yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability
Two forms of post-transcriptional control direct differential expression of the Saccharomyces cerevisiae genes encoding the AP1-like transcription factors Yap1p and Yap2p. The mRNAs of these genes contain respectively one (YAP1 uORF) and two (YAP2 uORF1 and uORF2) upstream open reading frames. uORF-...
Saved in:
Published in | Nucleic acids research Vol. 26; no. 5; pp. 1150 - 1159 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.03.1998
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two forms of post-transcriptional control direct differential expression of the Saccharomyces cerevisiae genes encoding the AP1-like transcription factors Yap1p and Yap2p. The mRNAs of these genes contain respectively one (YAP1 uORF) and two (YAP2 uORF1 and uORF2) upstream open reading frames. uORF-mediated modulation of post-termination events on the 5′-untranslated region (5′-UTR) directs differential control not only of translation but also of mRNA decay. Translational control is defined by two types of uORF function. The YAP1-type uORF allows scanning 40S subunits to proceed via leaky scanning and re-initiation to the major ORF, whereas the YAP2-type acts to block ribosomal scanning by promoting efficient termination. At the same time, the YAP2 uORFs define a new type of mRNA destabilizing element. Both post-termination ribosome scanning behaviour and mRNA decay are influenced by the coding sequence and mRNA context of the respective uORFs, including downstream elements. Our data indicate that release of posttermination ribosomes promotes largely upf-independent accelerated decay. It follows that translational termination on the 5′-UTR of a mature, non-aberrant yeast mRNA can trigger destabilization via a different pathway to that used to rid the cell of mRNAs containing premature stop codons. This route of control of non-aberrant mRNA decay influences the stress response in yeast. It is also potentially relevant to expression of the sizable number of eukaryotic mRNAs that are now recognized to contain uORFs. |
---|---|
AbstractList | Two forms of post-transcriptional control direct differential expression of the Saccharomyces cerevisiae genes encoding the AP1-like transcription factors Yap1p and Yap2p. The mRNAs of these genes contain respectively one (YAP1 uORF) and two (YAP2 uORF1 and uORF2) upstream open reading frames. uORF-mediated modulation of post-termination events on the 5′-untranslated region (5′-UTR) directs differential control not only of translation but also of mRNA decay. Translational control is defined by two types of uORF function. The YAP1-type uORF allows scanning 40S subunits to proceed via leaky scanning and re-initiation to the major ORF, whereas the YAP2-type acts to block ribosomal scanning by promoting efficient termination. At the same time, the YAP2 uORFs define a new type of mRNA destabilizing element. Both post-termination ribosome scanning behaviour and mRNA decay are influenced by the coding sequence and mRNA context of the respective uORFs, including downstream elements. Our data indicate that release of posttermination ribosomes promotes largely upf-independent accelerated decay. It follows that translational termination on the 5′-UTR of a mature, non-aberrant yeast mRNA can trigger destabilization via a different pathway to that used to rid the cell of mRNAs containing premature stop codons. This route of control of non-aberrant mRNA decay influences the stress response in yeast. It is also potentially relevant to expression of the sizable number