Compatible solutes mitigate damaging effects of salt stress by reducing the impact of stress-induced reactive oxygen species

Under abiotic stress conditions, rapid increases in reactive oxygen species (ROS) levels occurs within plant cells. Although their role as a major signalling agent in plants is now acknowledged, elevated ROS levels can result in an impairment of membrane integrity. Similar to our previous findings o...

Full description

Saved in:
Bibliographic Details
Published inPlant signaling & behavior Vol. 3; no. 3; pp. 207 - 208
Main Authors Cuin, Tracey Ann, Shabala, Sergey
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 01.03.2008
Landes Bioscience
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Under abiotic stress conditions, rapid increases in reactive oxygen species (ROS) levels occurs within plant cells. Although their role as a major signalling agent in plants is now acknowledged, elevated ROS levels can result in an impairment of membrane integrity. Similar to our previous findings on imposition of salt stress, application of the hydroxyl radical (OH * ) to Arabidopsis roots results in a massive efflux of K + from epidermal cells. This is likely to cause significant damage to cell metabolism. Since K + loss also occurs after salt application and salt stress leads to increased cellular ROS levels, we suggest that at least some of the detrimental effects of salinity is due to damage by its resulting ROS on K + homeostasis. We also observed a comparative reduction in K + efflux by compatible solutes after both oxidative and salt stress. Thus, we propose that under saline conditions, compatible solutes mitigate the oxidative stress damage to membrane transporters. Whether this amelioration is due to free-radical scavenging or by direct protection of transporter systems, warrants further investigation.
AbstractList Under abiotic stress conditions, rapid increases in reactive oxygen species (ROS) levels occurs within plant cells. Although their role as a major signalling agent in plants is now acknowledged, elevated ROS levels can result in an impairment of membrane integrity. Similar to our previous findings on imposition of salt stress, application of the hydroxyl radical (OH(*)) to Arabidopsis roots results in a massive efflux of K(+) from epidermal cells. This is likely to cause significant damage to cell metabolism. Since K(+) loss also occurs after salt application and salt stress leads to increased cellular ROS levels, we suggest that at least some of the detrimental effects of salinity is due to damage by its resulting ROS on K(+) homeostasis. We also observed a comparative reduction in K(+) efflux by compatible solutes after both oxidative and salt stress. Thus, we propose that under saline conditions, compatible solutes mitigate the oxidative stress damage to membrane transporters. Whether this amelioration is due to free-radical scavenging or by direct protection of transporter systems, warrants further investigation.Under abiotic stress conditions, rapid increases in reactive oxygen species (ROS) levels occurs within plant cells. Although their role as a major signalling agent in plants is now acknowledged, elevated ROS levels can result in an impairment of membrane integrity. Similar to our previous findings on imposition of salt stress, application of the hydroxyl radical (OH(*)) to Arabidopsis roots results in a massive efflux of K(+) from epidermal cells. This is likely to cause significant damage to cell metabolism. Since K(+) loss also occurs after salt application and salt stress leads to increased cellular ROS levels, we suggest that at least some of the detrimental effects of salinity is due to damage by its resulting ROS on K(+) homeostasis. We also observed a comparative reduction in K(+) efflux by compatible solutes after both oxidative and salt stress. Thus, we propose that under saline conditions, compatible solutes mitigate the oxidative stress damage to membrane transporters. Whether this amelioration is due to free-radical scavenging or by direct protection of transporter systems, warrants further investigation.
Under abiotic stress conditions, rapid increases in reactive oxygen species (ROS) levels occurs within plant cells. Although their role as a major signalling agent in plants is now acknowledged, elevated ROS levels can result in an impairment of membrane integrity. Similar to our previous findings on imposition of salt stress, application of the hydroxyl radical (OH(*)) to Arabidopsis roots results in a massive efflux of K(+) from epidermal cells. This is likely to cause significant damage to cell metabolism. Since K(+) loss also occurs after salt application and salt stress leads to increased cellular ROS levels, we suggest that at least some of the detrimental effects of salinity is due to damage by its resulting ROS on K(+) homeostasis. We also observed a comparative reduction in K(+) efflux by compatible solutes after both oxidative and salt stress. Thus, we propose that under saline conditions, compatible solutes mitigate the oxidative stress damage to membrane transporters. Whether this amelioration is due to free-radical scavenging or by direct protection of transporter systems, warrants further investigation.
Under abiotic stress conditions, rapid increases in reactive oxygen species (ROS) levels occurs within plant cells. Although their role as a major signalling agent in plants is now acknowledged, elevated ROS levels can result in an impairment of membrane integrity. Similar to our previous findings on imposition of salt stress, application of the hydroxyl radical (OH • ) to Arabidopsis roots results in a massive efflux of K + from epidermal cells. This is likely to cause significant damage to cell metabolism. Since K + loss also occurs after salt application and salt stress leads to increased cellular ROS levels, we suggest that at least some of the detrimental effects of salinity is due to damage by its resulting ROS on K + homeostasis. We also observed a comparative reduction in K + efflux by compatible solutes after both oxidative and salt stress. Thus, we propose that under saline conditions, compatible solutes mitigate the oxidative stress damage to membrane transporters. Whether this amelioration is due to free-radical scavenging or by direct protection of transporter systems, warrants further investigation.
Under abiotic stress conditions, rapid increases in reactive oxygen species (ROS) levels occurs within plant cells. Although their role as a major signalling agent in plants is now acknowledged, elevated ROS levels can result in an impairment of membrane integrity. Similar to our previous findings on imposition of salt stress, application of the hydroxyl radical (OH•) to Arabidopsis roots results in a massive efflux of K⁺ from epidermal cells. This is likely to cause significant damage to cell metabolism. Since K⁺ loss also occurs after salt application and salt stress leads to increased cellular ROS levels, we suggest that at least some of the detrimental effects of salinity is due to damage by its resulting ROS on K⁺ homeostasis. We also observed a comparative reduction in K⁺ efflux by compatible solutes after both oxidative and salt stress. Thus, we propose that under saline conditions, compatible solutes mitigate the oxidative stress damage to membrane transporters. Whether this amelioration is due to free-radical scavenging or by direct protection of transporter systems, warrants further investigation.
Author Shabala, Sergey
Cuin, Tracey Ann
AuthorAffiliation School of Agricultural Science; University of Tasmania; Hobart, Australia
AuthorAffiliation_xml – name: School of Agricultural Science; University of Tasmania; Hobart, Australia
Author_xml – sequence: 1
  givenname: Tracey Ann
  surname: Cuin
  fullname: Cuin, Tracey Ann
  email: Tracey.Cuin@utas.edu.au
– sequence: 2
  givenname: Sergey
  surname: Shabala
  fullname: Shabala, Sergey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19704661$$D View this record in MEDLINE/PubMed
BookMark eNp9ksuLFDEQxhtZcR968yy56cFZ8-p090WQxRcseNFzqE5XZiPpZEwyuw74x5ve2R1UFqlDQur3ffmg6rQ5CjFg0zxn9Fwyxd5s8nguaslBqUfNCWvbYcUFl0eHO1PHzWnO3ymVoqP0SXPMho5KpdhJ8-sizhsobvRIcvTbgpnMrrg1FCQTzLB2YU3QWjQlk2hJBl9ILglzJuOOJJy2ZkHKFRJXrUy5pW6BlQu1i1Ol6ru7RhJ_7tYYSN6gcZifNo8t-IzP7s6z5tuH918vPq0uv3z8fPHucmXajpUVSJg4wtBbBDFaxelgmYDBtu0oOuA1XN9CxwFo38vaa0c6UsUnMdle0FacNW_3vpvtOONkMJQEXm-SmyHtdASn_-4Ed6XX8VpzJSRjQzV4eWeQ4o8t5qJnlw16DwHjNutOSMpa1S_kq_-SXIpBctUzXtEXf6Y6xLkfTgX4HjAp5pzQauNKnVVcQjqvGdXLBui6AVrUWjagil7_Izr4PozTPV4DTphHF3OdTDB4kC04pOKMx3tJt5e4YGOa4SYmP-kCOx-TTRCMy1o8-NlvO2XbtQ
CitedBy_id crossref_primary_10_1007_s00425_011_1499_4
crossref_primary_10_1016_j_envexpbot_2016_03_011
crossref_primary_10_1002_leg3_208
crossref_primary_10_1007_s10265_013_0597_8
crossref_primary_10_1139_a11_003
crossref_primary_10_1016_j_scitotenv_2024_176278
crossref_primary_10_3389_fmicb_2017_02054
crossref_primary_10_4081_ija_2017_918
crossref_primary_10_1016_j_compbiolchem_2015_07_006
crossref_primary_10_1007_s00468_021_02246_0
crossref_primary_10_1007_s10452_023_10012_2
crossref_primary_10_1016_j_envexpbot_2009_05_008
crossref_primary_10_1016_j_scienta_2010_07_027
crossref_primary_10_1007_s00344_020_10257_3
crossref_primary_10_1016_j_plaphy_2013_06_020
crossref_primary_10_1007_s10535_012_0144_9
crossref_primary_10_1016_j_phytochem_2017_04_016
crossref_primary_10_1016_j_plantsci_2018_12_002
crossref_primary_10_1155_2020_4827045
crossref_primary_10_1186_s12870_019_1712_3
crossref_primary_10_1007_s11738_017_2357_1
crossref_primary_10_1080_07352689_2012_752236
Cites_doi 10.1093/jexbot/51.342.81
10.1071/FP03016
10.1111/j.1365-3040.2007.01674.x
10.1071/FP06237
10.1146/annurev.arplant.51.1.463
10.1111/j.1365-3040.2005.01364.x
10.1007/s00425-006-0386-x
10.1089/ars.2006.8.1757
10.1093/jxb/erg072
10.1016/S1360-1385(00)01838-0
10.1006/anbo.1999.0912
10.1111/j.1399-3054.1997.tb04778.x
10.1093/jexbot/52.355.351
10.1104/pp.016014
10.1093/pcp/pci205
10.1007/s00425-005-0074-2
10.1104/pp.011445
10.1242/jcs.00201
10.1016/0031-9422(89)80182-7
10.1093/jxb/erh189
10.1146/annurev.arplant.53.091401.143329
10.1073/pnas.0604421103
10.1093/jexbot/51.343.177
ContentType Journal Article
Copyright Copyright © 2008 Landes Bioscience 2008
Copyright_xml – notice: Copyright © 2008 Landes Bioscience 2008
DBID AAYXX
CITATION
NPM
7S9
L.6
7X8
5PM
DOI 10.4161/psb.3.3.4966
DatabaseName CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Biology
EISSN 1559-2324
EndPage 208
ExternalDocumentID PMC2634119
19704661
10_4161_psb_3_3_4966
10904966
Genre Research Article
Journal Article
GroupedDBID ---
0YH
29O
2WC
30N
53G
AAHBH
AAJMT
ABCCY
ABFIM
ABPEM
ABTAI
ACGFS
ACTIO
ADBBV
ADCVX
AEISY
AEYOC
AIJEM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AVBZW
BAWUL
BLEHA
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
F5P
GTTXZ
H13
HYE
KYCEM
M4Z
O9-
OK1
P2P
RPM
SNACF
TDBHL
TEI
TFL
TFT
TFW
TR2
TTHFI
~KM
-
0R
AAAVI
ABJVF
ABQHQ
ADACO
AEGYZ
AFOLD
AHDLD
AIRXU
FUNRP
FVPDL
KM
RNANH
ROSJB
RTWRZ
TQWBC
V1K
ZGOLN
4.4
AAYXX
AIYEW
CITATION
EJD
EMOBN
GROUPED_DOAJ
LJTGL
SV3
TUS
NPM
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c571t-a4ad2ea98fea3bf6209f13a9f55b37a2ffe85a72aa08849f15b0b062d3df83053
ISSN 1559-2316
1559-2324
IngestDate Thu Aug 21 18:24:18 EDT 2025
Fri Jul 11 03:54:21 EDT 2025
Mon May 05 21:01:20 EDT 2025
Thu Apr 03 07:00:54 EDT 2025
Thu Apr 24 22:53:07 EDT 2025
Tue Jul 01 02:20:51 EDT 2025
Fri Jan 15 03:35:48 EST 2021
Wed Dec 25 09:03:05 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords hydroxyl radical
potassium efflux
salt stress
compatible solutes
reactive oxygen species
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c571t-a4ad2ea98fea3bf6209f13a9f55b37a2ffe85a72aa08849f15b0b062d3df83053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.tandfonline.com/doi/pdf/10.4161/psb.3.3.4966?needAccess=true
PMID 19704661
PQID 2439426812
PQPubID 24069
PageCount 2
ParticipantIDs crossref_citationtrail_10_4161_psb_3_3_4966
crossref_primary_10_4161_psb_3_3_4966
proquest_miscellaneous_734015689
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2634119
informaworld_taylorfrancis_310_4161_psb_3_3_4966
landesbioscience_primary_psb_article_4966
proquest_miscellaneous_2439426812
pubmed_primary_19704661
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20080301
PublicationDateYYYYMMDD 2008-03-01
PublicationDate_xml – month: 3
  year: 2008
  text: 20080301
  day: 1
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Plant signaling & behavior
PublicationTitleAlternate Plant Signal Behav
PublicationYear 2008
Publisher Taylor & Francis
Landes Bioscience
Publisher_xml – name: Taylor & Francis
– name: Landes Bioscience
References R21
R20
R23
R22
R24
Chen Z (R25) 2007
R2
R3
R4
R5
R6
R7
R8
R9
Foyer CH (R1) 1994
R10
R12
R11
R14
R13
R16
R15
R18
R17
R19
References_xml – ident: R23
  doi: 10.1093/jexbot/51.342.81
– ident: R9
  doi: 10.1071/FP03016
– ident: R17
  doi: 10.1111/j.1365-3040.2007.01674.x
– start-page: 1
  volume-title: Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants
  year: 1994
  ident: R1
– ident: R12
  doi: 10.1071/FP06237
– ident: R21
  doi: 10.1146/annurev.arplant.51.1.463
– ident: R11
  doi: 10.1111/j.1365-3040.2005.01364.x
– ident: R20
  doi: 10.1007/s00425-006-0386-x
– ident: R3
  doi: 10.1089/ars.2006.8.1757
– ident: R14
  doi: 10.1093/jxb/erg072
– ident: R6
  doi: 10.1016/S1360-1385(00)01838-0
– ident: R15
  doi: 10.1006/anbo.1999.0912
– ident: R2
  doi: 10.1111/j.1399-3054.1997.tb04778.x
– year: 2007
  ident: R25
  publication-title: J Exp Bot
– ident: R4
  doi: 10.1093/jexbot/52.355.351
– ident: R18
  doi: 10.1104/pp.016014
– ident: R19
  doi: 10.1093/pcp/pci205
– ident: R10
  doi: 10.1007/s00425-005-0074-2
– ident: R13
  doi: 10.1104/pp.011445
– ident: R16
  doi: 10.1242/jcs.00201
– ident: R24
  doi: 10.1016/0031-9422(89)80182-7
– ident: R5
  doi: 10.1093/jxb/erh189
– ident: R8
  doi: 10.1146/annurev.arplant.53.091401.143329
– ident: R7
  doi: 10.1073/pnas.0604421103
– ident: R22
  doi: 10.1093/jexbot/51.343.177
SSID ssj0043700
Score 1.9283131
Snippet Under abiotic stress conditions, rapid increases in reactive oxygen species (ROS) levels occurs within plant cells. Although their role as a major signalling...
SourceID pubmedcentral
proquest
pubmed
crossref
landesbioscience
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 207
SubjectTerms Addendum
Arabidopsis
Binding
Biology
Bioscience
Calcium
Cancer
Cell
Cycle
free radical scavengers
homeostasis
hydroxyl radicals
Landes
metabolism
Organogenesis
oxidative stress
potassium
Proteins
roots
salinity
salt stress
solutes
transporters
Title Compatible solutes mitigate damaging effects of salt stress by reducing the impact of stress-induced reactive oxygen species
URI https://www.tandfonline.com/doi/abs/10.4161/psb.3.3.4966
http://www.landesbioscience.com/journals/psb/article/4966/
https://www.ncbi.nlm.nih.gov/pubmed/19704661
https://www.proquest.com/docview/2439426812
https://www.proquest.com/docview/734015689
https://pubmed.ncbi.nlm.nih.gov/PMC2634119
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9QwEA9yKugHH-ervoigH6T07DZt2n48D-UQvE93cN9K0ia6sNeV2y644h_vTB59rHvgSaEs6WzaMr9MZtLMbwh5WzOZK6XwC6tuojTXPCp0rSKl5YzBQC9qjsnJX0_48Vn65Tw7H8qlmuySTh7Uv3bmlfyPVqEN9IpZstfQbN8pNMBv0C-cQcNw_icdm8HczTH5ydxIrcKLuSHNUGEjLmwBotGOjZVYdD47BNzOS6Rt9elSQ7qkFYggWF_j5gDwKo1NDJc_N_AkIeZm-p2HzqvFykfQ8fwbevVm6YH3-f_9Eg6meW6QIFqKRT8XwFRZQ-th24ZHa0cC7tcgimETljebWRmBp-hIrcdtNkPa21o2ghQb201b-tZNwYmhevjLumMshiWJV_KAwZGWfItE20Y1ZQ4xP0bENxMIHdD2sfjEz84ps2lJ_RPbZAjs-sO444mbMiGxvUvu455T_Hzn6EbVruhke5PtyGs5fUDuuXCDHlrsPCQ3VLtPbtsCpJt9cuvjEoKDzSPye4ASdVCiHkrUQ4k6KNGlpgglapFC5YZ6KFGAErVQMlITKFEPJWqhRB2UHpOzz59Oj44jV5gjqrN81kUiFU2iRFloJZjUPIlLPWOi1FkmWS4SeJgiE3kiBMxhKVzLZCxjnjSs0QVMMOwJ2WuXrXpGqJBploIX3bCap2rGwXLkXMtG1llTllkekNDroaodaz0WT1lUEL2i1irQWsXgQK0F5F0v_cOytVwhF49VWnVmdUzbUjYV2_2X99tq72-Bcs4IONk3Hg8VWGv8BCdatVyvqgQT0RPk_AsIvUImZynyGxRlQJ5aCA3v4rAdkHwCrl4AyeKnV9r5d0Man3DwV2fl82u8xgtyZxjsL8led7lWr8AF7-RrM6b-AMmj6pw
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQcKG_C00j0gFCWJHbi5MCBV7Wl7Z5aqbdgJ7aI2GarJiu0iD_EX-FXMeNkl-7SHjj0gHL0l4cf33gcz3wGeFFwLY0xtMNqS19Im_ipLYxvrA45Ej0tEkpO3hslwwPx6TA-XIOf81wYCqukNbTthCKcrSZy089oYjj546-PGz3geAn01ft4yh0z-4artebN9gfs2s0o2vq4_37o9wcK-EUsw9ZXQpWRUVlqjeLaJlGQ2ZCrzMax5lJF1po0VjJSCrknsCzWgQ6SqOSlTZEYHJ97CS7HWSKJUjwYzY2-4DIIurj6v75wacZb0kO9DhsUvkg7Qb1ypTnL0V2N1zw1AW5twK9503VxL18H01YPiu8rqpL_RdvehBu9G87edry5BWumvg1X3k3ww2d34Iezkm2lx4Y5bpqGHVVOjcSwUh25k51YHwrDJpY1atyyLu2G6Rk7IT1cgqB3zbo8VIdyAL-qsdSUiFJusmHYoEhjRkmvlWnuwsGF1PwerNeT2jwAprSIBfqUJS8SYcIEeSQTq0tdxGWWxdKDV_OhlBe9hjsdJTLOcS1H3Zdj9-UcL-o-DzYX6ONOu-QcXHB6VOat-1dku4Ndcn72LS9XR-7iFYTrzV6PfT4f0jnaLtqQUrWZTJs8orTsiBTwPGDnYCQXlO2fZh7c71jwpy6ZDAT6lx7IJX4sACSdvlxSV1-chHqUoPcWZg__vebP4Opwf283390e7TyCa134EIUkPob19mRqnqCP2uqnzjow-HzRlPkNRgKp0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglA5UN4sTyPRA0JZkjixkwMHoKxaCisOVOottRNbjdhmV01WaBE_iL_Cv2LGyS7dpT1w6AHl6C8PP77xOJ75DPA851oaY2iH1RZeJK3wEpsbz1gdcCR6kgtKTv40FDv70YeD-GANfs5zYSisktbQthWKcLaayD0pLBGc3PFXk1r3OV4RuupdOOWemX3DxVr9encbe3YrDAfvv7zb8brzBLw8lkHjqUgVoVFpYo3i2orQT23AVWrjWHOpQmtNEisZKoXUi7As1r72RVjwwibIC47PvQSXBeVzUrKIP5zb_IhL32_D6v_6wqUJb0kO9RpsUvQibQR1wpXmLD93NVzz1Pw32IRf85Zrw16-9qeN7uffV0Ql_4emvQHXOyecvWlZcxPWTHULrrwd43fPbsMPZyObUo8Mc8w0NTsunRaJYYU6duc6sS4Qho0tq9WoYW3SDdMzdkJquARB35q1WagO5QBeWWGpKRCl3FTDsD2RxIxSXktT34H9C6n5XVivxpW5D0zpKI7Qoyx4LiITCGSRFFYXOo-LNI1lD17OR1KWdwrudJDIKMOVHHVfht2Xcbyo-3qwtUBPWuWSc3D-6UGZNe5PkW2Pdcn42be8WB24i1cQrjN6HfbZfERnaLloO0pVZjyts5CSskPSv-sBOwcjeUS5_knag3stCf7UJZVIRBH0QC7RYwEg4fTlkqo8cgLqoUDfLUgf_HvNn8LVz9uD7OPucO8hbLSxQxSP-AjWm5OpeYwOaqOfONvA4PCiGfMbiU-odQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compatible+solutes+mitigate+damaging+effects+of+salt+stress+by+reducing+the+impact+of+stress-induced+reactive+oxygen+species&rft.jtitle=Plant+signaling+%26+behavior&rft.au=Sergey+Shabala&rft.au=Tracey+Ann+Cuin&rft.date=2008-03-01&rft.issn=1559-2316&rft.eissn=1559-2324&rft.volume=3&rft.issue=3&rft.spage=207&rft.epage=208&rft_id=info:doi/10.4161%2Fpsb.3.3.4966&rft.externalDocID=19704661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1559-2316&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1559-2316&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1559-2316&client=summon