Osteoclasts: more than ‘bone eaters’

•Osteoclasts modify the skeletal environment beyond their ability to resorb bone.•Bone-forming osteoblasts and their precursors are regulated by osteoclasts.•Cancer, hematopoietic, and immune cells are targets of osteoclast-derived factors.•Insight into the osteoclast may improve outcomes for patien...

Full description

Saved in:
Bibliographic Details
Published inTrends in molecular medicine Vol. 20; no. 8; pp. 449 - 459
Main Authors Charles, Julia F., Aliprantis, Antonios O.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Osteoclasts modify the skeletal environment beyond their ability to resorb bone.•Bone-forming osteoblasts and their precursors are regulated by osteoclasts.•Cancer, hematopoietic, and immune cells are targets of osteoclast-derived factors.•Insight into the osteoclast may improve outcomes for patients with bone diseases. As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone-forming osteoblasts, and hematopoietic and immune system cells, each influence osteoclast formation and function, but the reciprocal impact of osteoclasts on these cells is less well appreciated. We highlight here the functions that osteoclasts perform beyond bone resorption. First, we consider how osteoclast signals may contribute to bone formation by osteoblasts and to the pathology of bone lesions such as fibrous dysplasia and giant cell tumors. Second, we review the interaction of osteoclasts with the hematopoietic system, including the stem cell niche and adaptive immune cells. Connections between osteoclasts and other cells in the bone microenvironment are discussed within a clinically relevant framework.
AbstractList As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone forming osteoblasts, and hematopoietic and immune system cells, each influence osteoclast formation and function, but the reciprocal impact of osteoclasts on these cells is less well appreciated. Here, we highlight functions osteoclasts perform beyond bone resorption. First, we consider how osteoclast signals may contribute to bone formation by osteoblasts and the pathology of bone lesions, such as fibrous dysplasia and giant cell tumors. Second, we review the interaction of osteoclasts with the hematopoietic system, including the stem cell niche and adaptive immune cells. Connections between osteoclasts and other cells in the bone microenvironment are discussed within a clinically relevant framework.
•Osteoclasts modify the skeletal environment beyond their ability to resorb bone.•Bone-forming osteoblasts and their precursors are regulated by osteoclasts.•Cancer, hematopoietic, and immune cells are targets of osteoclast-derived factors.•Insight into the osteoclast may improve outcomes for patients with bone diseases. As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone-forming osteoblasts, and hematopoietic and immune system cells, each influence osteoclast formation and function, but the reciprocal impact of osteoclasts on these cells is less well appreciated. We highlight here the functions that osteoclasts perform beyond bone resorption. First, we consider how osteoclast signals may contribute to bone formation by osteoblasts and to the pathology of bone lesions such as fibrous dysplasia and giant cell tumors. Second, we review the interaction of osteoclasts with the hematopoietic system, including the stem cell niche and adaptive immune cells. Connections between osteoclasts and other cells in the bone microenvironment are discussed within a clinically relevant framework.
Highlights • Osteoclasts modify the skeletal environment beyond their ability to resorb bone. • Bone-forming osteoblasts and their precursors are regulated by osteoclasts. • Cancer, hematopoietic, and immune cells are targets of osteoclast-derived factors. • Insight into the osteoclast may improve outcomes for patients with bone diseases.
As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone-forming osteoblasts, and hematopoietic and immune system cells, each influence osteoclast formation and function, but the reciprocal impact of osteoclasts on these cells is less well appreciated. We highlight here the functions that osteoclasts perform beyond bone resorption. First, we consider how osteoclast signals may contribute to bone formation by osteoblasts and to the pathology of bone lesions such as fibrous dysplasia and giant cell tumors. Second, we review the interaction of osteoclasts with the hematopoietic system, including the stem cell niche and adaptive immune cells. Connections between osteoclasts and other cells in the bone microenvironment are discussed within a clinically relevant framework.
As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone-forming osteoblasts, and hematopoietic and immune system cells, each influence osteoclast formation and function, but the reciprocal impact of osteoclasts on these cells is less well appreciated. We highlight here the functions that osteoclasts perform beyond bone resorption. First, we consider how osteoclast signals may contribute to bone formation by osteoblasts and to the pathology of bone lesions such as fibrous dysplasia and giant cell tumors. Second, we review the interaction of osteoclasts with the hematopoietic system, including the stem cell niche and adaptive immune cells. Connections between osteoclasts and other cells in the bone microenvironment are discussed within a clinically relevant framework.As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone-forming osteoblasts, and hematopoietic and immune system cells, each influence osteoclast formation and function, but the reciprocal impact of osteoclasts on these cells is less well appreciated. We highlight here the functions that osteoclasts perform beyond bone resorption. First, we consider how osteoclast signals may contribute to bone formation by osteoblasts and to the pathology of bone lesions such as fibrous dysplasia and giant cell tumors. Second, we review the interaction of osteoclasts with the hematopoietic system, including the stem cell niche and adaptive immune cells. Connections between osteoclasts and other cells in the bone microenvironment are discussed within a clinically relevant framework.
Author Aliprantis, Antonios O.
Charles, Julia F.
Author_xml – sequence: 1
  givenname: Julia F.
  surname: Charles
  fullname: Charles, Julia F.
– sequence: 2
  givenname: Antonios O.
  surname: Aliprantis
  fullname: Aliprantis, Antonios O.
  email: aaliprantis@partners.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25008556$$D View this record in MEDLINE/PubMed
BookMark eNqVUl1rFDEUDVKxn_9AZB_7smPuNMnMFBGk-AWFPmihb5ds5sZmnUlqki30rT9D_15_iRl2XVSQIgQSyLnn3HvO3Wc7Pnhi7DnwCjiol8tqDMNIfVVzEBVXFefwhO2BaGAuuu5qZ_sGscv2U1oWgGya9hnbrSXnrZRqjx1fpEzBDDrldDobQ6RZvtZ-9nD_fVH0ZqQzxfRw_-OQPbV6SHS0uQ_Y5bu3n88-zM8v3n88e3M-N7KBPFe2IWhrA6ahHk4scNGLcqzQqrPGil5z1bd9XUsA24qmtgCCeKMbtZALe3LAXq95b1aLMp0hn6Me8Ca6Ucc7DNrhnz_eXeOXcIsCoGtlVwiONwQxfFtRyji6ZGgYtKewSghS1UqJ0liBvvhdayvyy54CEGuAiSGlSHYLAY5TCrjEdQo4pYBcYTG5lJ3-VWZc1tmFqWM3PFa8MYCKy7eOIibjyBvqXSSTsQ_ufwnM4LwzevhKd5SWYRV9SRABU40cP01bMi0JCF7GbidbXv2b4HH9n-Qez-c
CitedBy_id crossref_primary_10_1073_pnas_2006093117
crossref_primary_10_1302_1863_2548_14_190155
crossref_primary_10_1016_j_cbpc_2015_08_007
crossref_primary_10_1016_j_jmps_2023_105525
crossref_primary_10_3389_fimmu_2019_01724
crossref_primary_10_1111_jop_13274
crossref_primary_10_1002_mco2_349
crossref_primary_10_3389_fimmu_2022_1058905
crossref_primary_10_1007_s00774_021_01212_7
crossref_primary_10_3390_biomedicines9060648
crossref_primary_10_1016_j_ejwf_2019_01_002
crossref_primary_10_3390_ijms252111788
crossref_primary_10_1016_j_bone_2016_02_020
crossref_primary_10_1016_j_bbrc_2018_02_035
crossref_primary_10_1155_2022_8769531
crossref_primary_10_32322_jhsm_776446
crossref_primary_10_3389_fphar_2020_621110
crossref_primary_10_1189_jlb_1A1215_543R
crossref_primary_10_3390_nu11092111
crossref_primary_10_1016_j_mtla_2020_100645
crossref_primary_10_3892_ijmm_2018_3849
crossref_primary_10_1002_term_3270
crossref_primary_10_1016_j_mce_2019_110637
crossref_primary_10_3390_biomedicines12112451
crossref_primary_10_1016_j_mpdhp_2020_07_005
crossref_primary_10_1002_smll_202207195
crossref_primary_10_1016_j_mcp_2019_101479
crossref_primary_10_1093_bbb_zbad075
crossref_primary_10_3389_fendo_2022_969481
crossref_primary_10_1007_s00018_022_04298_y
crossref_primary_10_1016_j_biopha_2024_116291
crossref_primary_10_1016_j_jbc_2022_102841
crossref_primary_10_1098_rsob_160230
crossref_primary_10_1016_j_intimp_2022_109370
crossref_primary_10_1016_j_biopha_2023_115697
crossref_primary_10_3389_fcell_2020_586031
crossref_primary_10_35366_117681
crossref_primary_10_3389_fendo_2023_1101758
crossref_primary_10_1021_acsbiomaterials_9b00270
crossref_primary_10_3389_fimmu_2014_00514
crossref_primary_10_1002_2211_5463_13269
crossref_primary_10_1007_s12272_016_0790_0
crossref_primary_10_1016_j_jare_2023_01_003
crossref_primary_10_1002_adhm_202302807
crossref_primary_10_1248_bpb_b16_00117
crossref_primary_10_4049_jimmunol_1600424
crossref_primary_10_1007_s00210_024_03714_3
crossref_primary_10_3389_fphys_2018_00504
crossref_primary_10_1016_j_cellimm_2018_02_005
crossref_primary_10_1155_2019_8029863
crossref_primary_10_1007_s10753_020_01207_y
crossref_primary_10_1016_j_cellsig_2021_110060
crossref_primary_10_1016_j_apsb_2022_09_020
crossref_primary_10_1039_C9RA07240C
crossref_primary_10_1111_nyas_14293
crossref_primary_10_3389_fcell_2019_00268
crossref_primary_10_1016_j_bone_2019_06_002
crossref_primary_10_1016_j_intimp_2020_106978
crossref_primary_10_3389_fendo_2022_996776
crossref_primary_10_4078_jrd_2016_23_3_141
crossref_primary_10_1155_2015_372156
crossref_primary_10_1016_j_pharmthera_2020_107473
crossref_primary_10_3389_fcell_2020_00870
crossref_primary_10_3389_fphar_2022_1062999
crossref_primary_10_1155_2020_4791786
crossref_primary_10_4078_jrd_2016_23_3_148
crossref_primary_10_1186_s12916_025_03945_y
crossref_primary_10_2147_JIR_S413578
crossref_primary_10_1055_s_0041_1732851
crossref_primary_10_3389_fcell_2020_00076
crossref_primary_10_1111_cpr_12613
crossref_primary_10_1002_jcp_31431
crossref_primary_10_1016_j_ijscr_2024_110206
crossref_primary_10_3390_ijms21041347
crossref_primary_10_1186_s13287_021_02228_6
crossref_primary_10_1016_j_bone_2020_115651
crossref_primary_10_1097_MD_0000000000029963
crossref_primary_10_1007_s00421_016_3383_1
crossref_primary_10_1016_j_tig_2016_10_001
crossref_primary_10_1002_adhm_202402117
crossref_primary_10_1016_j_devcel_2015_01_018
crossref_primary_10_1016_j_jcms_2017_04_012
crossref_primary_10_1016_j_joms_2019_06_172
crossref_primary_10_1016_j_tcb_2017_11_001
crossref_primary_10_3390_biomedicines13030628
crossref_primary_10_1111_jai_13660
crossref_primary_10_1007_s10495_020_01599_0
crossref_primary_10_1016_j_intimp_2020_106847
crossref_primary_10_1021_acsbiomaterials_1c00920
crossref_primary_10_1172_jci_insight_146728
crossref_primary_10_1002_jcb_26646
crossref_primary_10_1016_j_biomaterials_2023_122367
crossref_primary_10_3389_fnut_2023_1178573
crossref_primary_10_3390_nu11061394
crossref_primary_10_1016_j_biomaterials_2024_122800
crossref_primary_10_1186_s40729_017_0074_6
crossref_primary_10_1002_jbmr_3172
crossref_primary_10_1016_j_bcp_2021_114846
crossref_primary_10_3390_ijms21020538
crossref_primary_10_1016_j_bone_2019_06_023
crossref_primary_10_1016_j_mehy_2019_109438
crossref_primary_10_1016_j_taap_2016_06_021
crossref_primary_10_1016_j_yexcr_2015_07_018
crossref_primary_10_1021_acsami_2c21933
crossref_primary_10_1021_acsomega_1c05305
crossref_primary_10_1002_jbmr_4015
crossref_primary_10_1016_j_vesic_2024_100042
crossref_primary_10_1186_s12967_024_05191_x
crossref_primary_10_3389_fendo_2022_893678
crossref_primary_10_1111_cpr_13011
crossref_primary_10_1016_j_clim_2015_03_019
crossref_primary_10_1177_0284185117732098
crossref_primary_10_3892_mmr_2017_7625
crossref_primary_10_1016_j_bone_2020_115757
crossref_primary_10_1016_j_bioactmat_2022_04_015
crossref_primary_10_3390_ijms23031500
crossref_primary_10_3389_fonc_2020_580605
crossref_primary_10_1002_jcp_30682
crossref_primary_10_2217_nnm_16_20
crossref_primary_10_1073_pnas_1607235113
crossref_primary_10_1111_jcmm_16228
crossref_primary_10_3390_molecules23071517
crossref_primary_10_1155_2022_4913534
crossref_primary_10_1002_jbmr_3871
crossref_primary_10_1007_s40778_017_0106_4
crossref_primary_10_1186_s12951_018_0403_9
crossref_primary_10_3390_biom14010052
crossref_primary_10_35366_93104
crossref_primary_10_1016_j_heliyon_2023_e17841
crossref_primary_10_1016_j_jcms_2017_08_011
crossref_primary_10_1002_cbf_3734
crossref_primary_10_1016_j_micpath_2025_107416
crossref_primary_10_1016_j_yexcr_2016_11_018
crossref_primary_10_3390_ma14164457
crossref_primary_10_1039_C9NR02791B
crossref_primary_10_1002_bkcs_11992
crossref_primary_10_1016_j_jep_2023_117285
crossref_primary_10_1073_pnas_1806019115
crossref_primary_10_1111_1756_185X_13958
crossref_primary_10_1016_j_biopha_2020_110010
crossref_primary_10_14406_acu_2021_016
crossref_primary_10_1055_s_0042_1748529
crossref_primary_10_3892_ijmm_2018_3908
crossref_primary_10_1038_boneres_2014_33
crossref_primary_10_1371_journal_pone_0142211
crossref_primary_10_1089_ten_tec_2021_0122
crossref_primary_10_1016_j_intimp_2021_108297
crossref_primary_10_1016_j_intimp_2021_108179
crossref_primary_10_1038_s41574_018_0076_3
crossref_primary_10_1038_s41374_021_00633_2
crossref_primary_10_7554_eLife_79966
crossref_primary_10_1155_2020_8861347
crossref_primary_10_1007_s13659_023_00405_z
crossref_primary_10_1088_1758_5090_aa64ec
crossref_primary_10_1590_1414_431x20209798
crossref_primary_10_1021_acs_biomac_9b01348
crossref_primary_10_1016_j_biopha_2020_110341
crossref_primary_10_1098_rsos_190360
crossref_primary_10_3390_ijms21030800
crossref_primary_10_3892_etm_2018_6772
crossref_primary_10_1038_s41598_018_37091_8
crossref_primary_10_1016_j_biomaterials_2019_119269
crossref_primary_10_1016_j_msec_2018_09_011
crossref_primary_10_1039_C7NR05913B
crossref_primary_10_1002_smll_202403907
crossref_primary_10_1016_j_actaastro_2018_08_044
crossref_primary_10_3390_toxins17030141
crossref_primary_10_1002_jcp_27385
crossref_primary_10_1007_s11033_022_08190_7
crossref_primary_10_1182_blood_2016_03_707547
crossref_primary_10_3389_fbioe_2020_00864
crossref_primary_10_3389_fonc_2023_1073793
crossref_primary_10_1142_S2737416523500072
crossref_primary_10_1186_s13018_024_04610_5
crossref_primary_10_1186_s12951_020_00692_5
crossref_primary_10_1002_jcp_25638
crossref_primary_10_1186_s13062_024_00581_z
crossref_primary_10_1002_JLB_1MA0121_001R
crossref_primary_10_1089_ten_teb_2023_0065
crossref_primary_10_1111_prd_12610
crossref_primary_10_3390_ijms20061467
crossref_primary_10_5507_bp_2019_032
crossref_primary_10_1177_22808000241266487
crossref_primary_10_1007_s10928_020_09699_9
crossref_primary_10_1111_cpr_12997
crossref_primary_10_1016_j_neuint_2024_105835
crossref_primary_10_1016_j_bone_2022_116483
crossref_primary_10_3390_ma11101993
crossref_primary_10_1186_s13040_025_00427_y
crossref_primary_10_3390_ijms19103197
crossref_primary_10_1016_j_heliyon_2024_e31314
crossref_primary_10_1016_j_bone_2020_115628
crossref_primary_10_1016_j_bonr_2019_100207
crossref_primary_10_3390_medicina58040466
crossref_primary_10_1111_jop_12801
crossref_primary_10_1080_02726351_2018_1455784
crossref_primary_10_3390_ijms252312842
crossref_primary_10_4196_kjpp_2019_23_5_411
crossref_primary_10_3390_ma14175010
crossref_primary_10_1155_2019_9395146
crossref_primary_10_3390_cells9092073
crossref_primary_10_1016_j_intimp_2023_109820
crossref_primary_10_2139_ssrn_4071617
crossref_primary_10_1007_s11914_017_0397_5
crossref_primary_10_1007_s10439_021_02752_9
crossref_primary_10_1016_j_mce_2017_11_005
crossref_primary_10_1111_jcmm_15622
crossref_primary_10_1177_09731296241228904
crossref_primary_10_1002_bem_22070
crossref_primary_10_1515_zkri_2017_2079
crossref_primary_10_1038_s41467_023_36810_8
crossref_primary_10_1016_j_neuropharm_2023_109641
crossref_primary_10_3389_fphar_2022_1007839
crossref_primary_10_1002_jbmr_4756
crossref_primary_10_1016_j_joca_2021_09_006
crossref_primary_10_3390_ma15238475
crossref_primary_10_1016_j_bone_2022_116500
crossref_primary_10_1016_j_biomaterials_2018_06_035
crossref_primary_10_2174_1389450119666180626120852
crossref_primary_10_1016_j_ajpath_2016_06_013
crossref_primary_10_1016_j_msard_2020_102190
crossref_primary_10_3389_fphar_2018_00210
crossref_primary_10_1016_S1875_5364_25_60810_7
crossref_primary_10_1016_j_biopha_2023_114347
crossref_primary_10_3390_ijms23020675
crossref_primary_10_1111_jcmm_18278
crossref_primary_10_1089_cell_2019_0098
crossref_primary_10_1016_j_actbio_2019_12_022
crossref_primary_10_1155_2022_4122253
crossref_primary_10_1103_PhysRevLett_127_146001
crossref_primary_10_4155_fsoa_2017_0055
crossref_primary_10_1002_jcp_25389
crossref_primary_10_1007_s00223_016_0111_0
crossref_primary_10_1016_j_ijscr_2016_02_028
crossref_primary_10_3389_fmicb_2021_812466
crossref_primary_10_20960_RevOsteoporosMetabMiner_00005
crossref_primary_10_1016_j_jff_2019_103697
crossref_primary_10_3389_fimmu_2018_01417
crossref_primary_10_1016_j_intimp_2024_112151
crossref_primary_10_1073_pnas_2020100118
crossref_primary_10_1016_j_isci_2020_101989
crossref_primary_10_1038_s41598_018_38471_w
crossref_primary_10_1016_j_bbamcr_2015_08_015
crossref_primary_10_1186_s12974_020_01740_5
crossref_primary_10_1111_jcmm_15560
crossref_primary_10_1007_s10914_018_9438_9
crossref_primary_10_1242_dmm_019091
crossref_primary_10_1210_endrev_bnad025
crossref_primary_10_1016_j_bone_2022_116603
crossref_primary_10_1039_C9TB01204D
crossref_primary_10_3390_ijms23169444
crossref_primary_10_1007_s11357_025_01584_y
crossref_primary_10_1177_1759720X211006966
crossref_primary_10_1016_j_imbio_2018_07_023
crossref_primary_10_3390_ijms221910642
crossref_primary_10_1186_s13287_019_1500_x
crossref_primary_10_1515_hsz_2021_0290
crossref_primary_10_1111_jcmm_17399
crossref_primary_10_1007_s10616_016_0009_8
crossref_primary_10_1016_j_biochi_2018_05_018
crossref_primary_10_1007_s40610_018_0094_x
crossref_primary_10_1016_j_mtbio_2021_100202
crossref_primary_10_1016_j_trecan_2018_12_004
crossref_primary_10_1016_j_actbio_2025_02_007
crossref_primary_10_1111_cpr_12789
crossref_primary_10_1111_jre_13154
crossref_primary_10_1172_JCI143764
crossref_primary_10_1039_C6NR00843G
crossref_primary_10_3389_fcell_2022_941542
crossref_primary_10_1155_2015_421746
crossref_primary_10_1007_s11914_017_0358_z
crossref_primary_10_1186_s13619_024_00205_x
crossref_primary_10_1016_j_lfs_2020_117636
crossref_primary_10_3390_ijms232315146
crossref_primary_10_1016_j_mehy_2017_09_028
crossref_primary_10_1002_jcp_25134
crossref_primary_10_1016_j_intimp_2017_09_018
crossref_primary_10_1177_0194599816688647
crossref_primary_10_15406_jcpcr_2017_07_00234
crossref_primary_10_1101_cshperspect_a031237
crossref_primary_10_3389_fendo_2020_581878
Cites_doi 10.1084/jem.20110994
10.5858/arpa.2012.0013-RS
10.1002/jbmr.238
10.1359/jbmr.070109
10.1016/j.cytogfr.2009.10.020
10.1371/journal.pone.0003174
10.1182/blood.V92.9.3465
10.1073/pnas.1120735109
10.1371/journal.pone.0038199
10.1016/j.bbadis.2009.05.004
10.1002/jcb.24537
10.1016/j.bone.2012.06.015
10.1038/nm.3074
10.1038/nrc867
10.1016/j.bone.2013.05.024
10.1371/journal.pone.0048871
10.1038/nrclinonc.2011.197
10.1182/blood-2010-05-282855
10.1038/nm.1943
10.1016/j.bone.2008.05.010
10.1172/JCI118773
10.3816/SCT.2006.n.020
10.1172/JCI69493
10.1177/0022034513500306
10.1371/journal.pone.0012290
10.1359/JBMR.040514
10.1007/s00439-008-0583-8
10.1038/ni.2352
10.1074/jbc.M807598200
10.1038/bonekey.2013.215
10.1038/sj.emboj.7601430
10.1073/pnas.0805133106
10.1016/S1470-2045(10)70010-3
10.1083/jcb.151.2.311
10.1359/jbmr.2000.15.1.103
10.1002/jcb.22406
10.1038/nature01658
10.1136/jmg.2005.036673
10.1172/JCI60920
10.1158/1078-0432.CCR-12-0578
10.1038/nrendo.2013.137
10.1038/nature12984
10.1053/j.seminoncol.2010.10.007
10.1007/s00198-009-0920-3
10.1038/nature07713
10.1038/nm.1979
10.1084/jem.20101474
10.1002/jbmr.5650040302
10.1097/01.mph.0000210409.48877.c3
10.1007/s12026-013-8455-2
10.1016/j.cmet.2006.05.012
10.1007/s00198-013-2585-1
10.1016/j.bone.2010.11.008
10.1084/jem.20101890
10.1073/pnas.94.5.1908
10.1016/S0140-6736(13)60856-9
10.1056/NEJMoa031975
10.1038/nm.3143
10.1210/er.2010-0006
10.2741/3673
10.1038/bonekey.2013.183
10.1016/j.bone.2008.08.130
10.1359/jbmr.071107
10.1002/jbmr.2187
10.1002/jbmr.1477
10.1359/JBMR.051007
10.1097/MOH.0b013e328338b7d5
10.1084/jem.156.5.1516
10.1073/pnas.93.15.7644
10.1007/s00223-013-9829-0
10.1158/0008-5472.CAN-12-2202
10.1016/j.cytogfr.2014.01.002
10.1016/j.clinbiochem.2013.04.012
10.2217/fon.13.28
10.4161/onci.21990
10.1056/NEJMra030831
10.1002/jbmr.2211
10.1016/S8756-3282(03)00064-4
10.1056/NEJMoa1305224
10.1074/jbc.M112.426080
10.1073/pnas.1114656108
10.1172/JCI35711
10.1542/peds.93.2.247
10.1016/j.maturitas.2009.09.011
10.5312/wjo.v3.i9.142
10.1074/jbc.M113.485938
10.1002/jbmr.474
10.1038/nm.2793
10.1016/j.micron.2005.06.008
10.1371/journal.pone.0064539
10.1371/journal.pone.0038378
10.1002/stem.1040
10.1002/jcp.24246
10.1359/jbmr.060313
10.1186/1479-5876-11-303
10.1126/scitranslmed.3007764
10.1172/JCI64060
10.1371/journal.pone.0003537
10.1038/360741a0
10.1002/jcp.22411
10.1016/j.bone.2013.07.023
10.1038/nrd3705
10.1002/jbmr.1695
10.1002/jbmr.1603
10.1359/jbmr.2003.18.10.1905
10.1002/jbmr.559
10.4049/jimmunol.0803897
10.1002/jcb.24801
10.1182/blood-2009-11-255026
10.1186/1471-2407-10-462
10.1172/JCI46262
10.1093/rheumatology/ken454
10.4161/cam.20888
10.1056/NEJMoa035725
10.1038/nm.3084
10.1016/j.bone.2007.08.038
10.1016/S0002-9440(10)63798-4
10.2353/ajpath.2009.081026
10.1038/nm.2489
10.1074/jbc.M110.101964
10.1007/s00018-010-0465-9
10.1359/jbmr.080706
10.3324/haematol.2013.089466
10.1136/ard.2007.080713
10.1038/nm1417
10.1038/ng2076
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Elsevier Ltd
Copyright © 2014 Elsevier Ltd. All rights reserved.
2014 Elsevier Ltd. All rights reserved. 2014
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
– notice: 2014 Elsevier Ltd. All rights reserved. 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.molmed.2014.06.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList



MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1471-499X
EndPage 459
ExternalDocumentID PMC4119859
25008556
10_1016_j_molmed_2014_06_001
S1471491414000884
1_s2_0_S1471491414000884
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: K08 AR054859
– fundername: NIAMS NIH HHS
  grantid: K08 AR062590
– fundername: NIA NIH HHS
  grantid: R01 AG046257
– fundername: NIAMS NIH HHS
  grantid: R01 AR060363
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIWK
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M41
MO0
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSZ
T5K
Z5R
~G-
AACTN
AEHWI
AFCTW
AFKWA
AJOXV
AMFUW
RCE
RIG
SSU
AAIAV
ABLVK
ABYKQ
AJBFU
DOVZS
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c571t-6f7e182c1c7ed13f104d44d4f4a69fcf4da06d8d22511f8472f114e07a76b5bf3
IEDL.DBID .~1
ISSN 1471-4914
1471-499X
IngestDate Thu Aug 21 14:07:34 EDT 2025
Mon Jul 21 11:23:35 EDT 2025
Mon Jul 21 06:02:46 EDT 2025
Tue Jul 01 04:26:44 EDT 2025
Thu Apr 24 22:57:45 EDT 2025
Fri Feb 23 02:23:45 EST 2024
Sun Feb 23 10:18:44 EST 2025
Tue Aug 26 16:33:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords bone remodeling
osteopetrosis
osteoblast
osteoclast
osteoporosis
PTH
Language English
License Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c571t-6f7e182c1c7ed13f104d44d4f4a69fcf4da06d8d22511f8472f114e07a76b5bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://doi.org/10.1016/j.molmed.2014.06.001
PMID 25008556
PQID 1562664104
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4119859
proquest_miscellaneous_1562664104
pubmed_primary_25008556
crossref_primary_10_1016_j_molmed_2014_06_001
crossref_citationtrail_10_1016_j_molmed_2014_06_001
elsevier_sciencedirect_doi_10_1016_j_molmed_2014_06_001
elsevier_clinicalkeyesjournals_1_s2_0_S1471491414000884
elsevier_clinicalkey_doi_10_1016_j_molmed_2014_06_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Trends in molecular medicine
PublicationTitleAlternate Trends Mol Med
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rogers (bib0225) 2011; 49
Langdahl (bib0270) 2012; 27
Buchwald (bib0545) 2012; 7
Yamane (bib0280) 2009; 44
Ishii (bib0190) 2009; 458
Boyce (bib0355) 2012; 27
Sims, Martin (bib0005) 2014; 3
Guihard (bib0075) 2012; 30
Del Fattore (bib0125) 2006; 43
Takahashi (bib0440) 1996; 74
Pangrazio (bib0120) 2012; 27
Kanaya (bib0480) 2012; 13
Vukicevic, Grgurevic (bib0630) 2009; 20
Del Fattore (bib0600) 2008; 23
Jones (bib0040) 2011; 121
Kimura (bib0165) 2008; 3
Mundy (bib0575) 2002; 2
Pusic, DiPersio (bib0420) 2010; 17
Kollet (bib0450) 2006; 12
Marzia (bib0130) 2000; 151
Bozec (bib0555) 2014; 6
Black (bib0235) 2003; 349
Danilin (bib0520) 2012; 1
Henriksen (bib0085) 2011; 32
US Department of Health and Human Services (bib0030) 2004
Pennypacker (bib0260) 2014
Jacquin (bib0495) 2006; 21
Pederson (bib0185) 2008; 105
Yamamoto (bib0345) 1996; 98
Tawfeek (bib0080) 2010; 5
Serafini (bib0510) 2013; 57
Pierroz (bib0230) 2010; 285
Kiechl (bib0485) 2013; 19
Negishi-Koga (bib0595) 2011; 17
Furuya (bib0215) 2013; 288
Takeshita (bib0170) 2013; 123
Gerritsen (bib0115) 1994; 93
Regard (bib0335) 2011; 108
Monge (bib0320) 2013; 8
Xian (bib0100) 2012; 18
Ota (bib0620) 2013; 57
Mansour (bib0385) 2012; 209
Boyce (bib0025) 2013; 92
Li (bib0535) 2010; 116
Ryu (bib0180) 2006; 25
Lacey (bib0020) 2012; 11
Jacome-Galarza (bib0390) 2014; 115
Sigl, Penninger (bib0490) 2014; 25
Karsdal (bib0110) 2007; 22
Lymperi (bib0395) 2011; 117
Bedi (bib0070) 2012; 109
Kubota (bib0660) 2002; 13
Dai (bib0150) 2004; 19
Boyle (bib0015) 2003; 423
Segovia-Silvestre (bib0045) 2009; 124
Kook (bib0455) 2013; 123
Lotinun (bib0145) 2013; 123
Thomas (bib0310) 2010; 11
Balke (bib0300) 2010; 10
Borzutzky (bib0430) 2006; 28
Bukhari (bib0220) 2009; 48
Akiyama (bib0475) 2012; 3
Young, Coleman (bib0590) 2013; 9
Takamatsu (bib0445) 1998; 92
Kolliker (bib0060) 1873
Aliprantis (bib0505) 2008; 118
Brown, Coleman (bib0585) 2012; 9
Kiesel (bib0540) 2009; 182
Sobacchi (bib0050) 2007; 39
Baron, Kneissel (bib0065) 2013; 19
Kreja (bib0650) 2010; 109
Riminucci (bib0340) 2003; 33
Wiktor-Jedrzejczak (bib0470) 1982; 156
Korpal (bib0580) 2009; 15
Sun (bib0460) 2013; 46
Grassi (bib0515) 2011; 226
Teti (bib0010) 2013; 2
McClung (bib0285) 2014; 370
Silverberg (bib0370) 1989; 4
Finkelstein (bib0240) 2003; 349
Dale (bib0425) 2006; 3
Matsuo, Otaki (bib0200) 2012; 6
Axmann (bib0560) 2008; 67
Guise (bib0565) 2010; 37
Ohishi (bib0375) 2009; 174
Lapid (bib0410) 2008
Li (bib0435) 2013; 228
Sobacchi (bib0055) 2013; 9
Pennypacker (bib0135) 2009; 44
Ishii (bib0195) 2010; 207
Zhen (bib0105) 2013; 19
Everts (bib0090) 2009; 1792
Cosman (bib0245) 2011; 26
Sakagami (bib0155) 2005; 36
Vilardaga (bib0330) 2011; 68
Miyamoto (bib0405) 2011; 208
Walker (bib0615) 2008; 23
Kim (bib0625) 2012; 51
Tse (bib0305) 2008; 42
Chen (bib0645) 2012; 7
Branstetter (bib0315) 2012; 18
Hayman, Cox (bib0610) 2003; 18
Abrahamsen (bib0035) 2009; 20
Takahashi (bib0295) 2011; 16
Buchwald (bib0550) 2013; 56
Morrison (bib0415) 1997; 94
Sanchez-Fernandez (bib0655) 2008; 3
Riddle, Bui (bib0325) 2013; 137
Matsuoka (bib0175) 2014
Zhao (bib0210) 2006; 4
Cusick (bib0275) 2012; 27
Rhee (bib0265) 2013; 288
Li (bib0140) 2006; 21
Charles (bib0500) 2012; 122
Grano (bib0640) 1996; 93
Morrison, Scadden (bib0380) 2014; 505
Thomsen, Rejnmark (bib0350) 2014; 94
Wang (bib0160) 1992; 360
Zhuang (bib0530) 2012; 7
Sawant (bib0525) 2013; 73
van Lierop (bib0290) 2011; 26
Angel (bib0605) 2000; 15
Flores (bib0400) 2013; 98
Roodman (bib0570) 2004; 350
Tsai (bib0250) 2013; 382
Ota (bib0635) 2013; 114
Tang (bib0095) 2009; 15
Irie (bib0205) 2009; 284
Munoz-Torres (bib0465) 2009; 64
Taranta (bib0365) 2003; 162
Ganda, Seibel (bib0360) 2014; 25
Xu (bib0255) 2013; 11
Wiktor-Jedrzejczak (10.1016/j.molmed.2014.06.001_bib0470) 1982; 156
Danilin (10.1016/j.molmed.2014.06.001_bib0520) 2012; 1
Lapid (10.1016/j.molmed.2014.06.001_bib0410) 2008
Buchwald (10.1016/j.molmed.2014.06.001_bib0545) 2012; 7
Finkelstein (10.1016/j.molmed.2014.06.001_bib0240) 2003; 349
Sigl (10.1016/j.molmed.2014.06.001_bib0490) 2014; 25
Regard (10.1016/j.molmed.2014.06.001_bib0335) 2011; 108
Li (10.1016/j.molmed.2014.06.001_bib0435) 2013; 228
Young (10.1016/j.molmed.2014.06.001_bib0590) 2013; 9
Pennypacker (10.1016/j.molmed.2014.06.001_bib0135) 2009; 44
Pusic (10.1016/j.molmed.2014.06.001_bib0420) 2010; 17
Rogers (10.1016/j.molmed.2014.06.001_bib0225) 2011; 49
Langdahl (10.1016/j.molmed.2014.06.001_bib0270) 2012; 27
Roodman (10.1016/j.molmed.2014.06.001_bib0570) 2004; 350
Kanaya (10.1016/j.molmed.2014.06.001_bib0480) 2012; 13
Ota (10.1016/j.molmed.2014.06.001_bib0620) 2013; 57
Kolliker (10.1016/j.molmed.2014.06.001_bib0060) 1873
Morrison (10.1016/j.molmed.2014.06.001_bib0415) 1997; 94
Boyle (10.1016/j.molmed.2014.06.001_bib0015) 2003; 423
Jones (10.1016/j.molmed.2014.06.001_bib0040) 2011; 121
Kiechl (10.1016/j.molmed.2014.06.001_bib0485) 2013; 19
Pierroz (10.1016/j.molmed.2014.06.001_bib0230) 2010; 285
Angel (10.1016/j.molmed.2014.06.001_bib0605) 2000; 15
Boyce (10.1016/j.molmed.2014.06.001_bib0025) 2013; 92
Teti (10.1016/j.molmed.2014.06.001_bib0010) 2013; 2
Miyamoto (10.1016/j.molmed.2014.06.001_bib0405) 2011; 208
Cusick (10.1016/j.molmed.2014.06.001_bib0275) 2012; 27
Vilardaga (10.1016/j.molmed.2014.06.001_bib0330) 2011; 68
Flores (10.1016/j.molmed.2014.06.001_bib0400) 2013; 98
Li (10.1016/j.molmed.2014.06.001_bib0140) 2006; 21
Sun (10.1016/j.molmed.2014.06.001_bib0460) 2013; 46
Vukicevic (10.1016/j.molmed.2014.06.001_bib0630) 2009; 20
Bedi (10.1016/j.molmed.2014.06.001_bib0070) 2012; 109
Yamane (10.1016/j.molmed.2014.06.001_bib0280) 2009; 44
Branstetter (10.1016/j.molmed.2014.06.001_bib0315) 2012; 18
Guise (10.1016/j.molmed.2014.06.001_bib0565) 2010; 37
Dale (10.1016/j.molmed.2014.06.001_bib0425) 2006; 3
Segovia-Silvestre (10.1016/j.molmed.2014.06.001_bib0045) 2009; 124
Sanchez-Fernandez (10.1016/j.molmed.2014.06.001_bib0655) 2008; 3
Ota (10.1016/j.molmed.2014.06.001_bib0635) 2013; 114
Matsuo (10.1016/j.molmed.2014.06.001_bib0200) 2012; 6
Pederson (10.1016/j.molmed.2014.06.001_bib0185) 2008; 105
Silverberg (10.1016/j.molmed.2014.06.001_bib0370) 1989; 4
Tawfeek (10.1016/j.molmed.2014.06.001_bib0080) 2010; 5
Gerritsen (10.1016/j.molmed.2014.06.001_bib0115) 1994; 93
Takamatsu (10.1016/j.molmed.2014.06.001_bib0445) 1998; 92
Del Fattore (10.1016/j.molmed.2014.06.001_bib0600) 2008; 23
van Lierop (10.1016/j.molmed.2014.06.001_bib0290) 2011; 26
Ohishi (10.1016/j.molmed.2014.06.001_bib0375) 2009; 174
Bozec (10.1016/j.molmed.2014.06.001_bib0555) 2014; 6
Everts (10.1016/j.molmed.2014.06.001_bib0090) 2009; 1792
Dai (10.1016/j.molmed.2014.06.001_bib0150) 2004; 19
Kollet (10.1016/j.molmed.2014.06.001_bib0450) 2006; 12
Lotinun (10.1016/j.molmed.2014.06.001_bib0145) 2013; 123
Baron (10.1016/j.molmed.2014.06.001_bib0065) 2013; 19
Wang (10.1016/j.molmed.2014.06.001_bib0160) 1992; 360
Kimura (10.1016/j.molmed.2014.06.001_bib0165) 2008; 3
Monge (10.1016/j.molmed.2014.06.001_bib0320) 2013; 8
Xian (10.1016/j.molmed.2014.06.001_bib0100) 2012; 18
Bukhari (10.1016/j.molmed.2014.06.001_bib0220) 2009; 48
Sawant (10.1016/j.molmed.2014.06.001_bib0525) 2013; 73
Mundy (10.1016/j.molmed.2014.06.001_bib0575) 2002; 2
Lacey (10.1016/j.molmed.2014.06.001_bib0020) 2012; 11
Zhen (10.1016/j.molmed.2014.06.001_bib0105) 2013; 19
Ryu (10.1016/j.molmed.2014.06.001_bib0180) 2006; 25
Charles (10.1016/j.molmed.2014.06.001_bib0500) 2012; 122
Takeshita (10.1016/j.molmed.2014.06.001_bib0170) 2013; 123
Zhuang (10.1016/j.molmed.2014.06.001_bib0530) 2012; 7
Borzutzky (10.1016/j.molmed.2014.06.001_bib0430) 2006; 28
Henriksen (10.1016/j.molmed.2014.06.001_bib0085) 2011; 32
Pennypacker (10.1016/j.molmed.2014.06.001_bib0260) 2014
Matsuoka (10.1016/j.molmed.2014.06.001_bib0175) 2014
Jacome-Galarza (10.1016/j.molmed.2014.06.001_bib0390) 2014; 115
Buchwald (10.1016/j.molmed.2014.06.001_bib0550) 2013; 56
US Department of Health and Human Services (10.1016/j.molmed.2014.06.001_bib0030) 2004
Balke (10.1016/j.molmed.2014.06.001_bib0300) 2010; 10
Brown (10.1016/j.molmed.2014.06.001_bib0585) 2012; 9
Korpal (10.1016/j.molmed.2014.06.001_bib0580) 2009; 15
Walker (10.1016/j.molmed.2014.06.001_bib0615) 2008; 23
Pangrazio (10.1016/j.molmed.2014.06.001_bib0120) 2012; 27
Aliprantis (10.1016/j.molmed.2014.06.001_bib0505) 2008; 118
Ishii (10.1016/j.molmed.2014.06.001_bib0195) 2010; 207
Serafini (10.1016/j.molmed.2014.06.001_bib0510) 2013; 57
Karsdal (10.1016/j.molmed.2014.06.001_bib0110) 2007; 22
Akiyama (10.1016/j.molmed.2014.06.001_bib0475) 2012; 3
Tse (10.1016/j.molmed.2014.06.001_bib0305) 2008; 42
Mansour (10.1016/j.molmed.2014.06.001_bib0385) 2012; 209
Kiesel (10.1016/j.molmed.2014.06.001_bib0540) 2009; 182
Thomsen (10.1016/j.molmed.2014.06.001_bib0350) 2014; 94
Morrison (10.1016/j.molmed.2014.06.001_bib0380) 2014; 505
Irie (10.1016/j.molmed.2014.06.001_bib0205) 2009; 284
Chen (10.1016/j.molmed.2014.06.001_bib0645) 2012; 7
Kubota (10.1016/j.molmed.2014.06.001_bib0660) 2002; 13
Tsai (10.1016/j.molmed.2014.06.001_bib0250) 2013; 382
Yamamoto (10.1016/j.molmed.2014.06.001_bib0345) 1996; 98
Grassi (10.1016/j.molmed.2014.06.001_bib0515) 2011; 226
Takahashi (10.1016/j.molmed.2014.06.001_bib0295) 2011; 16
Sakagami (10.1016/j.molmed.2014.06.001_bib0155) 2005; 36
Thomas (10.1016/j.molmed.2014.06.001_bib0310) 2010; 11
Kook (10.1016/j.molmed.2014.06.001_bib0455) 2013; 123
Hayman (10.1016/j.molmed.2014.06.001_bib0610) 2003; 18
Munoz-Torres (10.1016/j.molmed.2014.06.001_bib0465) 2009; 64
Cosman (10.1016/j.molmed.2014.06.001_bib0245) 2011; 26
McClung (10.1016/j.molmed.2014.06.001_bib0285) 2014; 370
Riminucci (10.1016/j.molmed.2014.06.001_bib0340) 2003; 33
Taranta (10.1016/j.molmed.2014.06.001_bib0365) 2003; 162
Grano (10.1016/j.molmed.2014.06.001_bib0640) 1996; 93
Abrahamsen (10.1016/j.molmed.2014.06.001_bib0035) 2009; 20
Furuya (10.1016/j.molmed.2014.06.001_bib0215) 2013; 288
Del Fattore (10.1016/j.molmed.2014.06.001_bib0125) 2006; 43
Sims (10.1016/j.molmed.2014.06.001_bib0005) 2014; 3
Tang (10.1016/j.molmed.2014.06.001_bib0095) 2009; 15
Rhee (10.1016/j.molmed.2014.06.001_bib0265) 2013; 288
Riddle (10.1016/j.molmed.2014.06.001_bib0325) 2013; 137
Boyce (10.1016/j.molmed.2014.06.001_bib0355) 2012; 27
Axmann (10.1016/j.molmed.2014.06.001_bib0560) 2008; 67
Zhao (10.1016/j.molmed.2014.06.001_bib0210) 2006; 4
Lymperi (10.1016/j.molmed.2014.06.001_bib0395) 2011; 117
Sobacchi (10.1016/j.molmed.2014.06.001_bib0055) 2013; 9
Ganda (10.1016/j.molmed.2014.06.001_bib0360) 2014; 25
Kreja (10.1016/j.molmed.2014.06.001_bib0650) 2010; 109
Marzia (10.1016/j.molmed.2014.06.001_bib0130) 2000; 151
Sobacchi (10.1016/j.molmed.2014.06.001_bib0050) 2007; 39
Li (10.1016/j.molmed.2014.06.001_bib0535) 2010; 116
Black (10.1016/j.molmed.2014.06.001_bib0235) 2003; 349
Guihard (10.1016/j.molmed.2014.06.001_bib0075) 2012; 30
Xu (10.1016/j.molmed.2014.06.001_bib0255) 2013; 11
Ishii (10.1016/j.molmed.2014.06.001_bib0190) 2009; 458
Takahashi (10.1016/j.molmed.2014.06.001_bib0440) 1996; 74
Jacquin (10.1016/j.molmed.2014.06.001_bib0495) 2006; 21
Negishi-Koga (10.1016/j.molmed.2014.06.001_bib0595) 2011; 17
Kim (10.1016/j.molmed.2014.06.001_bib0625) 2012; 51
References_xml – volume: 21
  start-page: 67
  year: 2006
  end-page: 77
  ident: bib0495
  article-title: Identification of multiple osteoclast precursor populations in murine bone marrow
  publication-title: J. Bone Miner. Res.
– volume: 20
  start-page: 1633
  year: 2009
  end-page: 1650
  ident: bib0035
  article-title: Excess mortality following hip fracture: a systematic epidemiological review
  publication-title: Osteoporos. Int.
– volume: 92
  start-page: 3465
  year: 1998
  end-page: 3473
  ident: bib0445
  article-title: Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization
  publication-title: Blood
– volume: 349
  start-page: 1207
  year: 2003
  end-page: 1215
  ident: bib0235
  article-title: The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis
  publication-title: N. Engl. J. Med.
– volume: 108
  start-page: 20101
  year: 2011
  end-page: 20106
  ident: bib0335
  article-title: Wnt/beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 9
  start-page: 522
  year: 2013
  end-page: 536
  ident: bib0055
  article-title: Osteopetrosis: genetics, treatment and new insights into osteoclast function
  publication-title: Nat. Rev. Endocrinol.
– volume: 25
  start-page: 5840
  year: 2006
  end-page: 5851
  ident: bib0180
  article-title: Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling
  publication-title: EMBO J.
– volume: 13
  start-page: 62
  year: 2002
  end-page: 71
  ident: bib0660
  article-title: PDGF BB purified from osteoclasts acts as osteoblastogenesis inhibitory factor (OBIF)
  publication-title: J. Biomol. Tech.
– volume: 284
  start-page: 14637
  year: 2009
  end-page: 14644
  ident: bib0205
  article-title: Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis
  publication-title: J. Biol. Chem.
– volume: 1
  start-page: 1484
  year: 2012
  end-page: 1494
  ident: bib0520
  article-title: Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction
  publication-title: Oncoimmunology
– volume: 19
  start-page: 179
  year: 2013
  end-page: 192
  ident: bib0065
  article-title: WNT signaling in bone homeostasis and disease: from human mutations to treatments
  publication-title: Nat. Med.
– volume: 46
  start-page: 1601
  year: 2013
  end-page: 1606
  ident: bib0460
  article-title: The development and characterization of an ELISA specifically detecting the active form of cathepsin K
  publication-title: Clin. Biochem.
– volume: 349
  start-page: 1216
  year: 2003
  end-page: 1226
  ident: bib0240
  article-title: The effects of parathyroid hormone, alendronate, or both in men with osteoporosis
  publication-title: N. Engl. J. Med.
– volume: 6
  start-page: 235ra260
  year: 2014
  ident: bib0555
  article-title: T cell costimulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan pathway
  publication-title: Sci. Transl. Med.
– volume: 360
  start-page: 741
  year: 1992
  end-page: 745
  ident: bib0160
  article-title: Bone and haematopoietic defects in mice lacking c-fos
  publication-title: Nature
– volume: 94
  start-page: 1908
  year: 1997
  end-page: 1913
  ident: bib0415
  article-title: Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 92
  start-page: 860
  year: 2013
  end-page: 867
  ident: bib0025
  article-title: Advances in the regulation of osteoclasts and osteoclast functions
  publication-title: J. Dent. Res.
– volume: 16
  start-page: 21
  year: 2011
  end-page: 30
  ident: bib0295
  article-title: Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals
  publication-title: Front. Biosci.
– volume: 285
  start-page: 28164
  year: 2010
  end-page: 28173
  ident: bib0230
  article-title: Are osteoclasts needed for the bone anabolic response to parathyroid hormone? A study of intermittent parathyroid hormone with denosumab or alendronate in knock-in mice expressing humanized RANKL
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 303
  year: 2013
  ident: bib0255
  article-title: Basic research and clinical applications of bisphosphonates in bone disease: what have we learned over the last 40 years?
  publication-title: J. Transl. Med.
– volume: 22
  start-page: 487
  year: 2007
  end-page: 494
  ident: bib0110
  article-title: Are nonresorbing osteoclasts sources of bone anabolic activity?
  publication-title: J. Bone Mineral Res.
– volume: 26
  start-page: 503
  year: 2011
  end-page: 511
  ident: bib0245
  article-title: Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1-34)] in postmenopausal osteoporosis
  publication-title: J. Bone Miner. Res.
– volume: 207
  start-page: 2793
  year: 2010
  end-page: 2798
  ident: bib0195
  article-title: Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo
  publication-title: J. Exp. Med.
– volume: 3
  start-page: 220
  year: 2006
  end-page: 231
  ident: bib0425
  article-title: The Severe Chronic Neutropenia International Registry: 10-year follow-up report
  publication-title: Support. Cancer Ther.
– volume: 28
  start-page: 205
  year: 2006
  end-page: 209
  ident: bib0430
  article-title: Osteoporosis in children with severe congenital neutropenia: bone mineral density and treatment with bisphosphonates
  publication-title: J. Pediatr. Hematol. Oncol.
– year: 2004
  ident: bib0030
  article-title: Bone Health and Osteoporosis: A Report of the Surgeon General
– volume: 423
  start-page: 337
  year: 2003
  end-page: 342
  ident: bib0015
  article-title: Osteoclast differentiation and activation
  publication-title: Nature
– year: 2014
  ident: bib0260
  article-title: Inhibition of cathepsin K increases modeling-based bone formation, and improves cortical dimension and strength in adult ovariectomized monkeys
  publication-title: J. Bone Miner. Res.
– volume: 18
  start-page: 4415
  year: 2012
  end-page: 4424
  ident: bib0315
  article-title: Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone
  publication-title: Clin. Cancer Res.
– volume: 12
  start-page: 657
  year: 2006
  end-page: 664
  ident: bib0450
  article-title: Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells
  publication-title: Nat. Med.
– volume: 44
  start-page: 199
  year: 2009
  end-page: 207
  ident: bib0135
  article-title: Bone density, strength, and formation in adult cathepsin K
  publication-title: Bone
– volume: 117
  start-page: 1540
  year: 2011
  end-page: 1549
  ident: bib0395
  article-title: Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo
  publication-title: Blood
– year: 2014
  ident: bib0175
  article-title: Osteoclast-derived complement component 3a stimulates osteoblast differentiation
  publication-title: J. Bone Miner. Res.
– volume: 19
  start-page: 358
  year: 2013
  end-page: 363
  ident: bib0485
  article-title: Blockade of receptor activator of nuclear factor-kappaB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus
  publication-title: Nat. Med.
– volume: 156
  start-page: 1516
  year: 1982
  end-page: 1527
  ident: bib0470
  article-title: Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation
  publication-title: J. Exp. Med.
– volume: 26
  start-page: 2804
  year: 2011
  end-page: 2811
  ident: bib0290
  article-title: Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover
  publication-title: J. Bone Miner. Res.
– volume: 49
  start-page: 34
  year: 2011
  end-page: 41
  ident: bib0225
  article-title: Biochemical and molecular mechanisms of action of bisphosphonates
  publication-title: Bone
– volume: 68
  start-page: 1
  year: 2011
  end-page: 13
  ident: bib0330
  article-title: Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm
  publication-title: Cell. Mol. Life Sci.
– volume: 182
  start-page: 5477
  year: 2009
  end-page: 5487
  ident: bib0540
  article-title: Cross-presentation by osteoclasts induces FoxP3 in CD8
  publication-title: J. Immunol.
– volume: 288
  start-page: 5562
  year: 2013
  end-page: 5571
  ident: bib0215
  article-title: Stimulation of bone formation in cortical bone of mice treated with a receptor activator of nuclear factor-kappaB ligand (RANKL)-binding peptide that possesses osteoclastogenesis inhibitory activity
  publication-title: J. Biol. Chem.
– volume: 21
  start-page: 865
  year: 2006
  end-page: 875
  ident: bib0140
  article-title: Mice lacking cathepsin K maintain bone remodeling but develop bone fragility despite high bone mass
  publication-title: J. Bone Miner. Res.
– volume: 25
  start-page: 205
  year: 2014
  end-page: 214
  ident: bib0490
  article-title: RANKL/RANK – from bone physiology to breast cancer
  publication-title: Cytokine Growth Factor Rev.
– volume: 15
  start-page: 757
  year: 2009
  end-page: 765
  ident: bib0095
  article-title: TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation
  publication-title: Nat. Med.
– volume: 228
  start-page: 1002
  year: 2013
  end-page: 1009
  ident: bib0435
  article-title: A pivotal role of bone remodeling in granulocyte colony stimulating factor induced hematopoietic stem/progenitor cells mobilization
  publication-title: J. Cell. Physiol.
– volume: 30
  start-page: 762
  year: 2012
  end-page: 772
  ident: bib0075
  article-title: Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling
  publication-title: Stem Cells
– volume: 44
  start-page: 1055
  year: 2009
  end-page: 1062
  ident: bib0280
  article-title: The anabolic action of intermittent PTH in combination with cathepsin K inhibitor or alendronate differs depending on the remodeling status in bone in ovariectomized mice
  publication-title: Bone
– volume: 174
  start-page: 2160
  year: 2009
  end-page: 2171
  ident: bib0375
  article-title: Osteoprotegerin abrogated cortical porosity and bone marrow fibrosis in a mouse model of constitutive activation of the PTH/PTHrP receptor
  publication-title: Am. J. Pathol.
– volume: 20
  start-page: 441
  year: 2009
  end-page: 448
  ident: bib0630
  article-title: BMP-6 and mesenchymal stem cell differentiation
  publication-title: Cytokine Growth Factor Rev.
– year: 1873
  ident: bib0060
  article-title: Die normale Resorption des Knochengewebes und ihre Bedeutung die Entstehung der typischen Knochenformen
– volume: 48
  start-page: 327
  year: 2009
  end-page: 329
  ident: bib0220
  article-title: The National Osteoporosis Guideline Group's new guidelines: what is new?
  publication-title: Rheumatology
– volume: 162
  start-page: 57
  year: 2003
  end-page: 68
  ident: bib0365
  article-title: Genotype–phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis
  publication-title: Am. J. Pathol.
– volume: 57
  start-page: 68
  year: 2013
  end-page: 75
  ident: bib0620
  article-title: Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors
  publication-title: Bone
– volume: 151
  start-page: 311
  year: 2000
  end-page: 320
  ident: bib0130
  article-title: Decreased c-Src expression enhances osteoblast differentiation and bone formation
  publication-title: J. Cell Biol.
– volume: 10
  start-page: 462
  year: 2010
  ident: bib0300
  article-title: Bisphosphonate treatment of aggressive primary, recurrent and metastatic giant cell tumour of bone
  publication-title: BMC Cancer
– volume: 109
  start-page: 347
  year: 2010
  end-page: 355
  ident: bib0650
  article-title: Non-resorbing osteoclasts induce migration and osteogenic differentiation of mesenchymal stem cells
  publication-title: J. Cell. Biochem.
– volume: 19
  start-page: 704
  year: 2013
  end-page: 712
  ident: bib0105
  article-title: Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis
  publication-title: Nat. Med.
– volume: 3
  start-page: e3174
  year: 2008
  ident: bib0165
  article-title: Cthrc1 is a positive regulator of osteoblastic bone formation
  publication-title: PLoS ONE
– volume: 370
  start-page: 412
  year: 2014
  end-page: 420
  ident: bib0285
  article-title: Romosozumab in postmenopausal women with low bone mineral density
  publication-title: N. Engl. J. Med.
– volume: 57
  start-page: 172
  year: 2013
  end-page: 184
  ident: bib0510
  article-title: Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly
  publication-title: Immunol. Res.
– volume: 350
  start-page: 1655
  year: 2004
  end-page: 1664
  ident: bib0570
  article-title: Mechanisms of bone metastasis
  publication-title: N. Engl. J. Med.
– volume: 15
  start-page: 103
  year: 2000
  end-page: 110
  ident: bib0605
  article-title: Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover
  publication-title: J. Bone Miner. Res.
– volume: 105
  start-page: 20764
  year: 2008
  end-page: 20769
  ident: bib0185
  article-title: Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 123
  start-page: 3420
  year: 2013
  end-page: 3435
  ident: bib0455
  article-title: The nucleotide sugar UDP-glucose mobilizes long-term repopulating primitive hematopoietic cells
  publication-title: J. Clin. Invest.
– volume: 226
  start-page: 982
  year: 2011
  end-page: 990
  ident: bib0515
  article-title: T cell suppression by osteoclasts in vitro
  publication-title: J. Cell. Physiol.
– volume: 9
  start-page: 110
  year: 2012
  end-page: 118
  ident: bib0585
  article-title: Denosumab in patients with cancer-a surgical strike against the osteoclast
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 32
  start-page: 31
  year: 2011
  end-page: 63
  ident: bib0085
  article-title: Osteoclast activity and subtypes as a function of physiology and pathology – implications for future treatments of osteoporosis
  publication-title: Endocr. Rev.
– volume: 6
  start-page: 148
  year: 2012
  end-page: 156
  ident: bib0200
  article-title: Bone cell interactions through Eph/ephrin: bone modeling, remodeling and associated diseases
  publication-title: Cell Adh. Migr.
– volume: 288
  start-page: 29809
  year: 2013
  end-page: 29820
  ident: bib0265
  article-title: Resorption controls bone anabolism driven by parathyroid hormone (PTH) receptor signaling in osteocytes
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 275
  year: 2010
  end-page: 280
  ident: bib0310
  article-title: Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study
  publication-title: Lancet Oncol.
– volume: 23
  start-page: 2025
  year: 2008
  end-page: 2032
  ident: bib0615
  article-title: Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling
  publication-title: J. Bone Miner. Res.
– volume: 33
  start-page: 434
  year: 2003
  end-page: 442
  ident: bib0340
  article-title: Osteoclastogenesis in fibrous dysplasia of bone: in situ and in vitro analysis of IL-6 expression
  publication-title: Bone
– volume: 4
  start-page: 283
  year: 1989
  end-page: 291
  ident: bib0370
  article-title: Skeletal disease in primary hyperparathyroidism
  publication-title: J. Bone Miner. Res.
– volume: 458
  start-page: 524
  year: 2009
  end-page: 528
  ident: bib0190
  article-title: Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis
  publication-title: Nature
– volume: 137
  start-page: 134
  year: 2013
  end-page: 138
  ident: bib0325
  article-title: Fibrous dysplasia
  publication-title: Arch. Pathol. Lab. Med.
– volume: 98
  start-page: 30
  year: 1996
  end-page: 35
  ident: bib0345
  article-title: Increased IL-6-production by cells isolated from the fibrous bone dysplasia tissues in patients with McCune–Albright syndrome
  publication-title: J. Clin. Invest.
– volume: 25
  start-page: 777
  year: 2014
  end-page: 782
  ident: bib0360
  article-title: Rapid biochemical response to denosumab in fibrous dysplasia of bone: report of two cases
  publication-title: Osteoporos. Int.
– volume: 27
  start-page: 342
  year: 2012
  end-page: 351
  ident: bib0120
  article-title: RANK-dependent autosomal recessive osteopetrosis: characterization of five new cases with novel mutations
  publication-title: J. Bone Mineral Res.
– volume: 209
  start-page: 537
  year: 2012
  end-page: 549
  ident: bib0385
  article-title: Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow
  publication-title: J. Exp. Med.
– volume: 94
  start-page: 384
  year: 2014
  end-page: 395
  ident: bib0350
  article-title: Clinical and radiological observations in a case series of 26 patients with fibrous dysplasia
  publication-title: Calcif. Tissue Int.
– year: 2008
  ident: bib0410
  article-title: Egress and mobilization of hematopoietic stem and progenitor cells: a dynamic multi-facet process
  publication-title: StemBook
– volume: 17
  start-page: 319
  year: 2010
  end-page: 326
  ident: bib0420
  article-title: Update on clinical experience with AMD3100, an SDF-1/CXCL12–CXCR4 inhibitor, in mobilization of hematopoietic stem and progenitor cells
  publication-title: Curr. Opin. Hematol.
– volume: 39
  start-page: 960
  year: 2007
  end-page: 962
  ident: bib0050
  article-title: Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL
  publication-title: Nat. Genet.
– volume: 93
  start-page: 247
  year: 1994
  end-page: 253
  ident: bib0115
  article-title: Autosomal recessive osteopetrosis: variability of findings at diagnosis and during the natural course
  publication-title: Pediatrics
– volume: 43
  start-page: 315
  year: 2006
  end-page: 325
  ident: bib0125
  article-title: Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment
  publication-title: J. Med. Genet.
– volume: 98
  start-page: 1848
  year: 2013
  end-page: 1855
  ident: bib0400
  article-title: Osteoclasts are not crucial for hematopoietic stem cell maintenance in adult mice
  publication-title: Haematologica
– volume: 2
  start-page: 584
  year: 2002
  end-page: 593
  ident: bib0575
  article-title: Metastasis to bone: causes, consequences and therapeutic opportunities
  publication-title: Nat. Rev. Cancer
– volume: 18
  start-page: 1095
  year: 2012
  end-page: 1101
  ident: bib0100
  article-title: Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells
  publication-title: Nat. Med.
– volume: 3
  start-page: 481
  year: 2014
  ident: bib0005
  article-title: Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit
  publication-title: Bonekey Rep.
– volume: 3
  start-page: 142
  year: 2012
  end-page: 150
  ident: bib0475
  article-title: RANKL–RANK interaction in immune regulatory systems
  publication-title: World J. Orthop.
– volume: 122
  start-page: 4592
  year: 2012
  end-page: 4605
  ident: bib0500
  article-title: Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function
  publication-title: J. Clin. Invest.
– volume: 123
  start-page: 666
  year: 2013
  end-page: 681
  ident: bib0145
  article-title: Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation
  publication-title: J. Clin. Invest.
– volume: 27
  start-page: 524
  year: 2012
  end-page: 537
  ident: bib0275
  article-title: Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey
  publication-title: J. Bone Miner. Res.
– volume: 505
  start-page: 327
  year: 2014
  end-page: 334
  ident: bib0380
  article-title: The bone marrow niche for haematopoietic stem cells
  publication-title: Nature
– volume: 51
  start-page: 431
  year: 2012
  end-page: 440
  ident: bib0625
  article-title: Afamin secreted from nonresorbing osteoclasts acts as a chemokine for preosteoblasts via the Akt-signaling pathway
  publication-title: Bone
– volume: 5
  start-page: e12290
  year: 2010
  ident: bib0080
  article-title: Disruption of PTH receptor 1 in T cells protects against PTH-induced bone loss
  publication-title: PLoS ONE
– volume: 123
  start-page: 3914
  year: 2013
  end-page: 3924
  ident: bib0170
  article-title: Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation
  publication-title: J. Clin. Invest.
– volume: 1792
  start-page: 757
  year: 2009
  end-page: 765
  ident: bib0090
  article-title: Osteoclast heterogeneity: lessons from osteopetrosis and inflammatory conditions
  publication-title: Biochim. Biophys. Acta
– volume: 7
  start-page: e38199
  year: 2012
  ident: bib0545
  article-title: Osteoclast activated FoxP3
  publication-title: PLoS ONE
– volume: 116
  start-page: 210
  year: 2010
  end-page: 217
  ident: bib0535
  article-title: Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4
  publication-title: Blood
– volume: 93
  start-page: 7644
  year: 1996
  end-page: 7648
  ident: bib0640
  article-title: Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 37
  start-page: S2
  year: 2010
  end-page: S14
  ident: bib0565
  article-title: Examining the metastatic niche: targeting the microenvironment
  publication-title: Semin. Oncol.
– volume: 27
  start-page: 2251
  year: 2012
  end-page: 2258
  ident: bib0270
  article-title: Odanacatib in the treatment of postmenopausal women with low bone mineral density: five years of continued therapy in a phase 2 study
  publication-title: J. Bone Miner. Res.
– volume: 208
  start-page: 2175
  year: 2011
  end-page: 2181
  ident: bib0405
  article-title: Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization
  publication-title: J. Exp. Med.
– volume: 115
  start-page: 1449
  year: 2014
  end-page: 1457
  ident: bib0390
  article-title: Altered hematopoietic stem cell and osteoclast precursor frequency in cathepsin K null mice
  publication-title: J. Cell. Biochem.
– volume: 13
  start-page: 729
  year: 2012
  end-page: 736
  ident: bib0480
  article-title: The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells
  publication-title: Nat. Immunol.
– volume: 36
  start-page: 688
  year: 2005
  end-page: 695
  ident: bib0155
  article-title: Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice
  publication-title: Micron
– volume: 56
  start-page: 163
  year: 2013
  end-page: 173
  ident: bib0550
  article-title: Osteoclast-induced Foxp3
  publication-title: Bone
– volume: 4
  start-page: 111
  year: 2006
  end-page: 121
  ident: bib0210
  article-title: Bidirectional ephrinB2–EphB4 signaling controls bone homeostasis
  publication-title: Cell Metab.
– volume: 114
  start-page: 1901
  year: 2013
  end-page: 1907
  ident: bib0635
  article-title: Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization
  publication-title: J. Cell. Biochem.
– volume: 67
  start-page: 1603
  year: 2008
  end-page: 1609
  ident: bib0560
  article-title: CTLA-4 directly inhibits osteoclast formation
  publication-title: Ann. Rheum. Dis.
– volume: 8
  start-page: e64539
  year: 2013
  ident: bib0320
  article-title: Fibrous dysplasia in a 120,000+ year old Neandertal from Krapina, Croatia
  publication-title: PLoS ONE
– volume: 118
  start-page: 3775
  year: 2008
  end-page: 3789
  ident: bib0505
  article-title: NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism
  publication-title: J. Clin. Invest.
– volume: 11
  start-page: 401
  year: 2012
  end-page: 419
  ident: bib0020
  article-title: Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the development of denosumab
  publication-title: Nat. Rev. Drug Discov.
– volume: 74
  start-page: 827
  year: 1996
  end-page: 834
  ident: bib0440
  article-title: Overexpression of the granulocyte colony-stimulating factor gene leads to osteoporosis in mice
  publication-title: Lab. Invest.
– volume: 9
  start-page: 633
  year: 2013
  end-page: 643
  ident: bib0590
  article-title: Zoledronic acid to prevent and treat cancer metastasis: new prospects for an old drug
  publication-title: Future Oncol.
– volume: 42
  start-page: 68
  year: 2008
  end-page: 73
  ident: bib0305
  article-title: Bisphosphonates reduce local recurrence in extremity giant cell tumor of bone: a case–control study
  publication-title: Bone
– volume: 3
  start-page: e3537
  year: 2008
  ident: bib0655
  article-title: Osteoclasts control osteoblast chemotaxis via PDGF-BB/PDGF receptor beta signaling
  publication-title: PLOS ONE
– volume: 7
  start-page: e48871
  year: 2012
  ident: bib0530
  article-title: Osteoclasts in multiple myeloma are derived from Gr-1
  publication-title: PLoS ONE
– volume: 2
  start-page: 449
  year: 2013
  ident: bib0010
  article-title: Mechanisms of osteoclast-dependent bone formation
  publication-title: Bonekey Rep.
– volume: 64
  start-page: 188
  year: 2009
  end-page: 192
  ident: bib0465
  article-title: Serum cathepsin K as a marker of bone metabolism in postmenopausal women treated with alendronate
  publication-title: Maturitas
– volume: 27
  start-page: 1462
  year: 2012
  end-page: 1470
  ident: bib0355
  article-title: Denosumab treatment for fibrous dysplasia
  publication-title: J. Bone Miner. Res.
– volume: 18
  start-page: 1905
  year: 2003
  end-page: 1907
  ident: bib0610
  article-title: Tartrate-resistant acid phosphatase knockout mice
  publication-title: J. Bone Miner. Res.
– volume: 121
  start-page: 2534
  year: 2011
  end-page: 2542
  ident: bib0040
  article-title: Osteoimmunology at the nexus of arthritis, osteoporosis, cancer, and infection
  publication-title: J. Clin. Invest.
– volume: 382
  start-page: 50
  year: 2013
  end-page: 56
  ident: bib0250
  article-title: Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial
  publication-title: Lancet
– volume: 17
  start-page: 1473
  year: 2011
  end-page: 1480
  ident: bib0595
  article-title: Suppression of bone formation by osteoclastic expression of semaphorin 4D
  publication-title: Nat. Med.
– volume: 124
  start-page: 561
  year: 2009
  end-page: 577
  ident: bib0045
  article-title: Advances in osteoclast biology resulting from the study of osteopetrotic mutations
  publication-title: Hum. Genet.
– volume: 109
  start-page: E725
  year: 2012
  end-page: E733
  ident: bib0070
  article-title: Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 7
  start-page: e38378
  year: 2012
  ident: bib0645
  article-title: Hepatocyte growth factor increases osteopontin expression in human osteoblasts through PI3K, Akt, c-Src, and AP-1 signaling pathway
  publication-title: PLoS ONE
– volume: 19
  start-page: 1441
  year: 2004
  end-page: 1451
  ident: bib0150
  article-title: Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone
  publication-title: J. Bone Miner. Res.
– volume: 15
  start-page: 960
  year: 2009
  end-page: 966
  ident: bib0580
  article-title: Imaging transforming growth factor-beta signaling dynamics and therapeutic response in breast cancer bone metastasis
  publication-title: Nat. Med.
– volume: 23
  start-page: 380
  year: 2008
  end-page: 391
  ident: bib0600
  article-title: A new heterozygous mutation (R714C) of the osteopetrosis gene, pleckstrin homolog domain containing family M (with run domain) member 1 (PLEKHM1), impairs vesicular acidification and increases TRACP secretion in osteoclasts
  publication-title: J. Bone Miner. Res.
– volume: 73
  start-page: 672
  year: 2013
  end-page: 682
  ident: bib0525
  article-title: Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer
  publication-title: Cancer Res.
– volume: 209
  start-page: 537
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0385
  article-title: Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20110994
– volume: 137
  start-page: 134
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0325
  article-title: Fibrous dysplasia
  publication-title: Arch. Pathol. Lab. Med.
  doi: 10.5858/arpa.2012.0013-RS
– volume: 26
  start-page: 503
  year: 2011
  ident: 10.1016/j.molmed.2014.06.001_bib0245
  article-title: Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1-34)] in postmenopausal osteoporosis
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.238
– year: 2008
  ident: 10.1016/j.molmed.2014.06.001_bib0410
  article-title: Egress and mobilization of hematopoietic stem and progenitor cells: a dynamic multi-facet process
– volume: 22
  start-page: 487
  year: 2007
  ident: 10.1016/j.molmed.2014.06.001_bib0110
  article-title: Are nonresorbing osteoclasts sources of bone anabolic activity?
  publication-title: J. Bone Mineral Res.
  doi: 10.1359/jbmr.070109
– volume: 20
  start-page: 441
  year: 2009
  ident: 10.1016/j.molmed.2014.06.001_bib0630
  article-title: BMP-6 and mesenchymal stem cell differentiation
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2009.10.020
– volume: 3
  start-page: e3174
  year: 2008
  ident: 10.1016/j.molmed.2014.06.001_bib0165
  article-title: Cthrc1 is a positive regulator of osteoblastic bone formation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0003174
– volume: 92
  start-page: 3465
  year: 1998
  ident: 10.1016/j.molmed.2014.06.001_bib0445
  article-title: Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization
  publication-title: Blood
  doi: 10.1182/blood.V92.9.3465
– volume: 74
  start-page: 827
  year: 1996
  ident: 10.1016/j.molmed.2014.06.001_bib0440
  article-title: Overexpression of the granulocyte colony-stimulating factor gene leads to osteoporosis in mice
  publication-title: Lab. Invest.
– volume: 109
  start-page: E725
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0070
  article-title: Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1120735109
– volume: 7
  start-page: e38199
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0545
  article-title: Osteoclast activated FoxP3+ CD8+ T-cells suppress bone resorption in vitro
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0038199
– volume: 1792
  start-page: 757
  year: 2009
  ident: 10.1016/j.molmed.2014.06.001_bib0090
  article-title: Osteoclast heterogeneity: lessons from osteopetrosis and inflammatory conditions
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2009.05.004
– volume: 114
  start-page: 1901
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0635
  article-title: Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.24537
– volume: 51
  start-page: 431
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0625
  article-title: Afamin secreted from nonresorbing osteoclasts acts as a chemokine for preosteoblasts via the Akt-signaling pathway
  publication-title: Bone
  doi: 10.1016/j.bone.2012.06.015
– volume: 19
  start-page: 179
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0065
  article-title: WNT signaling in bone homeostasis and disease: from human mutations to treatments
  publication-title: Nat. Med.
  doi: 10.1038/nm.3074
– volume: 2
  start-page: 584
  year: 2002
  ident: 10.1016/j.molmed.2014.06.001_bib0575
  article-title: Metastasis to bone: causes, consequences and therapeutic opportunities
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc867
– volume: 56
  start-page: 163
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0550
  article-title: Osteoclast-induced Foxp3+ CD8 T-cells limit bone loss in mice
  publication-title: Bone
  doi: 10.1016/j.bone.2013.05.024
– volume: 7
  start-page: e48871
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0530
  article-title: Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+ myeloid-derived suppressor cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0048871
– volume: 9
  start-page: 110
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0585
  article-title: Denosumab in patients with cancer-a surgical strike against the osteoclast
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2011.197
– volume: 117
  start-page: 1540
  year: 2011
  ident: 10.1016/j.molmed.2014.06.001_bib0395
  article-title: Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo
  publication-title: Blood
  doi: 10.1182/blood-2010-05-282855
– volume: 15
  start-page: 960
  year: 2009
  ident: 10.1016/j.molmed.2014.06.001_bib0580
  article-title: Imaging transforming growth factor-beta signaling dynamics and therapeutic response in breast cancer bone metastasis
  publication-title: Nat. Med.
  doi: 10.1038/nm.1943
– volume: 44
  start-page: 1055
  year: 2009
  ident: 10.1016/j.molmed.2014.06.001_bib0280
  article-title: The anabolic action of intermittent PTH in combination with cathepsin K inhibitor or alendronate differs depending on the remodeling status in bone in ovariectomized mice
  publication-title: Bone
  doi: 10.1016/j.bone.2008.05.010
– volume: 98
  start-page: 30
  year: 1996
  ident: 10.1016/j.molmed.2014.06.001_bib0345
  article-title: Increased IL-6-production by cells isolated from the fibrous bone dysplasia tissues in patients with McCune–Albright syndrome
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI118773
– volume: 3
  start-page: 220
  year: 2006
  ident: 10.1016/j.molmed.2014.06.001_bib0425
  article-title: The Severe Chronic Neutropenia International Registry: 10-year follow-up report
  publication-title: Support. Cancer Ther.
  doi: 10.3816/SCT.2006.n.020
– volume: 123
  start-page: 3914
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0170
  article-title: Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI69493
– volume: 92
  start-page: 860
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0025
  article-title: Advances in the regulation of osteoclasts and osteoclast functions
  publication-title: J. Dent. Res.
  doi: 10.1177/0022034513500306
– volume: 5
  start-page: e12290
  year: 2010
  ident: 10.1016/j.molmed.2014.06.001_bib0080
  article-title: Disruption of PTH receptor 1 in T cells protects against PTH-induced bone loss
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0012290
– volume: 19
  start-page: 1441
  year: 2004
  ident: 10.1016/j.molmed.2014.06.001_bib0150
  article-title: Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/JBMR.040514
– volume: 124
  start-page: 561
  year: 2009
  ident: 10.1016/j.molmed.2014.06.001_bib0045
  article-title: Advances in osteoclast biology resulting from the study of osteopetrotic mutations
  publication-title: Hum. Genet.
  doi: 10.1007/s00439-008-0583-8
– volume: 13
  start-page: 729
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0480
  article-title: The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2352
– volume: 284
  start-page: 14637
  year: 2009
  ident: 10.1016/j.molmed.2014.06.001_bib0205
  article-title: Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M807598200
– volume: 3
  start-page: 481
  year: 2014
  ident: 10.1016/j.molmed.2014.06.001_bib0005
  article-title: Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit
  publication-title: Bonekey Rep.
  doi: 10.1038/bonekey.2013.215
– volume: 25
  start-page: 5840
  year: 2006
  ident: 10.1016/j.molmed.2014.06.001_bib0180
  article-title: Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601430
– year: 2004
  ident: 10.1016/j.molmed.2014.06.001_bib0030
– volume: 105
  start-page: 20764
  year: 2008
  ident: 10.1016/j.molmed.2014.06.001_bib0185
  article-title: Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0805133106
– volume: 11
  start-page: 275
  year: 2010
  ident: 10.1016/j.molmed.2014.06.001_bib0310
  article-title: Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(10)70010-3
– volume: 151
  start-page: 311
  year: 2000
  ident: 10.1016/j.molmed.2014.06.001_bib0130
  article-title: Decreased c-Src expression enhances osteoblast differentiation and bone formation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.151.2.311
– volume: 15
  start-page: 103
  year: 2000
  ident: 10.1016/j.molmed.2014.06.001_bib0605
  article-title: Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2000.15.1.103
– volume: 109
  start-page: 347
  year: 2010
  ident: 10.1016/j.molmed.2014.06.001_bib0650
  article-title: Non-resorbing osteoclasts induce migration and osteogenic differentiation of mesenchymal stem cells
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.22406
– volume: 423
  start-page: 337
  year: 2003
  ident: 10.1016/j.molmed.2014.06.001_bib0015
  article-title: Osteoclast differentiation and activation
  publication-title: Nature
  doi: 10.1038/nature01658
– volume: 43
  start-page: 315
  year: 2006
  ident: 10.1016/j.molmed.2014.06.001_bib0125
  article-title: Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment
  publication-title: J. Med. Genet.
  doi: 10.1136/jmg.2005.036673
– volume: 122
  start-page: 4592
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0500
  article-title: Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI60920
– volume: 18
  start-page: 4415
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0315
  article-title: Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-12-0578
– volume: 9
  start-page: 522
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0055
  article-title: Osteopetrosis: genetics, treatment and new insights into osteoclast function
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2013.137
– volume: 505
  start-page: 327
  year: 2014
  ident: 10.1016/j.molmed.2014.06.001_bib0380
  article-title: The bone marrow niche for haematopoietic stem cells
  publication-title: Nature
  doi: 10.1038/nature12984
– volume: 37
  start-page: S2
  issue: Suppl. 2
  year: 2010
  ident: 10.1016/j.molmed.2014.06.001_bib0565
  article-title: Examining the metastatic niche: targeting the microenvironment
  publication-title: Semin. Oncol.
  doi: 10.1053/j.seminoncol.2010.10.007
– volume: 20
  start-page: 1633
  year: 2009
  ident: 10.1016/j.molmed.2014.06.001_bib0035
  article-title: Excess mortality following hip fracture: a systematic epidemiological review
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-009-0920-3
– volume: 458
  start-page: 524
  year: 2009
  ident: 10.1016/j.molmed.2014.06.001_bib0190
  article-title: Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis
  publication-title: Nature
  doi: 10.1038/nature07713
– volume: 15
  start-page: 757
  year: 2009
  ident: 10.1016/j.molmed.2014.06.001_bib0095
  article-title: TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation
  publication-title: Nat. Med.
  doi: 10.1038/nm.1979
– volume: 123
  start-page: 666
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0145
  article-title: Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation
  publication-title: J. Clin. Invest.
– volume: 207
  start-page: 2793
  year: 2010
  ident: 10.1016/j.molmed.2014.06.001_bib0195
  article-title: Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20101474
– volume: 4
  start-page: 283
  year: 1989
  ident: 10.1016/j.molmed.2014.06.001_bib0370
  article-title: Skeletal disease in primary hyperparathyroidism
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.5650040302
– volume: 28
  start-page: 205
  year: 2006
  ident: 10.1016/j.molmed.2014.06.001_bib0430
  article-title: Osteoporosis in children with severe congenital neutropenia: bone mineral density and treatment with bisphosphonates
  publication-title: J. Pediatr. Hematol. Oncol.
  doi: 10.1097/01.mph.0000210409.48877.c3
– volume: 57
  start-page: 172
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0510
  article-title: Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly
  publication-title: Immunol. Res.
  doi: 10.1007/s12026-013-8455-2
– volume: 4
  start-page: 111
  year: 2006
  ident: 10.1016/j.molmed.2014.06.001_bib0210
  article-title: Bidirectional ephrinB2–EphB4 signaling controls bone homeostasis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.05.012
– volume: 25
  start-page: 777
  year: 2014
  ident: 10.1016/j.molmed.2014.06.001_bib0360
  article-title: Rapid biochemical response to denosumab in fibrous dysplasia of bone: report of two cases
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-013-2585-1
– volume: 49
  start-page: 34
  year: 2011
  ident: 10.1016/j.molmed.2014.06.001_bib0225
  article-title: Biochemical and molecular mechanisms of action of bisphosphonates
  publication-title: Bone
  doi: 10.1016/j.bone.2010.11.008
– volume: 208
  start-page: 2175
  year: 2011
  ident: 10.1016/j.molmed.2014.06.001_bib0405
  article-title: Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20101890
– volume: 94
  start-page: 1908
  year: 1997
  ident: 10.1016/j.molmed.2014.06.001_bib0415
  article-title: Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.94.5.1908
– volume: 382
  start-page: 50
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0250
  article-title: Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)60856-9
– volume: 349
  start-page: 1207
  year: 2003
  ident: 10.1016/j.molmed.2014.06.001_bib0235
  article-title: The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa031975
– volume: 19
  start-page: 704
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0105
  article-title: Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis
  publication-title: Nat. Med.
  doi: 10.1038/nm.3143
– volume: 32
  start-page: 31
  year: 2011
  ident: 10.1016/j.molmed.2014.06.001_bib0085
  article-title: Osteoclast activity and subtypes as a function of physiology and pathology – implications for future treatments of osteoporosis
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2010-0006
– volume: 16
  start-page: 21
  year: 2011
  ident: 10.1016/j.molmed.2014.06.001_bib0295
  article-title: Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals
  publication-title: Front. Biosci.
  doi: 10.2741/3673
– volume: 2
  start-page: 449
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0010
  article-title: Mechanisms of osteoclast-dependent bone formation
  publication-title: Bonekey Rep.
  doi: 10.1038/bonekey.2013.183
– volume: 44
  start-page: 199
  year: 2009
  ident: 10.1016/j.molmed.2014.06.001_bib0135
  article-title: Bone density, strength, and formation in adult cathepsin K−/− mice
  publication-title: Bone
  doi: 10.1016/j.bone.2008.08.130
– volume: 23
  start-page: 380
  year: 2008
  ident: 10.1016/j.molmed.2014.06.001_bib0600
  article-title: A new heterozygous mutation (R714C) of the osteopetrosis gene, pleckstrin homolog domain containing family M (with run domain) member 1 (PLEKHM1), impairs vesicular acidification and increases TRACP secretion in osteoclasts
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.071107
– year: 2014
  ident: 10.1016/j.molmed.2014.06.001_bib0175
  article-title: Osteoclast-derived complement component 3a stimulates osteoblast differentiation
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.2187
– volume: 27
  start-page: 524
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0275
  article-title: Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.1477
– volume: 21
  start-page: 67
  year: 2006
  ident: 10.1016/j.molmed.2014.06.001_bib0495
  article-title: Identification of multiple osteoclast precursor populations in murine bone marrow
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/JBMR.051007
– volume: 17
  start-page: 319
  year: 2010
  ident: 10.1016/j.molmed.2014.06.001_bib0420
  article-title: Update on clinical experience with AMD3100, an SDF-1/CXCL12–CXCR4 inhibitor, in mobilization of hematopoietic stem and progenitor cells
  publication-title: Curr. Opin. Hematol.
  doi: 10.1097/MOH.0b013e328338b7d5
– volume: 156
  start-page: 1516
  year: 1982
  ident: 10.1016/j.molmed.2014.06.001_bib0470
  article-title: Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.156.5.1516
– volume: 93
  start-page: 7644
  year: 1996
  ident: 10.1016/j.molmed.2014.06.001_bib0640
  article-title: Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.93.15.7644
– volume: 94
  start-page: 384
  year: 2014
  ident: 10.1016/j.molmed.2014.06.001_bib0350
  article-title: Clinical and radiological observations in a case series of 26 patients with fibrous dysplasia
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/s00223-013-9829-0
– volume: 73
  start-page: 672
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0525
  article-title: Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-2202
– year: 1873
  ident: 10.1016/j.molmed.2014.06.001_bib0060
– volume: 25
  start-page: 205
  year: 2014
  ident: 10.1016/j.molmed.2014.06.001_bib0490
  article-title: RANKL/RANK – from bone physiology to breast cancer
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2014.01.002
– volume: 46
  start-page: 1601
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0460
  article-title: The development and characterization of an ELISA specifically detecting the active form of cathepsin K
  publication-title: Clin. Biochem.
  doi: 10.1016/j.clinbiochem.2013.04.012
– volume: 9
  start-page: 633
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0590
  article-title: Zoledronic acid to prevent and treat cancer metastasis: new prospects for an old drug
  publication-title: Future Oncol.
  doi: 10.2217/fon.13.28
– volume: 1
  start-page: 1484
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0520
  article-title: Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction
  publication-title: Oncoimmunology
  doi: 10.4161/onci.21990
– volume: 350
  start-page: 1655
  year: 2004
  ident: 10.1016/j.molmed.2014.06.001_bib0570
  article-title: Mechanisms of bone metastasis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra030831
– year: 2014
  ident: 10.1016/j.molmed.2014.06.001_bib0260
  article-title: Inhibition of cathepsin K increases modeling-based bone formation, and improves cortical dimension and strength in adult ovariectomized monkeys
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.2211
– volume: 33
  start-page: 434
  year: 2003
  ident: 10.1016/j.molmed.2014.06.001_bib0340
  article-title: Osteoclastogenesis in fibrous dysplasia of bone: in situ and in vitro analysis of IL-6 expression
  publication-title: Bone
  doi: 10.1016/S8756-3282(03)00064-4
– volume: 370
  start-page: 412
  year: 2014
  ident: 10.1016/j.molmed.2014.06.001_bib0285
  article-title: Romosozumab in postmenopausal women with low bone mineral density
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1305224
– volume: 288
  start-page: 5562
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0215
  article-title: Stimulation of bone formation in cortical bone of mice treated with a receptor activator of nuclear factor-kappaB ligand (RANKL)-binding peptide that possesses osteoclastogenesis inhibitory activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.426080
– volume: 108
  start-page: 20101
  year: 2011
  ident: 10.1016/j.molmed.2014.06.001_bib0335
  article-title: Wnt/beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1114656108
– volume: 118
  start-page: 3775
  year: 2008
  ident: 10.1016/j.molmed.2014.06.001_bib0505
  article-title: NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI35711
– volume: 93
  start-page: 247
  year: 1994
  ident: 10.1016/j.molmed.2014.06.001_bib0115
  article-title: Autosomal recessive osteopetrosis: variability of findings at diagnosis and during the natural course
  publication-title: Pediatrics
  doi: 10.1542/peds.93.2.247
– volume: 64
  start-page: 188
  year: 2009
  ident: 10.1016/j.molmed.2014.06.001_bib0465
  article-title: Serum cathepsin K as a marker of bone metabolism in postmenopausal women treated with alendronate
  publication-title: Maturitas
  doi: 10.1016/j.maturitas.2009.09.011
– volume: 3
  start-page: 142
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0475
  article-title: RANKL–RANK interaction in immune regulatory systems
  publication-title: World J. Orthop.
  doi: 10.5312/wjo.v3.i9.142
– volume: 288
  start-page: 29809
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0265
  article-title: Resorption controls bone anabolism driven by parathyroid hormone (PTH) receptor signaling in osteocytes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.485938
– volume: 26
  start-page: 2804
  year: 2011
  ident: 10.1016/j.molmed.2014.06.001_bib0290
  article-title: Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.474
– volume: 18
  start-page: 1095
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0100
  article-title: Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells
  publication-title: Nat. Med.
  doi: 10.1038/nm.2793
– volume: 36
  start-page: 688
  year: 2005
  ident: 10.1016/j.molmed.2014.06.001_bib0155
  article-title: Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice
  publication-title: Micron
  doi: 10.1016/j.micron.2005.06.008
– volume: 8
  start-page: e64539
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0320
  article-title: Fibrous dysplasia in a 120,000+ year old Neandertal from Krapina, Croatia
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0064539
– volume: 7
  start-page: e38378
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0645
  article-title: Hepatocyte growth factor increases osteopontin expression in human osteoblasts through PI3K, Akt, c-Src, and AP-1 signaling pathway
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0038378
– volume: 30
  start-page: 762
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0075
  article-title: Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling
  publication-title: Stem Cells
  doi: 10.1002/stem.1040
– volume: 228
  start-page: 1002
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0435
  article-title: A pivotal role of bone remodeling in granulocyte colony stimulating factor induced hematopoietic stem/progenitor cells mobilization
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.24246
– volume: 21
  start-page: 865
  year: 2006
  ident: 10.1016/j.molmed.2014.06.001_bib0140
  article-title: Mice lacking cathepsin K maintain bone remodeling but develop bone fragility despite high bone mass
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.060313
– volume: 11
  start-page: 303
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0255
  article-title: Basic research and clinical applications of bisphosphonates in bone disease: what have we learned over the last 40 years?
  publication-title: J. Transl. Med.
  doi: 10.1186/1479-5876-11-303
– volume: 6
  start-page: 235ra260
  year: 2014
  ident: 10.1016/j.molmed.2014.06.001_bib0555
  article-title: T cell costimulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan pathway
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3007764
– volume: 123
  start-page: 3420
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0455
  article-title: The nucleotide sugar UDP-glucose mobilizes long-term repopulating primitive hematopoietic cells
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI64060
– volume: 3
  start-page: e3537
  year: 2008
  ident: 10.1016/j.molmed.2014.06.001_bib0655
  article-title: Osteoclasts control osteoblast chemotaxis via PDGF-BB/PDGF receptor beta signaling
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0003537
– volume: 360
  start-page: 741
  year: 1992
  ident: 10.1016/j.molmed.2014.06.001_bib0160
  article-title: Bone and haematopoietic defects in mice lacking c-fos
  publication-title: Nature
  doi: 10.1038/360741a0
– volume: 226
  start-page: 982
  year: 2011
  ident: 10.1016/j.molmed.2014.06.001_bib0515
  article-title: T cell suppression by osteoclasts in vitro
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.22411
– volume: 57
  start-page: 68
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0620
  article-title: Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors
  publication-title: Bone
  doi: 10.1016/j.bone.2013.07.023
– volume: 11
  start-page: 401
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0020
  article-title: Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the development of denosumab
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3705
– volume: 27
  start-page: 2251
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0270
  article-title: Odanacatib in the treatment of postmenopausal women with low bone mineral density: five years of continued therapy in a phase 2 study
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.1695
– volume: 27
  start-page: 1462
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0355
  article-title: Denosumab treatment for fibrous dysplasia
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.1603
– volume: 18
  start-page: 1905
  year: 2003
  ident: 10.1016/j.molmed.2014.06.001_bib0610
  article-title: Tartrate-resistant acid phosphatase knockout mice
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2003.18.10.1905
– volume: 13
  start-page: 62
  year: 2002
  ident: 10.1016/j.molmed.2014.06.001_bib0660
  article-title: PDGF BB purified from osteoclasts acts as osteoblastogenesis inhibitory factor (OBIF)
  publication-title: J. Biomol. Tech.
– volume: 27
  start-page: 342
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0120
  article-title: RANK-dependent autosomal recessive osteopetrosis: characterization of five new cases with novel mutations
  publication-title: J. Bone Mineral Res.
  doi: 10.1002/jbmr.559
– volume: 182
  start-page: 5477
  year: 2009
  ident: 10.1016/j.molmed.2014.06.001_bib0540
  article-title: Cross-presentation by osteoclasts induces FoxP3 in CD8+ T cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0803897
– volume: 115
  start-page: 1449
  year: 2014
  ident: 10.1016/j.molmed.2014.06.001_bib0390
  article-title: Altered hematopoietic stem cell and osteoclast precursor frequency in cathepsin K null mice
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.24801
– volume: 116
  start-page: 210
  year: 2010
  ident: 10.1016/j.molmed.2014.06.001_bib0535
  article-title: Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells
  publication-title: Blood
  doi: 10.1182/blood-2009-11-255026
– volume: 10
  start-page: 462
  year: 2010
  ident: 10.1016/j.molmed.2014.06.001_bib0300
  article-title: Bisphosphonate treatment of aggressive primary, recurrent and metastatic giant cell tumour of bone
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-10-462
– volume: 121
  start-page: 2534
  year: 2011
  ident: 10.1016/j.molmed.2014.06.001_bib0040
  article-title: Osteoimmunology at the nexus of arthritis, osteoporosis, cancer, and infection
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI46262
– volume: 48
  start-page: 327
  year: 2009
  ident: 10.1016/j.molmed.2014.06.001_bib0220
  article-title: The National Osteoporosis Guideline Group's new guidelines: what is new?
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/ken454
– volume: 6
  start-page: 148
  year: 2012
  ident: 10.1016/j.molmed.2014.06.001_bib0200
  article-title: Bone cell interactions through Eph/ephrin: bone modeling, remodeling and associated diseases
  publication-title: Cell Adh. Migr.
  doi: 10.4161/cam.20888
– volume: 349
  start-page: 1216
  year: 2003
  ident: 10.1016/j.molmed.2014.06.001_bib0240
  article-title: The effects of parathyroid hormone, alendronate, or both in men with osteoporosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa035725
– volume: 19
  start-page: 358
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0485
  article-title: Blockade of receptor activator of nuclear factor-kappaB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus
  publication-title: Nat. Med.
  doi: 10.1038/nm.3084
– volume: 42
  start-page: 68
  year: 2008
  ident: 10.1016/j.molmed.2014.06.001_bib0305
  article-title: Bisphosphonates reduce local recurrence in extremity giant cell tumor of bone: a case–control study
  publication-title: Bone
  doi: 10.1016/j.bone.2007.08.038
– volume: 162
  start-page: 57
  year: 2003
  ident: 10.1016/j.molmed.2014.06.001_bib0365
  article-title: Genotype–phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)63798-4
– volume: 174
  start-page: 2160
  year: 2009
  ident: 10.1016/j.molmed.2014.06.001_bib0375
  article-title: Osteoprotegerin abrogated cortical porosity and bone marrow fibrosis in a mouse model of constitutive activation of the PTH/PTHrP receptor
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2009.081026
– volume: 17
  start-page: 1473
  year: 2011
  ident: 10.1016/j.molmed.2014.06.001_bib0595
  article-title: Suppression of bone formation by osteoclastic expression of semaphorin 4D
  publication-title: Nat. Med.
  doi: 10.1038/nm.2489
– volume: 285
  start-page: 28164
  year: 2010
  ident: 10.1016/j.molmed.2014.06.001_bib0230
  article-title: Are osteoclasts needed for the bone anabolic response to parathyroid hormone? A study of intermittent parathyroid hormone with denosumab or alendronate in knock-in mice expressing humanized RANKL
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.101964
– volume: 68
  start-page: 1
  year: 2011
  ident: 10.1016/j.molmed.2014.06.001_bib0330
  article-title: Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-010-0465-9
– volume: 23
  start-page: 2025
  year: 2008
  ident: 10.1016/j.molmed.2014.06.001_bib0615
  article-title: Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.080706
– volume: 98
  start-page: 1848
  year: 2013
  ident: 10.1016/j.molmed.2014.06.001_bib0400
  article-title: Osteoclasts are not crucial for hematopoietic stem cell maintenance in adult mice
  publication-title: Haematologica
  doi: 10.3324/haematol.2013.089466
– volume: 67
  start-page: 1603
  year: 2008
  ident: 10.1016/j.molmed.2014.06.001_bib0560
  article-title: CTLA-4 directly inhibits osteoclast formation
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/ard.2007.080713
– volume: 12
  start-page: 657
  year: 2006
  ident: 10.1016/j.molmed.2014.06.001_bib0450
  article-title: Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells
  publication-title: Nat. Med.
  doi: 10.1038/nm1417
– volume: 39
  start-page: 960
  year: 2007
  ident: 10.1016/j.molmed.2014.06.001_bib0050
  article-title: Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL
  publication-title: Nat. Genet.
  doi: 10.1038/ng2076
SSID ssj0015778
Score 2.572502
SecondaryResourceType review_article
Snippet •Osteoclasts modify the skeletal environment beyond their ability to resorb bone.•Bone-forming osteoblasts and their precursors are regulated by...
Highlights • Osteoclasts modify the skeletal environment beyond their ability to resorb bone. • Bone-forming osteoblasts and their precursors are regulated by...
As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone-forming osteoblasts, and...
As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone forming osteoblasts, and...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 449
SubjectTerms Animals
Bone and Bones - metabolism
Bone and Bones - pathology
Bone Remodeling
Bone Resorption - metabolism
Bone Resorption - pathology
Fibrous Dysplasia of Bone - metabolism
Fibrous Dysplasia of Bone - pathology
Giant Cell Tumor of Bone - metabolism
Giant Cell Tumor of Bone - pathology
Humans
osteoblast
osteoclast
Osteoclasts - cytology
Osteoclasts - metabolism
Osteoclasts - pathology
Osteogenesis
osteopetrosis
Osteopetrosis - metabolism
Osteopetrosis - pathology
osteoporosis
Osteoporosis - metabolism
Osteoporosis - pathology
Pathology
PTH
Title Osteoclasts: more than ‘bone eaters’
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1471491414000884
https://www.clinicalkey.es/playcontent/1-s2.0-S1471491414000884
https://dx.doi.org/10.1016/j.molmed.2014.06.001
https://www.ncbi.nlm.nih.gov/pubmed/25008556
https://www.proquest.com/docview/1562664104
https://pubmed.ncbi.nlm.nih.gov/PMC4119859
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hUKteKgpt2ZaiVOqhF7PrrH8SbgiBtq2gB4rEzYr_1K1KFnWXQy8Vj9G-Hk_CTJysWKCiqpSLE1t2JuNvZuLPY4B3hZcazW7Ooqs8EzzXzBayYD6KEFXQCJy0G_nwSI1OxMdTeboEe91eGKJVttifML1B6_ZOv5Vm_3w87h9zxFVRcoEhAhqygnKCCqFJy7d_zWkeXOoGjakyo9rd9rmG43VGtH_KF8rFdlqV-Jt5uut-3mZR3jBLB6vwtPUns9005GewFOo1eJROmPy5Bo8P27XzdXj_GT_oxKG3PJvuZMSvzei3eXZ1-dtO6pAhKKMreHX55zmcHOx_2Rux9pwE5qTmM6aiDhgmOO508HwYMcLyAq8oKlVGF4WvBsoXPqdwIqI5yiNGQWGgK62stHH4ApZr7GgDstxZXZQqBDl0AguWW6lFtDHPuR_IogfDTjzGtUnE6SyL76Zji30zSaiGhGoSaa4HbN7qPCXReKC-7CRvug2iCGkGUf6Bdvq-dmHazsup4Waam4G5ozs3Wy6o3z_0-bZTDYMzk5ZbqjpMLrAvdC2VEvg1evAyqcr87dHxJIKgwn4XlGhegbJ-Lz6px1-b7N-C87KQ5av_HvFreEKlxGLchOXZj4vwBj2rmd1qps4WrOx--DQ6ugbpQSPO
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6FolIuCNJXeG6lHri4iTd-7HJDFVWAphyaSr1Z65caRDdVkx56Qf0Z8Pf6Sxivd6OGgIqQ9rJrW_bOjr-ZWX8eA-xmlks0uynxprCE0VQSnfGMWM-cF04icIbdyMMjMThhn075aQv2m70wgVZZY3_E9Aqt6yfdWprdi_G4e0wRV1lOGYYIaMgy9gAeMpy-4RiDve9zngflsoLjUJuE6s3-uYrkdR54_yFhKGV7cVnib_Zp2f_8nUZ5xy4dPIUntUOZvI9jfgYtV7ZhNR4xed2GR8N68Xwd3n7BLzox6C7Ppu-SQLBNwn_z5Pbmh56ULkFURl_w9ubnBpwcfBjtD0h9UAIxXNIZEV46jBMMNdJZ2vcYYlmGl2eFyL3xzBY9YTObhnjCoz1KPYZBricLKTTXvr8JKyV2tA1JarTMcuEc7xuGN5pqLpnXPk2p7fGsA_1GPMrUWcTDYRbfVEMX-6qiUFUQqoqsuQ6QeauLmEXjnvq8kbxqdogipimE-XvayT-1c9N6Yk4VVdNU9dSS8txtuaB__9DnTqMaCqdmWG8pSje5wr7QtxSC4dfowFZUlfnbo-cZGIIC-11QonmFkPZ7saQcn1Xpvxmlecbz5_894jewNhgND9Xhx6PPL-BxKImUxpewMru8cq_QzZrp19U0-gVXOiVc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Osteoclasts%3A+more+than+%E2%80%98bone+eaters%E2%80%99&rft.jtitle=Trends+in+molecular+medicine&rft.au=Charles%2C+Julia+F.&rft.au=Aliprantis%2C+Antonios+O.&rft.date=2014-08-01&rft.pub=Elsevier+Ltd&rft.issn=1471-4914&rft.volume=20&rft.issue=8&rft.spage=449&rft.epage=459&rft_id=info:doi/10.1016%2Fj.molmed.2014.06.001&rft.externalDocID=S1471491414000884
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F14714914%2FS1471491414X00079%2Fcov150h.gif