of eukaryotic mRNAs that are now recognized to contain uORFs. Two forms of post-transcriptional control direct differential expression of the Saccharomyces cerevisiae genes encoding the AP1-like transcription factors Yap1p and Yap2p. The mRNAs of these genes contain respectively one (YAP1 uORF) and two (YAP2 uORF1 and uORF2) upstream open reading frames. uORF-mediated modulation of post-termination events on the 5'-untranslated region (5'-UTR) directs differential control not only of translation but also of mRNA decay. Translational control is defined by two types of uORF function. The YAP1 -type uORF allows scanning 40S subunits to proceed via leaky scanning and re-initiation to the major ORF, whereas the YAP2 -type acts to block ribosomal scanning by promoting efficient termination. At the same time, the YAP2 uORFs define a new type of mRNA destabilizing element. Both post-termination ribosome scanning behaviour and mRNA decay are influenced by the coding sequence and mRNA context of the respective uORFs, including downstream elements. Our data indicate that release of post-termination ribosomes promotes largely upf -independent accelerated decay. It follows that translational termination on the 5'-UTR of a mature, non-aberrant yeast mRNA can trigger destabilization via a different pathway to that used to rid the cell of mRNAs containing premature stop codons. This route of control of non-aberrant mRNA decay influences the stress response in yeast. It is also potentially relevant to expression of the sizable number of eukaryotic mRNAs that are now recognized to contain uORFs.Two forms of post-transcriptional control direct differential expression of the Saccharomyces cerevisiae genes encoding the AP1-like transcription factors Yap1p and Yap2p. The mRNAs of these genes contain respectively one (YAP1 uORF) and two (YAP2 uORF1 and uORF2) upstream open reading frames. uORF-mediated modulation of post-termination events on the 5'-untranslated region (5'-UTR) directs differential control not only of translation but also of mRNA decay. Translational control is defined by two types of uORF function. The YAP1 -type uORF allows scanning 40S subunits to proceed via leaky scanning and re-initiation to the major ORF, whereas the YAP2 -type acts to block ribosomal scanning by promoting efficient termination. At the same time, the YAP2 uORFs define a new type of mRNA destabilizing element. Both post-termination ribosome scanning behaviour and mRNA decay are influenced by the coding sequence and mRNA context of the respective uORFs, including downstream elements. Our data indicate that release of post-termination ribosomes promotes largely upf -independent accelerated decay. It follows that translational termination on the 5'-UTR of a mature, non-aberrant yeast mRNA can trigger destabilization via a different pathway to that used to rid the cell of mRNAs containing premature stop codons. This route of control of non-aberrant mRNA decay influences the stress response in yeast. It is also potentially relevant to expression of the sizable number of eukaryotic mRNAs that are now recognized to contain uORFs. Two forms of post-transcriptional control direct differential expression of the Saccharomyces cerevisiae genes encoding the AP1-like transcription factors Yap1p and Yap2p. The mRNAs of these genes contain respectively one (YAP1 uORF) and two (YAP2 uORF1 and uORF2) upstream open reading frames. uORF-mediated modulation of post-termination events on the 5'-untranslated region (5'-UTR) directs differential control not only of translation but also of mRNA decay. Translational control is defined by two types of uORF function. The YAP1 -type uORF allows scanning 40S subunits to proceed via leaky scanning and re-initiation to the major ORF, whereas the YAP2 -type acts to block ribosomal scanning by promoting efficient termination. At the same time, the YAP2 uORFs define a new type of mRNA destabilizing element. Both post-termination ribosome scanning behaviour and mRNA decay are influenced by the coding sequence and mRNA context of the respective uORFs, including downstream elements. Our data indicate that release of post-termination ribosomes promotes largely upf -independent accelerated decay. It follows that translational termination on the 5'-UTR of a mature, non-aberrant yeast mRNA can trigger destabilization via a different pathway to that used to rid the cell of mRNAs containing premature stop codons. This route of control of non-aberrant mRNA decay influences the stress response in yeast. It is also potentially relevant to expression of the sizable number of eukaryotic mRNAs that are now recognized to contain uORFs. |
Author | McCarthy, J.E.G Linz, B Rodrigues-Pousada, C Vilela, C |
AuthorAffiliation | Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), PO Box 88, Manchester M60 1QD, UK |
AuthorAffiliation_xml | – name: Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), PO Box 88, Manchester M60 1QD, UK |
Author_xml | – sequence: 1 fullname: Vilela, C – sequence: 2 fullname: Linz, B – sequence: 3 fullname: Rodrigues-Pousada, C – sequence: 4 fullname: McCarthy, J.E.G |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/9469820$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuEzEUhkeoqKSFJUuEV-wm9X3GCxZR1FJQBAhouWysMx5P4jIZB9upyBPw2jhNqIBNJEu29H__ufmcFEeDH2xRPCV4TLBiZwOEMyrHYkyIwA-KEWGSllxJelSMMMOiJJjXj4qTGG8wJpwIflwcKy5VTfGo-LWxEBNKAYZoglsl5wfUgUk-oLkdbERfJ-8JgqHdPiiCYFFcNzfWZJNHres6G-yQHPTI-CEF3yPI0sKi3t7aPiLfocanxS5FD3cJtuGWH95OUEzQuN6lzePiYQd9tE_292lxdXH-aXpZzt69ej2dzEojKpLKthI0d9BSyVTHhLWEqnxAtAakrA2nlWqExRi6TpJOMUMFWMk5AG0sr9lp8XIXd7VulrY1ufQAvV4Ft4Sw0R6c_lcZ3ELP_a0mvGK1yP4Xe3_wP9Y2Jr100di-h8H6ddSVkkpRehjkNVeKKXoQJJLWihCSwWd_l35f8_4vs852ugk-xmA7bVy6m3duxPWaYL1dGJ0XRlOphd4uTHaV_7n-xD3Au5jsz3sYwnctK1YJffnlm75W7GL2-c21nmb--Y7vwGuYBxf11UeKCcO0rupaVew3WqPdOA |
CitedBy_id | crossref_primary_10_1016_j_bbalip_2005_05_006 crossref_primary_10_1016_j_bbaexp_2007_06_003 crossref_primary_10_1016_S0378_1119_02_01056_9 crossref_primary_10_1146_annurev_micro_62_081307_162835 crossref_primary_10_1093_nar_gkt952 crossref_primary_10_1042_BST0340039 crossref_primary_10_1186_s12860_021_00363_9 crossref_primary_10_1101_gad_1188404 crossref_primary_10_1016_j_febslet_2004_03_119 crossref_primary_10_1073_pnas_0707476104 crossref_primary_10_1039_C8MO00283E crossref_primary_10_1079_CJB200554 crossref_primary_10_1016_S0378_1119_01_00552_2 crossref_primary_10_1046_j_1365_2958_2003_03622_x crossref_primary_10_1101_gad_480508 crossref_primary_10_1186_1471_2105_8_295 crossref_primary_10_1016_j_virusres_2006_06_008 crossref_primary_10_1128_JVI_79_16_10126_10137_2005 crossref_primary_10_1007_s00294_005_0001_x crossref_primary_10_1042_BCJ20180701 crossref_primary_10_1099_00221287_147_2_255 crossref_primary_10_3390_ijms232415706 crossref_primary_10_1016_S0378_1119_99_00210_3 crossref_primary_10_1371_journal_pgen_1002137 crossref_primary_10_1074_jbc_M109_070920 crossref_primary_10_1111_j_1365_2958_2001_02330_x crossref_primary_10_1371_journal_ppat_1000256 crossref_primary_10_1111_j_1567_1364_2002_tb00086_x crossref_primary_10_1016_j_biocel_2013_04_020 crossref_primary_10_1373_clinchem_2004_042341 crossref_primary_10_1534_g3_112_003640 crossref_primary_10_1006_bbrc_2000_2109 crossref_primary_10_1093_hmg_ddu501 crossref_primary_10_1182_blood_V99_5_1811 crossref_primary_10_7554_eLife_92916_3 crossref_primary_10_1074_jbc_M305251200 crossref_primary_10_1016_S0378_1119_02_00823_5 crossref_primary_10_1074_jbc_M113_516740 crossref_primary_10_1111_gtc_12147 crossref_primary_10_1128_MCB_23_4_1125_1134_2003 crossref_primary_10_1128_MCB_23_16_5502_5515_2003 crossref_primary_10_1007_s10534_022_00450_0 crossref_primary_10_1016_S0955_0674_00_00214_3 crossref_primary_10_1186_1752_0509_5_131 crossref_primary_10_1002_humu_20026 crossref_primary_10_1016_S0005_2736_99_00160_1 crossref_primary_10_1261_rna_055046_115 crossref_primary_10_1016_j_bbrc_2004_05_008 crossref_primary_10_1128_MMBR_62_4_1492_1553_1998 crossref_primary_10_1016_j_jmb_2003_10_049 crossref_primary_10_1016_S1097_2765_03_00446_5 crossref_primary_10_1080_15476286_2017_1353863 crossref_primary_10_1111_j_1365_2958_2005_04682_x crossref_primary_10_1534_genetics_115_186221 crossref_primary_10_1016_j_jsb_2010_04_014 crossref_primary_10_1093_genetics_158_3_1037 crossref_primary_10_1101_sqb_2001_66_321 crossref_primary_10_1016_j_molcel_2005_09_019 crossref_primary_10_1046_j_1365_2958_2003_03889_x crossref_primary_10_1016_j_tig_2007_08_003 crossref_primary_10_1093_nar_gkz681 crossref_primary_10_1016_j_febslet_2007_07_057 crossref_primary_10_1073_pnas_98_4_1531 crossref_primary_10_7554_eLife_92916 crossref_primary_10_1002_yea_1770 crossref_primary_10_1093_nar_gkab652 crossref_primary_10_1046_j_1365_2958_2000_01845_x crossref_primary_10_1016_S0092_8674_00_80886_7 |
ContentType | Journal Article |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM M7N 7S9 L.6 7X8 5PM |
DOI | 10.1093/nar/26.5.1150 |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Algology Mycology and Protozoology Abstracts (Microbiology C) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 1159 |
ExternalDocumentID | PMC147385 9469820 10_1093_nar_26_5_1150 ark_67375_HXZ_V93FLWJV_C US201302878897 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAWDT AAYJJ ABEJV ABGNP ABIME ABNGD ABPIB ABPTD ABQLI ABQTQ ABSMQ ABXVV ABZEO ACFRR ACGFO ACGFS ACIPB ACIWK ACNCT ACPQN ACPRK ACUKT ACUTJ ACVCV ACZBC ADBBV ADHZD AEGXH AEHUL AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFYAG AGKRT AGMDO AHMBA AIAGR AJDVS ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL ANFBD AOIJS APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN F5P FBQ FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KQ8 KSI M49 MBTAY MVM NTWIH OAWHX OBC OBS OEB OES OJQWA OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM AGQPQ BSCLL OVT AAYXX CITATION AAPPN ADIXU AFULF BTTYL CGR CUY CVF ECM EIF M~E NPM PKN ROX 7TM M7N 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c571t-d752154d2639f35ee129129a5dca668c4279b5e00aff61f93c25ae644aa2be483 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 14:00:24 EDT 2025 Fri Jul 11 11:54:06 EDT 2025 Thu Jul 10 17:29:16 EDT 2025 Fri Jul 11 17:03:33 EDT 2025 Wed Feb 19 02:33:52 EST 2025 Tue Jul 01 01:57:00 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 Tue Aug 05 16:50:19 EDT 2025 Thu Apr 03 09:44:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c571t-d752154d2639f35ee129129a5dca668c4279b5e00aff61f93c25ae644aa2be483 |
Notes | istex:E04A3504E423D7321950C5B26297D1C723F03F26 ark:/67375/HXZ-V93FLWJV-C ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/147385 |
PMID | 9469820 |
PQID | 16289111 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_147385 proquest_miscellaneous_79699225 proquest_miscellaneous_48499392 proquest_miscellaneous_16289111 pubmed_primary_9469820 crossref_citationtrail_10_1093_nar_26_5_1150 crossref_primary_10_1093_nar_26_5_1150 istex_primary_ark_67375_HXZ_V93FLWJV_C fao_agris_US201302878897 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1998-03-01 |
PublicationDateYYYYMMDD | 1998-03-01 |
PublicationDate_xml | – month: 03 year: 1998 text: 1998-03-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Research |
PublicationYear | 1998 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
SSID | ssj0014154 |
Score | 1.8521367 |
Snippet | Two forms of post-transcriptional control direct differential expression of the Saccharomyces cerevisiae genes encoding the AP1-like transcription factors... |
SourceID | pubmedcentral proquest pubmed crossref istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1150 |
SubjectTerms | Base Sequence DNA, Fungal DNA, Fungal - genetics DNA-Binding Proteins DNA-Binding Proteins - genetics Drug Stability Fungal Proteins Fungal Proteins - genetics gene expression Gene Expression Regulation, Fungal Genes, Fungal genetic regulation genetics luciferase messenger RNA metabolism Molecular Sequence Data Open Reading Frames post-transcriptional control Protein Biosynthesis regulator genes reporter genes ribosome scanning behavior RNA Processing, Post-Transcriptional RNA, Fungal RNA, Fungal - genetics RNA, Fungal - metabolism RNA, Messenger RNA, Messenger - genetics RNA, Messenger - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins stability transcription factors Transcription Factors - genetics translation upstream open reading frames yap1 gene yap2 gene |
Title | yeast transcription factor genes YAP1 and YAP2 are subject to differential control at the levels of both translation and mRNA stability |
URI | https://api.istex.fr/ark:/67375/HXZ-V93FLWJV-C/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/9469820 https://www.proquest.com/docview/16289111 https://www.proquest.com/docview/48499392 https://www.proquest.com/docview/79699225 https://pubmed.ncbi.nlm.nih.gov/PMC147385 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgPMALgo1p5dMPaC8lXeLY-XisqlXVBBWCdRReLCdxRkWXoDWVGP8C_zR3dpqmUysNpCpKE-fS9H45n--TkLe5mwU5D1wn5yJzeM5DR2Usc3IWBwAfmEEyNA18GAejCT-biunag2-yS6qkl_7emlfyP1yFY8BXzJL9B842ROEA7AN_YQschu2deXyDzXew00OxFgC2iQ52R9aL7tf-R8-4CGCHdTHQa7FM0PqCaueqP0o1M3VCbNi6zW_szjGeyER6JCUaa_EWNnLOkLv6NO6jJcJE1244h8dYIxnrwKazDL0SLYMZtvYCOTRXawNt1s7Bq00OVkqaVKu4FqN6y7FatNpk-BpCoiUnUQ9tzbnwNd4qz22tqwJjzYcs6Ine-sJ25exbM1oTZ2g97L4EApIFUkjP2HceMFhTYLuL0D1tXE6gydgOyPVz1AVZ4fITuPykufuGAnM_VyUsa_CN_LVtjXI71Lalu5w_IY_rRQftWwQ9Jfd0sU8O-oWqyqsbekxNGLDxr-yTh4NVC8AD8gcARg3A6AbAqAUYNQCjCDAKiMAdRgFgtAYYrUraBhitAUYVnALKFmC0zCkCjLYAZsghwGgDsGdkMjw9H4ycunuHk4rQq5wsBM1Q8IyBDpz7QmvQLOGjRJaqIIhSzsI4Edp1VZ4HXh77KRNKg3quFEs0j_xDsleUhT4iNHETLnyt_EwpLrRIfJ7CQh8WGzqJcu52yLsVS2Ral7bHDitzuRUAHXLcDP9pa7rsGngE_JXqEuZbOfnMjJc_CqMoDoGGYXpDQF3_wBjJUMjR9Ju8iP3h-y9nF3LQIW9WqJDAPXTHqUKXy4X0AhahqrF7BI84LB9itntEGAdYWFp0yKHFWfN7YmwNy-ARgg0ANuexrPzmmWL23ZSX9zhWuHp-1z_pBXkEf0xkQ9hfkr3qeqlfgaJeJa_NC_YXTsDp7A |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+yeast+transcription+factor+genes+YAP1+and+YAP2+are+subject+to+differential+control+at+the+levels+of+both+translation+and+mRNA+stability&rft.jtitle=Nucleic+acids+research&rft.au=Vilela%2C+C&rft.date=1998-03-01&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=26&rft.issue=5&rft.spage=1150&rft.epage=1159&rft_id=info:doi/10.1093%2Fnar%2F26.5.1150&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_nar_26_5_1150 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |