Quantifying intra-tumoral genetic heterogeneity of glioblastoma toward precision medicine using MRI and a data-inclusive machine learning algorithm

Glioblastoma (GBM) is one of the most aggressive and lethal human cancers. Intra-tumoral genetic heterogeneity poses a significant challenge for treatment. Biopsy is invasive, which motivates the development of non-invasive, MRI-based machine learning (ML) models to quantify intra-tumoral genetic he...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 19; no. 4; p. e0299267
Main Authors Wang, Lujia, Wang, Hairong, D’Angelo, Fulvio, Curtin, Lee, Sereduk, Christopher P., Leon, Gustavo De, Singleton, Kyle W., Urcuyo, Javier, Hawkins-Daarud, Andrea, Jackson, Pamela R., Krishna, Chandan, Zimmerman, Richard S., Patra, Devi P., Bendok, Bernard R., Smith, Kris A., Nakaji, Peter, Donev, Kliment, Baxter, Leslie C., Mrugała, Maciej M., Ceccarelli, Michele, Iavarone, Antonio, Swanson, Kristin R., Tran, Nhan L., Hu, Leland S., Li, Jing
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 03.04.2024
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…