Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources
•Critically reviewed various processes for the recovery of Li from minerals and brines.•Heat treatment is required for liberating Li from the mineral lattice before leaching.•Solar evaporation of brine is crucial for Li enrichment to make the process viable.•Precipitation is extensively applied for...
Saved in:
Published in | Minerals engineering Vol. 89; pp. 119 - 137 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Critically reviewed various processes for the recovery of Li from minerals and brines.•Heat treatment is required for liberating Li from the mineral lattice before leaching.•Solar evaporation of brine is crucial for Li enrichment to make the process viable.•Precipitation is extensively applied for the separation and purification of Li as Li2CO3.•SX/IX/RO/adsorption is being explored as an alternative for process enhancement.
Lithium (Li), an exceptional cathode material in rechargeable batteries, is an essential element in modern energy production and storage devices. The continuously increasing demand for lithium in these devices, along with their steady production, has led to the high economic importance of lithium, making it one of the strategically influential elements. The uneven distribution of mineral resources in the earth’s crust and the unequal concentration in brine and sea water reserves also causes lithium exploitation to be of critical importance. This situation requires the efficient processing of lithium resources either by the processing of minerals/brine/sea water or by the recycling of spent lithium-ion batteries. To explore new routes for the sustainable exploitation of lithium, it is imperative to review the methodologies that have already been studied and are currently in industrial practice. In this study, we present an overview of the processes investigated for the extraction, separation and recovery of lithium from not only a technological perspective but also from a chemical perspective.
In Part I, this state-of-the-art review addresses the processing of lithium resources that currently contributes to the commercial exploitation of this energy-critical element. This review includes lithium recovery from mineral (spodumene, petalite, lepidolite, zinnwaldite) and brine resources. A deliberation of the mineralogical aspect along with a review of the extraction process of lithium minerals is sub-divided according to the chosen media, namely, chloride, sulfate and carbonate, for their conversion into a leachable form, whereas the division of aqua-based resources is based on the lithium concentration. In the discussion, the advantages and/or disadvantages, problems and prospects of the processes are also summarized. We believe this article can contribute to improving the extraction and recovery processes of lithium toward the sustainability of this critical element and can provide future research directions. |
---|---|
AbstractList | Lithium (Li), an exceptional cathode material in rechargeable batteries, is an essential element in modern energy production and storage devices. The continuously increasing demand for lithium in these devices, along with their steady production, has led to the high economic importance of lithium, making it one of the strategically influential elements. The uneven distribution of mineral resources in the earth's crust and the unequal concentration in brine and sea water reserves also causes lithium exploitation to be of critical importance. This situation requires the efficient processing of lithium resources either by the processing of minerals/brine/sea water or by the recycling of spent lithium-ion batteries. To explore new routes for the sustainable exploitation of lithium, it is imperative to review the methodologies that have already been studied and are currently in industrial practice. In this study, we present an overview of the processes investigated for the extraction, separation and recovery of lithium from not only a technological perspective but also from a chemical perspective. In Part I, this state-of-the-art review addresses the processing of lithium resources that currently contributes to the commercial exploitation of this energy-critical element. This review includes lithium recovery from mineral (spodumene, petalite, lepidolite, zinnwaldite) and brine resources. A deliberation of the mineralogical aspect along with a review of the extraction process of lithium minerals is sub-divided according to the chosen media, namely, chloride, sulfate and carbonate, for their conversion into a leachable form, whereas the division of aqua-based resources is based on the lithium concentration. In the discussion, the advantages and/or disadvantages, problems and prospects of the processes are also summarized. We believe this article can contribute to improving the extraction and recovery processes of lithium toward the sustainability of this critical element and can provide future research directions. •Critically reviewed various processes for the recovery of Li from minerals and brines.•Heat treatment is required for liberating Li from the mineral lattice before leaching.•Solar evaporation of brine is crucial for Li enrichment to make the process viable.•Precipitation is extensively applied for the separation and purification of Li as Li2CO3.•SX/IX/RO/adsorption is being explored as an alternative for process enhancement. Lithium (Li), an exceptional cathode material in rechargeable batteries, is an essential element in modern energy production and storage devices. The continuously increasing demand for lithium in these devices, along with their steady production, has led to the high economic importance of lithium, making it one of the strategically influential elements. The uneven distribution of mineral resources in the earth’s crust and the unequal concentration in brine and sea water reserves also causes lithium exploitation to be of critical importance. This situation requires the efficient processing of lithium resources either by the processing of minerals/brine/sea water or by the recycling of spent lithium-ion batteries. To explore new routes for the sustainable exploitation of lithium, it is imperative to review the methodologies that have already been studied and are currently in industrial practice. In this study, we present an overview of the processes investigated for the extraction, separation and recovery of lithium from not only a technological perspective but also from a chemical perspective. In Part I, this state-of-the-art review addresses the processing of lithium resources that currently contributes to the commercial exploitation of this energy-critical element. This review includes lithium recovery from mineral (spodumene, petalite, lepidolite, zinnwaldite) and brine resources. A deliberation of the mineralogical aspect along with a review of the extraction process of lithium minerals is sub-divided according to the chosen media, namely, chloride, sulfate and carbonate, for their conversion into a leachable form, whereas the division of aqua-based resources is based on the lithium concentration. In the discussion, the advantages and/or disadvantages, problems and prospects of the processes are also summarized. We believe this article can contribute to improving the extraction and recovery processes of lithium toward the sustainability of this critical element and can provide future research directions. |
Author | Choubey, Pankaj K. Lee, Jin-Young Lee, Jae-chun Kim, Min-seuk Srivastava, Rajiv R. |
Author_xml | – sequence: 1 givenname: Pankaj K. surname: Choubey fullname: Choubey, Pankaj K. – sequence: 2 givenname: Min-seuk surname: Kim fullname: Kim, Min-seuk – sequence: 3 givenname: Rajiv R. surname: Srivastava fullname: Srivastava, Rajiv R. – sequence: 4 givenname: Jae-chun orcidid: 0000-0002-9459-3825 surname: Lee fullname: Lee, Jae-chun email: jclee@kigam.re.kr – sequence: 5 givenname: Jin-Young surname: Lee fullname: Lee, Jin-Young |
BookMark | eNqFUUtLMzEUDaJgffwDF1m6mTFJM52kiw9EfEFBF7oOMblTU2aSfknqY-F_N2NduVC4EO7hPMg9B2jXBw8InVBSU0JnZ6t6cB78smZlqwktQ3bQhIqWVZJzvosmREhWzUTb7KODlFaEkKYVcoI-zu2L9gZwhBcHrzh4nJ8Bw9u6Dy7r7AoQui9sHcNXTMbgIS7fq5RD1MtC7mEo8BwvXH52m6HG9zpmfDvHV0WCR1HUPdbe4qdYlpKVwiYaSEdor9N9guPv9xA9Xl0-XNxUi7vr24vzRWWalubqidqONJwy3Qk2FUZKRlpKWdk4a7ilsqNWayOsbYBJ2VkGWgpOCdfARDs9RKdb3_KH_xtIWQ0uGeh77SFskqKCCDJr2JT8TW1lMWxn09GVb6kmhpQidGod3aDju6JEjcWoldoWo8ZiFKFlxoT5D5n5vnSO2vV_if9txVDOVRqLKhkHpUDrIpisbHC_G3wCSUau2A |
CitedBy_id | crossref_primary_10_1016_j_jenvman_2024_120963 crossref_primary_10_1016_j_jclepro_2024_142863 crossref_primary_10_3390_environments11050097 crossref_primary_10_1016_j_jallcom_2019_152604 crossref_primary_10_1021_acs_jced_9b00073 crossref_primary_10_1021_acs_jced_2c00039 crossref_primary_10_1016_j_mineng_2020_106643 crossref_primary_10_1016_j_mineng_2018_01_010 crossref_primary_10_1002_adma_202415509 crossref_primary_10_1016_j_desal_2019_114081 crossref_primary_10_24927_rce2020_034 crossref_primary_10_1016_j_memsci_2022_121312 crossref_primary_10_1021_jacs_3c04928 crossref_primary_10_1016_j_desal_2020_114894 crossref_primary_10_1021_acsaem_1c02654 crossref_primary_10_1016_j_hydromet_2019_105160 crossref_primary_10_1021_acs_jced_7b00570 crossref_primary_10_3390_su17010255 crossref_primary_10_3390_min14080849 crossref_primary_10_1016_j_enpol_2020_111516 crossref_primary_10_1016_j_hydromet_2019_105166 crossref_primary_10_3390_met14111260 crossref_primary_10_3390_mining5010019 crossref_primary_10_1080_10426914_2022_2136387 crossref_primary_10_3390_ma16247548 crossref_primary_10_3390_batteries10050167 crossref_primary_10_1016_j_jece_2024_115276 crossref_primary_10_1016_j_mineng_2022_107747 crossref_primary_10_1016_j_mineng_2022_107986 crossref_primary_10_1016_j_mineng_2022_107503 crossref_primary_10_1016_j_matt_2021_06_049 crossref_primary_10_1021_acs_jced_2c00022 crossref_primary_10_1007_s40831_021_00430_7 crossref_primary_10_1016_j_conbuildmat_2020_121723 crossref_primary_10_1002_aic_17219 crossref_primary_10_1016_j_cep_2023_109508 crossref_primary_10_1016_j_ccr_2021_213801 crossref_primary_10_1016_j_desal_2023_116662 crossref_primary_10_1016_j_chemgeo_2021_120463 crossref_primary_10_1016_j_jallcom_2021_159402 crossref_primary_10_1016_j_scitotenv_2020_137523 crossref_primary_10_1002_aic_16246 crossref_primary_10_1016_j_matt_2021_05_010 crossref_primary_10_1021_acsmacrolett_1c00243 crossref_primary_10_1007_s11837_024_06973_w crossref_primary_10_3390_met10101312 crossref_primary_10_1080_08827508_2023_2295849 crossref_primary_10_1016_j_mineng_2020_106743 crossref_primary_10_1016_j_matpr_2022_12_175 crossref_primary_10_1080_08927022_2022_2094372 crossref_primary_10_1016_j_jece_2024_113680 crossref_primary_10_1016_j_seppur_2021_119134 crossref_primary_10_1039_C8TB02906G crossref_primary_10_3390_molecules28217356 crossref_primary_10_1039_D1AY00937K crossref_primary_10_1016_j_seppur_2020_116940 crossref_primary_10_1021_acs_jpcc_3c00723 crossref_primary_10_1016_j_cemconcomp_2022_104736 crossref_primary_10_1021_acssuschemeng_1c06964 crossref_primary_10_1016_j_minpro_2017_01_005 crossref_primary_10_1016_j_matpr_2021_03_645 crossref_primary_10_1016_j_molliq_2021_117729 crossref_primary_10_1016_j_jallcom_2024_176058 crossref_primary_10_1016_j_memsci_2021_119542 crossref_primary_10_1080_12269328_2024_2338087 crossref_primary_10_1016_j_desal_2021_115324 crossref_primary_10_1016_j_fusengdes_2021_112500 crossref_primary_10_1016_j_hydromet_2019_01_003 crossref_primary_10_1016_j_cherd_2018_10_009 crossref_primary_10_1016_j_seppur_2020_117580 crossref_primary_10_1016_j_mineng_2020_106512 crossref_primary_10_1016_j_jiec_2024_05_052 crossref_primary_10_1080_08827508_2023_2243012 crossref_primary_10_1016_j_jobe_2024_109256 crossref_primary_10_2174_0118741231333549240909070331 crossref_primary_10_1016_j_seppur_2021_118613 crossref_primary_10_1126_sciadv_aaq0066 crossref_primary_10_1080_08827508_2020_1781628 crossref_primary_10_3390_su16198513 crossref_primary_10_3390_en16073228 crossref_primary_10_1016_j_desal_2022_115733 crossref_primary_10_1016_j_mineng_2019_105868 crossref_primary_10_1080_00084433_2025_2471612 crossref_primary_10_1016_j_hydromet_2019_105193 crossref_primary_10_1016_j_seppur_2023_125066 crossref_primary_10_1007_s10853_020_05147_8 crossref_primary_10_1016_j_jiec_2023_03_040 crossref_primary_10_1002_jctb_7019 crossref_primary_10_1016_j_mineng_2024_108936 crossref_primary_10_1007_s12598_020_01503_4 crossref_primary_10_1016_j_seppur_2023_123686 crossref_primary_10_1007_s13204_021_01832_5 crossref_primary_10_1002_cjce_23640 crossref_primary_10_1016_j_tca_2020_178609 crossref_primary_10_1016_j_rser_2024_114642 crossref_primary_10_1016_j_geoen_2024_213189 crossref_primary_10_1016_j_mineng_2020_106205 crossref_primary_10_3389_fchem_2020_578044 crossref_primary_10_1016_j_powtec_2021_11_036 crossref_primary_10_55713_jmmm_v35i1_2245 crossref_primary_10_1016_j_memsci_2022_121113 crossref_primary_10_1002_ceat_201700604 crossref_primary_10_1016_j_desal_2020_114850 crossref_primary_10_1126_sciadv_adq9823 crossref_primary_10_1016_j_rser_2021_111813 crossref_primary_10_4028_p_v629ly crossref_primary_10_1016_j_mineng_2018_09_011 crossref_primary_10_1016_j_sab_2024_106994 crossref_primary_10_1002_ente_202100145 crossref_primary_10_1016_j_seppur_2024_129316 crossref_primary_10_1016_j_cej_2024_148571 crossref_primary_10_1016_j_cis_2020_102346 crossref_primary_10_1021_acsestwater_3c00013 crossref_primary_10_1039_D0AN02088E crossref_primary_10_1007_s10854_021_07293_4 crossref_primary_10_1016_j_desal_2021_115269 crossref_primary_10_3390_batteries10110379 crossref_primary_10_1002_pol_20200500 crossref_primary_10_1021_acs_iecr_6b04892 crossref_primary_10_1016_j_hydromet_2019_03_011 crossref_primary_10_1016_j_hydromet_2019_105129 crossref_primary_10_3390_membranes10080178 crossref_primary_10_1016_j_mineng_2021_107246 crossref_primary_10_1021_acsami_7b14858 crossref_primary_10_1016_j_desal_2024_118270 crossref_primary_10_1016_j_molliq_2020_114709 crossref_primary_10_1016_j_seppur_2020_116757 crossref_primary_10_1016_j_gsme_2024_08_002 crossref_primary_10_1007_s40831_025_01045_y crossref_primary_10_1016_j_cej_2021_133993 crossref_primary_10_1016_j_jclepro_2019_04_304 crossref_primary_10_1016_j_desal_2024_117618 crossref_primary_10_1007_s13146_024_00921_0 crossref_primary_10_1080_15567036_2019_1587068 crossref_primary_10_1134_S0036023621060231 crossref_primary_10_1021_acsnano_9b00780 crossref_primary_10_1155_2022_6884947 crossref_primary_10_1016_j_desal_2019_114306 crossref_primary_10_1021_acs_iecr_2c03153 crossref_primary_10_1016_j_apsusc_2023_158117 crossref_primary_10_1021_acs_jpcc_9b10074 crossref_primary_10_3390_met14091075 crossref_primary_10_1016_j_desal_2022_116186 crossref_primary_10_1016_j_wasman_2023_08_030 crossref_primary_10_1177_0734242X20957403 crossref_primary_10_1016_j_ccr_2024_215923 crossref_primary_10_1016_j_hydromet_2017_08_003 crossref_primary_10_1021_acs_iecr_3c00415 crossref_primary_10_1021_acs_iecr_4c04662 crossref_primary_10_1007_s40831_024_00787_5 crossref_primary_10_1016_j_hydromet_2019_105141 crossref_primary_10_3390_app14041463 crossref_primary_10_1016_j_seppur_2020_116869 crossref_primary_10_1016_j_jct_2022_106814 crossref_primary_10_1016_j_ces_2023_119682 crossref_primary_10_1016_j_apsusc_2021_150022 crossref_primary_10_1016_j_cherd_2020_12_023 crossref_primary_10_1016_j_saa_2021_120543 crossref_primary_10_1088_1742_6596_2498_1_012002 crossref_primary_10_1016_j_resconrec_2021_105412 crossref_primary_10_1039_D2CP03542A crossref_primary_10_3390_cryst14110988 crossref_primary_10_3390_min11050455 crossref_primary_10_1038_s41545_023_00238_w crossref_primary_10_4028_www_scientific_net_SSP_316_643 crossref_primary_10_1016_j_hydromet_2017_10_029 crossref_primary_10_1016_j_jece_2025_115677 crossref_primary_10_1080_08827508_2019_1668387 crossref_primary_10_2138_gselements_16_4_259 crossref_primary_10_1016_j_jece_2024_113632 crossref_primary_10_1016_j_memsci_2022_121321 crossref_primary_10_1016_j_renene_2023_118930 crossref_primary_10_3390_membranes12030343 crossref_primary_10_1016_j_cemconcomp_2023_105262 crossref_primary_10_1080_01496395_2019_1604759 crossref_primary_10_1007_s11771_020_4275_4 crossref_primary_10_1016_j_rser_2020_110461 crossref_primary_10_4150_KPMI_2023_30_4_324 crossref_primary_10_1016_j_colsurfa_2025_136698 crossref_primary_10_1016_j_resourpol_2019_101473 crossref_primary_10_1016_j_partic_2019_10_006 crossref_primary_10_1016_j_jclepro_2023_137832 crossref_primary_10_1016_j_powtec_2024_119962 crossref_primary_10_1016_j_hydromet_2024_106282 crossref_primary_10_1021_acs_iecr_8b01147 crossref_primary_10_1002_cjce_23047 crossref_primary_10_1016_j_seppur_2025_132092 crossref_primary_10_1016_j_cep_2019_107777 crossref_primary_10_3390_membranes12040373 crossref_primary_10_1016_j_mineng_2017_08_004 crossref_primary_10_3390_min7110205 crossref_primary_10_1016_j_jiec_2019_09_002 crossref_primary_10_1038_s41467_022_31850_y crossref_primary_10_1061__ASCE_MT_1943_5533_0002970 crossref_primary_10_1039_D0GC02626C crossref_primary_10_1016_j_hydromet_2023_106025 crossref_primary_10_3390_pr10122654 crossref_primary_10_1021_acssuschemeng_9b06432 crossref_primary_10_1016_j_powtec_2019_05_063 crossref_primary_10_1016_j_seppur_2024_130748 crossref_primary_10_1016_j_cej_2022_140928 crossref_primary_10_1002_sus2_4 crossref_primary_10_1002_adma_201807770 crossref_primary_10_1021_acssuschemeng_1c02628 crossref_primary_10_1016_j_seppur_2018_10_054 crossref_primary_10_1016_j_powtec_2022_118142 crossref_primary_10_1016_j_chemosphere_2024_141674 crossref_primary_10_1016_j_memsci_2022_120976 crossref_primary_10_1002_admt_202000665 crossref_primary_10_13005_ojc_340611 crossref_primary_10_1016_j_cherd_2023_01_042 crossref_primary_10_1021_acs_energyfuels_4c00732 crossref_primary_10_1002_aic_18704 crossref_primary_10_1016_j_hydromet_2019_02_011 crossref_primary_10_1016_j_seppur_2018_10_049 crossref_primary_10_1002_cjce_24559 crossref_primary_10_1021_acssuschemeng_0c01205 crossref_primary_10_3390_w16223286 crossref_primary_10_1016_j_gexplo_2023_107212 crossref_primary_10_1016_j_chemosphere_2021_130487 crossref_primary_10_1016_j_jiec_2024_10_032 crossref_primary_10_1111_ggr_12538 crossref_primary_10_1021_acs_iecr_1c03245 crossref_primary_10_1016_j_mineng_2017_04_009 crossref_primary_10_1021_acs_iecr_8b01640 crossref_primary_10_1016_j_mineng_2017_04_008 crossref_primary_10_1016_j_seppur_2018_10_043 crossref_primary_10_3390_min11101058 crossref_primary_10_1016_j_seppur_2022_121469 crossref_primary_10_3390_en13102638 crossref_primary_10_3390_sym14040681 crossref_primary_10_1016_j_mineng_2018_11_046 crossref_primary_10_1002_advs_202201380 crossref_primary_10_1016_j_jclepro_2021_126954 crossref_primary_10_1016_j_resourpol_2019_05_002 crossref_primary_10_1007_s12034_024_03277_2 crossref_primary_10_1021_acs_est_3c00287 crossref_primary_10_1016_j_conbuildmat_2024_136817 crossref_primary_10_1016_j_memsci_2023_121534 crossref_primary_10_1016_j_mineng_2022_107599 crossref_primary_10_1002_chem_202302776 crossref_primary_10_1016_S1003_6326_19_64950_2 crossref_primary_10_1016_j_heliyon_2025_e42523 crossref_primary_10_1016_j_matt_2021_03_017 crossref_primary_10_1021_acsami_9b07401 crossref_primary_10_1016_j_est_2024_112851 crossref_primary_10_1016_j_mtcomm_2025_111817 crossref_primary_10_1016_j_seppur_2018_09_019 crossref_primary_10_1016_j_jclepro_2020_122718 crossref_primary_10_1016_j_hydromet_2019_105222 crossref_primary_10_1016_j_desal_2022_115567 crossref_primary_10_1016_j_resourpol_2020_101885 crossref_primary_10_1016_j_cscm_2023_e02822 crossref_primary_10_1016_j_watres_2019_01_050 crossref_primary_10_1021_acs_jced_0c01001 crossref_primary_10_1080_08827508_2022_2047041 crossref_primary_10_3799_dqkx_2024_116 crossref_primary_10_3390_min12040457 crossref_primary_10_1016_j_desal_2020_114729 crossref_primary_10_1016_j_watres_2019_05_018 crossref_primary_10_3390_batteries9010012 crossref_primary_10_1016_j_scitotenv_2018_05_223 crossref_primary_10_1080_08827508_2019_1700984 crossref_primary_10_1016_j_cej_2024_158315 crossref_primary_10_1038_s41598_024_71799_0 crossref_primary_10_1038_s41467_019_13648_7 crossref_primary_10_3390_nano13091471 crossref_primary_10_1021_acs_nanolett_3c03136 crossref_primary_10_1007_s10008_024_06015_0 crossref_primary_10_1016_j_jclepro_2020_124905 crossref_primary_10_1021_acssuschemeng_9b00923 crossref_primary_10_1016_j_apgeochem_2020_104588 crossref_primary_10_1016_j_memsci_2019_117317 crossref_primary_10_1016_j_seppur_2024_128998 crossref_primary_10_1016_j_desal_2024_117677 crossref_primary_10_1016_j_susmat_2024_e00923 crossref_primary_10_1021_acs_iecr_2c03650 crossref_primary_10_1002_adfm_202105991 crossref_primary_10_1016_j_rser_2017_05_084 crossref_primary_10_1016_j_jclepro_2018_05_077 crossref_primary_10_1016_j_hydromet_2020_105538 crossref_primary_10_1016_j_conbuildmat_2023_134615 crossref_primary_10_1016_j_conbuildmat_2024_138817 crossref_primary_10_3390_membranes13020252 crossref_primary_10_1002_adma_201905440 crossref_primary_10_1021_acs_est_3c04220 crossref_primary_10_1002_ange_202108801 crossref_primary_10_1021_acssuschemeng_9b00898 crossref_primary_10_1002_slct_202304480 crossref_primary_10_1002_celc_201901728 crossref_primary_10_1016_S1003_6326_19_64974_5 crossref_primary_10_1039_D4NR02454K crossref_primary_10_2139_ssrn_3968707 crossref_primary_10_1142_S1793604722500308 crossref_primary_10_1016_S1003_6326_21_65646_7 crossref_primary_10_1016_j_molliq_2021_116334 crossref_primary_10_1038_s44221_024_00379_3 crossref_primary_10_1007_s10853_020_05019_1 crossref_primary_10_1016_j_seppur_2021_120110 crossref_primary_10_3390_pr7050248 crossref_primary_10_1016_j_hazadv_2023_100344 crossref_primary_10_1021_jacs_1c10255 crossref_primary_10_1039_D4IM00159A crossref_primary_10_1016_j_cemconcomp_2020_103598 crossref_primary_10_1051_mattech_2021020 crossref_primary_10_3390_min13030343 crossref_primary_10_1016_j_cej_2023_144408 crossref_primary_10_1021_acs_est_3c08956 crossref_primary_10_1016_j_jcis_2020_12_029 crossref_primary_10_1016_j_mineng_2017_05_006 crossref_primary_10_1186_s40580_024_00465_y crossref_primary_10_1016_j_seppur_2024_128974 crossref_primary_10_1021_acssuschemeng_9b05436 crossref_primary_10_1088_1757_899X_541_1_012044 crossref_primary_10_1016_j_hydromet_2019_05_005 crossref_primary_10_1021_acssuschemeng_1c00937 crossref_primary_10_1016_j_hydromet_2018_10_020 crossref_primary_10_1002_cben_201700011 crossref_primary_10_1016_j_clay_2024_107450 crossref_primary_10_1016_j_desal_2022_115951 crossref_primary_10_3390_ijms25063227 crossref_primary_10_1016_j_scitotenv_2021_148192 crossref_primary_10_1016_j_jiec_2019_08_061 crossref_primary_10_32390_ksmer_2023_60_5_326 crossref_primary_10_1021_acs_iecr_8b00227 crossref_primary_10_1016_j_hydromet_2021_105593 crossref_primary_10_1016_j_jiec_2024_05_022 crossref_primary_10_1007_s10450_020_00208_5 crossref_primary_10_1080_17538947_2024_2448583 crossref_primary_10_1021_acssuschemeng_1c00028 crossref_primary_10_1002_cite_201600101 crossref_primary_10_1016_j_jece_2024_112951 crossref_primary_10_3390_pr11020418 crossref_primary_10_1016_j_jece_2023_110216 crossref_primary_10_1016_j_memsci_2018_03_078 crossref_primary_10_1039_D1TA08162D crossref_primary_10_1073_pnas_2410033121 crossref_primary_10_1016_j_jclepro_2019_04_018 crossref_primary_10_1007_s11771_021_4723_9 crossref_primary_10_1007_s11157_021_09570_4 crossref_primary_10_30797_madencilik_1010286 crossref_primary_10_1016_j_watres_2022_118822 crossref_primary_10_1016_j_psep_2021_02_001 crossref_primary_10_1088_1742_6596_1450_1_012013 crossref_primary_10_3390_min14111120 crossref_primary_10_4491_eer_2018_392 crossref_primary_10_1016_j_seppur_2020_118194 crossref_primary_10_1016_j_mineng_2019_106085 crossref_primary_10_1016_j_seppur_2020_117780 crossref_primary_10_3390_min10110981 crossref_primary_10_1016_j_mineng_2019_106087 crossref_primary_10_1016_j_cej_2024_157780 crossref_primary_10_1016_j_seppur_2024_129372 crossref_primary_10_1021_acs_iecr_3c04048 crossref_primary_10_1016_j_ijhydene_2022_05_180 crossref_primary_10_1016_j_desal_2023_116408 crossref_primary_10_1021_acssuschemeng_1c00718 crossref_primary_10_1002_anie_202108801 crossref_primary_10_1016_j_mineng_2024_108613 crossref_primary_10_15407_mineraljournal_45_04_057 crossref_primary_10_1016_j_jechem_2018_09_022 crossref_primary_10_1021_acs_iecr_3c04294 crossref_primary_10_1088_1757_899X_541_1_012022 crossref_primary_10_1016_j_seppur_2021_119909 crossref_primary_10_18654_1000_0569_2022_02_11 crossref_primary_10_1016_j_seppur_2019_116025 crossref_primary_10_1002_adsu_202000165 crossref_primary_10_1016_j_desal_2024_118445 crossref_primary_10_1021_acs_iecr_1c01003 |
Cites_doi | 10.2465/minerj.13.13 10.1016/0892-6875(89)90001-0 10.1016/j.mineng.2013.10.026 10.3390/min2010065 10.1016/j.hydromet.2013.09.016 10.1016/j.renene.2013.10.040 10.1016/j.compchemeng.2009.09.008 10.1016/j.hydromet.2013.05.013 10.1016/j.mineng.2015.04.012 10.1016/S1003-6326(11)61383-6 10.1021/ie50386a014 10.1246/bcsj.20130019 10.1016/j.hydromet.2010.02.010 10.1016/0022-1902(76)80027-9 10.1016/S0011-9164(03)00455-7 10.1016/j.hydromet.2012.02.008 10.1016/j.hydromet.2011.05.006 10.1016/j.hydromet.2012.02.004 10.1021/cr500232y 10.1007/s10498-008-9046-z 10.1016/j.apenergy.2012.10.029 10.1016/j.hydromet.2015.03.002 10.1016/j.solener.2015.02.021 10.1016/j.hydromet.2015.01.009 10.1016/S0892-6875(99)00023-0 10.1016/0360-5442(78)90029-4 10.1016/j.tca.2015.02.009 10.1016/j.hydromet.2014.04.009 10.1007/BF01084763 10.1016/j.mineng.2011.08.013 10.1021/ie50499a025 10.1016/j.hydromet.2014.10.012 10.1016/j.desal.2013.03.009 10.1016/j.minpro.2012.03.005 10.1016/j.solener.2011.04.011 10.1346/CCMN.1981.0290201 10.1016/0360-5442(78)90027-0 10.1016/j.oregeorev.2012.05.006 10.1016/j.minpro.2013.04.014 10.1016/j.tca.2013.01.033 10.2113/gscanmin.42.4.1105 10.1016/j.hydromet.2012.04.006 10.1016/j.mineng.2010.03.021 10.1016/S0301-7516(03)00084-X 10.1016/0038-092X(91)90055-2 10.1016/S0038-092X(02)00021-X 10.1016/j.hydromet.2013.01.015 10.1016/j.jclepro.2015.03.031 10.1016/0304-386X(78)90004-X |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION 7ST 7U6 C1K 8BQ 8FD JG9 |
DOI | 10.1016/j.mineng.2016.01.010 |
DatabaseName | CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-9444 |
EndPage | 137 |
ExternalDocumentID | 10_1016_j_mineng_2016_01_010 S0892687516300103 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSE SSG SSZ T5K WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7U6 C1K 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c571t-b1df05412af8238c99207112f824254d19f1daac8dd5e299fd2ea984104ae2873 |
IEDL.DBID | .~1 |
ISSN | 0892-6875 |
IngestDate | Fri Jul 11 01:01:49 EDT 2025 Fri Jul 11 16:33:11 EDT 2025 Thu Apr 24 23:01:51 EDT 2025 Tue Jul 01 01:13:22 EDT 2025 Fri Feb 23 02:35:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Energy-critical element Lithium minerals Leaching Recovery Brine |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c571t-b1df05412af8238c99207112f824254d19f1daac8dd5e299fd2ea984104ae2873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9459-3825 |
PQID | 1798737637 |
PQPubID | 23462 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1808065230 proquest_miscellaneous_1798737637 crossref_primary_10_1016_j_mineng_2016_01_010 crossref_citationtrail_10_1016_j_mineng_2016_01_010 elsevier_sciencedirect_doi_10_1016_j_mineng_2016_01_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Minerals engineering |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wilkomirksy, 1999. Production of Lithium Carbonate from Brine. US Patent No. 5993759. Davidson, C.F., 1981. Recovery of Lithium from Clay by Selective Chlorination, Pgh. [i.e. Pittsburgh], US Dept. of the Interior, Bureau of Mines. Jandova, Vu, Kondas, Dvorak (b0330) 2007 US Geological Survey, Mineral Commodity Summaries, February 2014. Yang (b0670) 2004 Archarnhault, M., Quebec, Q., Olivier, C.A., 1968. Carbonatizing Roast of Lithium Bearing Ores. US Patent No. 3380802. Deer, W.A., Howie, R.A., Zussman, J., 1978. Rock-forming minerals, vol. 2A. Single-chain Silicates, second ed. Longman, London. Walter, R., Bichowsky, F.R., 1935. Method of Recovering Lithium from its Ores. US Patent No. 2020854. ECEs-Energy Critical Elements, 2011. Securing materials for emerging technologies. A Report by the APS Panel on Public Affairs & the Materials Research Society. Robinson, G.P., Vale, N.C., 1961. Recovery of Lithium from Ore. US Patent No. 2983576. Brandt, Haus (b0115) 2010; 23 Frevel, L.K., Kressley, L.J., 1962. Separation of Lithium from Lithium Bearing Micas and Amblygonite. US Patent No. 3032389. Liu, Hu, Chen (b0410) 2014; 64 Agha, Abughres, Ramadan (b0005) 2002; 72 Lee, J.M., Bauman, W.C., 1982. Recovery of Lithium from Brines. US Patent No. 4347327. Garrett, D.E., 1981. Process for Recovering Lithium from Brine by Salting Out Lithium Sulfate Monohydrate. US Patent No. 4287163. Yan, Li, Wang, Wu, Wang, Guo, Hu, Peng (b0675) 2012; 110–111 Lee, Raudsepp, Frank (b0375) 1990; 75 Phillips, Perry (b0500) 1995 An, Kang, Tran, Kim, Lim, Tram (b0020) 2012; 117–118 Jandova, Vu, Belkova, Dvorak, Kondas (b0335) 2009; 53 Wietelmann, Bauer (b0655) 2008; vol. 20 Morstadt, J., 1987. Treatment of Siliceous Lithium Concentrates (in Czech), Literature retrieval, Vuanch, Geofond Praha, P61609/1, Usti nad Labem. Gabra (b0280) 1978; 3 Brown, D., 2010. Lithium World Class Deposit. Kim, J.S., Chung, K.W., Lee, J.Y., Kim, S.D., 2014. Method for Preparing High-purity Lithium Carbonate from Brine. US Patent No. 8679428 B2. Norton, J.J., Schlegel, D.M., 1955. Lithium Resources of North America. Bulletin 1027-G. Reston, VA: USGS, pp. 325–350. Yan, Li, Wang, Wu, Guo, Hu, Peng, Wang (b0680) 2012; 117–118 Averill, Olson (b0040) 1978; 3 Ping, Jinrong, Renjie (b0505) 2014; 88 Swanson, Bailey (b0575) 1981 Bale, May (b0045) 1989; 2 Garrett (b0270) 2004 Simonov, Belov (b0600) 1958; 3 Lof, Lewis (b9010) 1942; 34 (accessed 9 February 2015). Shahmansouri, Min, Jin, Bellona (b0595) 2015; 100 Brown, P.M., Jacob, S.R., Boryta, D.A., 1981b. Production of Highly Pure Lithium Chloride from Impure Brines. US Patent No. 4271131. Calvonico (b0170) 1990; 58 > Polinares EU Policy on natural Resource, 2012. Barbosa, Valente, Orosco, Gonzalez (b0050) 2014; 56 Vu, Bernardi, Jandova, Vaculíkova, Golias (b0635) 2013; 123 Critical Materials Strategy, 2010. US Department of Energy December. European Commission Enterprise and Industry (ECEI), 2010. Critical raw materials for the EU. Report of the Ad-hoc Working Group on Defining Critical Raw Materials. Luong, Kang, An, Kim, Tran (b0400) 2013; 134–135 Tran, Luong, An, Kang, Kim, Tran (b0615) 2013; 138 Kalenowski, L.H., Runke, S.M., 1952. Recovery of Lithium from Spodumene–Amblygonite Mixtures. Bureau of Mines, US Department of the Interior 48631952. Siame, Pascoe (b0545) 2011; 24 The Lithium Market. A Report by Fox-Davies Resources Specialist, 2013. Mazza, H., Whittier, S.L., 1960. Process for Recovering Alkali Metal Values from Lepidolite. US Patent No. 2940820. Botton, R., Deigrange, J.P., Esinet, L., Steinmetz, A., 1965. Method of Recovering Lithium from Lepidolite. US Patent No. 3189407. Galaxy Resources Ltd, 2011. Galaxy Resources Ltd. Fox-Devies Resources Specialist, 2013. Wagner, R., 2006. Battery Fuel Gauges: Accurately Measuring Charge Level. Boryta, D.A., 2010. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 7858057 B2. Moon, Fuerstenau (b0450) 2003; 72 Dwyer, T.E., Passaic, N.J., 1957. Recovery of Lithium from Spüdumene Ores. US Patent No. 2801153. Boryta, D.A., 2009. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 7547426 B2. Kesler, Gruber, Medina, Keoleian, Everson, Wallington (b0355) 2012; 48 Dang, Steinberg (b0195) 1978; 3 Dinh, Luong, Giere, Tran (b0230) 2015; 153 Xiao, Wang, Ni, Wang, Zhu, Luo, Cen (b0665) 2013; 103 Lee, J.M., Bauman, W.C., 1980. Recovery of Lithium from Brines. US Patent No. 4221767. Victor, K.A., 1953. Method of Recovering Lithium Compounds from Lithium Minerals. US Patent No. 2793933. Rajasthan Renewable Energy, 2015. Outotec Lithium Production Technologies. 2013. HSC Chemistry (6.0), Chemical Reactions and Equilibrium Calculations. Sivander, K.A., Gard, R., Hasselby, V.H., Wallden, S.J., 1941. Method of Recovering Lithium Salt from Lithium Containing Minerals. US Patent No. 2230167. Mineralogy database, 2012. Rosales, Ruiz, Rodriguez (b0535) 2014; 147–148 Ellestad, R.B., Ileute, K.M., Minn, M., 1950. Method of Extracting Lithium Values from Spodumene Ores. US Patent No. 2516109. Brown, P.M., Boryta, D.A., 1993. Production of Low Boron Lithium Carbonate from Lithium Containing Brine. US Patent No. 5219550. Hart, Beumel (b0305) 1973; vol. 13 Ossandon, Pinto, Cisternas (b0480) 2010; 34 (accessed 12 December 2014). Mizota, Kato, Harada (b0460) 1986; 13 (accessed 22 February 2015). Cerny, London (b0185) 1983; 31 Martine, Sebastian (b0455) 1991; 76 (accessed 20 April 2015). (accessed 2 November 2014). Nie, Bu, Zheng, Huang (b0470) 2011; 85 Coleman, J.H., Jaffa, N.E., 1935. Recovering Lithium Compounds. US Patent No. 2024026. Archarnbault, M., Quebec., Quebec., Mac-Ewan, J.U., Montreal, Quebec, Olivier, C.A., 1962. Method of Producing Lithium Carbonate from Spodumene. US Patent No. 3017243. Forster, J., Rutherford, T.F., 2011. A lithium shortage: are electric vehicles under threat? 2011. A report by ETH Swiss Federal Institute of Technology Zurich. Rosett, W., Va, O., Bichowsky F.R., 1935. Method of Recovering Lithium from its Ores. US Patent No. 2020854. Yu, Zheng, Wu, Nie, Bu (b0695) 2015; 115 Siegens, H., Roder, O., 1936. Process for the Production of Lithium Salts. US Patent No. 2040573. (accessed 23 February 2015). Boryta, D.A., 2011. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 8057764 B2. Kim, Hong, Park, Kim, Kim, Kang (b0370) 2014; 114 Alex, Suri (b0010) 1996 Salil, S., 2012. Nickel Zinc (NiZn) Battery Technology Overview for Micro Hybrid Application. Power genix. Huang, Wang, Sun, Nie, Sha (b0310) 2010; 31 Dean (b0225) 1999 Barbosa, Gonzalez, Ruiz (b0060) 2015; 605 Boryta, D.A., 2005. Production of Lithium Compounds from Lithium Containing Brine. US Patent No. 6921522 B2. Dong, Li, Piao, Zhu (b0205) 2007; 3 (assessed 23 March 2015). (accessed 21st April 2015). Schultze, L.E., Bauer, D.J., Ronald, M.A., 1986. Separation of Lithium Chloride from Impurities. US Patent No. 4588565. Meshram, Pandey, Mankhand (b0440) 2014; 150 Galli, D.E., Demetrio, H., 2011. Process for Recovering Lithium from Brine. US Patent No. 0300041 A1. Lee, J.M., Bauman, W.C., 1978. Recovery of Lithium from Brines. US Patent No. 4116858. (accessed 12 September 2015). Brown, P.M., 1990. Production of Lithium metal Grade Lithium Chloride from Lithium Containing Brine. US Patent No. 4980136. Brown, P.M., Falletta, C.E., 1980. Process for Producing High Purity Lithium Carbonate. US Patent No. 4207297. Jandova, Dvorak, Vu (b0340) 2010; 103 Losey, John (b0395) 2004; 42 Boryta, D.A., 2000. Method for Removing Magnesium from Brine to Yield Lithium Carbonate. US Patent No. 6143260. SGS Minerals Services, 2010. Hard Rock Lithium Processing. SGS T3 1001. Yan, Li, Wang, Wang, Guo, Hu, Peng, Wu (b0685) 2012; 22 Seeley, Baldwin (b0540) 1976; 38 Mohr, Mudd, Giurco (b0420) 2012; 2 Yan, Li, Yin, Wang, Guo, Peng, Hu (b0690) 2012; 121–124 Amouzegar, K., Amant, G.S., Harrison, S., 2000. Process for the Purification of Lithium Carbonate. US Patent No. 6048507. Lowenstein, Risacher (b0415) 2009; 15 Brown, P.M., Jacob, S.R., 1981. Process for Purification of Lithium Chloride. US Patent No. 4274834. Boryta, D.A., 2002. Recovery of Lithium Compounds from Brines. US Patent No. 6497850 B1. (accessed 18 September 2015). Colton (b0190) 1957 Amarante, Sousa, Leite (b0015) 1999; 12 Habashi (b0300) 1986; vol. 3 Chitrakar, Makita, Ooi, Sonoda (b0155) 2013; 86 (accessed 19 January 2016). Jandova, J., Vu, H.N., Dvorak, P., 2007a. Waste Recycling XI. In: Gondek, H., Fecko, P., Kursnierova, M., Tora, B. (Eds.), VSB-TU Ostrava, Kosice, Slovakia, pp. 83–88. Zushi, Sakoguchi, Nakashio (b0700) 2003; 10 Boryta, D.A., 2001. Recovery of Lithium Compounds from Brines. US Patent No. 6207126 B1. Smith, Newell (b0560) 1991 Luong, Kang, An, Dao, Kim, Tran (b0405) 2014; 141 Somrani, Hamzaoui, Pontie (b0570) 2013; 317 Boryta, D.A., 2008. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 7449161 B2. USGS Mineral Yearbook, January 2013. Dresler, Jena, Reilly, Laffin, Egab (b0210) 1998 Lithium World Nuclear Association, 2014. Pistilli, M., 2015. POSCO Lithium Brine Processing Technology Could be a Game Changer. Tu, Zhao, Wei (b0610) 2003 (accessed 18 February 2015). Peltosaari, Tanskanen, Heikkinen, Fabritius (b0490) 2015; 82 (accessed 21 February 2015). (accessed 20 January 2015). Cundy, Windle, Warren (b0180) 1963; 5 Skinner, Evans (b0585) 1960; 258A Brown, P.M., Susan, R.J., Boryta, D.A., 1981a. Process for Solar Concentration of Lithium Chloride Brine. US Patent No. 4243392. Kondas, Jandova (b0350) 2006; 12 Olivier, C.A., Panneton, J., Perusse, J., 1978. Continuous Production of Lithium Carbonate. U.S. Patent No. 4124684. Hawash, Kader, Diwani (b0295) 2010; 6 Kroll, A.V., Pieter, G., Luxemburg, 1953. Method of Recovering Lithium Compounds from Lithium Minerals, US Patent No. 2662809. Nicholson, C.M., 1946. Production of Lithium Compounds. US Patent No. 2413644. Boryta, D.A., 2007. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 7157065 B2. Hamzaoui, Nif, Hammi, Rokhani (b0290) 2003; 158 Blochi, Farkas, Spiegler (b006 Kondas (10.1016/j.mineng.2016.01.010_b0350) 2006; 12 10.1016/j.mineng.2016.01.010_b0175 Alex (10.1016/j.mineng.2016.01.010_b0010) 1996 10.1016/j.mineng.2016.01.010_b0215 Lof (10.1016/j.mineng.2016.01.010_b9010) 1942; 34 Somrani (10.1016/j.mineng.2016.01.010_b0570) 2013; 317 Bale (10.1016/j.mineng.2016.01.010_b0045) 1989; 2 Dinh (10.1016/j.mineng.2016.01.010_b0230) 2015; 153 10.1016/j.mineng.2016.01.010_b0580 10.1016/j.mineng.2016.01.010_b0220 Mizota (10.1016/j.mineng.2016.01.010_b0460) 1986; 13 10.1016/j.mineng.2016.01.010_b0100 Dang (10.1016/j.mineng.2016.01.010_b0195) 1978; 3 10.1016/j.mineng.2016.01.010_b0345 Nie (10.1016/j.mineng.2016.01.010_b0470) 2011; 85 10.1016/j.mineng.2016.01.010_b0620 10.1016/j.mineng.2016.01.010_b0465 Seeley (10.1016/j.mineng.2016.01.010_b0540) 1976; 38 10.1016/j.mineng.2016.01.010_b0625 10.1016/j.mineng.2016.01.010_b0105 Lee (10.1016/j.mineng.2016.01.010_b0375) 1990; 75 Amarante (10.1016/j.mineng.2016.01.010_b0015) 1999; 12 Yan (10.1016/j.mineng.2016.01.010_b0690) 2012; 121–124 Calvonico (10.1016/j.mineng.2016.01.010_b0170) 1990; 58 Kesler (10.1016/j.mineng.2016.01.010_b0355) 2012; 48 Yu (10.1016/j.mineng.2016.01.010_b0695) 2015; 115 10.1016/j.mineng.2016.01.010_b0070 Dong (10.1016/j.mineng.2016.01.010_b0205) 2007; 3 10.1016/j.mineng.2016.01.010_b0590 10.1016/j.mineng.2016.01.010_b0110 10.1016/j.mineng.2016.01.010_b5000 10.1016/j.mineng.2016.01.010_b0075 10.1016/j.mineng.2016.01.010_b0235 10.1016/j.mineng.2016.01.010_b0510 10.1016/j.mineng.2016.01.010_b0475 10.1016/j.mineng.2016.01.010_b0630 Blochi (10.1016/j.mineng.2016.01.010_b0065) 1951; 43 Chen (10.1016/j.mineng.2016.01.010_b0160) 2011; 109 Yan (10.1016/j.mineng.2016.01.010_b0675) 2012; 110–111 Liu (10.1016/j.mineng.2016.01.010_b0410) 2014; 64 Meshram (10.1016/j.mineng.2016.01.010_b0440) 2014; 150 Skinner (10.1016/j.mineng.2016.01.010_b0585) 1960; 258A 10.1016/j.mineng.2016.01.010_b0080 Losey (10.1016/j.mineng.2016.01.010_b0395) 2004; 42 Luong (10.1016/j.mineng.2016.01.010_b0405) 2014; 141 10.1016/j.mineng.2016.01.010_b0085 10.1016/j.mineng.2016.01.010_b0360 Barbosa (10.1016/j.mineng.2016.01.010_b0050) 2014; 56 Jandova (10.1016/j.mineng.2016.01.010_b0335) 2009; 53 Smith (10.1016/j.mineng.2016.01.010_b0560) 1991 10.1016/j.mineng.2016.01.010_b0485 10.1016/j.mineng.2016.01.010_b0240 Hart (10.1016/j.mineng.2016.01.010_b0305) 1973; vol. 13 10.1016/j.mineng.2016.01.010_b0120 10.1016/j.mineng.2016.01.010_b0125 10.1016/j.mineng.2016.01.010_b0365 10.1016/j.mineng.2016.01.010_b0640 10.1016/j.mineng.2016.01.010_b0245 10.1016/j.mineng.2016.01.010_b0520 Barbosa (10.1016/j.mineng.2016.01.010_b0060) 2015; 605 10.1016/j.mineng.2016.01.010_b0525 Brandt (10.1016/j.mineng.2016.01.010_b0115) 2010; 23 10.1016/j.mineng.2016.01.010_b0645 Luong (10.1016/j.mineng.2016.01.010_b0400) 2013; 134–135 Siame (10.1016/j.mineng.2016.01.010_b0545) 2011; 24 Rosales (10.1016/j.mineng.2016.01.010_b0535) 2014; 147–148 Phillips (10.1016/j.mineng.2016.01.010_b0500) 1995 10.1016/j.mineng.2016.01.010_b0090 10.1016/j.mineng.2016.01.010_b0095 10.1016/j.mineng.2016.01.010_b0250 An (10.1016/j.mineng.2016.01.010_b0020) 2012; 117–118 Agha (10.1016/j.mineng.2016.01.010_b0005) 2002; 72 Mohr (10.1016/j.mineng.2016.01.010_b0420) 2012; 2 10.1016/j.mineng.2016.01.010_b0495 Simonov (10.1016/j.mineng.2016.01.010_b0600) 1958; 3 10.1016/j.mineng.2016.01.010_b0650 10.1016/j.mineng.2016.01.010_b0130 Hamzaoui (10.1016/j.mineng.2016.01.010_b0290) 2003; 158 Averill (10.1016/j.mineng.2016.01.010_b0040) 1978; 3 10.1016/j.mineng.2016.01.010_b0255 10.1016/j.mineng.2016.01.010_b0530 10.1016/j.mineng.2016.01.010_b0135 Shahmansouri (10.1016/j.mineng.2016.01.010_b0595) 2015; 100 Garrett (10.1016/j.mineng.2016.01.010_b0270) 2004 Wietelmann (10.1016/j.mineng.2016.01.010_b0655) 2008; vol. 20 10.1016/j.mineng.2016.01.010_b0260 10.1016/j.mineng.2016.01.010_b0140 Yang (10.1016/j.mineng.2016.01.010_b0670) 2004 10.1016/j.mineng.2016.01.010_b0380 10.1016/j.mineng.2016.01.010_b0385 10.1016/j.mineng.2016.01.010_b0660 10.1016/j.mineng.2016.01.010_b0265 Huang (10.1016/j.mineng.2016.01.010_b0310) 2010; 31 Ping (10.1016/j.mineng.2016.01.010_b0505) 2014; 88 10.1016/j.mineng.2016.01.010_b0145 10.1016/j.mineng.2016.01.010_b0025 Lowenstein (10.1016/j.mineng.2016.01.010_b0415) 2009; 15 10.1016/j.mineng.2016.01.010_b0425 Jandova (10.1016/j.mineng.2016.01.010_b0330) 2007 Kim (10.1016/j.mineng.2016.01.010_b0370) 2014; 114 Jandova (10.1016/j.mineng.2016.01.010_b0340) 2010; 103 Tran (10.1016/j.mineng.2016.01.010_b0615) 2013; 138 Xiao (10.1016/j.mineng.2016.01.010_b0665) 2013; 103 Chitrakar (10.1016/j.mineng.2016.01.010_b0155) 2013; 86 Dean (10.1016/j.mineng.2016.01.010_b0225) 1999 Martine (10.1016/j.mineng.2016.01.010_b0455) 1991; 76 10.1016/j.mineng.2016.01.010_b0150 10.1016/j.mineng.2016.01.010_b0030 10.1016/j.mineng.2016.01.010_b0390 10.1016/j.mineng.2016.01.010_b9005 10.1016/j.mineng.2016.01.010_b0275 10.1016/j.mineng.2016.01.010_b0550 10.1016/j.mineng.2016.01.010_b0430 10.1016/j.mineng.2016.01.010_b0555 10.1016/j.mineng.2016.01.010_b0035 Pranolo (10.1016/j.mineng.2016.01.010_b0515) 2015; 154 Cerny (10.1016/j.mineng.2016.01.010_b0185) 1983; 31 10.1016/j.mineng.2016.01.010_b0435 10.1016/j.mineng.2016.01.010_b0315 Habashi (10.1016/j.mineng.2016.01.010_b0300) 1986; vol. 3 Swanson (10.1016/j.mineng.2016.01.010_b0575) 1981 Yan (10.1016/j.mineng.2016.01.010_b0685) 2012; 22 Peltosaari (10.1016/j.mineng.2016.01.010_b0490) 2015; 82 Barbosa (10.1016/j.mineng.2016.01.010_b0055) 2013; 557 Dresler (10.1016/j.mineng.2016.01.010_b0210) 1998 Tu (10.1016/j.mineng.2016.01.010_b0610) 2003 10.1016/j.mineng.2016.01.010_b0165 10.1016/j.mineng.2016.01.010_b0320 Cundy (10.1016/j.mineng.2016.01.010_b0180) 1963; 5 10.1016/j.mineng.2016.01.010_b0285 10.1016/j.mineng.2016.01.010_b0565 Yan (10.1016/j.mineng.2016.01.010_b0680) 2012; 117–118 10.1016/j.mineng.2016.01.010_b0445 Vu (10.1016/j.mineng.2016.01.010_b0635) 2013; 123 10.1016/j.mineng.2016.01.010_b0200 Hawash (10.1016/j.mineng.2016.01.010_b0295) 2010; 6 10.1016/j.mineng.2016.01.010_b0325 Colton (10.1016/j.mineng.2016.01.010_b0190) 1957 Moon (10.1016/j.mineng.2016.01.010_b0450) 2003; 72 Ossandon (10.1016/j.mineng.2016.01.010_b0480) 2010; 34 Gabra (10.1016/j.mineng.2016.01.010_b0280) 1978; 3 10.1016/j.mineng.2016.01.010_b0605 Zushi (10.1016/j.mineng.2016.01.010_b0700) 2003; 10 |
References_xml | – volume: 557 start-page: 61 year: 2013 end-page: 67 ident: b0055 article-title: Kinetic study on the chlorination of spodumene for lithium extraction with Cl publication-title: Thermochim. Acta – volume: 2 start-page: 299 year: 1989 end-page: 320 ident: b0045 article-title: Processing of ores to produce tantalum and lithium publication-title: Miner. Eng. – reference: Mineralogy database, 2012. < – reference: Boryta, D.A., 2011. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 8057764 B2. – reference: Mazza, H., Whittier, S.L., 1960. Process for Recovering Alkali Metal Values from Lepidolite. US Patent No. 2940820. – start-page: 81 year: 1981 end-page: 90 ident: b0575 article-title: Redetermination of the lepidolite-2M1 structure publication-title: Clays Clay Miner. – volume: 103 start-page: 642 year: 2013 end-page: 652 ident: b0665 article-title: Review on solar stills for brine desalination publication-title: Appl. Energy – volume: 5 start-page: 151 year: 1963 end-page: 156 ident: b0180 article-title: The occurrence of zinnwaldite in Cornwall publication-title: Clay Miner. Bull. – volume: 58 start-page: 44 year: 1990 ident: b0170 article-title: Economic life of improvements associated with salt production publication-title: Appraisal J. – reference: Jaskula, B.W. Lithium [Advance Release] USGS, 2013. Minerals Yearbook. < – volume: 31 start-page: 81 year: 1983 end-page: 96 ident: b0185 article-title: Crystal chemistry and stability of petalite publication-title: Tschermaks Min. Petr. Mitt. – reference: Archarnhault, M., Quebec, Q., Olivier, C.A., 1968. Carbonatizing Roast of Lithium Bearing Ores. US Patent No. 3380802. – volume: 6 start-page: 301 year: 2010 end-page: 309 ident: b0295 article-title: Methodology for selective adsorption of lithium ions onto polymeric aluminium (III) hydroxide publication-title: J. Am. Sci. – volume: 31 start-page: 163 year: 2010 end-page: 167 ident: b0310 article-title: Construction and operational of solar pond in Zabuye Saline Lake publication-title: Tibet. Acta Energiae Solaris Sin. – reference: USGS Mineral Yearbook, January 2013. – volume: 34 start-page: 209 year: 1942 end-page: 216 ident: b9010 article-title: Lithium chloride from lepidolite publication-title: J. Ind. Eng. Chem. – reference: Forster, J., Rutherford, T.F., 2011. A lithium shortage: are electric vehicles under threat? 2011. A report by ETH Swiss Federal Institute of Technology Zurich. < – volume: 114 start-page: 788 year: 2014 end-page: 827 ident: b0370 article-title: Aqueous rechargeable Li and Na ion batteries publication-title: Chem. Rev. – volume: 24 start-page: 1595 year: 2011 end-page: 1602 ident: b0545 article-title: Extraction of lithium from micaceous waste from china clay production publication-title: Miner. Eng. – start-page: 389 year: 1991 end-page: 399 ident: b0560 article-title: Simulation and economic evaluation of a solar evaporation system for concentrating sodium chloride brines publication-title: Sol. Energy – reference: Pistilli, M., 2015. POSCO Lithium Brine Processing Technology Could be a Game Changer. < – reference: Schultze, L.E., Bauer, D.J., Ronald, M.A., 1986. Separation of Lithium Chloride from Impurities. US Patent No. 4588565. – volume: 15 start-page: 71 year: 2009 end-page: 94 ident: b0415 article-title: Closed basin brine evolution and the influence of Ca–Cl inflow waters. Death Valley and Bristol Dry Lake, California, QaidamBasin, China, and Salar de Atacama, Chile publication-title: Aquat. Geochem. – reference: Critical Materials Strategy, 2010. US Department of Energy December. – reference: Siegens, H., Roder, O., 1936. Process for the Production of Lithium Salts. US Patent No. 2040573. – volume: 23 start-page: 659 year: 2010 end-page: 661 ident: b0115 article-title: New concepts for lithium minerals processing publication-title: Miner. Eng. – reference: Brown, P.M., Jacob, S.R., Boryta, D.A., 1981b. Production of Highly Pure Lithium Chloride from Impure Brines. US Patent No. 4271131. – reference: Lee, J.M., Bauman, W.C., 1978. Recovery of Lithium from Brines. US Patent No. 4116858. – reference: Lee, J.M., Bauman, W.C., 1980. Recovery of Lithium from Brines. US Patent No. 4221767. – volume: 154 start-page: 33 year: 2015 end-page: 39 ident: b0515 article-title: Separation of lithium from sodium in chloride solutions using SSX systems with LIX 54 and Cyanex 923 publication-title: Hydrometallurgy – reference: Nicholson, C.M., 1946. Production of Lithium Compounds. US Patent No. 2413644. – reference: Archarnbault, M., Quebec., Quebec., Mac-Ewan, J.U., Montreal, Quebec, Olivier, C.A., 1962. Method of Producing Lithium Carbonate from Spodumene. US Patent No. 3017243. – reference: > (accessed 18 September 2015). – reference: Morstadt, J., 1987. Treatment of Siliceous Lithium Concentrates (in Czech), Literature retrieval, Vuanch, Geofond Praha, P61609/1, Usti nad Labem. – reference: Kim, J.S., Chung, K.W., Lee, J.Y., Kim, S.D., 2014. Method for Preparing High-purity Lithium Carbonate from Brine. US Patent No. 8679428 B2. – reference: > (accessed 20 January 2015). – year: 1995 ident: b0500 article-title: Handbook of Inorganic Compounds – volume: 75 start-page: 992 year: 1990 end-page: 1008 ident: b0375 article-title: The amblygonite-montebrasite series: characterization by single crystal structure refinement, infrared spectroscopy, and multinuclear MAS-NMR spectroscopy publication-title: Am. Mineral. – year: 1999 ident: b0225 article-title: Lange Handbook of Chemistry – reference: > (accessed 18 February 2015). – reference: Brown, P.M., Susan, R.J., Boryta, D.A., 1981a. Process for Solar Concentration of Lithium Chloride Brine. US Patent No. 4243392. – volume: 38 start-page: 1049 year: 1976 end-page: 1052 ident: b0540 article-title: Extraction of lithium from neutral salt solutions with fluorinated β-diketones publication-title: J. Inorg. Nucl. Chem. – start-page: 270 year: 2003 end-page: 273 ident: b0610 article-title: Non-ferrous metallurgy, materials recycling and environmental protection publication-title: CIP – reference: > (accessed 2 November 2014). – reference: Boryta, D.A., 2010. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 7858057 B2. – reference: (accessed 9 February 2015). – volume: 85 start-page: 1537 year: 2011 end-page: 1542 ident: b0470 article-title: Experimental study of natural brine solar ponds in Tibet publication-title: Sol. Energy – volume: 88 start-page: 287 year: 2014 end-page: 288 ident: b0505 article-title: Prospect of lithium resources supply and demand publication-title: Acta Geol. Sin. – reference: Kroll, A.V., Pieter, G., Luxemburg, 1953. Method of Recovering Lithium Compounds from Lithium Minerals, US Patent No. 2662809. – reference: > (accessed 19 January 2016). – volume: 86 start-page: 850 year: 2013 end-page: 855 ident: b0155 article-title: Magnesium-doped manganese oxide with lithium ion-sieve property: lithium adsorption from salt lake brine publication-title: Bull. Chem. Soc. Jpn – start-page: 3 year: 1957 end-page: 8 ident: b0190 article-title: Recovery of lithium from complex silicates publication-title: J. Am. Chem. Soc. – volume: 100 start-page: 4 year: 2015 end-page: 16 ident: b0595 article-title: Feasibility of extracting valuable minerals from desalination concentrate: a comprehensive literature review publication-title: J. Clean. Prod. – volume: 123 start-page: 9 year: 2013 end-page: 17 ident: b0635 article-title: Lithium and rubidium extraction from zinnwaldite by alkali digestion process: sintering mechanism and leaching kinetics publication-title: Int. J. Miner. Process. – reference: Wilkomirksy, 1999. Production of Lithium Carbonate from Brine. US Patent No. 5993759. – volume: 12 start-page: 433 year: 1999 end-page: 436 ident: b0015 article-title: Processing a spodumene ore to obtain lithium concentrates for addition to glass and ceramic bodies publication-title: Miner. Eng. – volume: 138 start-page: 93 year: 2013 end-page: 99 ident: b0615 article-title: Recovery of magnesium from Uyuni salar brine as high purity magnesium oxalate publication-title: Hydrometallurgy – volume: 43 start-page: 1544 year: 1951 end-page: 1553 ident: b0065 article-title: Solar evaporation of salt brines publication-title: Ind. Eng. Chem. – reference: Robinson, G.P., Vale, N.C., 1961. Recovery of Lithium from Ore. US Patent No. 2983576. – reference: Norton, J.J., Schlegel, D.M., 1955. Lithium Resources of North America. Bulletin 1027-G. Reston, VA: USGS, pp. 325–350. – reference: . (accessed 21st April 2015). – volume: 117–118 start-page: 64 year: 2012 end-page: 70 ident: b0020 article-title: Recovery of lithium from Uyuni salar brine publication-title: Hydrometallurgy – volume: 2 start-page: 65 year: 2012 end-page: 84 ident: b0420 article-title: Lithium resources and production: critical assessment and global projection publication-title: Minerals – reference: Salil, S., 2012. Nickel Zinc (NiZn) Battery Technology Overview for Micro Hybrid Application. Power genix. < – volume: 317 start-page: 184 year: 2013 end-page: 192 ident: b0570 article-title: Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO) publication-title: Desalination – reference: Brown, P.M., Boryta, D.A., 1993. Production of Low Boron Lithium Carbonate from Lithium Containing Brine. US Patent No. 5219550. – volume: 3 start-page: 325 year: 1978 end-page: 336 ident: b0195 article-title: Preliminary design and analysis of recovery of lithium from brine with the use of a selective extractant publication-title: Energy – start-page: 1165 year: 1996 end-page: 1168 ident: b0010 article-title: Processing of Low Grade Zinnwaldite (Lithium Mica) Concentrate. Light Metals – reference: Galli, D.E., Demetrio, H., 2011. Process for Recovering Lithium from Brine. US Patent No. 0300041 A1. – volume: 64 start-page: 26 year: 2014 end-page: 33 ident: b0410 article-title: A novel integrated solar desalination system with multi stage evaporation/heat recovery processes publication-title: Renew. Energy – volume: 72 start-page: 11 year: 2003 end-page: 24 ident: b0450 article-title: Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO publication-title: Int. J. Miner. Process. – reference: Boryta, D.A., 2000. Method for Removing Magnesium from Brine to Yield Lithium Carbonate. US Patent No. 6143260. – reference: SGS Minerals Services, 2010. Hard Rock Lithium Processing. SGS T3 1001. < – reference: > (accessed 21 February 2015). – volume: vol. 3 year: 1986 ident: b0300 article-title: Principles of extractive metallurgy publication-title: Pyrometallurgy – start-page: 318 year: 2004 end-page: 325 ident: b0670 article-title: Metallurgy of Light Metals – reference: > (accessed 12 December 2014). – volume: 605 start-page: 63 year: 2015 end-page: 67 ident: b0060 article-title: Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride publication-title: Thermochim. Acta – volume: 12 start-page: 197 year: 2006 end-page: 202 ident: b0350 article-title: Lithium extraction from zinnwaldite wastes after gravity dressing of Sn–W ores publication-title: Acta Metall. Slovaca – volume: 103 start-page: 12 year: 2010 end-page: 18 ident: b0340 article-title: Processing of zinnwaldite waste to obtain Li publication-title: Hydrometallurgy – volume: 82 start-page: 54 year: 2015 end-page: 60 ident: b0490 article-title: Α-γ-β phase transformation of spodumene with hybrid microwave and conventional furnaces publication-title: Miner. Eng. – reference: US Geological Survey, Mineral Commodity Summaries, February 2014. – reference: Brown, P.M., Falletta, C.E., 1980. Process for Producing High Purity Lithium Carbonate. US Patent No. 4207297. – reference: Polinares EU Policy on natural Resource, 2012. < – start-page: 1303 year: 1998 end-page: 1308 ident: b0210 article-title: The Extraction of Lithium Carbonate from a Pegmatite. Light Metals – reference: Deer, W.A., Howie, R.A., Zussman, J., 1978. Rock-forming minerals, vol. 2A. Single-chain Silicates, second ed. Longman, London. – volume: 10 start-page: 171 year: 2003 end-page: 184 ident: b0700 article-title: Extraction kinetics of lithium with a mixture of a β-diketone and a neutral organophosphorous compounds and the molecular dynamics of the lithium complex formation at the heptane-water interface publication-title: Solvent Extr. Res. Dev. – volume: 153 start-page: 154 year: 2015 end-page: 159 ident: b0230 article-title: Extraction of lithium from lepidolite via iron sulphide roasting and water leaching publication-title: Hydrometallurgy – reference: Boryta, D.A., 2002. Recovery of Lithium Compounds from Brines. US Patent No. 6497850 B1. – reference: Coleman, J.H., Jaffa, N.E., 1935. Recovering Lithium Compounds. US Patent No. 2024026. – reference: > (accessed 12 September 2015). – reference: Brown, P.M., 1990. Production of Lithium metal Grade Lithium Chloride from Lithium Containing Brine. US Patent No. 4980136. – reference: Ellestad, R.B., Ileute, K.M., Minn, M., 1950. Method of Extracting Lithium Values from Spodumene Ores. US Patent No. 2516109. – reference: Davidson, C.F., 1981. Recovery of Lithium from Clay by Selective Chlorination, Pgh. [i.e. Pittsburgh], US Dept. of the Interior, Bureau of Mines. – reference: Galaxy Resources Ltd, 2011. Galaxy Resources Ltd. < – volume: 150 start-page: 192 year: 2014 end-page: 208 ident: b0440 article-title: Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review publication-title: Hydrometallurgy – reference: The Lithium Market. A Report by Fox-Davies Resources Specialist, 2013. < – volume: 48 start-page: 55 year: 2012 end-page: 69 ident: b0355 article-title: Global lithium resources: relative importance of pegmatite, brine and other deposits publication-title: Ore Geol. Rev. – volume: 42 start-page: 1105 year: 2004 end-page: 1115 ident: b0395 article-title: Structural variation in the lithiophilite–triphylite series and other Olivine-group structures publication-title: Can. Mineral. – reference: > (assessed 23 March 2015). – reference: Rajasthan Renewable Energy, 2015. < – reference: Sivander, K.A., Gard, R., Hasselby, V.H., Wallden, S.J., 1941. Method of Recovering Lithium Salt from Lithium Containing Minerals. US Patent No. 2230167. – volume: 121–124 start-page: 54 year: 2012 end-page: 59 ident: b0690 article-title: A novel process for extracting lithium from lepidolite publication-title: Hydrometallurgy – volume: 76 start-page: 611 year: 1991 end-page: 616 ident: b0455 article-title: Experimental study of Li-rich granitic pegmatites: Part II. Spodumene publication-title: Am. Mineral – volume: 147–148 start-page: 1 year: 2014 end-page: 6 ident: b0535 article-title: Novel process for the extraction of lithium from β-spodumene by leaching with HF publication-title: Hydrometallurgy – reference: Walter, R., Bichowsky, F.R., 1935. Method of Recovering Lithium from its Ores. US Patent No. 2020854. – volume: 34 start-page: 620 year: 2010 end-page: 630 ident: b0480 article-title: Planning and scheduling of salt harvest in solar evaporation ponds publication-title: Comput. Chem. Eng. – volume: 13 start-page: 13 year: 1986 end-page: 21 ident: b0460 article-title: The crystal structure of masutomilite Mn analogue of zinnwaldite publication-title: Mineral. J. – reference: Lithium World Nuclear Association, 2014. < – volume: 3 start-page: 428 year: 1958 end-page: 437 ident: b0600 article-title: Die Aufklarung der Struktur des Amblygonits mit Hilfe der Minimumfunktion publication-title: Kristallografia – volume: 3 start-page: 305 year: 1978 end-page: 313 ident: b0040 article-title: A review of extractive processes for lithium recovery from ores and brines publication-title: Energy – reference: ECEs-Energy Critical Elements, 2011. Securing materials for emerging technologies. A Report by the APS Panel on Public Affairs & the Materials Research Society. – volume: 3 start-page: 23 year: 1978 end-page: 33 ident: b0280 article-title: Lithium chloride extraction by n-butanol publication-title: Hydrometallurgy – reference: Botton, R., Deigrange, J.P., Esinet, L., Steinmetz, A., 1965. Method of Recovering Lithium from Lepidolite. US Patent No. 3189407. – reference: Fox-Devies Resources Specialist, 2013. – reference: Garrett, D.E., 1981. Process for Recovering Lithium from Brine by Salting Out Lithium Sulfate Monohydrate. US Patent No. 4287163. – reference: Victor, K.A., 1953. Method of Recovering Lithium Compounds from Lithium Minerals. US Patent No. 2793933. – reference: Olivier, C.A., Panneton, J., Perusse, J., 1978. Continuous Production of Lithium Carbonate. U.S. Patent No. 4124684. – reference: Outotec Lithium Production Technologies. 2013. < – reference: Brown, D., 2010. Lithium World Class Deposit. < – reference: Amouzegar, K., Amant, G.S., Harrison, S., 2000. Process for the Purification of Lithium Carbonate. US Patent No. 6048507. – reference: > (accessed 20 April 2015). – volume: 109 start-page: 43 year: 2011 end-page: 46 ident: b0160 article-title: Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process publication-title: Hydrometallurgy – volume: 134–135 start-page: 54 year: 2013 end-page: 61 ident: b0400 article-title: Factors affecting the extraction of lithium from lepidolite publication-title: Hydrometallurgy – reference: Rosett, W., Va, O., Bichowsky F.R., 1935. Method of Recovering Lithium from its Ores. US Patent No. 2020854. – reference: Boryta, D.A., 2009. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 7547426 B2. – volume: 115 start-page: 133 year: 2015 end-page: 144 ident: b0695 article-title: Extracting lithium from Tibetan Dangxiong Tso Salt Lake of carbonate type by using geothermal salinity-gradient solar pond publication-title: Sol. Energy – reference: Kalenowski, L.H., Runke, S.M., 1952. Recovery of Lithium from Spodumene–Amblygonite Mixtures. Bureau of Mines, US Department of the Interior 48631952. – reference: > (accessed 22 February 2015). – volume: 3 start-page: 357 year: 2007 end-page: 361 ident: b0205 article-title: Recovery of lithium from salt lake bittern using aluminium salt adsorbent publication-title: Chin. J. Rare Met. – volume: 56 start-page: 29 year: 2014 end-page: 34 ident: b0050 article-title: Lithium extraction from β-spodumene through chlorination with chlorine gas publication-title: Miner. Eng. – reference: Dwyer, T.E., Passaic, N.J., 1957. Recovery of Lithium from Spüdumene Ores. US Patent No. 2801153. – reference: Brown, P.M., Jacob, S.R., 1981. Process for Purification of Lithium Chloride. US Patent No. 4274834. – volume: 158 start-page: 221 year: 2003 end-page: 224 ident: b0290 article-title: Contribution to the lithium recovery from brine publication-title: Desalination – reference: Boryta, D.A., 2007. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 7157065 B2. – volume: 141 start-page: 8 year: 2014 end-page: 16 ident: b0405 article-title: Iron sulphate roasting for extraction of lithium from lepidolite publication-title: Hydrometallurgy – volume: 110–111 start-page: 1 year: 2012 end-page: 5 ident: b0675 article-title: Extraction of lithium from lepidolite by sulfation roasting and water leaching publication-title: Int. J. Miner. Process. – start-page: 667 year: 2007 end-page: 677 ident: b0330 publication-title: European Metallurgical Conference – volume: 53 start-page: 108 year: 2009 end-page: 112 ident: b0335 article-title: Obtaining Li publication-title: Ceram. Silik. – volume: vol. 20 start-page: 33 year: 2008 end-page: 60 ident: b0655 article-title: Ullmann’s Encyclopedia of Industrial Chemistry – reference: Boryta, D.A., 2005. Production of Lithium Compounds from Lithium Containing Brine. US Patent No. 6921522 B2. – reference: Wagner, R., 2006. Battery Fuel Gauges: Accurately Measuring Charge Level. < – volume: 117–118 start-page: 116 year: 2012 end-page: 118 ident: b0680 article-title: Extraction of valuable metals from lepidolite publication-title: Hydrometallurgy – volume: 258A start-page: 312 year: 1960 end-page: 324 ident: b0585 article-title: β-spodumene solid solutions and the join Li publication-title: Am. J. Sci. – reference: World Energy Assessment, A Report on Energy and the Challenge of Sustainability (UNDP), 2000. < – reference: >, < – reference: European Commission Enterprise and Industry (ECEI), 2010. Critical raw materials for the EU. Report of the Ad-hoc Working Group on Defining Critical Raw Materials. < – reference: > (accessed 23 February 2015). – volume: 72 start-page: 447 year: 2002 end-page: 454 ident: b0005 article-title: Design methodology for a salt gradient solar pond coupled with an evaporation pond publication-title: Sol. Energy – reference: Frevel, L.K., Kressley, L.J., 1962. Separation of Lithium from Lithium Bearing Micas and Amblygonite. US Patent No. 3032389. – volume: vol. 13 year: 1973 ident: b0305 article-title: The chemistry of lithium sodium potassium cesium and francium publication-title: Inorganic Chemistry – volume: 22 start-page: 1753 year: 2012 end-page: 1759 ident: b0685 article-title: Extraction of lithium from lepidolite using chlorination roasting and water leaching process publication-title: Trans. Nonferr. Met. Soc. – reference: HSC Chemistry (6.0), Chemical Reactions and Equilibrium Calculations. – reference: Lee, J.M., Bauman, W.C., 1982. Recovery of Lithium from Brines. US Patent No. 4347327. – reference: Jandova, J., Vu, H.N., Dvorak, P., 2007a. Waste Recycling XI. In: Gondek, H., Fecko, P., Kursnierova, M., Tora, B. (Eds.), VSB-TU Ostrava, Kosice, Slovakia, pp. 83–88. – reference: Boryta, D.A., 2001. Recovery of Lithium Compounds from Brines. US Patent No. 6207126 B1. – year: 2004 ident: b0270 article-title: Handbook of Lithium and Natural Calcium Chloride: Their Deposits, Processing, Uses and Properties – reference: Boryta, D.A., 2008. Production of Lithium Compounds Directly from Lithium Containing Brines. US Patent No. 7449161 B2. – ident: 10.1016/j.mineng.2016.01.010_b0245 – ident: 10.1016/j.mineng.2016.01.010_b0520 – volume: 13 start-page: 13 issue: 1 year: 1986 ident: 10.1016/j.mineng.2016.01.010_b0460 article-title: The crystal structure of masutomilite Mn analogue of zinnwaldite publication-title: Mineral. J. doi: 10.2465/minerj.13.13 – ident: 10.1016/j.mineng.2016.01.010_b0085 – ident: 10.1016/j.mineng.2016.01.010_b0360 – ident: 10.1016/j.mineng.2016.01.010_b0325 – volume: 2 start-page: 299 issue: 3 year: 1989 ident: 10.1016/j.mineng.2016.01.010_b0045 article-title: Processing of ores to produce tantalum and lithium publication-title: Miner. Eng. doi: 10.1016/0892-6875(89)90001-0 – volume: 56 start-page: 29 year: 2014 ident: 10.1016/j.mineng.2016.01.010_b0050 article-title: Lithium extraction from β-spodumene through chlorination with chlorine gas publication-title: Miner. Eng. doi: 10.1016/j.mineng.2013.10.026 – volume: 2 start-page: 65 year: 2012 ident: 10.1016/j.mineng.2016.01.010_b0420 article-title: Lithium resources and production: critical assessment and global projection publication-title: Minerals doi: 10.3390/min2010065 – ident: 10.1016/j.mineng.2016.01.010_b0495 – volume: 141 start-page: 8 year: 2014 ident: 10.1016/j.mineng.2016.01.010_b0405 article-title: Iron sulphate roasting for extraction of lithium from lepidolite publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2013.09.016 – ident: 10.1016/j.mineng.2016.01.010_b0145 – volume: 64 start-page: 26 year: 2014 ident: 10.1016/j.mineng.2016.01.010_b0410 article-title: A novel integrated solar desalination system with multi stage evaporation/heat recovery processes publication-title: Renew. Energy doi: 10.1016/j.renene.2013.10.040 – volume: vol. 3 year: 1986 ident: 10.1016/j.mineng.2016.01.010_b0300 article-title: Principles of extractive metallurgy – volume: 34 start-page: 620 year: 2010 ident: 10.1016/j.mineng.2016.01.010_b0480 article-title: Planning and scheduling of salt harvest in solar evaporation ponds publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2009.09.008 – volume: 138 start-page: 93 year: 2013 ident: 10.1016/j.mineng.2016.01.010_b0615 article-title: Recovery of magnesium from Uyuni salar brine as high purity magnesium oxalate publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2013.05.013 – ident: 10.1016/j.mineng.2016.01.010_b0030 – volume: 82 start-page: 54 year: 2015 ident: 10.1016/j.mineng.2016.01.010_b0490 article-title: Α-γ-β phase transformation of spodumene with hybrid microwave and conventional furnaces publication-title: Miner. Eng. doi: 10.1016/j.mineng.2015.04.012 – ident: 10.1016/j.mineng.2016.01.010_b0110 – volume: 22 start-page: 1753 year: 2012 ident: 10.1016/j.mineng.2016.01.010_b0685 article-title: Extraction of lithium from lepidolite using chlorination roasting and water leaching process publication-title: Trans. Nonferr. Met. Soc. doi: 10.1016/S1003-6326(11)61383-6 – volume: 3 start-page: 357 year: 2007 ident: 10.1016/j.mineng.2016.01.010_b0205 article-title: Recovery of lithium from salt lake bittern using aluminium salt adsorbent publication-title: Chin. J. Rare Met. – ident: 10.1016/j.mineng.2016.01.010_b0265 – volume: 34 start-page: 209 issue: 2 year: 1942 ident: 10.1016/j.mineng.2016.01.010_b9010 article-title: Lithium chloride from lepidolite publication-title: J. Ind. Eng. Chem. doi: 10.1021/ie50386a014 – ident: 10.1016/j.mineng.2016.01.010_b0605 – volume: 86 start-page: 850 issue: 7 year: 2013 ident: 10.1016/j.mineng.2016.01.010_b0155 article-title: Magnesium-doped manganese oxide with lithium ion-sieve property: lithium adsorption from salt lake brine publication-title: Bull. Chem. Soc. Jpn doi: 10.1246/bcsj.20130019 – ident: 10.1016/j.mineng.2016.01.010_b0425 – ident: 10.1016/j.mineng.2016.01.010_b0555 – volume: 12 start-page: 197 year: 2006 ident: 10.1016/j.mineng.2016.01.010_b0350 article-title: Lithium extraction from zinnwaldite wastes after gravity dressing of Sn–W ores publication-title: Acta Metall. Slovaca – volume: 103 start-page: 12 year: 2010 ident: 10.1016/j.mineng.2016.01.010_b0340 article-title: Processing of zinnwaldite waste to obtain Li2CO3 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2010.02.010 – ident: 10.1016/j.mineng.2016.01.010_b0125 – volume: 38 start-page: 1049 year: 1976 ident: 10.1016/j.mineng.2016.01.010_b0540 article-title: Extraction of lithium from neutral salt solutions with fluorinated β-diketones publication-title: J. Inorg. Nucl. Chem. doi: 10.1016/0022-1902(76)80027-9 – volume: 158 start-page: 221 year: 2003 ident: 10.1016/j.mineng.2016.01.010_b0290 article-title: Contribution to the lithium recovery from brine publication-title: Desalination doi: 10.1016/S0011-9164(03)00455-7 – volume: 75 start-page: 992 year: 1990 ident: 10.1016/j.mineng.2016.01.010_b0375 article-title: The amblygonite-montebrasite series: characterization by single crystal structure refinement, infrared spectroscopy, and multinuclear MAS-NMR spectroscopy publication-title: Am. Mineral. – ident: 10.1016/j.mineng.2016.01.010_b0625 – volume: 117–118 start-page: 64 year: 2012 ident: 10.1016/j.mineng.2016.01.010_b0020 article-title: Recovery of lithium from Uyuni salar brine publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2012.02.008 – ident: 10.1016/j.mineng.2016.01.010_b0025 – volume: 76 start-page: 611 year: 1991 ident: 10.1016/j.mineng.2016.01.010_b0455 article-title: Experimental study of Li-rich granitic pegmatites: Part II. Spodumene+albite+quartz equilibrium publication-title: Am. Mineral – volume: 109 start-page: 43 year: 2011 ident: 10.1016/j.mineng.2016.01.010_b0160 article-title: Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2011.05.006 – volume: 117–118 start-page: 116 year: 2012 ident: 10.1016/j.mineng.2016.01.010_b0680 article-title: Extraction of valuable metals from lepidolite publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2012.02.004 – volume: 114 start-page: 788 issue: 23 year: 2014 ident: 10.1016/j.mineng.2016.01.010_b0370 article-title: Aqueous rechargeable Li and Na ion batteries publication-title: Chem. Rev. doi: 10.1021/cr500232y – start-page: 1303 year: 1998 ident: 10.1016/j.mineng.2016.01.010_b0210 – ident: 10.1016/j.mineng.2016.01.010_b0365 – ident: 10.1016/j.mineng.2016.01.010_b0580 – ident: 10.1016/j.mineng.2016.01.010_b0640 – volume: 15 start-page: 71 year: 2009 ident: 10.1016/j.mineng.2016.01.010_b0415 article-title: Closed basin brine evolution and the influence of Ca–Cl inflow waters. Death Valley and Bristol Dry Lake, California, QaidamBasin, China, and Salar de Atacama, Chile publication-title: Aquat. Geochem. doi: 10.1007/s10498-008-9046-z – volume: 103 start-page: 642 year: 2013 ident: 10.1016/j.mineng.2016.01.010_b0665 article-title: Review on solar stills for brine desalination publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.10.029 – ident: 10.1016/j.mineng.2016.01.010_b0105 – ident: 10.1016/j.mineng.2016.01.010_b0150 – volume: 153 start-page: 154 year: 2015 ident: 10.1016/j.mineng.2016.01.010_b0230 article-title: Extraction of lithium from lepidolite via iron sulphide roasting and water leaching publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2015.03.002 – ident: 10.1016/j.mineng.2016.01.010_b0240 – volume: vol. 20 start-page: 33 year: 2008 ident: 10.1016/j.mineng.2016.01.010_b0655 – volume: 3 start-page: 428 year: 1958 ident: 10.1016/j.mineng.2016.01.010_b0600 article-title: Die Aufklarung der Struktur des Amblygonits mit Hilfe der Minimumfunktion publication-title: Kristallografia – ident: 10.1016/j.mineng.2016.01.010_b0070 – volume: 115 start-page: 133 year: 2015 ident: 10.1016/j.mineng.2016.01.010_b0695 article-title: Extracting lithium from Tibetan Dangxiong Tso Salt Lake of carbonate type by using geothermal salinity-gradient solar pond publication-title: Sol. Energy doi: 10.1016/j.solener.2015.02.021 – ident: 10.1016/j.mineng.2016.01.010_b0645 – ident: 10.1016/j.mineng.2016.01.010_b0620 – ident: 10.1016/j.mineng.2016.01.010_b0345 – ident: 10.1016/j.mineng.2016.01.010_b0215 – ident: 10.1016/j.mineng.2016.01.010_b0475 – ident: 10.1016/j.mineng.2016.01.010_b0320 – volume: 154 start-page: 33 year: 2015 ident: 10.1016/j.mineng.2016.01.010_b0515 article-title: Separation of lithium from sodium in chloride solutions using SSX systems with LIX 54 and Cyanex 923 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2015.01.009 – ident: 10.1016/j.mineng.2016.01.010_b0390 – ident: 10.1016/j.mineng.2016.01.010_b0260 – ident: 10.1016/j.mineng.2016.01.010_b0285 – ident: 10.1016/j.mineng.2016.01.010_b0130 – volume: 12 start-page: 433 issue: 4 year: 1999 ident: 10.1016/j.mineng.2016.01.010_b0015 article-title: Processing a spodumene ore to obtain lithium concentrates for addition to glass and ceramic bodies publication-title: Miner. Eng. doi: 10.1016/S0892-6875(99)00023-0 – volume: 3 start-page: 325 year: 1978 ident: 10.1016/j.mineng.2016.01.010_b0195 article-title: Preliminary design and analysis of recovery of lithium from brine with the use of a selective extractant publication-title: Energy doi: 10.1016/0360-5442(78)90029-4 – volume: 605 start-page: 63 year: 2015 ident: 10.1016/j.mineng.2016.01.010_b0060 article-title: Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride publication-title: Thermochim. Acta doi: 10.1016/j.tca.2015.02.009 – volume: 147–148 start-page: 1 year: 2014 ident: 10.1016/j.mineng.2016.01.010_b0535 article-title: Novel process for the extraction of lithium from β-spodumene by leaching with HF publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2014.04.009 – ident: 10.1016/j.mineng.2016.01.010_b0090 – volume: 31 start-page: 81 year: 1983 ident: 10.1016/j.mineng.2016.01.010_b0185 article-title: Crystal chemistry and stability of petalite publication-title: Tschermaks Min. Petr. Mitt. doi: 10.1007/BF01084763 – volume: 24 start-page: 1595 year: 2011 ident: 10.1016/j.mineng.2016.01.010_b0545 article-title: Extraction of lithium from micaceous waste from china clay production publication-title: Miner. Eng. doi: 10.1016/j.mineng.2011.08.013 – volume: 43 start-page: 1544 issue: 7 year: 1951 ident: 10.1016/j.mineng.2016.01.010_b0065 article-title: Solar evaporation of salt brines publication-title: Ind. Eng. Chem. doi: 10.1021/ie50499a025 – volume: 150 start-page: 192 year: 2014 ident: 10.1016/j.mineng.2016.01.010_b0440 article-title: Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2014.10.012 – ident: 10.1016/j.mineng.2016.01.010_b0430 – volume: 317 start-page: 184 year: 2013 ident: 10.1016/j.mineng.2016.01.010_b0570 article-title: Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO) publication-title: Desalination doi: 10.1016/j.desal.2013.03.009 – volume: 110–111 start-page: 1 year: 2012 ident: 10.1016/j.mineng.2016.01.010_b0675 article-title: Extraction of lithium from lepidolite by sulfation roasting and water leaching publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2012.03.005 – start-page: 270 year: 2003 ident: 10.1016/j.mineng.2016.01.010_b0610 article-title: Non-ferrous metallurgy, materials recycling and environmental protection publication-title: CIP – ident: 10.1016/j.mineng.2016.01.010_b0175 – ident: 10.1016/j.mineng.2016.01.010_b0235 – ident: 10.1016/j.mineng.2016.01.010_b0510 – volume: vol. 13 year: 1973 ident: 10.1016/j.mineng.2016.01.010_b0305 article-title: The chemistry of lithium sodium potassium cesium and francium – volume: 85 start-page: 1537 year: 2011 ident: 10.1016/j.mineng.2016.01.010_b0470 article-title: Experimental study of natural brine solar ponds in Tibet publication-title: Sol. Energy doi: 10.1016/j.solener.2011.04.011 – ident: 10.1016/j.mineng.2016.01.010_b0095 – volume: 53 start-page: 108 issue: 2 year: 2009 ident: 10.1016/j.mineng.2016.01.010_b0335 article-title: Obtaining Li2CO3 from Zinnwaldite wastes publication-title: Ceram. Silik. – ident: 10.1016/j.mineng.2016.01.010_b0315 – ident: 10.1016/j.mineng.2016.01.010_b0435 – ident: 10.1016/j.mineng.2016.01.010_b0135 – volume: 58 start-page: 44 issue: 1 year: 1990 ident: 10.1016/j.mineng.2016.01.010_b0170 article-title: Economic life of improvements associated with salt production publication-title: Appraisal J. – volume: 10 start-page: 171 year: 2003 ident: 10.1016/j.mineng.2016.01.010_b0700 article-title: Extraction kinetics of lithium with a mixture of a β-diketone and a neutral organophosphorous compounds and the molecular dynamics of the lithium complex formation at the heptane-water interface publication-title: Solvent Extr. Res. Dev. – ident: 10.1016/j.mineng.2016.01.010_b0565 – start-page: 81 issue: 29 year: 1981 ident: 10.1016/j.mineng.2016.01.010_b0575 article-title: Redetermination of the lepidolite-2M1 structure publication-title: Clays Clay Miner. doi: 10.1346/CCMN.1981.0290201 – volume: 3 start-page: 305 year: 1978 ident: 10.1016/j.mineng.2016.01.010_b0040 article-title: A review of extractive processes for lithium recovery from ores and brines publication-title: Energy doi: 10.1016/0360-5442(78)90027-0 – ident: 10.1016/j.mineng.2016.01.010_b9005 – ident: 10.1016/j.mineng.2016.01.010_b0100 – volume: 48 start-page: 55 year: 2012 ident: 10.1016/j.mineng.2016.01.010_b0355 article-title: Global lithium resources: relative importance of pegmatite, brine and other deposits publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2012.05.006 – ident: 10.1016/j.mineng.2016.01.010_b5000 – ident: 10.1016/j.mineng.2016.01.010_b0385 – ident: 10.1016/j.mineng.2016.01.010_b0660 – ident: 10.1016/j.mineng.2016.01.010_b0255 – ident: 10.1016/j.mineng.2016.01.010_b0530 – year: 1995 ident: 10.1016/j.mineng.2016.01.010_b0500 – volume: 123 start-page: 9 year: 2013 ident: 10.1016/j.mineng.2016.01.010_b0635 article-title: Lithium and rubidium extraction from zinnwaldite by alkali digestion process: sintering mechanism and leaching kinetics publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2013.04.014 – volume: 557 start-page: 61 year: 2013 ident: 10.1016/j.mineng.2016.01.010_b0055 article-title: Kinetic study on the chlorination of spodumene for lithium extraction with Cl2 gas publication-title: Thermochim. Acta doi: 10.1016/j.tca.2013.01.033 – ident: 10.1016/j.mineng.2016.01.010_b0075 – volume: 42 start-page: 1105 year: 2004 ident: 10.1016/j.mineng.2016.01.010_b0395 article-title: Structural variation in the lithiophilite–triphylite series and other Olivine-group structures publication-title: Can. Mineral. doi: 10.2113/gscanmin.42.4.1105 – volume: 121–124 start-page: 54 year: 2012 ident: 10.1016/j.mineng.2016.01.010_b0690 article-title: A novel process for extracting lithium from lepidolite publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2012.04.006 – ident: 10.1016/j.mineng.2016.01.010_b0220 – ident: 10.1016/j.mineng.2016.01.010_b0650 – volume: 5 start-page: 151 year: 1963 ident: 10.1016/j.mineng.2016.01.010_b0180 article-title: The occurrence of zinnwaldite in Cornwall publication-title: Clay Miner. Bull. – ident: 10.1016/j.mineng.2016.01.010_b0140 – volume: 23 start-page: 659 year: 2010 ident: 10.1016/j.mineng.2016.01.010_b0115 article-title: New concepts for lithium minerals processing publication-title: Miner. Eng. doi: 10.1016/j.mineng.2010.03.021 – year: 1999 ident: 10.1016/j.mineng.2016.01.010_b0225 – start-page: 667 year: 2007 ident: 10.1016/j.mineng.2016.01.010_b0330 – volume: 72 start-page: 11 issue: 1–4 year: 2003 ident: 10.1016/j.mineng.2016.01.010_b0450 article-title: Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO3]2) from other aluminosilicates publication-title: Int. J. Miner. Process. doi: 10.1016/S0301-7516(03)00084-X – volume: 88 start-page: 287 issue: 1 year: 2014 ident: 10.1016/j.mineng.2016.01.010_b0505 article-title: Prospect of lithium resources supply and demand publication-title: Acta Geol. Sin. – year: 2004 ident: 10.1016/j.mineng.2016.01.010_b0270 – ident: 10.1016/j.mineng.2016.01.010_b0275 – ident: 10.1016/j.mineng.2016.01.010_b0550 – ident: 10.1016/j.mineng.2016.01.010_b0445 – ident: 10.1016/j.mineng.2016.01.010_b0590 – ident: 10.1016/j.mineng.2016.01.010_b0630 – ident: 10.1016/j.mineng.2016.01.010_b0200 – start-page: 318 year: 2004 ident: 10.1016/j.mineng.2016.01.010_b0670 – ident: 10.1016/j.mineng.2016.01.010_b0485 – start-page: 389 issue: 46 year: 1991 ident: 10.1016/j.mineng.2016.01.010_b0560 article-title: Simulation and economic evaluation of a solar evaporation system for concentrating sodium chloride brines publication-title: Sol. Energy doi: 10.1016/0038-092X(91)90055-2 – start-page: 1165 year: 1996 ident: 10.1016/j.mineng.2016.01.010_b0010 – volume: 72 start-page: 447 issue: 5 year: 2002 ident: 10.1016/j.mineng.2016.01.010_b0005 article-title: Design methodology for a salt gradient solar pond coupled with an evaporation pond publication-title: Sol. Energy doi: 10.1016/S0038-092X(02)00021-X – volume: 134–135 start-page: 54 year: 2013 ident: 10.1016/j.mineng.2016.01.010_b0400 article-title: Factors affecting the extraction of lithium from lepidolite publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2013.01.015 – ident: 10.1016/j.mineng.2016.01.010_b0525 – ident: 10.1016/j.mineng.2016.01.010_b0120 – ident: 10.1016/j.mineng.2016.01.010_b0250 – volume: 6 start-page: 301 issue: 11 year: 2010 ident: 10.1016/j.mineng.2016.01.010_b0295 article-title: Methodology for selective adsorption of lithium ions onto polymeric aluminium (III) hydroxide publication-title: J. Am. Sci. – volume: 100 start-page: 4 year: 2015 ident: 10.1016/j.mineng.2016.01.010_b0595 article-title: Feasibility of extracting valuable minerals from desalination concentrate: a comprehensive literature review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.03.031 – ident: 10.1016/j.mineng.2016.01.010_b0380 – volume: 31 start-page: 163 year: 2010 ident: 10.1016/j.mineng.2016.01.010_b0310 article-title: Construction and operational of solar pond in Zabuye Saline Lake publication-title: Tibet. Acta Energiae Solaris Sin. – ident: 10.1016/j.mineng.2016.01.010_b0080 – start-page: 3 year: 1957 ident: 10.1016/j.mineng.2016.01.010_b0190 article-title: Recovery of lithium from complex silicates publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 23 year: 1978 ident: 10.1016/j.mineng.2016.01.010_b0280 article-title: Lithium chloride extraction by n-butanol publication-title: Hydrometallurgy doi: 10.1016/0304-386X(78)90004-X – ident: 10.1016/j.mineng.2016.01.010_b0035 – volume: 258A start-page: 312 year: 1960 ident: 10.1016/j.mineng.2016.01.010_b0585 article-title: β-spodumene solid solutions and the join Li2O–Al2O3–SiO2 publication-title: Am. J. Sci. – ident: 10.1016/j.mineng.2016.01.010_b0165 – ident: 10.1016/j.mineng.2016.01.010_b0465 |
SSID | ssj0005789 |
Score | 2.5987923 |
SecondaryResourceType | review_article |
Snippet | •Critically reviewed various processes for the recovery of Li from minerals and brines.•Heat treatment is required for liberating Li from the mineral lattice... Lithium (Li), an exceptional cathode material in rechargeable batteries, is an essential element in modern energy production and storage devices. The... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119 |
SubjectTerms | Brine Energy-critical element Exploitation Extraction Leaching Lithium Lithium minerals Minerals Rechargeable batteries Recovering Recovery Salt water Sustainability |
Title | Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources |
URI | https://dx.doi.org/10.1016/j.mineng.2016.01.010 https://www.proquest.com/docview/1798737637 https://www.proquest.com/docview/1808065230 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcQe9kepo0xja_KSHs1jRM3jnmrKqryMYQESLxFTn2GTiNFNH0cfzt3doIAoSFNyouds3zxOXdn-3dnxn4WOU4UmUmRgbJCeZMIawBE5cBWia5c4il2-NdpPrlUR1eDqxU26mJhCFbZ6v6o04O2bmv67Wj272az_nlSmDRHd1tS1igZMn4qpWmW7z08g3nocA0eEQui7sLnAsbrFj25-poAXnlI3klxtG-bp1eKOlif8Rf2uXUb-TBy9pWtQL3GPj1LJviN_R3G43weo1H4vObo3HEgkF2biJvPfajDXgJPDYcQ-icIIomKhUMEk-_zk1lzM1ve7vEzHAx-uM_H2IRTo3tkw9aOVxQ2iH3F3f_FOrscH1yMJqK9XEFMB1o2opLOo7smU-sLNNtTY1L0NmSKJfyNlZPGS2fttHBuAGizvEvBmkLh8s0CLrOy72y1ntfwg_EKxWoTsLiU8cpkzhbGKZBeG59AqgcbLOvGtJy2H0wXYPwpO4jZ7zJKoiRJlInEJ9lg4qnVXcy88Q697sRVvphBJRqHd1rudtLFtws6MbE1zJeLkrK5aVLB-h80lJkzp831zf_mYIt9pFJEBG2z1eZ-CTvo7DRVL8zmHvswPDyenD4C9cABCg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9QwDI_GeIA9oDFADAYEaTxml7S9tpnEwzR2umO3CYlN2ltILw4c2nrTrifEA_tSfEHspEUbQkxCmtSX_knj2q7ttD_bjG2WOSqKSpVIIbMi81oKqwFE5cBWsqic9JQ7fHCYD4-z9yf9kyX2s8uFIVhla_ujTQ_Wuj3Sa7nZO59Oex9lqZMcw21FVaOU7DpY78P3b7hum78dvUMhv0mSwd7R7lC0rQXEpF-oRlTKeQxWVGJ9iU5ronWCvlYluIdKnDmlvXLWTkrn-oAW27sErC4zXLxYwEVGive9w-5maC6obcLW5RVcSRH67hF1gsjr8vUCqOwMQ8f6MyHK8lAtlBJ3_-4P__AMwd0NVtmDNk7lO5EVD9kS1Gts5Ur1wkfsx07ED_CY_sJnNcdokgOh-trK33zmwzGcJdDUcAi5hoIwmWjJOET0-jYfT5sv08XZFv-A3OejbT7AIZwGXSAZtna8ojxFnCv-bpg_Zse3wvInbLme1fCU8Qr1yEqwuHbymU6dLbXLQPlCewlJ0V9nacdTM2kfmDpunJoO0_bVREkYkoSRCje5zsTvUeex1McN1xeduMw1lTXojW4Y-bqTLp6d0y8aW8NsMTdUPq4gm1_84xoqBZrT1_xn_03BK3ZveHQwNuPR4f5zdp_ORDjSBltuLhbwAiOtpnoZNJuzT7f9Kv0CGV87sg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advance+review+on+the+exploitation+of+the+prominent+energy-storage+element%3A+Lithium.+Part+I%3A+From+mineral+and+brine+resources&rft.jtitle=Minerals+engineering&rft.au=Choubey%2C+Pankaj+K.&rft.au=Kim%2C+Min-seuk&rft.au=Srivastava%2C+Rajiv+R.&rft.au=Lee%2C+Jae-chun&rft.date=2016-04-01&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.eissn=1872-9444&rft.volume=89&rft.spage=119&rft.epage=137&rft_id=info:doi/10.1016%2Fj.mineng.2016.01.010&rft.externalDocID=S0892687516300103 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon |