Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources

•Critically reviewed various processes for the recovery of Li from minerals and brines.•Heat treatment is required for liberating Li from the mineral lattice before leaching.•Solar evaporation of brine is crucial for Li enrichment to make the process viable.•Precipitation is extensively applied for...

Full description

Saved in:
Bibliographic Details
Published inMinerals engineering Vol. 89; pp. 119 - 137
Main Authors Choubey, Pankaj K., Kim, Min-seuk, Srivastava, Rajiv R., Lee, Jae-chun, Lee, Jin-Young
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Critically reviewed various processes for the recovery of Li from minerals and brines.•Heat treatment is required for liberating Li from the mineral lattice before leaching.•Solar evaporation of brine is crucial for Li enrichment to make the process viable.•Precipitation is extensively applied for the separation and purification of Li as Li2CO3.•SX/IX/RO/adsorption is being explored as an alternative for process enhancement. Lithium (Li), an exceptional cathode material in rechargeable batteries, is an essential element in modern energy production and storage devices. The continuously increasing demand for lithium in these devices, along with their steady production, has led to the high economic importance of lithium, making it one of the strategically influential elements. The uneven distribution of mineral resources in the earth’s crust and the unequal concentration in brine and sea water reserves also causes lithium exploitation to be of critical importance. This situation requires the efficient processing of lithium resources either by the processing of minerals/brine/sea water or by the recycling of spent lithium-ion batteries. To explore new routes for the sustainable exploitation of lithium, it is imperative to review the methodologies that have already been studied and are currently in industrial practice. In this study, we present an overview of the processes investigated for the extraction, separation and recovery of lithium from not only a technological perspective but also from a chemical perspective. In Part I, this state-of-the-art review addresses the processing of lithium resources that currently contributes to the commercial exploitation of this energy-critical element. This review includes lithium recovery from mineral (spodumene, petalite, lepidolite, zinnwaldite) and brine resources. A deliberation of the mineralogical aspect along with a review of the extraction process of lithium minerals is sub-divided according to the chosen media, namely, chloride, sulfate and carbonate, for their conversion into a leachable form, whereas the division of aqua-based resources is based on the lithium concentration. In the discussion, the advantages and/or disadvantages, problems and prospects of the processes are also summarized. We believe this article can contribute to improving the extraction and recovery processes of lithium toward the sustainability of this critical element and can provide future research directions.
AbstractList Lithium (Li), an exceptional cathode material in rechargeable batteries, is an essential element in modern energy production and storage devices. The continuously increasing demand for lithium in these devices, along with their steady production, has led to the high economic importance of lithium, making it one of the strategically influential elements. The uneven distribution of mineral resources in the earth's crust and the unequal concentration in brine and sea water reserves also causes lithium exploitation to be of critical importance. This situation requires the efficient processing of lithium resources either by the processing of minerals/brine/sea water or by the recycling of spent lithium-ion batteries. To explore new routes for the sustainable exploitation of lithium, it is imperative to review the methodologies that have already been studied and are currently in industrial practice. In this study, we present an overview of the processes investigated for the extraction, separation and recovery of lithium from not only a technological perspective but also from a chemical perspective. In Part I, this state-of-the-art review addresses the processing of lithium resources that currently contributes to the commercial exploitation of this energy-critical element. This review includes lithium recovery from mineral (spodumene, petalite, lepidolite, zinnwaldite) and brine resources. A deliberation of the mineralogical aspect along with a review of the extraction process of lithium minerals is sub-divided according to the chosen media, namely, chloride, sulfate and carbonate, for their conversion into a leachable form, whereas the division of aqua-based resources is based on the lithium concentration. In the discussion, the advantages and/or disadvantages, problems and prospects of the processes are also summarized. We believe this article can contribute to improving the extraction and recovery processes of lithium toward the sustainability of this critical element and can provide future research directions.
•Critically reviewed various processes for the recovery of Li from minerals and brines.•Heat treatment is required for liberating Li from the mineral lattice before leaching.•Solar evaporation of brine is crucial for Li enrichment to make the process viable.•Precipitation is extensively applied for the separation and purification of Li as Li2CO3.•SX/IX/RO/adsorption is being explored as an alternative for process enhancement. Lithium (Li), an exceptional cathode material in rechargeable batteries, is an essential element in modern energy production and storage devices. The continuously increasing demand for lithium in these devices, along with their steady production, has led to the high economic importance of lithium, making it one of the strategically influential elements. The uneven distribution of mineral resources in the earth’s crust and the unequal concentration in brine and sea water reserves also causes lithium exploitation to be of critical importance. This situation requires the efficient processing of lithium resources either by the processing of minerals/brine/sea water or by the recycling of spent lithium-ion batteries. To explore new routes for the sustainable exploitation of lithium, it is imperative to review the methodologies that have already been studied and are currently in industrial practice. In this study, we present an overview of the processes investigated for the extraction, separation and recovery of lithium from not only a technological perspective but also from a chemical perspective. In Part I, this state-of-the-art review addresses the processing of lithium resources that currently contributes to the commercial exploitation of this energy-critical element. This review includes lithium recovery from mineral (spodumene, petalite, lepidolite, zinnwaldite) and brine resources. A deliberation of the mineralogical aspect along with a review of the extraction process of lithium minerals is sub-divided according to the chosen media, namely, chloride, sulfate and carbonate, for their conversion into a leachable form, whereas the division of aqua-based resources is based on the lithium concentration. In the discussion, the advantages and/or disadvantages, problems and prospects of the processes are also summarized. We believe this article can contribute to improving the extraction and recovery processes of lithium toward the sustainability of this critical element and can provide future research directions.
Author Choubey, Pankaj K.
Lee, Jin-Young
Lee, Jae-chun
Kim, Min-seuk
Srivastava, Rajiv R.
Author_xml – sequence: 1
  givenname: Pankaj K.
  surname: Choubey
  fullname: Choubey, Pankaj K.
– sequence: 2
  givenname: Min-seuk
  surname: Kim
  fullname: Kim, Min-seuk
– sequence: 3
  givenname: Rajiv R.
  surname: Srivastava
  fullname: Srivastava, Rajiv R.
– sequence: 4
  givenname: Jae-chun
  orcidid: 0000-0002-9459-3825
  surname: Lee
  fullname: Lee, Jae-chun
  email: jclee@kigam.re.kr
– sequence: 5
  givenname: Jin-Young
  surname: Lee
  fullname: Lee, Jin-Young
BookMark eNqFUUtLMzEUDaJgffwDF1m6mTFJM52kiw9EfEFBF7oOMblTU2aSfknqY-F_N2NduVC4EO7hPMg9B2jXBw8InVBSU0JnZ6t6cB78smZlqwktQ3bQhIqWVZJzvosmREhWzUTb7KODlFaEkKYVcoI-zu2L9gZwhBcHrzh4nJ8Bw9u6Dy7r7AoQui9sHcNXTMbgIS7fq5RD1MtC7mEo8BwvXH52m6HG9zpmfDvHV0WCR1HUPdbe4qdYlpKVwiYaSEdor9N9guPv9xA9Xl0-XNxUi7vr24vzRWWalubqidqONJwy3Qk2FUZKRlpKWdk4a7ilsqNWayOsbYBJ2VkGWgpOCdfARDs9RKdb3_KH_xtIWQ0uGeh77SFskqKCCDJr2JT8TW1lMWxn09GVb6kmhpQidGod3aDju6JEjcWoldoWo8ZiFKFlxoT5D5n5vnSO2vV_if9txVDOVRqLKhkHpUDrIpisbHC_G3wCSUau2A
CitedBy_id crossref_primary_10_1016_j_jenvman_2024_120963
crossref_primary_10_1016_j_jclepro_2024_142863
crossref_primary_10_3390_environments11050097
crossref_primary_10_1016_j_jallcom_2019_152604
crossref_primary_10_1021_acs_jced_9b00073
crossref_primary_10_1021_acs_jced_2c00039
crossref_primary_10_1016_j_mineng_2020_106643
crossref_primary_10_1016_j_mineng_2018_01_010
crossref_primary_10_1002_adma_202415509
crossref_primary_10_1016_j_desal_2019_114081
crossref_primary_10_24927_rce2020_034
crossref_primary_10_1016_j_memsci_2022_121312
crossref_primary_10_1021_jacs_3c04928
crossref_primary_10_1016_j_desal_2020_114894
crossref_primary_10_1021_acsaem_1c02654
crossref_primary_10_1016_j_hydromet_2019_105160
crossref_primary_10_1021_acs_jced_7b00570
crossref_primary_10_3390_su17010255
crossref_primary_10_3390_min14080849
crossref_primary_10_1016_j_enpol_2020_111516
crossref_primary_10_1016_j_hydromet_2019_105166
crossref_primary_10_3390_met14111260
crossref_primary_10_3390_mining5010019
crossref_primary_10_1080_10426914_2022_2136387
crossref_primary_10_3390_ma16247548
crossref_primary_10_3390_batteries10050167
crossref_primary_10_1016_j_jece_2024_115276
crossref_primary_10_1016_j_mineng_2022_107747
crossref_primary_10_1016_j_mineng_2022_107986
crossref_primary_10_1016_j_mineng_2022_107503
crossref_primary_10_1016_j_matt_2021_06_049
crossref_primary_10_1021_acs_jced_2c00022
crossref_primary_10_1007_s40831_021_00430_7
crossref_primary_10_1016_j_conbuildmat_2020_121723
crossref_primary_10_1002_aic_17219
crossref_primary_10_1016_j_cep_2023_109508
crossref_primary_10_1016_j_ccr_2021_213801
crossref_primary_10_1016_j_desal_2023_116662
crossref_primary_10_1016_j_chemgeo_2021_120463
crossref_primary_10_1016_j_jallcom_2021_159402
crossref_primary_10_1016_j_scitotenv_2020_137523
crossref_primary_10_1002_aic_16246
crossref_primary_10_1016_j_matt_2021_05_010
crossref_primary_10_1021_acsmacrolett_1c00243
crossref_primary_10_1007_s11837_024_06973_w
crossref_primary_10_3390_met10101312
crossref_primary_10_1080_08827508_2023_2295849
crossref_primary_10_1016_j_mineng_2020_106743
crossref_primary_10_1016_j_matpr_2022_12_175
crossref_primary_10_1080_08927022_2022_2094372
crossref_primary_10_1016_j_jece_2024_113680
crossref_primary_10_1016_j_seppur_2021_119134
crossref_primary_10_1039_C8TB02906G
crossref_primary_10_3390_molecules28217356
crossref_primary_10_1039_D1AY00937K
crossref_primary_10_1016_j_seppur_2020_116940
crossref_primary_10_1021_acs_jpcc_3c00723
crossref_primary_10_1016_j_cemconcomp_2022_104736
crossref_primary_10_1021_acssuschemeng_1c06964
crossref_primary_10_1016_j_minpro_2017_01_005
crossref_primary_10_1016_j_matpr_2021_03_645
crossref_primary_10_1016_j_molliq_2021_117729
crossref_primary_10_1016_j_jallcom_2024_176058
crossref_primary_10_1016_j_memsci_2021_119542
crossref_primary_10_1080_12269328_2024_2338087
crossref_primary_10_1016_j_desal_2021_115324
crossref_primary_10_1016_j_fusengdes_2021_112500
crossref_primary_10_1016_j_hydromet_2019_01_003
crossref_primary_10_1016_j_cherd_2018_10_009
crossref_primary_10_1016_j_seppur_2020_117580
crossref_primary_10_1016_j_mineng_2020_106512
crossref_primary_10_1016_j_jiec_2024_05_052
crossref_primary_10_1080_08827508_2023_2243012
crossref_primary_10_1016_j_jobe_2024_109256
crossref_primary_10_2174_0118741231333549240909070331
crossref_primary_10_1016_j_seppur_2021_118613
crossref_primary_10_1126_sciadv_aaq0066
crossref_primary_10_1080_08827508_2020_1781628
crossref_primary_10_3390_su16198513
crossref_primary_10_3390_en16073228
crossref_primary_10_1016_j_desal_2022_115733
crossref_primary_10_1016_j_mineng_2019_105868
crossref_primary_10_1080_00084433_2025_2471612
crossref_primary_10_1016_j_hydromet_2019_105193
crossref_primary_10_1016_j_seppur_2023_125066
crossref_primary_10_1007_s10853_020_05147_8
crossref_primary_10_1016_j_jiec_2023_03_040
crossref_primary_10_1002_jctb_7019
crossref_primary_10_1016_j_mineng_2024_108936
crossref_primary_10_1007_s12598_020_01503_4
crossref_primary_10_1016_j_seppur_2023_123686
crossref_primary_10_1007_s13204_021_01832_5
crossref_primary_10_1002_cjce_23640
crossref_primary_10_1016_j_tca_2020_178609
crossref_primary_10_1016_j_rser_2024_114642
crossref_primary_10_1016_j_geoen_2024_213189
crossref_primary_10_1016_j_mineng_2020_106205
crossref_primary_10_3389_fchem_2020_578044
crossref_primary_10_1016_j_powtec_2021_11_036
crossref_primary_10_55713_jmmm_v35i1_2245
crossref_primary_10_1016_j_memsci_2022_121113
crossref_primary_10_1002_ceat_201700604
crossref_primary_10_1016_j_desal_2020_114850
crossref_primary_10_1126_sciadv_adq9823
crossref_primary_10_1016_j_rser_2021_111813
crossref_primary_10_4028_p_v629ly
crossref_primary_10_1016_j_mineng_2018_09_011
crossref_primary_10_1016_j_sab_2024_106994
crossref_primary_10_1002_ente_202100145
crossref_primary_10_1016_j_seppur_2024_129316
crossref_primary_10_1016_j_cej_2024_148571
crossref_primary_10_1016_j_cis_2020_102346
crossref_primary_10_1021_acsestwater_3c00013
crossref_primary_10_1039_D0AN02088E
crossref_primary_10_1007_s10854_021_07293_4
crossref_primary_10_1016_j_desal_2021_115269
crossref_primary_10_3390_batteries10110379
crossref_primary_10_1002_pol_20200500
crossref_primary_10_1021_acs_iecr_6b04892
crossref_primary_10_1016_j_hydromet_2019_03_011
crossref_primary_10_1016_j_hydromet_2019_105129
crossref_primary_10_3390_membranes10080178
crossref_primary_10_1016_j_mineng_2021_107246
crossref_primary_10_1021_acsami_7b14858
crossref_primary_10_1016_j_desal_2024_118270
crossref_primary_10_1016_j_molliq_2020_114709
crossref_primary_10_1016_j_seppur_2020_116757
crossref_primary_10_1016_j_gsme_2024_08_002
crossref_primary_10_1007_s40831_025_01045_y
crossref_primary_10_1016_j_cej_2021_133993
crossref_primary_10_1016_j_jclepro_2019_04_304
crossref_primary_10_1016_j_desal_2024_117618
crossref_primary_10_1007_s13146_024_00921_0
crossref_primary_10_1080_15567036_2019_1587068
crossref_primary_10_1134_S0036023621060231
crossref_primary_10_1021_acsnano_9b00780
crossref_primary_10_1155_2022_6884947
crossref_primary_10_1016_j_desal_2019_114306
crossref_primary_10_1021_acs_iecr_2c03153
crossref_primary_10_1016_j_apsusc_2023_158117
crossref_primary_10_1021_acs_jpcc_9b10074
crossref_primary_10_3390_met14091075
crossref_primary_10_1016_j_desal_2022_116186
crossref_primary_10_1016_j_wasman_2023_08_030
crossref_primary_10_1177_0734242X20957403
crossref_primary_10_1016_j_ccr_2024_215923
crossref_primary_10_1016_j_hydromet_2017_08_003
crossref_primary_10_1021_acs_iecr_3c00415
crossref_primary_10_1021_acs_iecr_4c04662
crossref_primary_10_1007_s40831_024_00787_5
crossref_primary_10_1016_j_hydromet_2019_105141
crossref_primary_10_3390_app14041463
crossref_primary_10_1016_j_seppur_2020_116869
crossref_primary_10_1016_j_jct_2022_106814
crossref_primary_10_1016_j_ces_2023_119682
crossref_primary_10_1016_j_apsusc_2021_150022
crossref_primary_10_1016_j_cherd_2020_12_023
crossref_primary_10_1016_j_saa_2021_120543
crossref_primary_10_1088_1742_6596_2498_1_012002
crossref_primary_10_1016_j_resconrec_2021_105412
crossref_primary_10_1039_D2CP03542A
crossref_primary_10_3390_cryst14110988
crossref_primary_10_3390_min11050455
crossref_primary_10_1038_s41545_023_00238_w
crossref_primary_10_4028_www_scientific_net_SSP_316_643
crossref_primary_10_1016_j_hydromet_2017_10_029
crossref_primary_10_1016_j_jece_2025_115677
crossref_primary_10_1080_08827508_2019_1668387
crossref_primary_10_2138_gselements_16_4_259
crossref_primary_10_1016_j_jece_2024_113632
crossref_primary_10_1016_j_memsci_2022_121321
crossref_primary_10_1016_j_renene_2023_118930
crossref_primary_10_3390_membranes12030343
crossref_primary_10_1016_j_cemconcomp_2023_105262
crossref_primary_10_1080_01496395_2019_1604759
crossref_primary_10_1007_s11771_020_4275_4
crossref_primary_10_1016_j_rser_2020_110461
crossref_primary_10_4150_KPMI_2023_30_4_324
crossref_primary_10_1016_j_colsurfa_2025_136698
crossref_primary_10_1016_j_resourpol_2019_101473
crossref_primary_10_1016_j_partic_2019_10_006
crossref_primary_10_1016_j_jclepro_2023_137832
crossref_primary_10_1016_j_powtec_2024_119962
crossref_primary_10_1016_j_hydromet_2024_106282
crossref_primary_10_1021_acs_iecr_8b01147
crossref_primary_10_1002_cjce_23047
crossref_primary_10_1016_j_seppur_2025_132092
crossref_primary_10_1016_j_cep_2019_107777
crossref_primary_10_3390_membranes12040373
crossref_primary_10_1016_j_mineng_2017_08_004
crossref_primary_10_3390_min7110205
crossref_primary_10_1016_j_jiec_2019_09_002
crossref_primary_10_1038_s41467_022_31850_y
crossref_primary_10_1061__ASCE_MT_1943_5533_0002970
crossref_primary_10_1039_D0GC02626C
crossref_primary_10_1016_j_hydromet_2023_106025
crossref_primary_10_3390_pr10122654
crossref_primary_10_1021_acssuschemeng_9b06432
crossref_primary_10_1016_j_powtec_2019_05_063
crossref_primary_10_1016_j_seppur_2024_130748
crossref_primary_10_1016_j_cej_2022_140928
crossref_primary_10_1002_sus2_4
crossref_primary_10_1002_adma_201807770
crossref_primary_10_1021_acssuschemeng_1c02628
crossref_primary_10_1016_j_seppur_2018_10_054
crossref_primary_10_1016_j_powtec_2022_118142
crossref_primary_10_1016_j_chemosphere_2024_141674
crossref_primary_10_1016_j_memsci_2022_120976
crossref_primary_10_1002_admt_202000665
crossref_primary_10_13005_ojc_340611
crossref_primary_10_1016_j_cherd_2023_01_042
crossref_primary_10_1021_acs_energyfuels_4c00732
crossref_primary_10_1002_aic_18704
crossref_primary_10_1016_j_hydromet_2019_02_011
crossref_primary_10_1016_j_seppur_2018_10_049
crossref_primary_10_1002_cjce_24559
crossref_primary_10_1021_acssuschemeng_0c01205
crossref_primary_10_3390_w16223286
crossref_primary_10_1016_j_gexplo_2023_107212
crossref_primary_10_1016_j_chemosphere_2021_130487
crossref_primary_10_1016_j_jiec_2024_10_032
crossref_primary_10_1111_ggr_12538
crossref_primary_10_1021_acs_iecr_1c03245
crossref_primary_10_1016_j_mineng_2017_04_009
crossref_primary_10_1021_acs_iecr_8b01640
crossref_primary_10_1016_j_mineng_2017_04_008
crossref_primary_10_1016_j_seppur_2018_10_043
crossref_primary_10_3390_min11101058
crossref_primary_10_1016_j_seppur_2022_121469
crossref_primary_10_3390_en13102638
crossref_primary_10_3390_sym14040681
crossref_primary_10_1016_j_mineng_2018_11_046
crossref_primary_10_1002_advs_202201380
crossref_primary_10_1016_j_jclepro_2021_126954
crossref_primary_10_1016_j_resourpol_2019_05_002
crossref_primary_10_1007_s12034_024_03277_2
crossref_primary_10_1021_acs_est_3c00287
crossref_primary_10_1016_j_conbuildmat_2024_136817
crossref_primary_10_1016_j_memsci_2023_121534
crossref_primary_10_1016_j_mineng_2022_107599
crossref_primary_10_1002_chem_202302776
crossref_primary_10_1016_S1003_6326_19_64950_2
crossref_primary_10_1016_j_heliyon_2025_e42523
crossref_primary_10_1016_j_matt_2021_03_017
crossref_primary_10_1021_acsami_9b07401
crossref_primary_10_1016_j_est_2024_112851
crossref_primary_10_1016_j_mtcomm_2025_111817
crossref_primary_10_1016_j_seppur_2018_09_019
crossref_primary_10_1016_j_jclepro_2020_122718
crossref_primary_10_1016_j_hydromet_2019_105222
crossref_primary_10_1016_j_desal_2022_115567
crossref_primary_10_1016_j_resourpol_2020_101885
crossref_primary_10_1016_j_cscm_2023_e02822
crossref_primary_10_1016_j_watres_2019_01_050
crossref_primary_10_1021_acs_jced_0c01001
crossref_primary_10_1080_08827508_2022_2047041
crossref_primary_10_3799_dqkx_2024_116
crossref_primary_10_3390_min12040457
crossref_primary_10_1016_j_desal_2020_114729
crossref_primary_10_1016_j_watres_2019_05_018
crossref_primary_10_3390_batteries9010012
crossref_primary_10_1016_j_scitotenv_2018_05_223
crossref_primary_10_1080_08827508_2019_1700984
crossref_primary_10_1016_j_cej_2024_158315
crossref_primary_10_1038_s41598_024_71799_0
crossref_primary_10_1038_s41467_019_13648_7
crossref_primary_10_3390_nano13091471
crossref_primary_10_1021_acs_nanolett_3c03136
crossref_primary_10_1007_s10008_024_06015_0
crossref_primary_10_1016_j_jclepro_2020_124905
crossref_primary_10_1021_acssuschemeng_9b00923
crossref_primary_10_1016_j_apgeochem_2020_104588
crossref_primary_10_1016_j_memsci_2019_117317
crossref_primary_10_1016_j_seppur_2024_128998
crossref_primary_10_1016_j_desal_2024_117677
crossref_primary_10_1016_j_susmat_2024_e00923
crossref_primary_10_1021_acs_iecr_2c03650
crossref_primary_10_1002_adfm_202105991
crossref_primary_10_1016_j_rser_2017_05_084
crossref_primary_10_1016_j_jclepro_2018_05_077
crossref_primary_10_1016_j_hydromet_2020_105538
crossref_primary_10_1016_j_conbuildmat_2023_134615
crossref_primary_10_1016_j_conbuildmat_2024_138817
crossref_primary_10_3390_membranes13020252
crossref_primary_10_1002_adma_201905440
crossref_primary_10_1021_acs_est_3c04220
crossref_primary_10_1002_ange_202108801
crossref_primary_10_1021_acssuschemeng_9b00898
crossref_primary_10_1002_slct_202304480
crossref_primary_10_1002_celc_201901728
crossref_primary_10_1016_S1003_6326_19_64974_5
crossref_primary_10_1039_D4NR02454K
crossref_primary_10_2139_ssrn_3968707
crossref_primary_10_1142_S1793604722500308
crossref_primary_10_1016_S1003_6326_21_65646_7
crossref_primary_10_1016_j_molliq_2021_116334
crossref_primary_10_1038_s44221_024_00379_3
crossref_primary_10_1007_s10853_020_05019_1
crossref_primary_10_1016_j_seppur_2021_120110
crossref_primary_10_3390_pr7050248
crossref_primary_10_1016_j_hazadv_2023_100344
crossref_primary_10_1021_jacs_1c10255
crossref_primary_10_1039_D4IM00159A
crossref_primary_10_1016_j_cemconcomp_2020_103598
crossref_primary_10_1051_mattech_2021020
crossref_primary_10_3390_min13030343
crossref_primary_10_1016_j_cej_2023_144408
crossref_primary_10_1021_acs_est_3c08956
crossref_primary_10_1016_j_jcis_2020_12_029
crossref_primary_10_1016_j_mineng_2017_05_006
crossref_primary_10_1186_s40580_024_00465_y
crossref_primary_10_1016_j_seppur_2024_128974
crossref_primary_10_1021_acssuschemeng_9b05436
crossref_primary_10_1088_1757_899X_541_1_012044
crossref_primary_10_1016_j_hydromet_2019_05_005
crossref_primary_10_1021_acssuschemeng_1c00937
crossref_primary_10_1016_j_hydromet_2018_10_020
crossref_primary_10_1002_cben_201700011
crossref_primary_10_1016_j_clay_2024_107450
crossref_primary_10_1016_j_desal_2022_115951
crossref_primary_10_3390_ijms25063227
crossref_primary_10_1016_j_scitotenv_2021_148192
crossref_primary_10_1016_j_jiec_2019_08_061
crossref_primary_10_32390_ksmer_2023_60_5_326
crossref_primary_10_1021_acs_iecr_8b00227
crossref_primary_10_1016_j_hydromet_2021_105593
crossref_primary_10_1016_j_jiec_2024_05_022
crossref_primary_10_1007_s10450_020_00208_5
crossref_primary_10_1080_17538947_2024_2448583
crossref_primary_10_1021_acssuschemeng_1c00028
crossref_primary_10_1002_cite_201600101
crossref_primary_10_1016_j_jece_2024_112951
crossref_primary_10_3390_pr11020418
crossref_primary_10_1016_j_jece_2023_110216
crossref_primary_10_1016_j_memsci_2018_03_078
crossref_primary_10_1039_D1TA08162D
crossref_primary_10_1073_pnas_2410033121
crossref_primary_10_1016_j_jclepro_2019_04_018
crossref_primary_10_1007_s11771_021_4723_9
crossref_primary_10_1007_s11157_021_09570_4
crossref_primary_10_30797_madencilik_1010286
crossref_primary_10_1016_j_watres_2022_118822
crossref_primary_10_1016_j_psep_2021_02_001
crossref_primary_10_1088_1742_6596_1450_1_012013
crossref_primary_10_3390_min14111120
crossref_primary_10_4491_eer_2018_392
crossref_primary_10_1016_j_seppur_2020_118194
crossref_primary_10_1016_j_mineng_2019_106085
crossref_primary_10_1016_j_seppur_2020_117780
crossref_primary_10_3390_min10110981
crossref_primary_10_1016_j_mineng_2019_106087
crossref_primary_10_1016_j_cej_2024_157780
crossref_primary_10_1016_j_seppur_2024_129372
crossref_primary_10_1021_acs_iecr_3c04048
crossref_primary_10_1016_j_ijhydene_2022_05_180
crossref_primary_10_1016_j_desal_2023_116408
crossref_primary_10_1021_acssuschemeng_1c00718
crossref_primary_10_1002_anie_202108801
crossref_primary_10_1016_j_mineng_2024_108613
crossref_primary_10_15407_mineraljournal_45_04_057
crossref_primary_10_1016_j_jechem_2018_09_022
crossref_primary_10_1021_acs_iecr_3c04294
crossref_primary_10_1088_1757_899X_541_1_012022
crossref_primary_10_1016_j_seppur_2021_119909
crossref_primary_10_18654_1000_0569_2022_02_11
crossref_primary_10_1016_j_seppur_2019_116025
crossref_primary_10_1002_adsu_202000165
crossref_primary_10_1016_j_desal_2024_118445
crossref_primary_10_1021_acs_iecr_1c01003
Cites_doi 10.2465/minerj.13.13
10.1016/0892-6875(89)90001-0
10.1016/j.mineng.2013.10.026
10.3390/min2010065
10.1016/j.hydromet.2013.09.016
10.1016/j.renene.2013.10.040
10.1016/j.compchemeng.2009.09.008
10.1016/j.hydromet.2013.05.013
10.1016/j.mineng.2015.04.012
10.1016/S1003-6326(11)61383-6
10.1021/ie50386a014
10.1246/bcsj.20130019
10.1016/j.hydromet.2010.02.010
10.1016/0022-1902(76)80027-9
10.1016/S0011-9164(03)00455-7
10.1016/j.hydromet.2012.02.008
10.1016/j.hydromet.2011.05.006
10.1016/j.hydromet.2012.02.004
10.1021/cr500232y
10.1007/s10498-008-9046-z
10.1016/j.apenergy.2012.10.029
10.1016/j.hydromet.2015.03.002
10.1016/j.solener.2015.02.021
10.1016/j.hydromet.2015.01.009
10.1016/S0892-6875(99)00023-0
10.1016/0360-5442(78)90029-4
10.1016/j.tca.2015.02.009
10.1016/j.hydromet.2014.04.009
10.1007/BF01084763
10.1016/j.mineng.2011.08.013
10.1021/ie50499a025
10.1016/j.hydromet.2014.10.012
10.1016/j.desal.2013.03.009
10.1016/j.minpro.2012.03.005
10.1016/j.solener.2011.04.011
10.1346/CCMN.1981.0290201
10.1016/0360-5442(78)90027-0
10.1016/j.oregeorev.2012.05.006
10.1016/j.minpro.2013.04.014
10.1016/j.tca.2013.01.033
10.2113/gscanmin.42.4.1105
10.1016/j.hydromet.2012.04.006
10.1016/j.mineng.2010.03.021
10.1016/S0301-7516(03)00084-X
10.1016/0038-092X(91)90055-2
10.1016/S0038-092X(02)00021-X
10.1016/j.hydromet.2013.01.015
10.1016/j.jclepro.2015.03.031
10.1016/0304-386X(78)90004-X
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7ST
7U6
C1K
8BQ
8FD
JG9
DOI 10.1016/j.mineng.2016.01.010
DatabaseName CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
Environment Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9444
EndPage 137
ExternalDocumentID 10_1016_j_mineng_2016_01_010
S0892687516300103
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SSG
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
7U6
C1K
8BQ
8FD
JG9
ID FETCH-LOGICAL-c571t-b1df05412af8238c99207112f824254d19f1daac8dd5e299fd2ea984104ae2873
IEDL.DBID .~1
ISSN 0892-6875
IngestDate Fri Jul 11 01:01:49 EDT 2025
Fri Jul 11 16:33:11 EDT 2025
Thu Apr 24 23:01:51 EDT 2025
Tue Jul 01 01:13:22 EDT 2025
Fri Feb 23 02:35:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Energy-critical element
Lithium minerals
Leaching
Recovery
Brine
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c571t-b1df05412af8238c99207112f824254d19f1daac8dd5e299fd2ea984104ae2873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9459-3825
PQID 1798737637
PQPubID 23462
PageCount 19
ParticipantIDs proquest_miscellaneous_1808065230
proquest_miscellaneous_1798737637
crossref_primary_10_1016_j_mineng_2016_01_010
crossref_citationtrail_10_1016_j_mineng_2016_01_010
elsevier_sciencedirect_doi_10_1016_j_mineng_2016_01_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Minerals engineering
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wilkomirksy, 1999. Production of Lithium Carbonate from Brine. US Patent No. 5993759.
Davidson, C.F., 1981. Recovery of Lithium from Clay by Selective Chlorination, Pgh. [i.e. Pittsburgh], US Dept. of the Interior, Bureau of Mines.
Jandova, Vu, Kondas, Dvorak (b0330) 2007
US Geological Survey, Mineral Commodity Summaries, February 2014.
Yang (b0670) 2004
Archarnhault, M., Quebec, Q., Olivier, C.A., 1968. Carbonatizing Roast of Lithium Bearing Ores. US Patent No. 3380802.
Deer, W.A., Howie, R.A., Zussman, J., 1978. Rock-forming minerals, vol. 2A. Single-chain Silicates, second ed. Longman, London.
Walter, R., Bichowsky, F.R., 1935. Method of Recovering Lithium from its Ores. US Patent No. 2020854.
ECEs-Energy Critical Elements, 2011. Securing materials for emerging technologies. A Report by the APS Panel on Public Affairs & the Materials Research Society.
Robinson, G.P., Vale, N.C., 1961. Recovery of Lithium from Ore. US Patent No. 2983576.
Brandt, Haus (b0115) 2010; 23
Frevel, L.K., Kressley, L.J., 1962. Separation of Lithium from Lithium Bearing Micas and Amblygonite. US Patent No. 3032389.
Liu, Hu, Chen (b0410) 2014; 64
Agha, Abughres, Ramadan (b0005) 2002; 72
Lee, J.M., Bauman, W.C., 1982. Recovery of Lithium from Brines. US Patent No. 4347327.
Garrett, D.E., 1981. Process for Recovering Lithium from Brine by Salting Out Lithium Sulfate Monohydrate. US Patent No. 4287163.
Yan, Li, Wang, Wu, Wang, Guo, Hu, Peng (b0675) 2012; 110–111
Lee, Raudsepp, Frank (b0375) 1990; 75
Phillips, Perry (b0500) 1995
An, Kang, Tran, Kim, Lim, Tram (b0020) 2012; 117–118
Jandova, Vu, Belkova, Dvorak, Kondas (b0335) 2009; 53
Wietelmann, Bauer (b0655) 2008; vol. 20
Morstadt, J., 1987. Treatment of Siliceous Lithium Concentrates (in Czech), Literature retrieval, Vuanch, Geofond Praha, P61609/1, Usti nad Labem.
Gabra (b0280) 1978; 3
Brown, D., 2010. Lithium World Class Deposit.
Kim, J.S., Chung, K.W., Lee, J.Y., Kim, S.D., 2014. Method for Preparing High-purity Lithium Carbonate from Brine. US Patent No. 8679428 B2.
Norton, J.J., Schlegel, D.M., 1955. Lithium Resources of North America. Bulletin 1027-G. Reston, VA: USGS, pp. 325–350.
Yan, Li, Wang, Wu, Guo, Hu, Peng, Wang (b0680) 2012; 117–118
Averill, Olson (b0040) 1978; 3
Ping, Jinrong, Renjie (b0505) 2014; 88
Swanson, Bailey (b0575) 1981
Bale, May (b0045) 1989; 2
Garrett (b0270) 2004
Simonov, Belov (b0600) 1958; 3
Lof, Lewis (b9010) 1942; 34
(accessed 9 February 2015).
Shahmansouri, Min, Jin, Bellona (b0595) 2015; 100
Brown, P.M., Jacob, S.R., Boryta, D.A., 1981b. Production of Highly Pure Lithium Chloride from Impure Brines. US Patent No. 4271131.
Calvonico (b0170) 1990; 58
>
Polinares EU Policy on natural Resource, 2012.
Barbosa, Valente, Orosco, Gonzalez (b0050) 2014; 56
Vu, Bernardi, Jandova, Vaculíkova, Golias (b0635) 2013; 123
Critical Materials Strategy, 2010. US Department of Energy December.
European Commission Enterprise and Industry (ECEI), 2010. Critical raw materials for the EU. Report of the Ad-hoc Working Group on Defining Critical Raw Materials.
Luong, Kang, An, Kim, Tran (b0400) 2013; 134–135
Tran, Luong, An, Kang, Kim, Tran (b0615) 2013; 138
Kalenowski, L.H., Runke, S.M., 1952. Recovery of Lithium from Spodumene–Amblygonite Mixtures. Bureau of Mines, US Department of the Interior 48631952.
Siame, Pascoe (b0545) 2011; 24
The Lithium Market. A Report by Fox-Davies Resources Specialist, 2013.
Mazza, H., Whittier, S.L., 1960. Process for Recovering Alkali Metal Values from Lepidolite. US Patent No. 2940820.
Botton, R., Deigrange, J.P., Esinet, L., Steinmetz, A., 1965. Method of Recovering Lithium from Lepidolite. US Patent No. 3189407.
Galaxy Resources Ltd, 2011. Galaxy Resources Ltd.
Fox-Devies Resources Specialist, 2013.
Wagner, R., 2006. Battery Fuel Gauges: Accurately Measuring Charge Level.
Boryta, D.A., 2010. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 7858057 B2.
Moon, Fuerstenau (b0450) 2003; 72
Dwyer, T.E., Passaic, N.J., 1957. Recovery of Lithium from Spüdumene Ores. US Patent No. 2801153.
Boryta, D.A., 2009. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 7547426 B2.
Kesler, Gruber, Medina, Keoleian, Everson, Wallington (b0355) 2012; 48
Dang, Steinberg (b0195) 1978; 3
Dinh, Luong, Giere, Tran (b0230) 2015; 153
Xiao, Wang, Ni, Wang, Zhu, Luo, Cen (b0665) 2013; 103
Lee, J.M., Bauman, W.C., 1980. Recovery of Lithium from Brines. US Patent No. 4221767.
Victor, K.A., 1953. Method of Recovering Lithium Compounds from Lithium Minerals. US Patent No. 2793933.
Rajasthan Renewable Energy, 2015.
Outotec Lithium Production Technologies. 2013.
HSC Chemistry (6.0), Chemical Reactions and Equilibrium Calculations.
Sivander, K.A., Gard, R., Hasselby, V.H., Wallden, S.J., 1941. Method of Recovering Lithium Salt from Lithium Containing Minerals. US Patent No. 2230167.
Mineralogy database, 2012.
Rosales, Ruiz, Rodriguez (b0535) 2014; 147–148
Ellestad, R.B., Ileute, K.M., Minn, M., 1950. Method of Extracting Lithium Values from Spodumene Ores. US Patent No. 2516109.
Brown, P.M., Boryta, D.A., 1993. Production of Low Boron Lithium Carbonate from Lithium Containing Brine. US Patent No. 5219550.
Hart, Beumel (b0305) 1973; vol. 13
Ossandon, Pinto, Cisternas (b0480) 2010; 34
(accessed 12 December 2014).
Mizota, Kato, Harada (b0460) 1986; 13
(accessed 22 February 2015).
Cerny, London (b0185) 1983; 31
Martine, Sebastian (b0455) 1991; 76
(accessed 20 April 2015).
(accessed 2 November 2014).
Nie, Bu, Zheng, Huang (b0470) 2011; 85
Coleman, J.H., Jaffa, N.E., 1935. Recovering Lithium Compounds. US Patent No. 2024026.
Archarnbault, M., Quebec., Quebec., Mac-Ewan, J.U., Montreal, Quebec, Olivier, C.A., 1962. Method of Producing Lithium Carbonate from Spodumene. US Patent No. 3017243.
Forster, J., Rutherford, T.F., 2011. A lithium shortage: are electric vehicles under threat? 2011. A report by ETH Swiss Federal Institute of Technology Zurich.
Rosett, W., Va, O., Bichowsky F.R., 1935. Method of Recovering Lithium from its Ores. US Patent No. 2020854.
Yu, Zheng, Wu, Nie, Bu (b0695) 2015; 115
Siegens, H., Roder, O., 1936. Process for the Production of Lithium Salts. US Patent No. 2040573.
(accessed 23 February 2015).
Boryta, D.A., 2011. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 8057764 B2.
Kim, Hong, Park, Kim, Kim, Kang (b0370) 2014; 114
Alex, Suri (b0010) 1996
Salil, S., 2012. Nickel Zinc (NiZn) Battery Technology Overview for Micro Hybrid Application. Power genix.
Huang, Wang, Sun, Nie, Sha (b0310) 2010; 31
Dean (b0225) 1999
Barbosa, Gonzalez, Ruiz (b0060) 2015; 605
Boryta, D.A., 2005. Production of Lithium Compounds from Lithium Containing Brine. US Patent No. 6921522 B2.
Dong, Li, Piao, Zhu (b0205) 2007; 3
(assessed 23 March 2015).
(accessed 21st April 2015).
Schultze, L.E., Bauer, D.J., Ronald, M.A., 1986. Separation of Lithium Chloride from Impurities. US Patent No. 4588565.
Meshram, Pandey, Mankhand (b0440) 2014; 150
Galli, D.E., Demetrio, H., 2011. Process for Recovering Lithium from Brine. US Patent No. 0300041 A1.
Lee, J.M., Bauman, W.C., 1978. Recovery of Lithium from Brines. US Patent No. 4116858.
(accessed 12 September 2015).
Brown, P.M., 1990. Production of Lithium metal Grade Lithium Chloride from Lithium Containing Brine. US Patent No. 4980136.
Brown, P.M., Falletta, C.E., 1980. Process for Producing High Purity Lithium Carbonate. US Patent No. 4207297.
Jandova, Dvorak, Vu (b0340) 2010; 103
Losey, John (b0395) 2004; 42
Boryta, D.A., 2000. Method for Removing Magnesium from Brine to Yield Lithium Carbonate. US Patent No. 6143260.
SGS Minerals Services, 2010. Hard Rock Lithium Processing. SGS T3 1001.
Yan, Li, Wang, Wang, Guo, Hu, Peng, Wu (b0685) 2012; 22
Seeley, Baldwin (b0540) 1976; 38
Mohr, Mudd, Giurco (b0420) 2012; 2
Yan, Li, Yin, Wang, Guo, Peng, Hu (b0690) 2012; 121–124
Amouzegar, K., Amant, G.S., Harrison, S., 2000. Process for the Purification of Lithium Carbonate. US Patent No. 6048507.
Lowenstein, Risacher (b0415) 2009; 15
Brown, P.M., Jacob, S.R., 1981. Process for Purification of Lithium Chloride. US Patent No. 4274834.
Boryta, D.A., 2002. Recovery of Lithium Compounds from Brines. US Patent No. 6497850 B1.
(accessed 18 September 2015).
Colton (b0190) 1957
Amarante, Sousa, Leite (b0015) 1999; 12
Habashi (b0300) 1986; vol. 3
Chitrakar, Makita, Ooi, Sonoda (b0155) 2013; 86
(accessed 19 January 2016).
Jandova, J., Vu, H.N., Dvorak, P., 2007a. Waste Recycling XI. In: Gondek, H., Fecko, P., Kursnierova, M., Tora, B. (Eds.), VSB-TU Ostrava, Kosice, Slovakia, pp. 83–88.
Zushi, Sakoguchi, Nakashio (b0700) 2003; 10
Boryta, D.A., 2001. Recovery of Lithium Compounds from Brines. US Patent No. 6207126 B1.
Smith, Newell (b0560) 1991
Luong, Kang, An, Dao, Kim, Tran (b0405) 2014; 141
Somrani, Hamzaoui, Pontie (b0570) 2013; 317
Boryta, D.A., 2008. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 7449161 B2.
USGS Mineral Yearbook, January 2013.
Dresler, Jena, Reilly, Laffin, Egab (b0210) 1998
Lithium World Nuclear Association, 2014.
Pistilli, M., 2015. POSCO Lithium Brine Processing Technology Could be a Game Changer.
Tu, Zhao, Wei (b0610) 2003
(accessed 18 February 2015).
Peltosaari, Tanskanen, Heikkinen, Fabritius (b0490) 2015; 82
(accessed 21 February 2015).
(accessed 20 January 2015).
Cundy, Windle, Warren (b0180) 1963; 5
Skinner, Evans (b0585) 1960; 258A
Brown, P.M., Susan, R.J., Boryta, D.A., 1981a. Process for Solar Concentration of Lithium Chloride Brine. US Patent No. 4243392.
Kondas, Jandova (b0350) 2006; 12
Olivier, C.A., Panneton, J., Perusse, J., 1978. Continuous Production of Lithium Carbonate. U.S. Patent No. 4124684.
Hawash, Kader, Diwani (b0295) 2010; 6
Kroll, A.V., Pieter, G., Luxemburg, 1953. Method of Recovering Lithium Compounds from Lithium Minerals, US Patent No. 2662809.
Nicholson, C.M., 1946. Production of Lithium Compounds. US Patent No. 2413644.
Boryta, D.A., 2007. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 7157065 B2.
Hamzaoui, Nif, Hammi, Rokhani (b0290) 2003; 158
Blochi, Farkas, Spiegler (b006
Kondas (10.1016/j.mineng.2016.01.010_b0350) 2006; 12
10.1016/j.mineng.2016.01.010_b0175
Alex (10.1016/j.mineng.2016.01.010_b0010) 1996
10.1016/j.mineng.2016.01.010_b0215
Lof (10.1016/j.mineng.2016.01.010_b9010) 1942; 34
Somrani (10.1016/j.mineng.2016.01.010_b0570) 2013; 317
Bale (10.1016/j.mineng.2016.01.010_b0045) 1989; 2
Dinh (10.1016/j.mineng.2016.01.010_b0230) 2015; 153
10.1016/j.mineng.2016.01.010_b0580
10.1016/j.mineng.2016.01.010_b0220
Mizota (10.1016/j.mineng.2016.01.010_b0460) 1986; 13
10.1016/j.mineng.2016.01.010_b0100
Dang (10.1016/j.mineng.2016.01.010_b0195) 1978; 3
10.1016/j.mineng.2016.01.010_b0345
Nie (10.1016/j.mineng.2016.01.010_b0470) 2011; 85
10.1016/j.mineng.2016.01.010_b0620
10.1016/j.mineng.2016.01.010_b0465
Seeley (10.1016/j.mineng.2016.01.010_b0540) 1976; 38
10.1016/j.mineng.2016.01.010_b0625
10.1016/j.mineng.2016.01.010_b0105
Lee (10.1016/j.mineng.2016.01.010_b0375) 1990; 75
Amarante (10.1016/j.mineng.2016.01.010_b0015) 1999; 12
Yan (10.1016/j.mineng.2016.01.010_b0690) 2012; 121–124
Calvonico (10.1016/j.mineng.2016.01.010_b0170) 1990; 58
Kesler (10.1016/j.mineng.2016.01.010_b0355) 2012; 48
Yu (10.1016/j.mineng.2016.01.010_b0695) 2015; 115
10.1016/j.mineng.2016.01.010_b0070
Dong (10.1016/j.mineng.2016.01.010_b0205) 2007; 3
10.1016/j.mineng.2016.01.010_b0590
10.1016/j.mineng.2016.01.010_b0110
10.1016/j.mineng.2016.01.010_b5000
10.1016/j.mineng.2016.01.010_b0075
10.1016/j.mineng.2016.01.010_b0235
10.1016/j.mineng.2016.01.010_b0510
10.1016/j.mineng.2016.01.010_b0475
10.1016/j.mineng.2016.01.010_b0630
Blochi (10.1016/j.mineng.2016.01.010_b0065) 1951; 43
Chen (10.1016/j.mineng.2016.01.010_b0160) 2011; 109
Yan (10.1016/j.mineng.2016.01.010_b0675) 2012; 110–111
Liu (10.1016/j.mineng.2016.01.010_b0410) 2014; 64
Meshram (10.1016/j.mineng.2016.01.010_b0440) 2014; 150
Skinner (10.1016/j.mineng.2016.01.010_b0585) 1960; 258A
10.1016/j.mineng.2016.01.010_b0080
Losey (10.1016/j.mineng.2016.01.010_b0395) 2004; 42
Luong (10.1016/j.mineng.2016.01.010_b0405) 2014; 141
10.1016/j.mineng.2016.01.010_b0085
10.1016/j.mineng.2016.01.010_b0360
Barbosa (10.1016/j.mineng.2016.01.010_b0050) 2014; 56
Jandova (10.1016/j.mineng.2016.01.010_b0335) 2009; 53
Smith (10.1016/j.mineng.2016.01.010_b0560) 1991
10.1016/j.mineng.2016.01.010_b0485
10.1016/j.mineng.2016.01.010_b0240
Hart (10.1016/j.mineng.2016.01.010_b0305) 1973; vol. 13
10.1016/j.mineng.2016.01.010_b0120
10.1016/j.mineng.2016.01.010_b0125
10.1016/j.mineng.2016.01.010_b0365
10.1016/j.mineng.2016.01.010_b0640
10.1016/j.mineng.2016.01.010_b0245
10.1016/j.mineng.2016.01.010_b0520
Barbosa (10.1016/j.mineng.2016.01.010_b0060) 2015; 605
10.1016/j.mineng.2016.01.010_b0525
Brandt (10.1016/j.mineng.2016.01.010_b0115) 2010; 23
10.1016/j.mineng.2016.01.010_b0645
Luong (10.1016/j.mineng.2016.01.010_b0400) 2013; 134–135
Siame (10.1016/j.mineng.2016.01.010_b0545) 2011; 24
Rosales (10.1016/j.mineng.2016.01.010_b0535) 2014; 147–148
Phillips (10.1016/j.mineng.2016.01.010_b0500) 1995
10.1016/j.mineng.2016.01.010_b0090
10.1016/j.mineng.2016.01.010_b0095
10.1016/j.mineng.2016.01.010_b0250
An (10.1016/j.mineng.2016.01.010_b0020) 2012; 117–118
Agha (10.1016/j.mineng.2016.01.010_b0005) 2002; 72
Mohr (10.1016/j.mineng.2016.01.010_b0420) 2012; 2
10.1016/j.mineng.2016.01.010_b0495
Simonov (10.1016/j.mineng.2016.01.010_b0600) 1958; 3
10.1016/j.mineng.2016.01.010_b0650
10.1016/j.mineng.2016.01.010_b0130
Hamzaoui (10.1016/j.mineng.2016.01.010_b0290) 2003; 158
Averill (10.1016/j.mineng.2016.01.010_b0040) 1978; 3
10.1016/j.mineng.2016.01.010_b0255
10.1016/j.mineng.2016.01.010_b0530
10.1016/j.mineng.2016.01.010_b0135
Shahmansouri (10.1016/j.mineng.2016.01.010_b0595) 2015; 100
Garrett (10.1016/j.mineng.2016.01.010_b0270) 2004
Wietelmann (10.1016/j.mineng.2016.01.010_b0655) 2008; vol. 20
10.1016/j.mineng.2016.01.010_b0260
10.1016/j.mineng.2016.01.010_b0140
Yang (10.1016/j.mineng.2016.01.010_b0670) 2004
10.1016/j.mineng.2016.01.010_b0380
10.1016/j.mineng.2016.01.010_b0385
10.1016/j.mineng.2016.01.010_b0660
10.1016/j.mineng.2016.01.010_b0265
Huang (10.1016/j.mineng.2016.01.010_b0310) 2010; 31
Ping (10.1016/j.mineng.2016.01.010_b0505) 2014; 88
10.1016/j.mineng.2016.01.010_b0145
10.1016/j.mineng.2016.01.010_b0025
Lowenstein (10.1016/j.mineng.2016.01.010_b0415) 2009; 15
10.1016/j.mineng.2016.01.010_b0425
Jandova (10.1016/j.mineng.2016.01.010_b0330) 2007
Kim (10.1016/j.mineng.2016.01.010_b0370) 2014; 114
Jandova (10.1016/j.mineng.2016.01.010_b0340) 2010; 103
Tran (10.1016/j.mineng.2016.01.010_b0615) 2013; 138
Xiao (10.1016/j.mineng.2016.01.010_b0665) 2013; 103
Chitrakar (10.1016/j.mineng.2016.01.010_b0155) 2013; 86
Dean (10.1016/j.mineng.2016.01.010_b0225) 1999
Martine (10.1016/j.mineng.2016.01.010_b0455) 1991; 76
10.1016/j.mineng.2016.01.010_b0150
10.1016/j.mineng.2016.01.010_b0030
10.1016/j.mineng.2016.01.010_b0390
10.1016/j.mineng.2016.01.010_b9005
10.1016/j.mineng.2016.01.010_b0275
10.1016/j.mineng.2016.01.010_b0550
10.1016/j.mineng.2016.01.010_b0430
10.1016/j.mineng.2016.01.010_b0555
10.1016/j.mineng.2016.01.010_b0035
Pranolo (10.1016/j.mineng.2016.01.010_b0515) 2015; 154
Cerny (10.1016/j.mineng.2016.01.010_b0185) 1983; 31
10.1016/j.mineng.2016.01.010_b0435
10.1016/j.mineng.2016.01.010_b0315
Habashi (10.1016/j.mineng.2016.01.010_b0300) 1986; vol. 3
Swanson (10.1016/j.mineng.2016.01.010_b0575) 1981
Yan (10.1016/j.mineng.2016.01.010_b0685) 2012; 22
Peltosaari (10.1016/j.mineng.2016.01.010_b0490) 2015; 82
Barbosa (10.1016/j.mineng.2016.01.010_b0055) 2013; 557
Dresler (10.1016/j.mineng.2016.01.010_b0210) 1998
Tu (10.1016/j.mineng.2016.01.010_b0610) 2003
10.1016/j.mineng.2016.01.010_b0165
10.1016/j.mineng.2016.01.010_b0320
Cundy (10.1016/j.mineng.2016.01.010_b0180) 1963; 5
10.1016/j.mineng.2016.01.010_b0285
10.1016/j.mineng.2016.01.010_b0565
Yan (10.1016/j.mineng.2016.01.010_b0680) 2012; 117–118
10.1016/j.mineng.2016.01.010_b0445
Vu (10.1016/j.mineng.2016.01.010_b0635) 2013; 123
10.1016/j.mineng.2016.01.010_b0200
Hawash (10.1016/j.mineng.2016.01.010_b0295) 2010; 6
10.1016/j.mineng.2016.01.010_b0325
Colton (10.1016/j.mineng.2016.01.010_b0190) 1957
Moon (10.1016/j.mineng.2016.01.010_b0450) 2003; 72
Ossandon (10.1016/j.mineng.2016.01.010_b0480) 2010; 34
Gabra (10.1016/j.mineng.2016.01.010_b0280) 1978; 3
10.1016/j.mineng.2016.01.010_b0605
Zushi (10.1016/j.mineng.2016.01.010_b0700) 2003; 10
References_xml – volume: 557
  start-page: 61
  year: 2013
  end-page: 67
  ident: b0055
  article-title: Kinetic study on the chlorination of spodumene for lithium extraction with Cl
  publication-title: Thermochim. Acta
– volume: 2
  start-page: 299
  year: 1989
  end-page: 320
  ident: b0045
  article-title: Processing of ores to produce tantalum and lithium
  publication-title: Miner. Eng.
– reference: Mineralogy database, 2012. <
– reference: Boryta, D.A., 2011. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 8057764 B2.
– reference: Mazza, H., Whittier, S.L., 1960. Process for Recovering Alkali Metal Values from Lepidolite. US Patent No. 2940820.
– start-page: 81
  year: 1981
  end-page: 90
  ident: b0575
  article-title: Redetermination of the lepidolite-2M1 structure
  publication-title: Clays Clay Miner.
– volume: 103
  start-page: 642
  year: 2013
  end-page: 652
  ident: b0665
  article-title: Review on solar stills for brine desalination
  publication-title: Appl. Energy
– volume: 5
  start-page: 151
  year: 1963
  end-page: 156
  ident: b0180
  article-title: The occurrence of zinnwaldite in Cornwall
  publication-title: Clay Miner. Bull.
– volume: 58
  start-page: 44
  year: 1990
  ident: b0170
  article-title: Economic life of improvements associated with salt production
  publication-title: Appraisal J.
– reference: Jaskula, B.W. Lithium [Advance Release] USGS, 2013. Minerals Yearbook. <
– volume: 31
  start-page: 81
  year: 1983
  end-page: 96
  ident: b0185
  article-title: Crystal chemistry and stability of petalite
  publication-title: Tschermaks Min. Petr. Mitt.
– reference: Archarnhault, M., Quebec, Q., Olivier, C.A., 1968. Carbonatizing Roast of Lithium Bearing Ores. US Patent No. 3380802.
– volume: 6
  start-page: 301
  year: 2010
  end-page: 309
  ident: b0295
  article-title: Methodology for selective adsorption of lithium ions onto polymeric aluminium (III) hydroxide
  publication-title: J. Am. Sci.
– volume: 31
  start-page: 163
  year: 2010
  end-page: 167
  ident: b0310
  article-title: Construction and operational of solar pond in Zabuye Saline Lake
  publication-title: Tibet. Acta Energiae Solaris Sin.
– reference: USGS Mineral Yearbook, January 2013.
– volume: 34
  start-page: 209
  year: 1942
  end-page: 216
  ident: b9010
  article-title: Lithium chloride from lepidolite
  publication-title: J. Ind. Eng. Chem.
– reference: Forster, J., Rutherford, T.F., 2011. A lithium shortage: are electric vehicles under threat? 2011. A report by ETH Swiss Federal Institute of Technology Zurich. <
– volume: 114
  start-page: 788
  year: 2014
  end-page: 827
  ident: b0370
  article-title: Aqueous rechargeable Li and Na ion batteries
  publication-title: Chem. Rev.
– volume: 24
  start-page: 1595
  year: 2011
  end-page: 1602
  ident: b0545
  article-title: Extraction of lithium from micaceous waste from china clay production
  publication-title: Miner. Eng.
– start-page: 389
  year: 1991
  end-page: 399
  ident: b0560
  article-title: Simulation and economic evaluation of a solar evaporation system for concentrating sodium chloride brines
  publication-title: Sol. Energy
– reference: Pistilli, M., 2015. POSCO Lithium Brine Processing Technology Could be a Game Changer. <
– reference: Schultze, L.E., Bauer, D.J., Ronald, M.A., 1986. Separation of Lithium Chloride from Impurities. US Patent No. 4588565.
– volume: 15
  start-page: 71
  year: 2009
  end-page: 94
  ident: b0415
  article-title: Closed basin brine evolution and the influence of Ca–Cl inflow waters. Death Valley and Bristol Dry Lake, California, QaidamBasin, China, and Salar de Atacama, Chile
  publication-title: Aquat. Geochem.
– reference: Critical Materials Strategy, 2010. US Department of Energy December.
– reference: Siegens, H., Roder, O., 1936. Process for the Production of Lithium Salts. US Patent No. 2040573.
– volume: 23
  start-page: 659
  year: 2010
  end-page: 661
  ident: b0115
  article-title: New concepts for lithium minerals processing
  publication-title: Miner. Eng.
– reference: Brown, P.M., Jacob, S.R., Boryta, D.A., 1981b. Production of Highly Pure Lithium Chloride from Impure Brines. US Patent No. 4271131.
– reference: Lee, J.M., Bauman, W.C., 1978. Recovery of Lithium from Brines. US Patent No. 4116858.
– reference: Lee, J.M., Bauman, W.C., 1980. Recovery of Lithium from Brines. US Patent No. 4221767.
– volume: 154
  start-page: 33
  year: 2015
  end-page: 39
  ident: b0515
  article-title: Separation of lithium from sodium in chloride solutions using SSX systems with LIX 54 and Cyanex 923
  publication-title: Hydrometallurgy
– reference: Nicholson, C.M., 1946. Production of Lithium Compounds. US Patent No. 2413644.
– reference: Archarnbault, M., Quebec., Quebec., Mac-Ewan, J.U., Montreal, Quebec, Olivier, C.A., 1962. Method of Producing Lithium Carbonate from Spodumene. US Patent No. 3017243.
– reference: > (accessed 18 September 2015).
– reference: Morstadt, J., 1987. Treatment of Siliceous Lithium Concentrates (in Czech), Literature retrieval, Vuanch, Geofond Praha, P61609/1, Usti nad Labem.
– reference: Kim, J.S., Chung, K.W., Lee, J.Y., Kim, S.D., 2014. Method for Preparing High-purity Lithium Carbonate from Brine. US Patent No. 8679428 B2.
– reference: > (accessed 20 January 2015).
– year: 1995
  ident: b0500
  article-title: Handbook of Inorganic Compounds
– volume: 75
  start-page: 992
  year: 1990
  end-page: 1008
  ident: b0375
  article-title: The amblygonite-montebrasite series: characterization by single crystal structure refinement, infrared spectroscopy, and multinuclear MAS-NMR spectroscopy
  publication-title: Am. Mineral.
– year: 1999
  ident: b0225
  article-title: Lange Handbook of Chemistry
– reference: > (accessed 18 February 2015).
– reference: Brown, P.M., Susan, R.J., Boryta, D.A., 1981a. Process for Solar Concentration of Lithium Chloride Brine. US Patent No. 4243392.
– volume: 38
  start-page: 1049
  year: 1976
  end-page: 1052
  ident: b0540
  article-title: Extraction of lithium from neutral salt solutions with fluorinated β-diketones
  publication-title: J. Inorg. Nucl. Chem.
– start-page: 270
  year: 2003
  end-page: 273
  ident: b0610
  article-title: Non-ferrous metallurgy, materials recycling and environmental protection
  publication-title: CIP
– reference: > (accessed 2 November 2014).
– reference: Boryta, D.A., 2010. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 7858057 B2.
– reference: (accessed 9 February 2015).
– volume: 85
  start-page: 1537
  year: 2011
  end-page: 1542
  ident: b0470
  article-title: Experimental study of natural brine solar ponds in Tibet
  publication-title: Sol. Energy
– volume: 88
  start-page: 287
  year: 2014
  end-page: 288
  ident: b0505
  article-title: Prospect of lithium resources supply and demand
  publication-title: Acta Geol. Sin.
– reference: Kroll, A.V., Pieter, G., Luxemburg, 1953. Method of Recovering Lithium Compounds from Lithium Minerals, US Patent No. 2662809.
– reference: > (accessed 19 January 2016).
– volume: 86
  start-page: 850
  year: 2013
  end-page: 855
  ident: b0155
  article-title: Magnesium-doped manganese oxide with lithium ion-sieve property: lithium adsorption from salt lake brine
  publication-title: Bull. Chem. Soc. Jpn
– start-page: 3
  year: 1957
  end-page: 8
  ident: b0190
  article-title: Recovery of lithium from complex silicates
  publication-title: J. Am. Chem. Soc.
– volume: 100
  start-page: 4
  year: 2015
  end-page: 16
  ident: b0595
  article-title: Feasibility of extracting valuable minerals from desalination concentrate: a comprehensive literature review
  publication-title: J. Clean. Prod.
– volume: 123
  start-page: 9
  year: 2013
  end-page: 17
  ident: b0635
  article-title: Lithium and rubidium extraction from zinnwaldite by alkali digestion process: sintering mechanism and leaching kinetics
  publication-title: Int. J. Miner. Process.
– reference: Wilkomirksy, 1999. Production of Lithium Carbonate from Brine. US Patent No. 5993759.
– volume: 12
  start-page: 433
  year: 1999
  end-page: 436
  ident: b0015
  article-title: Processing a spodumene ore to obtain lithium concentrates for addition to glass and ceramic bodies
  publication-title: Miner. Eng.
– volume: 138
  start-page: 93
  year: 2013
  end-page: 99
  ident: b0615
  article-title: Recovery of magnesium from Uyuni salar brine as high purity magnesium oxalate
  publication-title: Hydrometallurgy
– volume: 43
  start-page: 1544
  year: 1951
  end-page: 1553
  ident: b0065
  article-title: Solar evaporation of salt brines
  publication-title: Ind. Eng. Chem.
– reference: Robinson, G.P., Vale, N.C., 1961. Recovery of Lithium from Ore. US Patent No. 2983576.
– reference: Norton, J.J., Schlegel, D.M., 1955. Lithium Resources of North America. Bulletin 1027-G. Reston, VA: USGS, pp. 325–350.
– reference: . (accessed 21st April 2015).
– volume: 117–118
  start-page: 64
  year: 2012
  end-page: 70
  ident: b0020
  article-title: Recovery of lithium from Uyuni salar brine
  publication-title: Hydrometallurgy
– volume: 2
  start-page: 65
  year: 2012
  end-page: 84
  ident: b0420
  article-title: Lithium resources and production: critical assessment and global projection
  publication-title: Minerals
– reference: Salil, S., 2012. Nickel Zinc (NiZn) Battery Technology Overview for Micro Hybrid Application. Power genix. <
– volume: 317
  start-page: 184
  year: 2013
  end-page: 192
  ident: b0570
  article-title: Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO)
  publication-title: Desalination
– reference: Brown, P.M., Boryta, D.A., 1993. Production of Low Boron Lithium Carbonate from Lithium Containing Brine. US Patent No. 5219550.
– volume: 3
  start-page: 325
  year: 1978
  end-page: 336
  ident: b0195
  article-title: Preliminary design and analysis of recovery of lithium from brine with the use of a selective extractant
  publication-title: Energy
– start-page: 1165
  year: 1996
  end-page: 1168
  ident: b0010
  article-title: Processing of Low Grade Zinnwaldite (Lithium Mica) Concentrate. Light Metals
– reference: Galli, D.E., Demetrio, H., 2011. Process for Recovering Lithium from Brine. US Patent No. 0300041 A1.
– volume: 64
  start-page: 26
  year: 2014
  end-page: 33
  ident: b0410
  article-title: A novel integrated solar desalination system with multi stage evaporation/heat recovery processes
  publication-title: Renew. Energy
– volume: 72
  start-page: 11
  year: 2003
  end-page: 24
  ident: b0450
  article-title: Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO
  publication-title: Int. J. Miner. Process.
– reference: Boryta, D.A., 2000. Method for Removing Magnesium from Brine to Yield Lithium Carbonate. US Patent No. 6143260.
– reference: SGS Minerals Services, 2010. Hard Rock Lithium Processing. SGS T3 1001. <
– reference: > (accessed 21 February 2015).
– volume: vol. 3
  year: 1986
  ident: b0300
  article-title: Principles of extractive metallurgy
  publication-title: Pyrometallurgy
– start-page: 318
  year: 2004
  end-page: 325
  ident: b0670
  article-title: Metallurgy of Light Metals
– reference: > (accessed 12 December 2014).
– volume: 605
  start-page: 63
  year: 2015
  end-page: 67
  ident: b0060
  article-title: Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride
  publication-title: Thermochim. Acta
– volume: 12
  start-page: 197
  year: 2006
  end-page: 202
  ident: b0350
  article-title: Lithium extraction from zinnwaldite wastes after gravity dressing of Sn–W ores
  publication-title: Acta Metall. Slovaca
– volume: 103
  start-page: 12
  year: 2010
  end-page: 18
  ident: b0340
  article-title: Processing of zinnwaldite waste to obtain Li
  publication-title: Hydrometallurgy
– volume: 82
  start-page: 54
  year: 2015
  end-page: 60
  ident: b0490
  article-title: Α-γ-β phase transformation of spodumene with hybrid microwave and conventional furnaces
  publication-title: Miner. Eng.
– reference: US Geological Survey, Mineral Commodity Summaries, February 2014.
– reference: Brown, P.M., Falletta, C.E., 1980. Process for Producing High Purity Lithium Carbonate. US Patent No. 4207297.
– reference: Polinares EU Policy on natural Resource, 2012. <
– start-page: 1303
  year: 1998
  end-page: 1308
  ident: b0210
  article-title: The Extraction of Lithium Carbonate from a Pegmatite. Light Metals
– reference: Deer, W.A., Howie, R.A., Zussman, J., 1978. Rock-forming minerals, vol. 2A. Single-chain Silicates, second ed. Longman, London.
– volume: 10
  start-page: 171
  year: 2003
  end-page: 184
  ident: b0700
  article-title: Extraction kinetics of lithium with a mixture of a β-diketone and a neutral organophosphorous compounds and the molecular dynamics of the lithium complex formation at the heptane-water interface
  publication-title: Solvent Extr. Res. Dev.
– volume: 153
  start-page: 154
  year: 2015
  end-page: 159
  ident: b0230
  article-title: Extraction of lithium from lepidolite via iron sulphide roasting and water leaching
  publication-title: Hydrometallurgy
– reference: Boryta, D.A., 2002. Recovery of Lithium Compounds from Brines. US Patent No. 6497850 B1.
– reference: Coleman, J.H., Jaffa, N.E., 1935. Recovering Lithium Compounds. US Patent No. 2024026.
– reference: > (accessed 12 September 2015).
– reference: Brown, P.M., 1990. Production of Lithium metal Grade Lithium Chloride from Lithium Containing Brine. US Patent No. 4980136.
– reference: Ellestad, R.B., Ileute, K.M., Minn, M., 1950. Method of Extracting Lithium Values from Spodumene Ores. US Patent No. 2516109.
– reference: Davidson, C.F., 1981. Recovery of Lithium from Clay by Selective Chlorination, Pgh. [i.e. Pittsburgh], US Dept. of the Interior, Bureau of Mines.
– reference: Galaxy Resources Ltd, 2011. Galaxy Resources Ltd. <
– volume: 150
  start-page: 192
  year: 2014
  end-page: 208
  ident: b0440
  article-title: Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review
  publication-title: Hydrometallurgy
– reference: The Lithium Market. A Report by Fox-Davies Resources Specialist, 2013. <
– volume: 48
  start-page: 55
  year: 2012
  end-page: 69
  ident: b0355
  article-title: Global lithium resources: relative importance of pegmatite, brine and other deposits
  publication-title: Ore Geol. Rev.
– volume: 42
  start-page: 1105
  year: 2004
  end-page: 1115
  ident: b0395
  article-title: Structural variation in the lithiophilite–triphylite series and other Olivine-group structures
  publication-title: Can. Mineral.
– reference: > (assessed 23 March 2015).
– reference: Rajasthan Renewable Energy, 2015. <
– reference: Sivander, K.A., Gard, R., Hasselby, V.H., Wallden, S.J., 1941. Method of Recovering Lithium Salt from Lithium Containing Minerals. US Patent No. 2230167.
– volume: 121–124
  start-page: 54
  year: 2012
  end-page: 59
  ident: b0690
  article-title: A novel process for extracting lithium from lepidolite
  publication-title: Hydrometallurgy
– volume: 76
  start-page: 611
  year: 1991
  end-page: 616
  ident: b0455
  article-title: Experimental study of Li-rich granitic pegmatites: Part II. Spodumene
  publication-title: Am. Mineral
– volume: 147–148
  start-page: 1
  year: 2014
  end-page: 6
  ident: b0535
  article-title: Novel process for the extraction of lithium from β-spodumene by leaching with HF
  publication-title: Hydrometallurgy
– reference: Walter, R., Bichowsky, F.R., 1935. Method of Recovering Lithium from its Ores. US Patent No. 2020854.
– volume: 34
  start-page: 620
  year: 2010
  end-page: 630
  ident: b0480
  article-title: Planning and scheduling of salt harvest in solar evaporation ponds
  publication-title: Comput. Chem. Eng.
– volume: 13
  start-page: 13
  year: 1986
  end-page: 21
  ident: b0460
  article-title: The crystal structure of masutomilite Mn analogue of zinnwaldite
  publication-title: Mineral. J.
– reference: Lithium World Nuclear Association, 2014. <
– volume: 3
  start-page: 428
  year: 1958
  end-page: 437
  ident: b0600
  article-title: Die Aufklarung der Struktur des Amblygonits mit Hilfe der Minimumfunktion
  publication-title: Kristallografia
– volume: 3
  start-page: 305
  year: 1978
  end-page: 313
  ident: b0040
  article-title: A review of extractive processes for lithium recovery from ores and brines
  publication-title: Energy
– reference: ECEs-Energy Critical Elements, 2011. Securing materials for emerging technologies. A Report by the APS Panel on Public Affairs & the Materials Research Society.
– volume: 3
  start-page: 23
  year: 1978
  end-page: 33
  ident: b0280
  article-title: Lithium chloride extraction by n-butanol
  publication-title: Hydrometallurgy
– reference: Botton, R., Deigrange, J.P., Esinet, L., Steinmetz, A., 1965. Method of Recovering Lithium from Lepidolite. US Patent No. 3189407.
– reference: Fox-Devies Resources Specialist, 2013.
– reference: Garrett, D.E., 1981. Process for Recovering Lithium from Brine by Salting Out Lithium Sulfate Monohydrate. US Patent No. 4287163.
– reference: Victor, K.A., 1953. Method of Recovering Lithium Compounds from Lithium Minerals. US Patent No. 2793933.
– reference: Olivier, C.A., Panneton, J., Perusse, J., 1978. Continuous Production of Lithium Carbonate. U.S. Patent No. 4124684.
– reference: Outotec Lithium Production Technologies. 2013. <
– reference: Brown, D., 2010. Lithium World Class Deposit. <
– reference: Amouzegar, K., Amant, G.S., Harrison, S., 2000. Process for the Purification of Lithium Carbonate. US Patent No. 6048507.
– reference: > (accessed 20 April 2015).
– volume: 109
  start-page: 43
  year: 2011
  end-page: 46
  ident: b0160
  article-title: Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process
  publication-title: Hydrometallurgy
– volume: 134–135
  start-page: 54
  year: 2013
  end-page: 61
  ident: b0400
  article-title: Factors affecting the extraction of lithium from lepidolite
  publication-title: Hydrometallurgy
– reference: Rosett, W., Va, O., Bichowsky F.R., 1935. Method of Recovering Lithium from its Ores. US Patent No. 2020854.
– reference: Boryta, D.A., 2009. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 7547426 B2.
– volume: 115
  start-page: 133
  year: 2015
  end-page: 144
  ident: b0695
  article-title: Extracting lithium from Tibetan Dangxiong Tso Salt Lake of carbonate type by using geothermal salinity-gradient solar pond
  publication-title: Sol. Energy
– reference: Kalenowski, L.H., Runke, S.M., 1952. Recovery of Lithium from Spodumene–Amblygonite Mixtures. Bureau of Mines, US Department of the Interior 48631952.
– reference: > (accessed 22 February 2015).
– volume: 3
  start-page: 357
  year: 2007
  end-page: 361
  ident: b0205
  article-title: Recovery of lithium from salt lake bittern using aluminium salt adsorbent
  publication-title: Chin. J. Rare Met.
– volume: 56
  start-page: 29
  year: 2014
  end-page: 34
  ident: b0050
  article-title: Lithium extraction from β-spodumene through chlorination with chlorine gas
  publication-title: Miner. Eng.
– reference: Dwyer, T.E., Passaic, N.J., 1957. Recovery of Lithium from Spüdumene Ores. US Patent No. 2801153.
– reference: Brown, P.M., Jacob, S.R., 1981. Process for Purification of Lithium Chloride. US Patent No. 4274834.
– volume: 158
  start-page: 221
  year: 2003
  end-page: 224
  ident: b0290
  article-title: Contribution to the lithium recovery from brine
  publication-title: Desalination
– reference: Boryta, D.A., 2007. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 7157065 B2.
– volume: 141
  start-page: 8
  year: 2014
  end-page: 16
  ident: b0405
  article-title: Iron sulphate roasting for extraction of lithium from lepidolite
  publication-title: Hydrometallurgy
– volume: 110–111
  start-page: 1
  year: 2012
  end-page: 5
  ident: b0675
  article-title: Extraction of lithium from lepidolite by sulfation roasting and water leaching
  publication-title: Int. J. Miner. Process.
– start-page: 667
  year: 2007
  end-page: 677
  ident: b0330
  publication-title: European Metallurgical Conference
– volume: 53
  start-page: 108
  year: 2009
  end-page: 112
  ident: b0335
  article-title: Obtaining Li
  publication-title: Ceram. Silik.
– volume: vol. 20
  start-page: 33
  year: 2008
  end-page: 60
  ident: b0655
  article-title: Ullmann’s Encyclopedia of Industrial Chemistry
– reference: Boryta, D.A., 2005. Production of Lithium Compounds from Lithium Containing Brine. US Patent No. 6921522 B2.
– reference: Wagner, R., 2006. Battery Fuel Gauges: Accurately Measuring Charge Level. <
– volume: 117–118
  start-page: 116
  year: 2012
  end-page: 118
  ident: b0680
  article-title: Extraction of valuable metals from lepidolite
  publication-title: Hydrometallurgy
– volume: 258A
  start-page: 312
  year: 1960
  end-page: 324
  ident: b0585
  article-title: β-spodumene solid solutions and the join Li
  publication-title: Am. J. Sci.
– reference: World Energy Assessment, A Report on Energy and the Challenge of Sustainability (UNDP), 2000. <
– reference: >, <
– reference: European Commission Enterprise and Industry (ECEI), 2010. Critical raw materials for the EU. Report of the Ad-hoc Working Group on Defining Critical Raw Materials. <
– reference: > (accessed 23 February 2015).
– volume: 72
  start-page: 447
  year: 2002
  end-page: 454
  ident: b0005
  article-title: Design methodology for a salt gradient solar pond coupled with an evaporation pond
  publication-title: Sol. Energy
– reference: Frevel, L.K., Kressley, L.J., 1962. Separation of Lithium from Lithium Bearing Micas and Amblygonite. US Patent No. 3032389.
– volume: vol. 13
  year: 1973
  ident: b0305
  article-title: The chemistry of lithium sodium potassium cesium and francium
  publication-title: Inorganic Chemistry
– volume: 22
  start-page: 1753
  year: 2012
  end-page: 1759
  ident: b0685
  article-title: Extraction of lithium from lepidolite using chlorination roasting and water leaching process
  publication-title: Trans. Nonferr. Met. Soc.
– reference: HSC Chemistry (6.0), Chemical Reactions and Equilibrium Calculations.
– reference: Lee, J.M., Bauman, W.C., 1982. Recovery of Lithium from Brines. US Patent No. 4347327.
– reference: Jandova, J., Vu, H.N., Dvorak, P., 2007a. Waste Recycling XI. In: Gondek, H., Fecko, P., Kursnierova, M., Tora, B. (Eds.), VSB-TU Ostrava, Kosice, Slovakia, pp. 83–88.
– reference: Boryta, D.A., 2001. Recovery of Lithium Compounds from Brines. US Patent No. 6207126 B1.
– year: 2004
  ident: b0270
  article-title: Handbook of Lithium and Natural Calcium Chloride: Their Deposits, Processing, Uses and Properties
– reference: Boryta, D.A., 2008. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 7449161 B2.
– ident: 10.1016/j.mineng.2016.01.010_b0245
– ident: 10.1016/j.mineng.2016.01.010_b0520
– volume: 13
  start-page: 13
  issue: 1
  year: 1986
  ident: 10.1016/j.mineng.2016.01.010_b0460
  article-title: The crystal structure of masutomilite Mn analogue of zinnwaldite
  publication-title: Mineral. J.
  doi: 10.2465/minerj.13.13
– ident: 10.1016/j.mineng.2016.01.010_b0085
– ident: 10.1016/j.mineng.2016.01.010_b0360
– ident: 10.1016/j.mineng.2016.01.010_b0325
– volume: 2
  start-page: 299
  issue: 3
  year: 1989
  ident: 10.1016/j.mineng.2016.01.010_b0045
  article-title: Processing of ores to produce tantalum and lithium
  publication-title: Miner. Eng.
  doi: 10.1016/0892-6875(89)90001-0
– volume: 56
  start-page: 29
  year: 2014
  ident: 10.1016/j.mineng.2016.01.010_b0050
  article-title: Lithium extraction from β-spodumene through chlorination with chlorine gas
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2013.10.026
– volume: 2
  start-page: 65
  year: 2012
  ident: 10.1016/j.mineng.2016.01.010_b0420
  article-title: Lithium resources and production: critical assessment and global projection
  publication-title: Minerals
  doi: 10.3390/min2010065
– ident: 10.1016/j.mineng.2016.01.010_b0495
– volume: 141
  start-page: 8
  year: 2014
  ident: 10.1016/j.mineng.2016.01.010_b0405
  article-title: Iron sulphate roasting for extraction of lithium from lepidolite
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2013.09.016
– ident: 10.1016/j.mineng.2016.01.010_b0145
– volume: 64
  start-page: 26
  year: 2014
  ident: 10.1016/j.mineng.2016.01.010_b0410
  article-title: A novel integrated solar desalination system with multi stage evaporation/heat recovery processes
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.10.040
– volume: vol. 3
  year: 1986
  ident: 10.1016/j.mineng.2016.01.010_b0300
  article-title: Principles of extractive metallurgy
– volume: 34
  start-page: 620
  year: 2010
  ident: 10.1016/j.mineng.2016.01.010_b0480
  article-title: Planning and scheduling of salt harvest in solar evaporation ponds
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2009.09.008
– volume: 138
  start-page: 93
  year: 2013
  ident: 10.1016/j.mineng.2016.01.010_b0615
  article-title: Recovery of magnesium from Uyuni salar brine as high purity magnesium oxalate
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2013.05.013
– ident: 10.1016/j.mineng.2016.01.010_b0030
– volume: 82
  start-page: 54
  year: 2015
  ident: 10.1016/j.mineng.2016.01.010_b0490
  article-title: Α-γ-β phase transformation of spodumene with hybrid microwave and conventional furnaces
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2015.04.012
– ident: 10.1016/j.mineng.2016.01.010_b0110
– volume: 22
  start-page: 1753
  year: 2012
  ident: 10.1016/j.mineng.2016.01.010_b0685
  article-title: Extraction of lithium from lepidolite using chlorination roasting and water leaching process
  publication-title: Trans. Nonferr. Met. Soc.
  doi: 10.1016/S1003-6326(11)61383-6
– volume: 3
  start-page: 357
  year: 2007
  ident: 10.1016/j.mineng.2016.01.010_b0205
  article-title: Recovery of lithium from salt lake bittern using aluminium salt adsorbent
  publication-title: Chin. J. Rare Met.
– ident: 10.1016/j.mineng.2016.01.010_b0265
– volume: 34
  start-page: 209
  issue: 2
  year: 1942
  ident: 10.1016/j.mineng.2016.01.010_b9010
  article-title: Lithium chloride from lepidolite
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1021/ie50386a014
– ident: 10.1016/j.mineng.2016.01.010_b0605
– volume: 86
  start-page: 850
  issue: 7
  year: 2013
  ident: 10.1016/j.mineng.2016.01.010_b0155
  article-title: Magnesium-doped manganese oxide with lithium ion-sieve property: lithium adsorption from salt lake brine
  publication-title: Bull. Chem. Soc. Jpn
  doi: 10.1246/bcsj.20130019
– ident: 10.1016/j.mineng.2016.01.010_b0425
– ident: 10.1016/j.mineng.2016.01.010_b0555
– volume: 12
  start-page: 197
  year: 2006
  ident: 10.1016/j.mineng.2016.01.010_b0350
  article-title: Lithium extraction from zinnwaldite wastes after gravity dressing of Sn–W ores
  publication-title: Acta Metall. Slovaca
– volume: 103
  start-page: 12
  year: 2010
  ident: 10.1016/j.mineng.2016.01.010_b0340
  article-title: Processing of zinnwaldite waste to obtain Li2CO3
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2010.02.010
– ident: 10.1016/j.mineng.2016.01.010_b0125
– volume: 38
  start-page: 1049
  year: 1976
  ident: 10.1016/j.mineng.2016.01.010_b0540
  article-title: Extraction of lithium from neutral salt solutions with fluorinated β-diketones
  publication-title: J. Inorg. Nucl. Chem.
  doi: 10.1016/0022-1902(76)80027-9
– volume: 158
  start-page: 221
  year: 2003
  ident: 10.1016/j.mineng.2016.01.010_b0290
  article-title: Contribution to the lithium recovery from brine
  publication-title: Desalination
  doi: 10.1016/S0011-9164(03)00455-7
– volume: 75
  start-page: 992
  year: 1990
  ident: 10.1016/j.mineng.2016.01.010_b0375
  article-title: The amblygonite-montebrasite series: characterization by single crystal structure refinement, infrared spectroscopy, and multinuclear MAS-NMR spectroscopy
  publication-title: Am. Mineral.
– ident: 10.1016/j.mineng.2016.01.010_b0625
– volume: 117–118
  start-page: 64
  year: 2012
  ident: 10.1016/j.mineng.2016.01.010_b0020
  article-title: Recovery of lithium from Uyuni salar brine
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2012.02.008
– ident: 10.1016/j.mineng.2016.01.010_b0025
– volume: 76
  start-page: 611
  year: 1991
  ident: 10.1016/j.mineng.2016.01.010_b0455
  article-title: Experimental study of Li-rich granitic pegmatites: Part II. Spodumene+albite+quartz equilibrium
  publication-title: Am. Mineral
– volume: 109
  start-page: 43
  year: 2011
  ident: 10.1016/j.mineng.2016.01.010_b0160
  article-title: Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2011.05.006
– volume: 117–118
  start-page: 116
  year: 2012
  ident: 10.1016/j.mineng.2016.01.010_b0680
  article-title: Extraction of valuable metals from lepidolite
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2012.02.004
– volume: 114
  start-page: 788
  issue: 23
  year: 2014
  ident: 10.1016/j.mineng.2016.01.010_b0370
  article-title: Aqueous rechargeable Li and Na ion batteries
  publication-title: Chem. Rev.
  doi: 10.1021/cr500232y
– start-page: 1303
  year: 1998
  ident: 10.1016/j.mineng.2016.01.010_b0210
– ident: 10.1016/j.mineng.2016.01.010_b0365
– ident: 10.1016/j.mineng.2016.01.010_b0580
– ident: 10.1016/j.mineng.2016.01.010_b0640
– volume: 15
  start-page: 71
  year: 2009
  ident: 10.1016/j.mineng.2016.01.010_b0415
  article-title: Closed basin brine evolution and the influence of Ca–Cl inflow waters. Death Valley and Bristol Dry Lake, California, QaidamBasin, China, and Salar de Atacama, Chile
  publication-title: Aquat. Geochem.
  doi: 10.1007/s10498-008-9046-z
– volume: 103
  start-page: 642
  year: 2013
  ident: 10.1016/j.mineng.2016.01.010_b0665
  article-title: Review on solar stills for brine desalination
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.10.029
– ident: 10.1016/j.mineng.2016.01.010_b0105
– ident: 10.1016/j.mineng.2016.01.010_b0150
– volume: 153
  start-page: 154
  year: 2015
  ident: 10.1016/j.mineng.2016.01.010_b0230
  article-title: Extraction of lithium from lepidolite via iron sulphide roasting and water leaching
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2015.03.002
– ident: 10.1016/j.mineng.2016.01.010_b0240
– volume: vol. 20
  start-page: 33
  year: 2008
  ident: 10.1016/j.mineng.2016.01.010_b0655
– volume: 3
  start-page: 428
  year: 1958
  ident: 10.1016/j.mineng.2016.01.010_b0600
  article-title: Die Aufklarung der Struktur des Amblygonits mit Hilfe der Minimumfunktion
  publication-title: Kristallografia
– ident: 10.1016/j.mineng.2016.01.010_b0070
– volume: 115
  start-page: 133
  year: 2015
  ident: 10.1016/j.mineng.2016.01.010_b0695
  article-title: Extracting lithium from Tibetan Dangxiong Tso Salt Lake of carbonate type by using geothermal salinity-gradient solar pond
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.02.021
– ident: 10.1016/j.mineng.2016.01.010_b0645
– ident: 10.1016/j.mineng.2016.01.010_b0620
– ident: 10.1016/j.mineng.2016.01.010_b0345
– ident: 10.1016/j.mineng.2016.01.010_b0215
– ident: 10.1016/j.mineng.2016.01.010_b0475
– ident: 10.1016/j.mineng.2016.01.010_b0320
– volume: 154
  start-page: 33
  year: 2015
  ident: 10.1016/j.mineng.2016.01.010_b0515
  article-title: Separation of lithium from sodium in chloride solutions using SSX systems with LIX 54 and Cyanex 923
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2015.01.009
– ident: 10.1016/j.mineng.2016.01.010_b0390
– ident: 10.1016/j.mineng.2016.01.010_b0260
– ident: 10.1016/j.mineng.2016.01.010_b0285
– ident: 10.1016/j.mineng.2016.01.010_b0130
– volume: 12
  start-page: 433
  issue: 4
  year: 1999
  ident: 10.1016/j.mineng.2016.01.010_b0015
  article-title: Processing a spodumene ore to obtain lithium concentrates for addition to glass and ceramic bodies
  publication-title: Miner. Eng.
  doi: 10.1016/S0892-6875(99)00023-0
– volume: 3
  start-page: 325
  year: 1978
  ident: 10.1016/j.mineng.2016.01.010_b0195
  article-title: Preliminary design and analysis of recovery of lithium from brine with the use of a selective extractant
  publication-title: Energy
  doi: 10.1016/0360-5442(78)90029-4
– volume: 605
  start-page: 63
  year: 2015
  ident: 10.1016/j.mineng.2016.01.010_b0060
  article-title: Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2015.02.009
– volume: 147–148
  start-page: 1
  year: 2014
  ident: 10.1016/j.mineng.2016.01.010_b0535
  article-title: Novel process for the extraction of lithium from β-spodumene by leaching with HF
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2014.04.009
– ident: 10.1016/j.mineng.2016.01.010_b0090
– volume: 31
  start-page: 81
  year: 1983
  ident: 10.1016/j.mineng.2016.01.010_b0185
  article-title: Crystal chemistry and stability of petalite
  publication-title: Tschermaks Min. Petr. Mitt.
  doi: 10.1007/BF01084763
– volume: 24
  start-page: 1595
  year: 2011
  ident: 10.1016/j.mineng.2016.01.010_b0545
  article-title: Extraction of lithium from micaceous waste from china clay production
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2011.08.013
– volume: 43
  start-page: 1544
  issue: 7
  year: 1951
  ident: 10.1016/j.mineng.2016.01.010_b0065
  article-title: Solar evaporation of salt brines
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50499a025
– volume: 150
  start-page: 192
  year: 2014
  ident: 10.1016/j.mineng.2016.01.010_b0440
  article-title: Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2014.10.012
– ident: 10.1016/j.mineng.2016.01.010_b0430
– volume: 317
  start-page: 184
  year: 2013
  ident: 10.1016/j.mineng.2016.01.010_b0570
  article-title: Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO)
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.03.009
– volume: 110–111
  start-page: 1
  year: 2012
  ident: 10.1016/j.mineng.2016.01.010_b0675
  article-title: Extraction of lithium from lepidolite by sulfation roasting and water leaching
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2012.03.005
– start-page: 270
  year: 2003
  ident: 10.1016/j.mineng.2016.01.010_b0610
  article-title: Non-ferrous metallurgy, materials recycling and environmental protection
  publication-title: CIP
– ident: 10.1016/j.mineng.2016.01.010_b0175
– ident: 10.1016/j.mineng.2016.01.010_b0235
– ident: 10.1016/j.mineng.2016.01.010_b0510
– volume: vol. 13
  year: 1973
  ident: 10.1016/j.mineng.2016.01.010_b0305
  article-title: The chemistry of lithium sodium potassium cesium and francium
– volume: 85
  start-page: 1537
  year: 2011
  ident: 10.1016/j.mineng.2016.01.010_b0470
  article-title: Experimental study of natural brine solar ponds in Tibet
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.04.011
– ident: 10.1016/j.mineng.2016.01.010_b0095
– volume: 53
  start-page: 108
  issue: 2
  year: 2009
  ident: 10.1016/j.mineng.2016.01.010_b0335
  article-title: Obtaining Li2CO3 from Zinnwaldite wastes
  publication-title: Ceram. Silik.
– ident: 10.1016/j.mineng.2016.01.010_b0315
– ident: 10.1016/j.mineng.2016.01.010_b0435
– ident: 10.1016/j.mineng.2016.01.010_b0135
– volume: 58
  start-page: 44
  issue: 1
  year: 1990
  ident: 10.1016/j.mineng.2016.01.010_b0170
  article-title: Economic life of improvements associated with salt production
  publication-title: Appraisal J.
– volume: 10
  start-page: 171
  year: 2003
  ident: 10.1016/j.mineng.2016.01.010_b0700
  article-title: Extraction kinetics of lithium with a mixture of a β-diketone and a neutral organophosphorous compounds and the molecular dynamics of the lithium complex formation at the heptane-water interface
  publication-title: Solvent Extr. Res. Dev.
– ident: 10.1016/j.mineng.2016.01.010_b0565
– start-page: 81
  issue: 29
  year: 1981
  ident: 10.1016/j.mineng.2016.01.010_b0575
  article-title: Redetermination of the lepidolite-2M1 structure
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.1981.0290201
– volume: 3
  start-page: 305
  year: 1978
  ident: 10.1016/j.mineng.2016.01.010_b0040
  article-title: A review of extractive processes for lithium recovery from ores and brines
  publication-title: Energy
  doi: 10.1016/0360-5442(78)90027-0
– ident: 10.1016/j.mineng.2016.01.010_b9005
– ident: 10.1016/j.mineng.2016.01.010_b0100
– volume: 48
  start-page: 55
  year: 2012
  ident: 10.1016/j.mineng.2016.01.010_b0355
  article-title: Global lithium resources: relative importance of pegmatite, brine and other deposits
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2012.05.006
– ident: 10.1016/j.mineng.2016.01.010_b5000
– ident: 10.1016/j.mineng.2016.01.010_b0385
– ident: 10.1016/j.mineng.2016.01.010_b0660
– ident: 10.1016/j.mineng.2016.01.010_b0255
– ident: 10.1016/j.mineng.2016.01.010_b0530
– year: 1995
  ident: 10.1016/j.mineng.2016.01.010_b0500
– volume: 123
  start-page: 9
  year: 2013
  ident: 10.1016/j.mineng.2016.01.010_b0635
  article-title: Lithium and rubidium extraction from zinnwaldite by alkali digestion process: sintering mechanism and leaching kinetics
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2013.04.014
– volume: 557
  start-page: 61
  year: 2013
  ident: 10.1016/j.mineng.2016.01.010_b0055
  article-title: Kinetic study on the chlorination of spodumene for lithium extraction with Cl2 gas
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2013.01.033
– ident: 10.1016/j.mineng.2016.01.010_b0075
– volume: 42
  start-page: 1105
  year: 2004
  ident: 10.1016/j.mineng.2016.01.010_b0395
  article-title: Structural variation in the lithiophilite–triphylite series and other Olivine-group structures
  publication-title: Can. Mineral.
  doi: 10.2113/gscanmin.42.4.1105
– volume: 121–124
  start-page: 54
  year: 2012
  ident: 10.1016/j.mineng.2016.01.010_b0690
  article-title: A novel process for extracting lithium from lepidolite
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2012.04.006
– ident: 10.1016/j.mineng.2016.01.010_b0220
– ident: 10.1016/j.mineng.2016.01.010_b0650
– volume: 5
  start-page: 151
  year: 1963
  ident: 10.1016/j.mineng.2016.01.010_b0180
  article-title: The occurrence of zinnwaldite in Cornwall
  publication-title: Clay Miner. Bull.
– ident: 10.1016/j.mineng.2016.01.010_b0140
– volume: 23
  start-page: 659
  year: 2010
  ident: 10.1016/j.mineng.2016.01.010_b0115
  article-title: New concepts for lithium minerals processing
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2010.03.021
– year: 1999
  ident: 10.1016/j.mineng.2016.01.010_b0225
– start-page: 667
  year: 2007
  ident: 10.1016/j.mineng.2016.01.010_b0330
– volume: 72
  start-page: 11
  issue: 1–4
  year: 2003
  ident: 10.1016/j.mineng.2016.01.010_b0450
  article-title: Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO3]2) from other aluminosilicates
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/S0301-7516(03)00084-X
– volume: 88
  start-page: 287
  issue: 1
  year: 2014
  ident: 10.1016/j.mineng.2016.01.010_b0505
  article-title: Prospect of lithium resources supply and demand
  publication-title: Acta Geol. Sin.
– year: 2004
  ident: 10.1016/j.mineng.2016.01.010_b0270
– ident: 10.1016/j.mineng.2016.01.010_b0275
– ident: 10.1016/j.mineng.2016.01.010_b0550
– ident: 10.1016/j.mineng.2016.01.010_b0445
– ident: 10.1016/j.mineng.2016.01.010_b0590
– ident: 10.1016/j.mineng.2016.01.010_b0630
– ident: 10.1016/j.mineng.2016.01.010_b0200
– start-page: 318
  year: 2004
  ident: 10.1016/j.mineng.2016.01.010_b0670
– ident: 10.1016/j.mineng.2016.01.010_b0485
– start-page: 389
  issue: 46
  year: 1991
  ident: 10.1016/j.mineng.2016.01.010_b0560
  article-title: Simulation and economic evaluation of a solar evaporation system for concentrating sodium chloride brines
  publication-title: Sol. Energy
  doi: 10.1016/0038-092X(91)90055-2
– start-page: 1165
  year: 1996
  ident: 10.1016/j.mineng.2016.01.010_b0010
– volume: 72
  start-page: 447
  issue: 5
  year: 2002
  ident: 10.1016/j.mineng.2016.01.010_b0005
  article-title: Design methodology for a salt gradient solar pond coupled with an evaporation pond
  publication-title: Sol. Energy
  doi: 10.1016/S0038-092X(02)00021-X
– volume: 134–135
  start-page: 54
  year: 2013
  ident: 10.1016/j.mineng.2016.01.010_b0400
  article-title: Factors affecting the extraction of lithium from lepidolite
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2013.01.015
– ident: 10.1016/j.mineng.2016.01.010_b0525
– ident: 10.1016/j.mineng.2016.01.010_b0120
– ident: 10.1016/j.mineng.2016.01.010_b0250
– volume: 6
  start-page: 301
  issue: 11
  year: 2010
  ident: 10.1016/j.mineng.2016.01.010_b0295
  article-title: Methodology for selective adsorption of lithium ions onto polymeric aluminium (III) hydroxide
  publication-title: J. Am. Sci.
– volume: 100
  start-page: 4
  year: 2015
  ident: 10.1016/j.mineng.2016.01.010_b0595
  article-title: Feasibility of extracting valuable minerals from desalination concentrate: a comprehensive literature review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.03.031
– ident: 10.1016/j.mineng.2016.01.010_b0380
– volume: 31
  start-page: 163
  year: 2010
  ident: 10.1016/j.mineng.2016.01.010_b0310
  article-title: Construction and operational of solar pond in Zabuye Saline Lake
  publication-title: Tibet. Acta Energiae Solaris Sin.
– ident: 10.1016/j.mineng.2016.01.010_b0080
– start-page: 3
  year: 1957
  ident: 10.1016/j.mineng.2016.01.010_b0190
  article-title: Recovery of lithium from complex silicates
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 23
  year: 1978
  ident: 10.1016/j.mineng.2016.01.010_b0280
  article-title: Lithium chloride extraction by n-butanol
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(78)90004-X
– ident: 10.1016/j.mineng.2016.01.010_b0035
– volume: 258A
  start-page: 312
  year: 1960
  ident: 10.1016/j.mineng.2016.01.010_b0585
  article-title: β-spodumene solid solutions and the join Li2O–Al2O3–SiO2
  publication-title: Am. J. Sci.
– ident: 10.1016/j.mineng.2016.01.010_b0165
– ident: 10.1016/j.mineng.2016.01.010_b0465
SSID ssj0005789
Score 2.5987923
SecondaryResourceType review_article
Snippet •Critically reviewed various processes for the recovery of Li from minerals and brines.•Heat treatment is required for liberating Li from the mineral lattice...
Lithium (Li), an exceptional cathode material in rechargeable batteries, is an essential element in modern energy production and storage devices. The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119
SubjectTerms Brine
Energy-critical element
Exploitation
Extraction
Leaching
Lithium
Lithium minerals
Minerals
Rechargeable batteries
Recovering
Recovery
Salt water
Sustainability
Title Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources
URI https://dx.doi.org/10.1016/j.mineng.2016.01.010
https://www.proquest.com/docview/1798737637
https://www.proquest.com/docview/1808065230
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcQe9kepo0xja_KSHs1jRM3jnmrKqryMYQESLxFTn2GTiNFNH0cfzt3doIAoSFNyouds3zxOXdn-3dnxn4WOU4UmUmRgbJCeZMIawBE5cBWia5c4il2-NdpPrlUR1eDqxU26mJhCFbZ6v6o04O2bmv67Wj272az_nlSmDRHd1tS1igZMn4qpWmW7z08g3nocA0eEQui7sLnAsbrFj25-poAXnlI3klxtG-bp1eKOlif8Rf2uXUb-TBy9pWtQL3GPj1LJviN_R3G43weo1H4vObo3HEgkF2biJvPfajDXgJPDYcQ-icIIomKhUMEk-_zk1lzM1ve7vEzHAx-uM_H2IRTo3tkw9aOVxQ2iH3F3f_FOrscH1yMJqK9XEFMB1o2opLOo7smU-sLNNtTY1L0NmSKJfyNlZPGS2fttHBuAGizvEvBmkLh8s0CLrOy72y1ntfwg_EKxWoTsLiU8cpkzhbGKZBeG59AqgcbLOvGtJy2H0wXYPwpO4jZ7zJKoiRJlInEJ9lg4qnVXcy88Q697sRVvphBJRqHd1rudtLFtws6MbE1zJeLkrK5aVLB-h80lJkzp831zf_mYIt9pFJEBG2z1eZ-CTvo7DRVL8zmHvswPDyenD4C9cABCg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDI_GeIA9oDFADAYEaTxml7S9tpnEwzR2umO3CYlN2ltILw4c2nrTrifEA_tSfEHspEUbQkxCmtSX_knj2q7ttD_bjG2WOSqKSpVIIbMi81oKqwFE5cBWsqic9JQ7fHCYD4-z9yf9kyX2s8uFIVhla_ujTQ_Wuj3Sa7nZO59Oex9lqZMcw21FVaOU7DpY78P3b7hum78dvUMhv0mSwd7R7lC0rQXEpF-oRlTKeQxWVGJ9iU5ronWCvlYluIdKnDmlvXLWTkrn-oAW27sErC4zXLxYwEVGive9w-5maC6obcLW5RVcSRH67hF1gsjr8vUCqOwMQ8f6MyHK8lAtlBJ3_-4P__AMwd0NVtmDNk7lO5EVD9kS1Gts5Ur1wkfsx07ED_CY_sJnNcdokgOh-trK33zmwzGcJdDUcAi5hoIwmWjJOET0-jYfT5sv08XZFv-A3OejbT7AIZwGXSAZtna8ojxFnCv-bpg_Zse3wvInbLme1fCU8Qr1yEqwuHbymU6dLbXLQPlCewlJ0V9nacdTM2kfmDpunJoO0_bVREkYkoSRCje5zsTvUeex1McN1xeduMw1lTXojW4Y-bqTLp6d0y8aW8NsMTdUPq4gm1_84xoqBZrT1_xn_03BK3ZveHQwNuPR4f5zdp_ORDjSBltuLhbwAiOtpnoZNJuzT7f9Kv0CGV87sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advance+review+on+the+exploitation+of+the+prominent+energy-storage+element%3A+Lithium.+Part+I%3A+From+mineral+and+brine+resources&rft.jtitle=Minerals+engineering&rft.au=Choubey%2C+Pankaj+K.&rft.au=Kim%2C+Min-seuk&rft.au=Srivastava%2C+Rajiv+R.&rft.au=Lee%2C+Jae-chun&rft.date=2016-04-01&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.eissn=1872-9444&rft.volume=89&rft.spage=119&rft.epage=137&rft_id=info:doi/10.1016%2Fj.mineng.2016.01.010&rft.externalDocID=S0892687516300103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon