Effective Fine-Structure Constant of Freestanding Graphene Measured in Graphite
Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals o...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 330; no. 6005; pp. 805 - 808 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Association for the Advancement of Science
05.11.2010
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, [Formula: see text], the value of which approaches [Formula: see text] at low energy and large distances. This value is substantially smaller than the nominal [Formula: see text], suggesting that, on the whole, graphene is more weakly interacting than previously believed. |
---|---|
AbstractList | Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, $\alpha _g^* $ (k, ω), the value of which approaches 0.14 ± 0.092 ~ 1/7 at low energy and large distances. This value is substantially smaller than the nominal α g = 2.2, suggesting that, on the whole, graphene is more weakly interacting than previously believed. Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, α(g)* (k,ω), the value of which approaches 0.14 ± 0.092 ~ 1/7 at low energy and large distances. This value is substantially smaller than the nominal α(g) = 2.2, suggesting that, on the whole, graphene is more weakly interacting than previously believed. Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, [Formula: see text], the value of which approaches [Formula: see text] at low energy and large distances. This value is substantially smaller than the nominal [Formula: see text], suggesting that, on the whole, graphene is more weakly interacting than previously believed. Many unusual properties of graphene are a consequence of the Dirac dispersion of its electrons -- a linear relationship between an electron's momentum and energy. Naïvely, this dispersion leads to the conclusion that electrons in graphene are strongly affected by mutual electrostatic interactions; however, there is little experimental evidence for strong interaction. Reed et al. (p. 805) resolved this discrepancy by using inelastic x-ray scattering spectra of graphite (which consists of loosely bound layers of graphene) to estimate how much the electric field was damped by the presence of mobile charge carriers. In fact, damping was strong at distances in excess of 1 nanometer, suggesting that graphene is more weakly interacting than was assumed. [PUBLICATION ABSTRACT] Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, (ProQuest: Formulae and/or non-USASCII text omitted), suggesting that, on the whole, graphene is more weakly interacting than previously believed. [PUBLICATION ABSTRACT] Many unusual properties of graphene are a consequence of the Dirac dispersion of its electrons—a linear relationship between an electron's momentum and energy. Naïvely, this dispersion leads to the conclusion that electrons in graphene are strongly affected by mutual electrostatic interactions; however, there is little experimental evidence for strong interaction. Reed et al. (p. 805 ) resolved this discrepancy by using inelastic x-ray scattering spectra of graphite (which consists of loosely bound layers of graphene) to estimate how much the electric field was damped by the presence of mobile charge carriers. In fact, damping was strong at distances in excess of 1 nanometer, suggesting that graphene is more weakly interacting than was assumed. Spectral analysis of graphite reveals an unexpectedly low influence of electron interactions in graphene. Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, α g * ( k , ω ) , the value of which approaches 0.14 ± 0.092 ~ 1 / 7 at low energy and large distances. This value is substantially smaller than the nominal α g = 2.2 , suggesting that, on the whole, graphene is more weakly interacting than previously believed. |
Author | Uchoa, Bruno Joe, Young Il Casa, Diego Abbamonte, Peter Gan, Yu Fradkin, Eduardo Reed, James P |
Author_xml | – sequence: 1 fullname: Reed, James P – sequence: 2 fullname: Uchoa, Bruno – sequence: 3 fullname: Joe, Young Il – sequence: 4 fullname: Gan, Yu – sequence: 5 fullname: Casa, Diego – sequence: 6 fullname: Fradkin, Eduardo – sequence: 7 fullname: Abbamonte, Peter |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23418919$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21051634$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1v1DAQxS1URLeFMycgUoU4hY4_4sRHtOoWpKIeSs-W44yLV7v2YidI_Pd4lbRIXOBkz7yfn2b8zshJiAEJeU3hI6VMXmbrMVgshQLF4BlZUVBNXa78hKwAuKw7aJtTcpbzFqBoir8gp4xCQyUXK3J75Rza0f_EauMD1ndjmuw4JazWMeTRhLGKrtokxGMx-PBQXSdz-I4Bq69ociGHyoe56Ud8SZ47s8v4ajnPyf3m6tv6c31ze_1l_emmtk1Lx1qhaZwEK9sOLO8lDFJx6FnX91yY1jlumQJjGjUw2iM0zIDtgYIQrSpr8XPyYfY9pPhjKsPpvc8WdzsTME5Zd0KJVkqm_ouUQql_k61kshNdA4W8-IvcximFsrCmrGMcmORH6nKmbIo5J3T6kPzepF-agj7Gp5f49BJfefF28Z36PQ5P_GNeBXi_ACZbs3PJBOvzH44L2il6XOXNzG3zGNOTLkBxWr6l6O9m3ZmozUMqHvd3DCiHMknLOeW_AYRMtg8 |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1016_j_susc_2014_12_016 crossref_primary_10_1088_0953_4075_47_12_124034 crossref_primary_10_1021_nn302628q crossref_primary_10_1103_PhysRevB_101_165126 crossref_primary_10_1103_RevModPhys_84_1067 crossref_primary_10_1103_PhysRevB_108_195104 crossref_primary_10_1103_PhysRevX_7_041030 crossref_primary_10_1088_0034_4885_75_5_056501 crossref_primary_10_1016_j_physe_2020_114383 crossref_primary_10_1103_PhysRevB_84_205409 crossref_primary_10_1021_acs_nanolett_3c03863 crossref_primary_10_1103_PhysRevB_93_195150 crossref_primary_10_1103_PhysRevB_108_045403 crossref_primary_10_1103_PhysRevB_85_085441 crossref_primary_10_1103_PhysRevB_85_085443 crossref_primary_10_1007_s00332_015_9259_4 crossref_primary_10_1073_pnas_1100242108 crossref_primary_10_1063_1_4927664 crossref_primary_10_1103_PhysRevB_109_035145 crossref_primary_10_1109_TEMC_2020_3042667 crossref_primary_10_1088_1361_6633_aafa35 crossref_primary_10_1103_PhysRevB_84_035439 crossref_primary_10_1038_ncomms15629 crossref_primary_10_1364_JOSAB_29_000A86 crossref_primary_10_21468_SciPostPhys_3_4_026 crossref_primary_10_1103_PhysRevLett_112_156402 crossref_primary_10_1016_j_physleta_2024_129347 crossref_primary_10_1038_nphys2379 crossref_primary_10_1088_0256_307X_41_1_017801 crossref_primary_10_1103_PhysRevB_91_184303 crossref_primary_10_1103_PhysRevB_84_085446 crossref_primary_10_1039_C4NR00758A crossref_primary_10_1103_PhysRevB_96_201408 crossref_primary_10_1038_s41467_021_27182_y crossref_primary_10_4236_jamp_2014_23004 crossref_primary_10_1007_s40509_024_00335_6 crossref_primary_10_1103_PhysRevLett_119_166402 crossref_primary_10_1103_PhysRevB_83_205406 crossref_primary_10_1080_00018732_2014_927109 crossref_primary_10_1103_PhysRevB_91_035414 crossref_primary_10_1063_1_4959205 crossref_primary_10_1142_S0217979221501599 crossref_primary_10_1038_s41535_021_00386_7 crossref_primary_10_1039_D2NR05660G crossref_primary_10_1021_nl303611v crossref_primary_10_1103_PhysRevB_83_155441 crossref_primary_10_1021_acscentsci_7b00590 crossref_primary_10_1103_PhysRevResearch_3_013150 crossref_primary_10_1103_PhysRevB_92_245406 crossref_primary_10_1021_acs_jpclett_1c02461 crossref_primary_10_1103_PhysRevB_88_075433 crossref_primary_10_1103_PhysRevB_87_155431 crossref_primary_10_1016_j_physe_2015_02_004 crossref_primary_10_1103_PhysRevB_89_235431 crossref_primary_10_1103_PhysRevLett_106_236805 crossref_primary_10_1103_PhysRevB_98_125406 crossref_primary_10_1039_C6RA26805F crossref_primary_10_1016_j_carbon_2014_02_064 crossref_primary_10_1016_j_physleta_2018_11_018 crossref_primary_10_1103_PhysRevX_9_041062 crossref_primary_10_1209_0295_5075_99_67009 crossref_primary_10_1103_PhysRevD_106_063003 crossref_primary_10_1103_PhysRevB_102_195426 crossref_primary_10_1103_PhysRevB_84_205445 crossref_primary_10_1103_PhysRevB_99_035441 crossref_primary_10_1103_PhysRevLett_120_246402 crossref_primary_10_1103_PhysRevB_109_075120 crossref_primary_10_1103_RevModPhys_88_025003 crossref_primary_10_1007_s11467_021_1125_2 crossref_primary_10_1038_s41467_017_01522_3 crossref_primary_10_1038_nphys2049 crossref_primary_10_1209_0295_5075_95_18001 crossref_primary_10_1063_1_4953643 crossref_primary_10_1088_1361_665X_ac8f78 crossref_primary_10_1007_s11664_016_5274_y crossref_primary_10_1088_1751_8113_45_38_383001 crossref_primary_10_1103_PhysRevB_85_195421 crossref_primary_10_1016_j_physe_2018_08_013 crossref_primary_10_1016_j_physleta_2015_06_057 crossref_primary_10_1016_j_jpcs_2016_08_004 crossref_primary_10_1103_PhysRevB_86_125434 crossref_primary_10_1103_PhysRevB_87_035438 crossref_primary_10_1016_j_physe_2013_09_010 crossref_primary_10_1088_0031_8949_2012_T146_014015 crossref_primary_10_1103_PhysRevX_4_021040 crossref_primary_10_1002_pssb_202400222 crossref_primary_10_1088_0031_8949_2012_T146_014014 crossref_primary_10_1016_j_ssc_2012_04_057 crossref_primary_10_1016_j_cap_2015_03_011 crossref_primary_10_1002_pssb_201600827 crossref_primary_10_1016_j_carbon_2017_12_014 crossref_primary_10_1103_PhysRevB_89_235138 crossref_primary_10_1016_j_electacta_2023_141966 crossref_primary_10_1039_C5RA13879E crossref_primary_10_1002_andp_202100313 crossref_primary_10_1063_1_5083200 crossref_primary_10_1021_acsnano_3c09993 crossref_primary_10_1016_j_physb_2019_411814 crossref_primary_10_1063_5_0200259 crossref_primary_10_1002_app_55530 crossref_primary_10_1016_j_chemphys_2012_06_018 crossref_primary_10_1016_j_physb_2018_04_023 crossref_primary_10_1103_PhysRevB_84_155416 crossref_primary_10_1103_PhysRevB_108_064207 crossref_primary_10_1103_PhysRevB_89_205128 crossref_primary_10_1021_nl500969t crossref_primary_10_1103_PhysRevB_86_115408 crossref_primary_10_1103_PhysRevB_87_245428 crossref_primary_10_1103_PhysRevB_96_235142 crossref_primary_10_1016_j_flatc_2017_06_008 crossref_primary_10_1140_epjb_e2012_30593_0 crossref_primary_10_1002_adma_201201482 crossref_primary_10_3390_coatings12111788 crossref_primary_10_1038_nphoton_2012_262 crossref_primary_10_1103_PhysRevB_102_054208 crossref_primary_10_1103_PhysRevB_101_235310 crossref_primary_10_1093_mnras_stt656 |
Cites_doi | 10.1103/PhysRevLett.103.025301 10.1103/PhysRevLett.102.206603 10.1038/nphys989 10.1016/0550-3213(94)90410-3 10.1038/nature08522 10.1038/nphys781 10.1103/PhysRevB.69.245419 10.1103/PhysRevLett.98.236601 10.1093/oso/9780198510178.001.0001 10.1103/PhysRevB.72.075103 10.1103/PhysRevLett.102.026802 10.1103/PhysRevLett.99.226801 10.1088/0034-4885/61/3/002 10.1126/science.1102896 10.1103/RevModPhys.81.109 10.1103/PhysRevLett.99.226803 10.1002/adma.200904098 10.1103/PhysRevB.81.121405 10.1038/nphys393 10.1038/nphys477 10.1103/PhysRevB.78.115426 10.1103/PhysRevLett.101.146805 10.1038/nature08582 10.1103/PhysRevB.79.115434 10.1038/nnano.2008.199 10.1103/PhysRevB.77.233406 10.1103/PhysRevLett.103.186802 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Association for the Advancement of Science 2015 INIST-CNRS Copyright © 2010, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2010 American Association for the Advancement of Science – notice: 2015 INIST-CNRS – notice: Copyright © 2010, American Association for the Advancement of Science |
DBID | FBQ IQODW NPM AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.1190920 |
DatabaseName | AGRIS Pascal-Francis PubMed CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database Technology Research Database Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology Physics |
EISSN | 1095-9203 |
EndPage | 808 |
ExternalDocumentID | 2877336021 10_1126_science_1190920 21051634 23418919 40931766 US201301907331 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Feature |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .GJ .GO .HR 0-V 08G 0B8 0R~ 0WA 123 186 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3EH 3R3 3V. 4.4 41~ 42X 4R4 53G 5RE 63O 66. 68V 692 6OB 6TJ 79B 7X2 7X7 7XC 7~K 85S 88A 88E 88I 8AF 8CJ 8F7 8FE 8FG 8FH 8FI 8FJ 8G5 8GL 8WZ 97F A6W AABCJ AACGO AADHG AAFWJ AAIKC AAJYS AAKAS AAMNW AANCE AAWTO AAYJJ AAYOK ABBHK ABCQX ABDBF ABDEX ABEFU ABIVO ABJCF ABOCM ABPLY ABPMR ABPPZ ABPTK ABQIJ ABTAH ABTLG ABUWG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQAM ACQOY ACTDY ADBBV ADDRP ADMHC ADULT ADZCM ADZLD AEGBM AENEX AETEA AEUPB AEXZC AFCHL AFDAS AFFDN AFFNX AFHKK AFKRA AFOSN AFQFN AFRAH AGCDD AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS AJUXI ALMA_UNASSIGNED_HOLDINGS ALSLI ANJGP ARALO ARAPS ASPBG ATCPS AVWKF AZQEC B-7 BBNVY BBWZM BCU BEC BENPR BGLVJ BHPHI BKF BKNYI BKSAR BLC BPHCQ BVXVI C2- C45 C51 CCPQU CJNVE CS3 D0S D1I D1J D1K DB2 DCCCD DNJUQ DOOOF DU5 DWIUU DWQXO D~A EAU EBS EGS EJD EMOBN ESX EWM EX3 F20 F5P FA8 FBQ FEDTE FYUFA G8K GICCO GNUQQ GUQSH GX1 HCIFZ HGD HMCUK HQ3 HTVGU HVGLF HZ~ I.T IAG IAO IBG IEA IEP IER IGG IGS IH2 IHR INH INR IOF IOV IPC IPO IPY ISE ISN ISR ITC J5H J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST K-O K6- K9- KB. KCC KQ8 L6V L7B LK5 LK8 LPU LSO LU7 M0K M0L M0P M0R M1P M2O M2P M2Q M7P M7R M7S MQT MVM N4W N9A NEJ NHB O9- OCB OFXIZ OGEVE OK1 OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PK8 PQQKQ PROAC PSQYO PTHSS PV9 PYCSY PZZ QJJ QS- R05 RHF RHI RNS RXW RZL SA0 SC5 SJFOW SJN SKT TAE TEORI TN5 TWZ UBW UBY UCV UHB UHU UKHRP UKR UMD UNMZH UQL USG VOH VQA VVN WH7 WI4 WOQ WOW X7L X7M XFK XIH XJF XKJ XOL XZL Y6R YCJ YJ6 YK4 YKV YNT YOJ YR2 YRY YSQ YV5 YWH YXB YYP YYQ YZZ ZA5 ZCA ZCF ZCG ZE2 ZGI ZKG ZVL ZVM ZXP ZY4 ~02 ~G0 ~H1 ~KM ~ZZ ABXSQ ADACV ADUKH ALIPV AQVQM IPSME UIG 08R AAUGY IQODW AFRQD NPM AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c571t-9ea5f60c6780c3b60d6930b28bb34a7ff3c290aa59d21be052a0cb01044790033 |
ISSN | 0036-8075 |
IngestDate | Mon Nov 04 12:58:04 EST 2024 Tue Dec 03 06:44:10 EST 2024 Wed Dec 04 08:06:47 EST 2024 Thu Oct 10 17:59:54 EDT 2024 Fri Dec 06 01:57:27 EST 2024 Sat Sep 28 07:57:15 EDT 2024 Sun Oct 29 17:07:14 EDT 2023 Tue Dec 10 23:03:14 EST 2024 Wed Dec 27 19:13:42 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6005 |
Keywords | Fine structure Screening X-ray scattering Inelastic scattering Impurities Graphene Graphite Free-standing film Response functions Dirac particle Coulomb interaction |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c571t-9ea5f60c6780c3b60d6930b28bb34a7ff3c290aa59d21be052a0cb01044790033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | http://arxiv.org/pdf/1011.1590 |
PMID | 21051634 |
PQID | 1282302630 |
PQPubID | 23500 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_849476629 proquest_miscellaneous_849464999 proquest_miscellaneous_762684850 proquest_journals_1282302630 crossref_primary_10_1126_science_1190920 pubmed_primary_21051634 pascalfrancis_primary_23418919 jstor_primary_40931766 fao_agris_US201301907331 |
PublicationCentury | 2000 |
PublicationDate | 2010-11-05 |
PublicationDateYYYYMMDD | 2010-11-05 |
PublicationDate_xml | – month: 11 year: 2010 text: 2010-11-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2010 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – sequence: 0 name: American Association for the Advancement of Science – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_10_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 |
References_xml | – ident: e_1_3_2_18_2 – ident: e_1_3_2_5_2 doi: 10.1103/PhysRevLett.103.025301 – ident: e_1_3_2_29_2 doi: 10.1103/PhysRevLett.102.206603 – ident: e_1_3_2_13_2 doi: 10.1038/nphys989 – ident: e_1_3_2_6_2 doi: 10.1016/0550-3213(94)90410-3 – ident: e_1_3_2_15_2 doi: 10.1038/nature08522 – ident: e_1_3_2_12_2 doi: 10.1038/nphys781 – ident: e_1_3_2_24_2 doi: 10.1103/PhysRevB.69.245419 – ident: e_1_3_2_8_2 doi: 10.1103/PhysRevLett.98.236601 – ident: e_1_3_2_21_2 doi: 10.1093/oso/9780198510178.001.0001 – ident: e_1_3_2_23_2 doi: 10.1103/PhysRevB.72.075103 – ident: e_1_3_2_4_2 doi: 10.1103/PhysRevLett.102.026802 – ident: e_1_3_2_9_2 doi: 10.1103/PhysRevLett.99.226801 – ident: e_1_3_2_19_2 doi: 10.1088/0034-4885/61/3/002 – ident: e_1_3_2_3_2 doi: 10.1126/science.1102896 – ident: e_1_3_2_2_2 doi: 10.1103/RevModPhys.81.109 – ident: e_1_3_2_7_2 doi: 10.1103/PhysRevLett.99.226803 – ident: e_1_3_2_22_2 doi: 10.1002/adma.200904098 – ident: e_1_3_2_27_2 doi: 10.1103/PhysRevB.81.121405 – ident: e_1_3_2_10_2 doi: 10.1038/nphys393 – ident: e_1_3_2_11_2 doi: 10.1038/nphys477 – ident: e_1_3_2_28_2 doi: 10.1103/PhysRevB.78.115426 – ident: e_1_3_2_30_2 doi: 10.1103/PhysRevLett.101.146805 – ident: e_1_3_2_14_2 doi: 10.1038/nature08582 – ident: e_1_3_2_16_2 doi: 10.1103/PhysRevB.79.115434 – ident: e_1_3_2_17_2 doi: 10.1038/nnano.2008.199 – ident: e_1_3_2_25_2 doi: 10.1103/PhysRevB.77.233406 – ident: e_1_3_2_26_2 doi: 10.1103/PhysRevLett.103.186802 |
SSID | ssj0009593 |
Score | 2.4490387 |
Snippet | Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is... Many unusual properties of graphene are a consequence of the Dirac dispersion of its electrons—a linear relationship between an electron's momentum and energy.... Many unusual properties of graphene are a consequence of the Dirac dispersion of its electrons -- a linear relationship between an electron's momentum and... |
SourceID | proquest crossref pubmed pascalfrancis jstor fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 805 |
SubjectTerms | Algorithms Charge Condensed matter: electronic structure, electrical, magnetic, and optical properties Crystal structure Crystals Dielectric materials Electron density Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals Electrons Exact sciences and technology Fermions Graphene Graphite Impurities Inelastic scattering Momentum Physics Plasmons Reconstruction Screening Spectral bands Texts X-rays |
Title | Effective Fine-Structure Constant of Freestanding Graphene Measured in Graphite |
URI | https://www.jstor.org/stable/40931766 https://www.ncbi.nlm.nih.gov/pubmed/21051634 https://www.proquest.com/docview/1282302630 https://search.proquest.com/docview/762684850 https://search.proquest.com/docview/849464999 https://search.proquest.com/docview/849476629 |
Volume | 330 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYEBIXxAZjgTH5wGFoCnKcxImP07R2oG1ItJHKybJTB-2SINodtr-e568klbbxcakax3WjvJ-f3_dD6AMzxyhIxjGTDSgooHTEIDeTmDOZwEjNuC2SdHnFzqvsyyJfDK4Ym12yVp_qu3vzSv6HqjAGdDVZsv9A2X5RGIDvQF_4BArD51_T2JUfNvE_ExAY45mtB2u8AqdO8rOe_skvrfsMlqmpUQ0s7vjS2QdN9SU3eL3eCAwK-x6E0N6xMyJnH6F44uIIQliB_9nIxvBNO5OqDckdMsoqYL3SA6zthlgea2O1bOj4cx8AMnWW2u83YzuFiflIYpKPea8vfTzmval3yjiQgfCVj5hp6a_8uWzrP9zD8kdNKjVccsIpGU634NG_-iom1cWFmJ8t5lvoqambaFotTBfJgzWafSWoUY5VWH5DiNlqZBeiWU1orVzB7mpcW5SH9RYrv8xfohde8cAnDkU76Ilud9Ez14r0dhfteKqt8JGvRP7xFZoBwHAPMLwJMBwAhrsGjwGGA8BwABi-bnEA2GtUTc7mp-ex78IR13mRrGOuZd4wUoNUQ-pUMbI03TMVLZVKM1k0TVpTTqTM-ZImSpOcSlIro-ZnhTGTp3tou-1avY-wAvUA1P2mobrJiiVVqs51UhJNWbHMNI3QUXit4qcrtiKskkqZ8BQQngIR2ofXLuQPOApFNaPGAQ93TAfSCO1ZWvRLZISnpg5qhA43iNNPoCDKlTzhEToI1BJ-m68ECHCgplOWwn_i_jYwYeNZk63ublYCJApWZmX-yJQy4xkz5oXHp8BjUpjyxkFleEJQg0Bzyt7-ef136Pmw_Q7QNqBCvwfBea0OLdx_AyRhv9o |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Effective+Fine-Structure+Constant+of+Freestanding+Graphene+Measured+in+Graphite&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Reed%2C+James+P&rft.au=Uchoa%2C+Bruno&rft.au=Joe%2C+Young+Il&rft.au=Gan%2C+Yu&rft.date=2010-11-05&rft.issn=0036-8075&rft.volume=330&rft.issue=6005&rft.spage=805&rft.epage=808&rft_id=info:doi/10.1126%2Fscience.1190920&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |