b0130
  article-title: Thermally rearranged (TR) polybenzoxazole: effects of diverse imidization routes on physical properties and gas transport behaviors
  publication-title: Macromolecules
  doi: 10.1021/ma101549z
– volume: 2
  start-page: 9
  issue: 1
  year: 1995
  ident: 10.1016/j.carbon.2013.05.057_b0220
  article-title: Modeling physical adsorption on porous and nonporous solids using density functional theory
  publication-title: J Porous Mater
  doi: 10.1007/BF00486565
– volume: 41
  start-page: 253
  issue: 2
  year: 2003
  ident: 10.1016/j.carbon.2013.05.057_b0230
  article-title: Investigation of porosity of carbon materials and related effects on gas separation properties
  publication-title: Carbon
  doi: 10.1016/S0008-6223(02)00309-3
– volume: 47
  start-page: 394
  issue: 3
  year: 2011
  ident: 10.1016/j.carbon.2013.05.057_b0275
  article-title: Reaction mechanism and products of the thermal conversion of hydroxyl-containing polyimides
  publication-title: Eur Polym J
  doi: 10.1016/j.eurpolymj.2010.12.014
– volume: 41
  start-page: 1393
  issue: 6
  year: 2002
  ident: 10.1016/j.carbon.2013.05.057_b0015
  article-title: Future directions of membrane gas separation technology
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie0108088
– volume: 40
  start-page: 261
  issue: 4
  year: 2011
  ident: 10.1016/j.carbon.2013.05.057_b0210
  article-title: Precursor selection and process conditions in the preparation of carbon membrane for gas separation: a review
  publication-title: Sep Purif Rev
  doi: 10.1080/15422119.2011.555648
– volume: 397
  start-page: 51
  year: 2012
  ident: 10.1016/j.carbon.2013.05.057_b0280
  article-title: Thermal induced structural rearrangement of cardo-copolybenzoxazole membranes for enhanced gas transport properties
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2012.01.010
– start-page: 9394
  year: 1997
  ident: 10.1016/j.carbon.2013.05.057_b0175
  article-title: Alkene/alkane permselectivities of a carbon molecular sieve membrane
  publication-title: Chem Commun
– volume: 35
  start-page: 2999
  issue: 9
  year: 1996
  ident: 10.1016/j.carbon.2013.05.057_b0185
  article-title: Effects of polyimide pyrolysis conditions on carbon molecular sieve membrane properties
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie950746j
– volume: 320
  start-page: 390
  issue: 1–2
  year: 2008
  ident: 10.1016/j.carbon.2013.05.057_b0020
  article-title: The upper bound revisited
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2008.04.030
– volume: 16
  start-page: 456
  issue: 5
  year: 2004
  ident: 10.1016/j.carbon.2013.05.057_b0025
  article-title: Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity
  publication-title: Adv Mater
  doi: 10.1002/adma.200306053
– volume: 47
  start-page: 6822
  issue: 24
  year: 2011
  ident: 10.1016/j.carbon.2013.05.057_b0085
  article-title: Hexaphenylbenzene-based polymers of intrinsic microporosity
  publication-title: Chem Commun
  doi: 10.1039/c1cc11717c
– volume: 244
  start-page: 77
  issue: 1–2
  year: 2004
  ident: 10.1016/j.carbon.2013.05.057_b0295
  article-title: Casting solvent effects on morphologies, gas transport properties of a novel 6FDA/PMDA-TMMDA copolyimide membrane and its derived carbon membranes
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2004.07.005
– volume: 251
  start-page: 263
  issue: 1–2
  year: 2005
  ident: 10.1016/j.carbon.2013.05.057_b0035
  article-title: Gas separation membranes from polymers of intrinsic microporosity
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2005.01.009
– volume: 20
  start-page: 2766
  issue: 14
  year: 2008
  ident: 10.1016/j.carbon.2013.05.057_b0060
  article-title: High-performance membranes from polyimides with intrinsic microporosity
  publication-title: Adv Mater
  doi: 10.1002/adma.200702400
– volume: 42
  start-page: 3123
  issue: 15
  year: 2004
  ident: 10.1016/j.carbon.2013.05.057_b0290
  article-title: Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.07.026
– volume: 43
  start-page: 8580
  issue: 20
  year: 2010
  ident: 10.1016/j.carbon.2013.05.057_b0075
  article-title: Polymers of intrinsic microporosity with dinaphthyl and thianthrene segments
  publication-title: Macromolecules
  doi: 10.1021/ma101930x
– volume: 357
  start-page: 143
  issue: 1–2
  year: 2010
  ident: 10.1016/j.carbon.2013.05.057_b0140
  article-title: Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2010.04.013
– volume: 10
  start-page: 372
  issue: 5
  year: 2011
  ident: 10.1016/j.carbon.2013.05.057_b0100
  article-title: Polymer nanosieve membranes for CO2-capture applications
  publication-title: Nat Mater
  doi: 10.1038/nmat2989
– volume: 48
  start-page: 4638
  issue: 10
  year: 2009
  ident: 10.1016/j.carbon.2013.05.057_b0005
  article-title: Membrane gas separation: a review/state of the art
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie8019032
– volume: 53
  start-page: 1126
  issue: 3
  year: 1970
  ident: 10.1016/j.carbon.2013.05.057_b0225
  article-title: Raman spectrum of graphite
  publication-title: J Chem Phys
  doi: 10.1063/1.1674108
– volume: 41
  start-page: 1640
  issue: 5
  year: 2008
  ident: 10.1016/j.carbon.2013.05.057_b0050
  article-title: Polymers of intrinsic microporosity derived from bis(phenazyl) monomers
  publication-title: Macromolecules
  doi: 10.1021/ma071846r
– volume: 380
  start-page: 138
  issue: 1–2
  year: 2011
  ident: 10.1016/j.carbon.2013.05.057_b0180
  article-title: Matrimid (R) derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2011.06.037
– volume: 44
  start-page: 6471
  issue: 16
  year: 2011
  ident: 10.1016/j.carbon.2013.05.057_b0105
  article-title: Polymer of intrinsic microporosity incorporating thioamide functionality: preparation and gas transport properties
  publication-title: Macromolecules
  doi: 10.1021/ma200918h
– volume: 47
  start-page: 2109
  issue: 7
  year: 2008
  ident: 10.1016/j.carbon.2013.05.057_b0010
  article-title: Natural gas processing with membranes: an overview
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie071083w
– volume: 193
  start-page: 1
  issue: 1
  year: 2001
  ident: 10.1016/j.carbon.2013.05.057_b0150
  article-title: A review on the latest development of carbon membranes for gas separation
  publication-title: J Membr Sci
  doi: 10.1016/S0376-7388(01)00510-5
– volume: 349
  start-page: 358
  issue: 1–2
  year: 2010
  ident: 10.1016/j.carbon.2013.05.057_b0135
  article-title: Thermally rearranged (TR) poly(benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2009.11.068
– volume: 325
  start-page: 851
  issue: 2
  year: 2008
  ident: 10.1016/j.carbon.2013.05.057_b0040
  article-title: Gas permeation parameters and other physicochemical properties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2008.09.010
– volume: 285
  start-page: 1902
  issue: 5435
  year: 1999
  ident: 10.1016/j.carbon.2013.05.057_b0165
  article-title: Ultrasonic deposition of high-selectivity nanoporous carbon membranes
  publication-title: Science
  doi: 10.1126/science.285.5435.1902
– volume: 35
  start-page: 285
  issue: 4
  year: 2006
  ident: 10.1016/j.carbon.2013.05.057_b0155
  article-title: Polyimide-carbonized membranes for gas separation: structural, composition, and morphological control of precursors
  publication-title: Sep Purif Rev
  doi: 10.1080/15422110601003481
– volume: 2
  start-page: 230
  year: 2004
  ident: 10.1016/j.carbon.2013.05.057_b0030
  article-title: Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials
  publication-title: Chem Commun
  doi: 10.1039/b311764b
– volume: 24
  start-page: 5930
  year: 2012
  ident: 10.1016/j.carbon.2013.05.057_b0090
  article-title: A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation
  publication-title: Adv Mater
  doi: 10.1002/adma.201202393
– volume: 238
  start-page: 93
  issue: 1–2
  year: 2004
  ident: 10.1016/j.carbon.2013.05.057_b0285
  article-title: Intermediate polymer to carbon gas separation membranes based on Matrimid PI
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2004.03.024
– volume: 42
  start-page: 6023
  issue: 16
  year: 2009
  ident: 10.1016/j.carbon.2013.05.057_b0070
  article-title: Polymers of intrinsic microporosity derived from novel disulfone-based monomers
  publication-title: Macromolecules
  doi: 10.1021/ma900898m
– volume: 101
  start-page: 3988
  issue: 20
  year: 1997
  ident: 10.1016/j.carbon.2013.05.057_b0260
  article-title: Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide
  publication-title: J Phys Chem B
  doi: 10.1021/jp963997u
– volume: 318
  start-page: 254
  issue: 5848
  year: 2007
  ident: 10.1016/j.carbon.2013.05.057_b0115
  article-title: Polymers with cavities tuned for fast selective transport of small molecules and ions
  publication-title: Science
  doi: 10.1126/science.1146744
– volume: 42
  start-page: 6038
  issue: 16
  year: 2009
  ident: 10.1016/j.carbon.2013.05.057_b0095
  article-title: High-performance carboxylated polymers of intrinsic microporosity (PIMs) with tunable gas transport properties
  publication-title: Macromolecules
  doi: 10.1021/ma9009017
– volume: 212
  start-page: 1137
  issue: 11
  year: 2011
  ident: 10.1016/j.carbon.2013.05.057_b0080
  article-title: Synthesis and gas permeation properties of spirobischromane-based polymers of intrinsic microporosity
  publication-title: Macromol Chem Phys
  doi: 10.1002/macp.201100089
– volume: 45
  start-page: 3841
  issue: 9
  year: 2012
  ident: 10.1016/j.carbon.2013.05.057_b0215
  article-title: Synthesis and gas transport properties of hydroxyl-functionalized polyimides with intrinsic microporosity
  publication-title: Macromolecules
  doi: 10.1021/ma300549m
– volume: 45
  start-page: 3081
  issue: 11
  year: 2009
  ident: 10.1016/j.carbon.2013.05.057_b0270
  article-title: Thermal conversion of hydroxyl-containing polyimides to polybenzoxazoles. Does this reaction really occur?
  publication-title: Eur Polym J
  doi: 10.1016/j.eurpolymj.2009.08.014
– volume: 42
  start-page: 1233
  issue: 7
  year: 2004
  ident: 10.1016/j.carbon.2013.05.057_b0240
  article-title: Usefulness of CO2 adsorption at 273K for the characterization of porous carbons
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.01.037
– volume: 434
  start-page: 137
  year: 2013
  ident: 10.1016/j.carbon.2013.05.057_b0145
  article-title: Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2013.01.011
– volume: 42
  start-page: 8017
  issue: 21
  year: 2009
  ident: 10.1016/j.carbon.2013.05.057_b0245
  article-title: Binaphthalene-based, soluble polyimides: the limits of intrinsic microporosity
  publication-title: Macromolecules
  doi: 10.1021/ma901220c
– volume: 32
  start-page: 1419
  issue: 8
  year: 1994
  ident: 10.1016/j.carbon.2013.05.057_b0160
  article-title: Carbon molecular-sieve gas separation membranes. 1. preparation and characterization based on polyimide precursors
  publication-title: Carbon
  doi: 10.1016/0008-6223(94)90135-X
– volume: 333
  start-page: 125
  issue: 1–2
  year: 2009
  ident: 10.1016/j.carbon.2013.05.057_b0045
  article-title: Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1)
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2009.02.003
– volume: 41
  start-page: 9656
  issue: 24
  year: 2008
  ident: 10.1016/j.carbon.2013.05.057_b0055
  article-title: Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation
  publication-title: Macromolecules
  doi: 10.1021/ma801858d
– volume: 44
  start-page: 1156
  issue: 5
  year: 2011
  ident: 10.1016/j.carbon.2013.05.057_b0120
  article-title: Thermally rearranged (TR) poly(ether−benzoxazole) membranes for gas separation
  publication-title: Macromolecules
  doi: 10.1021/ma102878z
– volume: 359
  start-page: 11
  issue: 1–2
  year: 2010
  ident: 10.1016/j.carbon.2013.05.057_b0125
  article-title: Thermally rearranged (TR) polymer membranes for CO2 separation
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2009.09.037
– volume: 409
  start-page: 232
  year: 2012
  ident: 10.1016/j.carbon.2013.05.057_b0265
  article-title: Gas permeability, diffusivity, and free volume of thermally rearranged polymers based on 3,3′-dihydroxyl-4,4′-diamino-biphenyl (HAB) and 2,2′-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2012.03.060
– volume: 41
  start-page: 367
  issue: 3
  year: 2002
  ident: 10.1016/j.carbon.2013.05.057_b0170
  article-title: High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes
  publication-title: Ind.Eng Chem Res
  doi: 10.1021/ie010119w
– volume: 49
  start-page: 4348
  issue: 13
  year: 2011
  ident: 10.1016/j.carbon.2013.05.057_b0205
  article-title: Composite phenolic resin-based carbon molecular sieve membranes for gas separation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.06.012
– volume: 84
  start-page: 59
  issue: 1–3
  year: 2005
  ident: 10.1016/j.carbon.2013.05.057_b0235
  article-title: The evolution of physicochemical and transport properties of 6FDA-durene toward carbon membranes; from polymer, intermediate to carbon
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2005.04.026
– volume: 359
  start-page: 2
  issue: 1–2
  year: 2010
  ident: 10.1016/j.carbon.2013.05.057_b0300
  article-title: Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2009.10.019
– volume: 160
  start-page: 201
  issue: 2
  year: 1999
  ident: 10.1016/j.carbon.2013.05.057_b0200
  article-title: Supported carbon molecular sieve membranes based on a phenolic resin
  publication-title: J Membr Sci
  doi: 10.1016/S0376-7388(99)00083-6
– volume: 38
  start-page: 10042
  issue: 24
  year: 2005
  ident: 10.1016/j.carbon.2013.05.057_b0255
  article-title: Effects of brominating Matrimid polyimide on the physical and gas transport properties of derived carbon membranes
  publication-title: Macromolecules
  doi: 10.1021/ma051354j
SSID ssj0004814
Score 2.4894907
Snippet We report the physical characteristics and gas transport properties for a series of pyrolyzed membranes derived from an intrinsically microporous polyimide...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 88
SubjectTerms adsorption
Amorphous semiconductors, metals, and alloys
Carbon
Carbon dioxide
Chemistry
Colloidal state and disperse state
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science; rheology
Disordered solids
Exact sciences and technology
Fullerenes and related materials; diamonds, graphite
Gas separation
General and physical chemistry
Heat treatment
Materials science
Membranes
methane
Permeability
Physics
Polyimide resins
polymers
Porous materials
Selectivity
Specific materials
Structure of solids and liquids; crystallography
surface area
Title Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor
URI https://dx.doi.org/10.1016/j.carbon.2013.05.057
https://www.proquest.com/docview/1448716130
https://www.proquest.com/docview/1513455863
https://www.proquest.com/docview/1705442417
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-iDwrHcefdcat3S4R77blt0iR9lEXZU_RJwbeSNFPpsduWdhV8ub_dmX4ocqIg9KXphLQzyXw0k98w9sskocwdpVWAiAKZWxM4ZcNARUmmwizLfYcze36hFlfy9Dq-3mDz8SwMpVUOur_X6Z22HloOB24e1kVBZ3zJHUf_hECjEkGYoFJqmuW__z2leUjT43vTNj9Rj8fnuhyvzDauIhTUUHT4nWSkXjZPH2rbItPyvtrFf4q7s0Ynn9jHwY3kR_2bfmYbUO6y7flYve0LK-bdoHw1lr_lbQF3wG9sy1voAb_pMawwXEZ1x8mceY5NtuRFuW6KspPf8p6vKGcP3fTqtuV1tbwvVoUHXjf0p76tmq_s6uT4cr4IhrIKQRbrcB2AgsxraSIrncFwCEI_sxS3mNzKXAudGOuUQysGWkljZxYynSOdinG1JkZ8Y5tlVcJ3xpUC7XMnjKdCut7b0IISQmkROYgjN2Fi5GaaDZjjVPpimY7JZX_TXgYpySCdxXjpCQsee9U95sYb9HoUVPps7qRoFt7oOX0m18fhIuQGuqpIcDAKOkUB0mYKygT5jSGTpFgTJ98rNHEoZBwbJV6h0eg0S_Sj9N67P2Of7dBdn2P4g22um1v4ib7S2k27xTBlW0d_zhYXD9GyFhI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKORSpQjzVAi1GgmPoJnZs58ChWqi29HFqpd6CHU9Q0G4SJVvQXvhT_EFm8iiqQK2EVCmnZJzHfPY8lM8zjL01SShzR7QKEFEgc2sCp2wYqCjJVJhlue_qzJ6cqtm5_HwRX6yxX-NeGKJVDra_t-mdtR7O7A3a3KuLgvb4UjiO8QkVjUqEHJiVR7D6gXlb--HwI4L8LooOPp1NZ8HQWiDIYh0uA1CQeS1NZKUzmBJA6CeWYneTW5lroRNjnXJoyUEraezEQqZzlFMxztjECLzvPXZformgtgnvf_7hlUjTFxQnXgG93rhfryOVZbZxFZVdDUVXMJS84r_94WZtW0Qp79tr_OUpOvd38Ig9HOJWvt-r5jFbg_IJ25iO7eKesmLaPZQvxn67vC3gO_CvtuUt9BXG6TIsMD9H-8rJf3qOp2zJi3LZFGU3YeYrviCSIOYF1WXL62q-KhaFB1439GugrZpn7PxOlP2crZdVCVuMKwXa504YT517vbehBSWE0iJyEEdum4lRm2k2FDmnXhvzdGSzfUt7DFLCIJ3EeOhtFlyNqvsiH7fI6xGo9NpkTdEP3TJy9xquV4-LUBsYG6PAmxHoFAGkvzeICeobczRJyS3O9htk4lDIODZK3CCjMUqXGLjpF__9Ga_Zxuzs5Dg9Pjw9eske0JWe4PiKrS-bS9jBQG3pdruFwdmXu16JvwHBxFEI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+molecular+sieve+gas+separation+membranes+based+on+an+intrinsically+microporous+polyimide+precursor&rft.jtitle=Carbon+%28New+York%29&rft.au=Ma%2C+Xiaohua&rft.au=Swaidan%2C+Raja&rft.au=Teng%2C+Baiyang&rft.au=Tan%2C+Hua&rft.date=2013-10-01&rft.issn=0008-6223&rft.volume=62&rft.spage=88&rft.epage=96&rft_id=info:doi/10.1016%2Fj.carbon.2013.05.057&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon