Effective Fine-Structure Constant of Freestanding Graphene Measured in Graphite

Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals o...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 330; no. 6005; pp. 805 - 808
Main Authors Reed, James P, Uchoa, Bruno, Joe, Young Il, Gan, Yu, Casa, Diego, Fradkin, Eduardo, Abbamonte, Peter
Format Journal Article
LanguageEnglish
Published Washington, DC American Association for the Advancement of Science 05.11.2010
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, [Formula: see text], the value of which approaches [Formula: see text] at low energy and large distances. This value is substantially smaller than the nominal [Formula: see text], suggesting that, on the whole, graphene is more weakly interacting than previously believed.
AbstractList Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, $\alpha _g^* $ (k, ω), the value of which approaches 0.14 ± 0.092 ~ 1/7 at low energy and large distances. This value is substantially smaller than the nominal α g = 2.2, suggesting that, on the whole, graphene is more weakly interacting than previously believed.
Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, α(g)* (k,ω), the value of which approaches 0.14 ± 0.092 ~ 1/7 at low energy and large distances. This value is substantially smaller than the nominal α(g) = 2.2, suggesting that, on the whole, graphene is more weakly interacting than previously believed.
Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles.
Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, [Formula: see text], the value of which approaches [Formula: see text] at low energy and large distances. This value is substantially smaller than the nominal [Formula: see text], suggesting that, on the whole, graphene is more weakly interacting than previously believed.
Many unusual properties of graphene are a consequence of the Dirac dispersion of its electrons -- a linear relationship between an electron's momentum and energy. Naïvely, this dispersion leads to the conclusion that electrons in graphene are strongly affected by mutual electrostatic interactions; however, there is little experimental evidence for strong interaction. Reed et al. (p. 805) resolved this discrepancy by using inelastic x-ray scattering spectra of graphite (which consists of loosely bound layers of graphene) to estimate how much the electric field was damped by the presence of mobile charge carriers. In fact, damping was strong at distances in excess of 1 nanometer, suggesting that graphene is more weakly interacting than was assumed. [PUBLICATION ABSTRACT] Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, (ProQuest: Formulae and/or non-USASCII text omitted), suggesting that, on the whole, graphene is more weakly interacting than previously believed. [PUBLICATION ABSTRACT]
Many unusual properties of graphene are a consequence of the Dirac dispersion of its electrons—a linear relationship between an electron's momentum and energy. Naïvely, this dispersion leads to the conclusion that electrons in graphene are strongly affected by mutual electrostatic interactions; however, there is little experimental evidence for strong interaction. Reed et al. (p. 805 ) resolved this discrepancy by using inelastic x-ray scattering spectra of graphite (which consists of loosely bound layers of graphene) to estimate how much the electric field was damped by the presence of mobile charge carriers. In fact, damping was strong at distances in excess of 1 nanometer, suggesting that graphene is more weakly interacting than was assumed. Spectral analysis of graphite reveals an unexpectedly low influence of electron interactions in graphene. Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, α g * ( k , ω ) , the value of which approaches 0.14 ± 0.092 ~ 1 / 7 at low energy and large distances. This value is substantially smaller than the nominal α g = 2.2 , suggesting that, on the whole, graphene is more weakly interacting than previously believed.
Author Uchoa, Bruno
Joe, Young Il
Casa, Diego
Abbamonte, Peter
Gan, Yu
Fradkin, Eduardo
Reed, James P
Author_xml – sequence: 1
  fullname: Reed, James P
– sequence: 2
  fullname: Uchoa, Bruno
– sequence: 3
  fullname: Joe, Young Il
– sequence: 4
  fullname: Gan, Yu
– sequence: 5
  fullname: Casa, Diego
– sequence: 6
  fullname: Fradkin, Eduardo
– sequence: 7
  fullname: Abbamonte, Peter
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23418919$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21051634$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1v1DAQxS1URLeFMycgUoU4hY4_4sRHtOoWpKIeSs-W44yLV7v2YidI_Pd4lbRIXOBkz7yfn2b8zshJiAEJeU3hI6VMXmbrMVgshQLF4BlZUVBNXa78hKwAuKw7aJtTcpbzFqBoir8gp4xCQyUXK3J75Rza0f_EauMD1ndjmuw4JazWMeTRhLGKrtokxGMx-PBQXSdz-I4Bq69ociGHyoe56Ud8SZ47s8v4ajnPyf3m6tv6c31ze_1l_emmtk1Lx1qhaZwEK9sOLO8lDFJx6FnX91yY1jlumQJjGjUw2iM0zIDtgYIQrSpr8XPyYfY9pPhjKsPpvc8WdzsTME5Zd0KJVkqm_ouUQql_k61kshNdA4W8-IvcximFsrCmrGMcmORH6nKmbIo5J3T6kPzepF-agj7Gp5f49BJfefF28Z36PQ5P_GNeBXi_ACZbs3PJBOvzH44L2il6XOXNzG3zGNOTLkBxWr6l6O9m3ZmozUMqHvd3DCiHMknLOeW_AYRMtg8
CODEN SCIEAS
CitedBy_id crossref_primary_10_1016_j_susc_2014_12_016
crossref_primary_10_1088_0953_4075_47_12_124034
crossref_primary_10_1021_nn302628q
crossref_primary_10_1103_PhysRevB_101_165126
crossref_primary_10_1103_RevModPhys_84_1067
crossref_primary_10_1103_PhysRevB_108_195104
crossref_primary_10_1103_PhysRevX_7_041030
crossref_primary_10_1088_0034_4885_75_5_056501
crossref_primary_10_1016_j_physe_2020_114383
crossref_primary_10_1103_PhysRevB_84_205409
crossref_primary_10_1021_acs_nanolett_3c03863
crossref_primary_10_1103_PhysRevB_93_195150
crossref_primary_10_1103_PhysRevB_108_045403
crossref_primary_10_1103_PhysRevB_85_085441
crossref_primary_10_1103_PhysRevB_85_085443
crossref_primary_10_1007_s00332_015_9259_4
crossref_primary_10_1073_pnas_1100242108
crossref_primary_10_1063_1_4927664
crossref_primary_10_1103_PhysRevB_109_035145
crossref_primary_10_1109_TEMC_2020_3042667
crossref_primary_10_1088_1361_6633_aafa35
crossref_primary_10_1103_PhysRevB_84_035439
crossref_primary_10_1038_ncomms15629
crossref_primary_10_1364_JOSAB_29_000A86
crossref_primary_10_21468_SciPostPhys_3_4_026
crossref_primary_10_1103_PhysRevLett_112_156402
crossref_primary_10_1016_j_physleta_2024_129347
crossref_primary_10_1038_nphys2379
crossref_primary_10_1088_0256_307X_41_1_017801
crossref_primary_10_1103_PhysRevB_91_184303
crossref_primary_10_1103_PhysRevB_84_085446
crossref_primary_10_1039_C4NR00758A
crossref_primary_10_1103_PhysRevB_96_201408
crossref_primary_10_1038_s41467_021_27182_y
crossref_primary_10_4236_jamp_2014_23004
crossref_primary_10_1007_s40509_024_00335_6
crossref_primary_10_1103_PhysRevLett_119_166402
crossref_primary_10_1103_PhysRevB_83_205406
crossref_primary_10_1080_00018732_2014_927109
crossref_primary_10_1103_PhysRevB_91_035414
crossref_primary_10_1063_1_4959205
crossref_primary_10_1142_S0217979221501599
crossref_primary_10_1038_s41535_021_00386_7
crossref_primary_10_1039_D2NR05660G
crossref_primary_10_1021_nl303611v
crossref_primary_10_1103_PhysRevB_83_155441
crossref_primary_10_1021_acscentsci_7b00590
crossref_primary_10_1103_PhysRevResearch_3_013150
crossref_primary_10_1103_PhysRevB_92_245406
crossref_primary_10_1021_acs_jpclett_1c02461
crossref_primary_10_1103_PhysRevB_88_075433
crossref_primary_10_1103_PhysRevB_87_155431
crossref_primary_10_1016_j_physe_2015_02_004
crossref_primary_10_1103_PhysRevB_89_235431
crossref_primary_10_1103_PhysRevLett_106_236805
crossref_primary_10_1103_PhysRevB_98_125406
crossref_primary_10_1039_C6RA26805F
crossref_primary_10_1016_j_carbon_2014_02_064
crossref_primary_10_1016_j_physleta_2018_11_018
crossref_primary_10_1103_PhysRevX_9_041062
crossref_primary_10_1209_0295_5075_99_67009
crossref_primary_10_1103_PhysRevD_106_063003
crossref_primary_10_1103_PhysRevB_102_195426
crossref_primary_10_1103_PhysRevB_84_205445
crossref_primary_10_1103_PhysRevB_99_035441
crossref_primary_10_1103_PhysRevLett_120_246402
crossref_primary_10_1103_PhysRevB_109_075120
crossref_primary_10_1103_RevModPhys_88_025003
crossref_primary_10_1007_s11467_021_1125_2
crossref_primary_10_1038_s41467_017_01522_3
crossref_primary_10_1038_nphys2049
crossref_primary_10_1209_0295_5075_95_18001
crossref_primary_10_1063_1_4953643
crossref_primary_10_1088_1361_665X_ac8f78
crossref_primary_10_1007_s11664_016_5274_y
crossref_primary_10_1088_1751_8113_45_38_383001
crossref_primary_10_1103_PhysRevB_85_195421
crossref_primary_10_1016_j_physe_2018_08_013
crossref_primary_10_1016_j_physleta_2015_06_057
crossref_primary_10_1016_j_jpcs_2016_08_004
crossref_primary_10_1103_PhysRevB_86_125434
crossref_primary_10_1103_PhysRevB_87_035438
crossref_primary_10_1016_j_physe_2013_09_010
crossref_primary_10_1088_0031_8949_2012_T146_014015
crossref_primary_10_1103_PhysRevX_4_021040
crossref_primary_10_1002_pssb_202400222
crossref_primary_10_1088_0031_8949_2012_T146_014014
crossref_primary_10_1016_j_ssc_2012_04_057
crossref_primary_10_1016_j_cap_2015_03_011
crossref_primary_10_1002_pssb_201600827
crossref_primary_10_1016_j_carbon_2017_12_014
crossref_primary_10_1103_PhysRevB_89_235138
crossref_primary_10_1016_j_electacta_2023_141966
crossref_primary_10_1039_C5RA13879E
crossref_primary_10_1002_andp_202100313
crossref_primary_10_1063_1_5083200
crossref_primary_10_1021_acsnano_3c09993
crossref_primary_10_1016_j_physb_2019_411814
crossref_primary_10_1063_5_0200259
crossref_primary_10_1002_app_55530
crossref_primary_10_1016_j_chemphys_2012_06_018
crossref_primary_10_1016_j_physb_2018_04_023
crossref_primary_10_1103_PhysRevB_84_155416
crossref_primary_10_1103_PhysRevB_108_064207
crossref_primary_10_1103_PhysRevB_89_205128
crossref_primary_10_1021_nl500969t
crossref_primary_10_1103_PhysRevB_86_115408
crossref_primary_10_1103_PhysRevB_87_245428
crossref_primary_10_1103_PhysRevB_96_235142
crossref_primary_10_1016_j_flatc_2017_06_008
crossref_primary_10_1140_epjb_e2012_30593_0
crossref_primary_10_1002_adma_201201482
crossref_primary_10_3390_coatings12111788
crossref_primary_10_1038_nphoton_2012_262
crossref_primary_10_1103_PhysRevB_102_054208
crossref_primary_10_1103_PhysRevB_101_235310
crossref_primary_10_1093_mnras_stt656
Cites_doi 10.1103/PhysRevLett.103.025301
10.1103/PhysRevLett.102.206603
10.1038/nphys989
10.1016/0550-3213(94)90410-3
10.1038/nature08522
10.1038/nphys781
10.1103/PhysRevB.69.245419
10.1103/PhysRevLett.98.236601
10.1093/oso/9780198510178.001.0001
10.1103/PhysRevB.72.075103
10.1103/PhysRevLett.102.026802
10.1103/PhysRevLett.99.226801
10.1088/0034-4885/61/3/002
10.1126/science.1102896
10.1103/RevModPhys.81.109
10.1103/PhysRevLett.99.226803
10.1002/adma.200904098
10.1103/PhysRevB.81.121405
10.1038/nphys393
10.1038/nphys477
10.1103/PhysRevB.78.115426
10.1103/PhysRevLett.101.146805
10.1038/nature08582
10.1103/PhysRevB.79.115434
10.1038/nnano.2008.199
10.1103/PhysRevB.77.233406
10.1103/PhysRevLett.103.186802
ContentType Journal Article
Copyright Copyright © 2010 American Association for the Advancement of Science
2015 INIST-CNRS
Copyright © 2010, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2010 American Association for the Advancement of Science
– notice: 2015 INIST-CNRS
– notice: Copyright © 2010, American Association for the Advancement of Science
DBID FBQ
IQODW
NPM
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.1190920
DatabaseName AGRIS
Pascal-Francis
PubMed
CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Technology Research Database
Technology Research Database

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Physics
EISSN 1095-9203
EndPage 808
ExternalDocumentID 2877336021
10_1126_science_1190920
21051634
23418919
40931766
US201301907331
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.GJ
.GO
.HR
0-V
08G
0B8
0R~
0WA
123
186
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3EH
3R3
3V.
4.4
41~
42X
4R4
53G
5RE
63O
66.
68V
692
6OB
6TJ
79B
7X2
7X7
7XC
7~K
85S
88A
88E
88I
8AF
8CJ
8F7
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AABCJ
AACGO
AADHG
AAFWJ
AAIKC
AAJYS
AAKAS
AAMNW
AANCE
AAWTO
AAYJJ
AAYOK
ABBHK
ABCQX
ABDBF
ABDEX
ABEFU
ABIVO
ABJCF
ABOCM
ABPLY
ABPMR
ABPPZ
ABPTK
ABQIJ
ABTAH
ABTLG
ABUWG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQAM
ACQOY
ACTDY
ADBBV
ADDRP
ADMHC
ADULT
ADZCM
ADZLD
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFCHL
AFDAS
AFFDN
AFFNX
AFHKK
AFKRA
AFOSN
AFQFN
AFRAH
AGCDD
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
AJUXI
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ANJGP
ARALO
ARAPS
ASPBG
ATCPS
AVWKF
AZQEC
B-7
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKF
BKNYI
BKSAR
BLC
BPHCQ
BVXVI
C2-
C45
C51
CCPQU
CJNVE
CS3
D0S
D1I
D1J
D1K
DB2
DCCCD
DNJUQ
DOOOF
DU5
DWIUU
DWQXO
D~A
EAU
EBS
EGS
EJD
EMOBN
ESX
EWM
EX3
F20
F5P
FA8
FBQ
FEDTE
FYUFA
G8K
GICCO
GNUQQ
GUQSH
GX1
HCIFZ
HGD
HMCUK
HQ3
HTVGU
HVGLF
HZ~
I.T
IAG
IAO
IBG
IEA
IEP
IER
IGG
IGS
IH2
IHR
INH
INR
IOF
IOV
IPC
IPO
IPY
ISE
ISN
ISR
ITC
J5H
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
K-O
K6-
K9-
KB.
KCC
KQ8
L6V
L7B
LK5
LK8
LPU
LSO
LU7
M0K
M0L
M0P
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
MQT
MVM
N4W
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PK8
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
PZZ
QJJ
QS-
R05
RHF
RHI
RNS
RXW
RZL
SA0
SC5
SJFOW
SJN
SKT
TAE
TEORI
TN5
TWZ
UBW
UBY
UCV
UHB
UHU
UKHRP
UKR
UMD
UNMZH
UQL
USG
VOH
VQA
VVN
WH7
WI4
WOQ
WOW
X7L
X7M
XFK
XIH
XJF
XKJ
XOL
XZL
Y6R
YCJ
YJ6
YK4
YKV
YNT
YOJ
YR2
YRY
YSQ
YV5
YWH
YXB
YYP
YYQ
YZZ
ZA5
ZCA
ZCF
ZCG
ZE2
ZGI
ZKG
ZVL
ZVM
ZXP
ZY4
~02
~G0
~H1
~KM
~ZZ
ABXSQ
ADACV
ADUKH
ALIPV
AQVQM
IPSME
UIG
08R
AAUGY
IQODW
AFRQD
NPM
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c571t-9ea5f60c6780c3b60d6930b28bb34a7ff3c290aa59d21be052a0cb01044790033
ISSN 0036-8075
IngestDate Mon Nov 04 12:58:04 EST 2024
Tue Dec 03 06:44:10 EST 2024
Wed Dec 04 08:06:47 EST 2024
Thu Oct 10 17:59:54 EDT 2024
Fri Dec 06 01:57:27 EST 2024
Sat Sep 28 07:57:15 EDT 2024
Sun Oct 29 17:07:14 EDT 2023
Tue Dec 10 23:03:14 EST 2024
Wed Dec 27 19:13:42 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6005
Keywords Fine structure
Screening
X-ray scattering
Inelastic scattering
Impurities
Graphene
Graphite
Free-standing film
Response functions
Dirac particle
Coulomb interaction
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c571t-9ea5f60c6780c3b60d6930b28bb34a7ff3c290aa59d21be052a0cb01044790033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink http://arxiv.org/pdf/1011.1590
PMID 21051634
PQID 1282302630
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_849476629
proquest_miscellaneous_849464999
proquest_miscellaneous_762684850
proquest_journals_1282302630
crossref_primary_10_1126_science_1190920
pubmed_primary_21051634
pascalfrancis_primary_23418919
jstor_primary_40931766
fao_agris_US201301907331
PublicationCentury 2000
PublicationDate 2010-11-05
PublicationDateYYYYMMDD 2010-11-05
PublicationDate_xml – month: 11
  year: 2010
  text: 2010-11-05
  day: 05
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2010
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – sequence: 0
  name: American Association for the Advancement of Science
– name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_10_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
References_xml – ident: e_1_3_2_18_2
– ident: e_1_3_2_5_2
  doi: 10.1103/PhysRevLett.103.025301
– ident: e_1_3_2_29_2
  doi: 10.1103/PhysRevLett.102.206603
– ident: e_1_3_2_13_2
  doi: 10.1038/nphys989
– ident: e_1_3_2_6_2
  doi: 10.1016/0550-3213(94)90410-3
– ident: e_1_3_2_15_2
  doi: 10.1038/nature08522
– ident: e_1_3_2_12_2
  doi: 10.1038/nphys781
– ident: e_1_3_2_24_2
  doi: 10.1103/PhysRevB.69.245419
– ident: e_1_3_2_8_2
  doi: 10.1103/PhysRevLett.98.236601
– ident: e_1_3_2_21_2
  doi: 10.1093/oso/9780198510178.001.0001
– ident: e_1_3_2_23_2
  doi: 10.1103/PhysRevB.72.075103
– ident: e_1_3_2_4_2
  doi: 10.1103/PhysRevLett.102.026802
– ident: e_1_3_2_9_2
  doi: 10.1103/PhysRevLett.99.226801
– ident: e_1_3_2_19_2
  doi: 10.1088/0034-4885/61/3/002
– ident: e_1_3_2_3_2
  doi: 10.1126/science.1102896
– ident: e_1_3_2_2_2
  doi: 10.1103/RevModPhys.81.109
– ident: e_1_3_2_7_2
  doi: 10.1103/PhysRevLett.99.226803
– ident: e_1_3_2_22_2
  doi: 10.1002/adma.200904098
– ident: e_1_3_2_27_2
  doi: 10.1103/PhysRevB.81.121405
– ident: e_1_3_2_10_2
  doi: 10.1038/nphys393
– ident: e_1_3_2_11_2
  doi: 10.1038/nphys477
– ident: e_1_3_2_28_2
  doi: 10.1103/PhysRevB.78.115426
– ident: e_1_3_2_30_2
  doi: 10.1103/PhysRevLett.101.146805
– ident: e_1_3_2_14_2
  doi: 10.1038/nature08582
– ident: e_1_3_2_16_2
  doi: 10.1103/PhysRevB.79.115434
– ident: e_1_3_2_17_2
  doi: 10.1038/nnano.2008.199
– ident: e_1_3_2_25_2
  doi: 10.1103/PhysRevB.77.233406
– ident: e_1_3_2_26_2
  doi: 10.1103/PhysRevLett.103.186802
SSID ssj0009593
Score 2.4490387
Snippet Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is...
Many unusual properties of graphene are a consequence of the Dirac dispersion of its electrons—a linear relationship between an electron's momentum and energy....
Many unusual properties of graphene are a consequence of the Dirac dispersion of its electrons -- a linear relationship between an electron's momentum and...
SourceID proquest
crossref
pubmed
pascalfrancis
jstor
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 805
SubjectTerms Algorithms
Charge
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Crystal structure
Crystals
Dielectric materials
Electron density
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals
Electrons
Exact sciences and technology
Fermions
Graphene
Graphite
Impurities
Inelastic scattering
Momentum
Physics
Plasmons
Reconstruction
Screening
Spectral bands
Texts
X-rays
Title Effective Fine-Structure Constant of Freestanding Graphene Measured in Graphite
URI https://www.jstor.org/stable/40931766
https://www.ncbi.nlm.nih.gov/pubmed/21051634
https://www.proquest.com/docview/1282302630
https://search.proquest.com/docview/762684850
https://search.proquest.com/docview/849464999
https://search.proquest.com/docview/849476629
Volume 330
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYEBIXxAZjgTH5wGFoCnKcxImP07R2oG1ItJHKybJTB-2SINodtr-e568klbbxcakax3WjvJ-f3_dD6AMzxyhIxjGTDSgooHTEIDeTmDOZwEjNuC2SdHnFzqvsyyJfDK4Ym12yVp_qu3vzSv6HqjAGdDVZsv9A2X5RGIDvQF_4BArD51_T2JUfNvE_ExAY45mtB2u8AqdO8rOe_skvrfsMlqmpUQ0s7vjS2QdN9SU3eL3eCAwK-x6E0N6xMyJnH6F44uIIQliB_9nIxvBNO5OqDckdMsoqYL3SA6zthlgea2O1bOj4cx8AMnWW2u83YzuFiflIYpKPea8vfTzmval3yjiQgfCVj5hp6a_8uWzrP9zD8kdNKjVccsIpGU634NG_-iom1cWFmJ8t5lvoqambaFotTBfJgzWafSWoUY5VWH5DiNlqZBeiWU1orVzB7mpcW5SH9RYrv8xfohde8cAnDkU76Ilud9Ez14r0dhfteKqt8JGvRP7xFZoBwHAPMLwJMBwAhrsGjwGGA8BwABi-bnEA2GtUTc7mp-ex78IR13mRrGOuZd4wUoNUQ-pUMbI03TMVLZVKM1k0TVpTTqTM-ZImSpOcSlIro-ZnhTGTp3tou-1avY-wAvUA1P2mobrJiiVVqs51UhJNWbHMNI3QUXit4qcrtiKskkqZ8BQQngIR2ofXLuQPOApFNaPGAQ93TAfSCO1ZWvRLZISnpg5qhA43iNNPoCDKlTzhEToI1BJ-m68ECHCgplOWwn_i_jYwYeNZk63ublYCJApWZmX-yJQy4xkz5oXHp8BjUpjyxkFleEJQg0Bzyt7-ef136Pmw_Q7QNqBCvwfBea0OLdx_AyRhv9o
link.rule.ids 314,780,784,27924,27925
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Effective+Fine-Structure+Constant+of+Freestanding+Graphene+Measured+in+Graphite&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Reed%2C+James+P&rft.au=Uchoa%2C+Bruno&rft.au=Joe%2C+Young+Il&rft.au=Gan%2C+Yu&rft.date=2010-11-05&rft.issn=0036-8075&rft.volume=330&rft.issue=6005&rft.spage=805&rft.epage=808&rft_id=info:doi/10.1126%2Fscience.1190920&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon