Osteoclasts: more than ‘bone eaters’
•Osteoclasts modify the skeletal environment beyond their ability to resorb bone.•Bone-forming osteoblasts and their precursors are regulated by osteoclasts.•Cancer, hematopoietic, and immune cells are targets of osteoclast-derived factors.•Insight into the osteoclast may improve outcomes for patien...
Saved in:
Published in | Trends in molecular medicine Vol. 20; no. 8; pp. 449 - 459 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Osteoclasts modify the skeletal environment beyond their ability to resorb bone.•Bone-forming osteoblasts and their precursors are regulated by osteoclasts.•Cancer, hematopoietic, and immune cells are targets of osteoclast-derived factors.•Insight into the osteoclast may improve outcomes for patients with bone diseases.
As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone-forming osteoblasts, and hematopoietic and immune system cells, each influence osteoclast formation and function, but the reciprocal impact of osteoclasts on these cells is less well appreciated. We highlight here the functions that osteoclasts perform beyond bone resorption. First, we consider how osteoclast signals may contribute to bone formation by osteoblasts and to the pathology of bone lesions such as fibrous dysplasia and giant cell tumors. Second, we review the interaction of osteoclasts with the hematopoietic system, including the stem cell niche and adaptive immune cells. Connections between osteoclasts and other cells in the bone microenvironment are discussed within a clinically relevant framework. |
---|---|
AbstractList | As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone forming osteoblasts, and hematopoietic and immune system cells, each influence osteoclast formation and function, but the reciprocal impact of osteoclasts on these cells is less well appreciated. Here, we highlight functions osteoclasts perform beyond bone resorption. First, we consider how osteoclast signals may contribute to bone formation by osteoblasts and the pathology of bone lesions, such as fibrous dysplasia and giant cell tumors. Second, we review the interaction of osteoclasts with the hematopoietic system, including the stem cell niche and adaptive immune cells. Connections between osteoclasts and other cells in the bone microenvironment are discussed within a clinically relevant framework. •Osteoclasts modify the skeletal environment beyond their ability to resorb bone.•Bone-forming osteoblasts and their precursors are regulated by osteoclasts.•Cancer, hematopoietic, and immune cells are targets of osteoclast-derived factors.•Insight into the osteoclast may improve outcomes for patients with bone diseases. As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone-forming osteoblasts, and hematopoietic and immune system cells, each influence osteoclast formation and function, but the reciprocal impact of osteoclasts on these cells is less well appreciated. We highlight here the functions that osteoclasts perform beyond bone resorption. First, we consider how osteoclast signals may contribute to bone formation by osteoblasts and to the pathology of bone lesions such as fibrous dysplasia and giant cell tumors. Second, we review the interaction of osteoclasts with the hematopoietic system, including the stem cell niche and adaptive immune cells. Connections between osteoclasts and other cells in the bone microenvironment are discussed within a clinically relevant framework. Highlights • Osteoclasts modify the skeletal environment beyond their ability to resorb bone. • Bone-forming osteoblasts and their precursors are regulated by osteoclasts. • Cancer, hematopoietic, and immune cells are targets of osteoclast-derived factors. • Insight into the osteoclast may improve outcomes for patients with bone diseases. As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone-forming osteoblasts, and hematopoietic and immune system cells, each influence osteoclast formation and function, but the reciprocal impact of osteoclasts on these cells is less well appreciated. We highlight here the functions that osteoclasts perform beyond bone resorption. First, we consider how osteoclast signals may contribute to bone formation by osteoblasts and to the pathology of bone lesions such as fibrous dysplasia and giant cell tumors. Second, we review the interaction of osteoclasts with the hematopoietic system, including the stem cell niche and adaptive immune cells. Connections between osteoclasts and other cells in the bone microenvironment are discussed within a clinically relevant framework. As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone-forming osteoblasts, and hematopoietic and immune system cells, each influence osteoclast formation and function, but the reciprocal impact of osteoclasts on these cells is less well appreciated. We highlight here the functions that osteoclasts perform beyond bone resorption. First, we consider how osteoclast signals may contribute to bone formation by osteoblasts and to the pathology of bone lesions such as fibrous dysplasia and giant cell tumors. Second, we review the interaction of osteoclasts with the hematopoietic system, including the stem cell niche and adaptive immune cells. Connections between osteoclasts and other cells in the bone microenvironment are discussed within a clinically relevant framework.As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone-forming osteoblasts, and hematopoietic and immune system cells, each influence osteoclast formation and function, but the reciprocal impact of osteoclasts on these cells is less well appreciated. We highlight here the functions that osteoclasts perform beyond bone resorption. First, we consider how osteoclast signals may contribute to bone formation by osteoblasts and to the pathology of bone lesions such as fibrous dysplasia and giant cell tumors. Second, we review the interaction of osteoclasts with the hematopoietic system, including the stem cell niche and adaptive immune cells. Connections between osteoclasts and other cells in the bone microenvironment are discussed within a clinically relevant framework. |
Author | Aliprantis, Antonios O. Charles, Julia F. |
Author_xml | – sequence: 1 givenname: Julia F. surname: Charles fullname: Charles, Julia F. – sequence: 2 givenname: Antonios O. surname: Aliprantis fullname: Aliprantis, Antonios O. email: aaliprantis@partners.org |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25008556$$D View this record in MEDLINE/PubMed |
BookMark | eNqVUl1rFDEUDVKxn_9AZB_7smPuNMnMFBGk-AWFPmihb5ds5sZmnUlqki30rT9D_15_iRl2XVSQIgQSyLnn3HvO3Wc7Pnhi7DnwCjiol8tqDMNIfVVzEBVXFefwhO2BaGAuuu5qZ_sGscv2U1oWgGya9hnbrSXnrZRqjx1fpEzBDDrldDobQ6RZvtZ-9nD_fVH0ZqQzxfRw_-OQPbV6SHS0uQ_Y5bu3n88-zM8v3n88e3M-N7KBPFe2IWhrA6ahHk4scNGLcqzQqrPGil5z1bd9XUsA24qmtgCCeKMbtZALe3LAXq95b1aLMp0hn6Me8Ca6Ucc7DNrhnz_eXeOXcIsCoGtlVwiONwQxfFtRyji6ZGgYtKewSghS1UqJ0liBvvhdayvyy54CEGuAiSGlSHYLAY5TCrjEdQo4pYBcYTG5lJ3-VWZc1tmFqWM3PFa8MYCKy7eOIibjyBvqXSSTsQ_ufwnM4LwzevhKd5SWYRV9SRABU40cP01bMi0JCF7GbidbXv2b4HH9n-Qez-c |
CitedBy_id | crossref_primary_10_1073_pnas_2006093117 crossref_primary_10_1302_1863_2548_14_190155 crossref_primary_10_1016_j_cbpc_2015_08_007 crossref_primary_10_1016_j_jmps_2023_105525 crossref_primary_10_3389_fimmu_2019_01724 crossref_primary_10_1111_jop_13274 crossref_primary_10_1002_mco2_349 crossref_primary_10_3389_fimmu_2022_1058905 crossref_primary_10_1007_s00774_021_01212_7 crossref_primary_10_3390_biomedicines9060648 crossref_primary_10_1016_j_ejwf_2019_01_002 crossref_primary_10_3390_ijms252111788 crossref_primary_10_1016_j_bone_2016_02_020 crossref_primary_10_1016_j_bbrc_2018_02_035 crossref_primary_10_1155_2022_8769531 crossref_primary_10_32322_jhsm_776446 crossref_primary_10_3389_fphar_2020_621110 crossref_primary_10_1189_jlb_1A1215_543R crossref_primary_10_3390_nu11092111 crossref_primary_10_1016_j_mtla_2020_100645 crossref_primary_10_3892_ijmm_2018_3849 crossref_primary_10_1002_term_3270 crossref_primary_10_1016_j_mce_2019_110637 crossref_primary_10_3390_biomedicines12112451 crossref_primary_10_1016_j_mpdhp_2020_07_005 crossref_primary_10_1002_smll_202207195 crossref_primary_10_1016_j_mcp_2019_101479 crossref_primary_10_1093_bbb_zbad075 crossref_primary_10_3389_fendo_2022_969481 crossref_primary_10_1007_s00018_022_04298_y crossref_primary_10_1016_j_biopha_2024_116291 crossref_primary_10_1016_j_jbc_2022_102841 crossref_primary_10_1098_rsob_160230 crossref_primary_10_1016_j_intimp_2022_109370 crossref_primary_10_1016_j_biopha_2023_115697 crossref_primary_10_3389_fcell_2020_586031 crossref_primary_10_35366_117681 crossref_primary_10_3389_fendo_2023_1101758 crossref_primary_10_1021_acsbiomaterials_9b00270 crossref_primary_10_3389_fimmu_2014_00514 crossref_primary_10_1002_2211_5463_13269 crossref_primary_10_1007_s12272_016_0790_0 crossref_primary_10_1016_j_jare_2023_01_003 crossref_primary_10_1002_adhm_202302807 crossref_primary_10_1248_bpb_b16_00117 crossref_primary_10_4049_jimmunol_1600424 crossref_primary_10_1007_s00210_024_03714_3 crossref_primary_10_3389_fphys_2018_00504 crossref_primary_10_1016_j_cellimm_2018_02_005 crossref_primary_10_1155_2019_8029863 crossref_primary_10_1007_s10753_020_01207_y crossref_primary_10_1016_j_cellsig_2021_110060 crossref_primary_10_1016_j_apsb_2022_09_020 crossref_primary_10_1039_C9RA07240C crossref_primary_10_1111_nyas_14293 crossref_primary_10_3389_fcell_2019_00268 crossref_primary_10_1016_j_bone_2019_06_002 crossref_primary_10_1016_j_intimp_2020_106978 crossref_primary_10_3389_fendo_2022_996776 crossref_primary_10_4078_jrd_2016_23_3_141 crossref_primary_10_1155_2015_372156 crossref_primary_10_1016_j_pharmthera_2020_107473 crossref_primary_10_3389_fcell_2020_00870 crossref_primary_10_3389_fphar_2022_1062999 crossref_primary_10_1155_2020_4791786 crossref_primary_10_4078_jrd_2016_23_3_148 crossref_primary_10_1186_s12916_025_03945_y crossref_primary_10_2147_JIR_S413578 crossref_primary_10_1055_s_0041_1732851 crossref_primary_10_3389_fcell_2020_00076 crossref_primary_10_1111_cpr_12613 crossref_primary_10_1002_jcp_31431 crossref_primary_10_1016_j_ijscr_2024_110206 crossref_primary_10_3390_ijms21041347 crossref_primary_10_1186_s13287_021_02228_6 crossref_primary_10_1016_j_bone_2020_115651 crossref_primary_10_1097_MD_0000000000029963 crossref_primary_10_1007_s00421_016_3383_1 crossref_primary_10_1016_j_tig_2016_10_001 crossref_primary_10_1002_adhm_202402117 crossref_primary_10_1016_j_devcel_2015_01_018 crossref_primary_10_1016_j_jcms_2017_04_012 crossref_primary_10_1016_j_joms_2019_06_172 crossref_primary_10_1016_j_tcb_2017_11_001 crossref_primary_10_3390_biomedicines13030628 crossref_primary_10_1111_jai_13660 crossref_primary_10_1007_s10495_020_01599_0 crossref_primary_10_1016_j_intimp_2020_106847 crossref_primary_10_1021_acsbiomaterials_1c00920 crossref_primary_10_1172_jci_insight_146728 crossref_primary_10_1002_jcb_26646 crossref_primary_10_1016_j_biomaterials_2023_122367 crossref_primary_10_3389_fnut_2023_1178573 crossref_primary_10_3390_nu11061394 crossref_primary_10_1016_j_biomaterials_2024_122800 crossref_primary_10_1186_s40729_017_0074_6 crossref_primary_10_1002_jbmr_3172 crossref_primary_10_1016_j_bcp_2021_114846 crossref_primary_10_3390_ijms21020538 crossref_primary_10_1016_j_bone_2019_06_023 crossref_primary_10_1016_j_mehy_2019_109438 crossref_primary_10_1016_j_taap_2016_06_021 crossref_primary_10_1016_j_yexcr_2015_07_018 crossref_primary_10_1021_acsami_2c21933 crossref_primary_10_1021_acsomega_1c05305 crossref_primary_10_1002_jbmr_4015 crossref_primary_10_1016_j_vesic_2024_100042 crossref_primary_10_1186_s12967_024_05191_x crossref_primary_10_3389_fendo_2022_893678 crossref_primary_10_1111_cpr_13011 crossref_primary_10_1016_j_clim_2015_03_019 crossref_primary_10_1177_0284185117732098 crossref_primary_10_3892_mmr_2017_7625 crossref_primary_10_1016_j_bone_2020_115757 crossref_primary_10_1016_j_bioactmat_2022_04_015 crossref_primary_10_3390_ijms23031500 crossref_primary_10_3389_fonc_2020_580605 crossref_primary_10_1002_jcp_30682 crossref_primary_10_2217_nnm_16_20 crossref_primary_10_1073_pnas_1607235113 crossref_primary_10_1111_jcmm_16228 crossref_primary_10_3390_molecules23071517 crossref_primary_10_1155_2022_4913534 crossref_primary_10_1002_jbmr_3871 crossref_primary_10_1007_s40778_017_0106_4 crossref_primary_10_1186_s12951_018_0403_9 crossref_primary_10_3390_biom14010052 crossref_primary_10_35366_93104 crossref_primary_10_1016_j_heliyon_2023_e17841 crossref_primary_10_1016_j_jcms_2017_08_011 crossref_primary_10_1002_cbf_3734 crossref_primary_10_1016_j_micpath_2025_107416 crossref_primary_10_1016_j_yexcr_2016_11_018 crossref_primary_10_3390_ma14164457 crossref_primary_10_1039_C9NR02791B crossref_primary_10_1002_bkcs_11992 crossref_primary_10_1016_j_jep_2023_117285 crossref_primary_10_1073_pnas_1806019115 crossref_primary_10_1111_1756_185X_13958 crossref_primary_10_1016_j_biopha_2020_110010 crossref_primary_10_14406_acu_2021_016 crossref_primary_10_1055_s_0042_1748529 crossref_primary_10_3892_ijmm_2018_3908 crossref_primary_10_1038_boneres_2014_33 crossref_primary_10_1371_journal_pone_0142211 crossref_primary_10_1089_ten_tec_2021_0122 crossref_primary_10_1016_j_intimp_2021_108297 crossref_primary_10_1016_j_intimp_2021_108179 crossref_primary_10_1038_s41574_018_0076_3 crossref_primary_10_1038_s41374_021_00633_2 crossref_primary_10_7554_eLife_79966 crossref_primary_10_1155_2020_8861347 crossref_primary_10_1007_s13659_023_00405_z crossref_primary_10_1088_1758_5090_aa64ec crossref_primary_10_1590_1414_431x20209798 crossref_primary_10_1021_acs_biomac_9b01348 crossref_primary_10_1016_j_biopha_2020_110341 crossref_primary_10_1098_rsos_190360 crossref_primary_10_3390_ijms21030800 crossref_primary_10_3892_etm_2018_6772 crossref_primary_10_1038_s41598_018_37091_8 crossref_primary_10_1016_j_biomaterials_2019_119269 crossref_primary_10_1016_j_msec_2018_09_011 crossref_primary_10_1039_C7NR05913B crossref_primary_10_1002_smll_202403907 crossref_primary_10_1016_j_actaastro_2018_08_044 crossref_primary_10_3390_toxins17030141 crossref_primary_10_1002_jcp_27385 crossref_primary_10_1007_s11033_022_08190_7 crossref_primary_10_1182_blood_2016_03_707547 crossref_primary_10_3389_fbioe_2020_00864 crossref_primary_10_3389_fonc_2023_1073793 crossref_primary_10_1142_S2737416523500072 crossref_primary_10_1186_s13018_024_04610_5 crossref_primary_10_1186_s12951_020_00692_5 crossref_primary_10_1002_jcp_25638 crossref_primary_10_1186_s13062_024_00581_z crossref_primary_10_1002_JLB_1MA0121_001R crossref_primary_10_1089_ten_teb_2023_0065 crossref_primary_10_1111_prd_12610 crossref_primary_10_3390_ijms20061467 crossref_primary_10_5507_bp_2019_032 crossref_primary_10_1177_22808000241266487 crossref_primary_10_1007_s10928_020_09699_9 crossref_primary_10_1111_cpr_12997 crossref_primary_10_1016_j_neuint_2024_105835 crossref_primary_10_1016_j_bone_2022_116483 crossref_primary_10_3390_ma11101993 crossref_primary_10_1186_s13040_025_00427_y crossref_primary_10_3390_ijms19103197 crossref_primary_10_1016_j_heliyon_2024_e31314 crossref_primary_10_1016_j_bone_2020_115628 crossref_primary_10_1016_j_bonr_2019_100207 crossref_primary_10_3390_medicina58040466 crossref_primary_10_1111_jop_12801 crossref_primary_10_1080_02726351_2018_1455784 crossref_primary_10_3390_ijms252312842 crossref_primary_10_4196_kjpp_2019_23_5_411 crossref_primary_10_3390_ma14175010 crossref_primary_10_1155_2019_9395146 crossref_primary_10_3390_cells9092073 crossref_primary_10_1016_j_intimp_2023_109820 crossref_primary_10_2139_ssrn_4071617 crossref_primary_10_1007_s11914_017_0397_5 crossref_primary_10_1007_s10439_021_02752_9 crossref_primary_10_1016_j_mce_2017_11_005 crossref_primary_10_1111_jcmm_15622 crossref_primary_10_1177_09731296241228904 crossref_primary_10_1002_bem_22070 crossref_primary_10_1515_zkri_2017_2079 crossref_primary_10_1038_s41467_023_36810_8 crossref_primary_10_1016_j_neuropharm_2023_109641 crossref_primary_10_3389_fphar_2022_1007839 crossref_primary_10_1002_jbmr_4756 crossref_primary_10_1016_j_joca_2021_09_006 crossref_primary_10_3390_ma15238475 crossref_primary_10_1016_j_bone_2022_116500 crossref_primary_10_1016_j_biomaterials_2018_06_035 crossref_primary_10_2174_1389450119666180626120852 crossref_primary_10_1016_j_ajpath_2016_06_013 crossref_primary_10_1016_j_msard_2020_102190 crossref_primary_10_3389_fphar_2018_00210 crossref_primary_10_1016_S1875_5364_25_60810_7 crossref_primary_10_1016_j_biopha_2023_114347 crossref_primary_10_3390_ijms23020675 crossref_primary_10_1111_jcmm_18278 crossref_primary_10_1089_cell_2019_0098 crossref_primary_10_1016_j_actbio_2019_12_022 crossref_primary_10_1155_2022_4122253 crossref_primary_10_1103_PhysRevLett_127_146001 crossref_primary_10_4155_fsoa_2017_0055 crossref_primary_10_1002_jcp_25389 crossref_primary_10_1007_s00223_016_0111_0 crossref_primary_10_1016_j_ijscr_2016_02_028 crossref_primary_10_3389_fmicb_2021_812466 crossref_primary_10_20960_RevOsteoporosMetabMiner_00005 crossref_primary_10_1016_j_jff_2019_103697 crossref_primary_10_3389_fimmu_2018_01417 crossref_primary_10_1016_j_intimp_2024_112151 crossref_primary_10_1073_pnas_2020100118 crossref_primary_10_1016_j_isci_2020_101989 crossref_primary_10_1038_s41598_018_38471_w crossref_primary_10_1016_j_bbamcr_2015_08_015 crossref_primary_10_1186_s12974_020_01740_5 crossref_primary_10_1111_jcmm_15560 crossref_primary_10_1007_s10914_018_9438_9 crossref_primary_10_1242_dmm_019091 crossref_primary_10_1210_endrev_bnad025 crossref_primary_10_1016_j_bone_2022_116603 crossref_primary_10_1039_C9TB01204D crossref_primary_10_3390_ijms23169444 crossref_primary_10_1007_s11357_025_01584_y crossref_primary_10_1177_1759720X211006966 crossref_primary_10_1016_j_imbio_2018_07_023 crossref_primary_10_3390_ijms221910642 crossref_primary_10_1186_s13287_019_1500_x crossref_primary_10_1515_hsz_2021_0290 crossref_primary_10_1111_jcmm_17399 crossref_primary_10_1007_s10616_016_0009_8 crossref_primary_10_1016_j_biochi_2018_05_018 crossref_primary_10_1007_s40610_018_0094_x crossref_primary_10_1016_j_mtbio_2021_100202 crossref_primary_10_1016_j_trecan_2018_12_004 crossref_primary_10_1016_j_actbio_2025_02_007 crossref_primary_10_1111_cpr_12789 crossref_primary_10_1111_jre_13154 crossref_primary_10_1172_JCI143764 crossref_primary_10_1039_C6NR00843G crossref_primary_10_3389_fcell_2022_941542 crossref_primary_10_1155_2015_421746 crossref_primary_10_1007_s11914_017_0358_z crossref_primary_10_1186_s13619_024_00205_x crossref_primary_10_1016_j_lfs_2020_117636 crossref_primary_10_3390_ijms232315146 crossref_primary_10_1016_j_mehy_2017_09_028 crossref_primary_10_1002_jcp_25134 crossref_primary_10_1016_j_intimp_2017_09_018 crossref_primary_10_1177_0194599816688647 crossref_primary_10_15406_jcpcr_2017_07_00234 crossref_primary_10_1101_cshperspect_a031237 crossref_primary_10_3389_fendo_2020_581878 |
Cites_doi | 10.1084/jem.20110994 10.5858/arpa.2012.0013-RS 10.1002/jbmr.238 10.1359/jbmr.070109 10.1016/j.cytogfr.2009.10.020 10.1371/journal.pone.0003174 10.1182/blood.V92.9.3465 10.1073/pnas.1120735109 10.1371/journal.pone.0038199 10.1016/j.bbadis.2009.05.004 10.1002/jcb.24537 10.1016/j.bone.2012.06.015 10.1038/nm.3074 10.1038/nrc867 10.1016/j.bone.2013.05.024 10.1371/journal.pone.0048871 10.1038/nrclinonc.2011.197 10.1182/blood-2010-05-282855 10.1038/nm.1943 10.1016/j.bone.2008.05.010 10.1172/JCI118773 10.3816/SCT.2006.n.020 10.1172/JCI69493 10.1177/0022034513500306 10.1371/journal.pone.0012290 10.1359/JBMR.040514 10.1007/s00439-008-0583-8 10.1038/ni.2352 10.1074/jbc.M807598200 10.1038/bonekey.2013.215 10.1038/sj.emboj.7601430 10.1073/pnas.0805133106 10.1016/S1470-2045(10)70010-3 10.1083/jcb.151.2.311 10.1359/jbmr.2000.15.1.103 10.1002/jcb.22406 10.1038/nature01658 10.1136/jmg.2005.036673 10.1172/JCI60920 10.1158/1078-0432.CCR-12-0578 10.1038/nrendo.2013.137 10.1038/nature12984 10.1053/j.seminoncol.2010.10.007 10.1007/s00198-009-0920-3 10.1038/nature07713 10.1038/nm.1979 10.1084/jem.20101474 10.1002/jbmr.5650040302 10.1097/01.mph.0000210409.48877.c3 10.1007/s12026-013-8455-2 10.1016/j.cmet.2006.05.012 10.1007/s00198-013-2585-1 10.1016/j.bone.2010.11.008 10.1084/jem.20101890 10.1073/pnas.94.5.1908 10.1016/S0140-6736(13)60856-9 10.1056/NEJMoa031975 10.1038/nm.3143 10.1210/er.2010-0006 10.2741/3673 10.1038/bonekey.2013.183 10.1016/j.bone.2008.08.130 10.1359/jbmr.071107 10.1002/jbmr.2187 10.1002/jbmr.1477 10.1359/JBMR.051007 10.1097/MOH.0b013e328338b7d5 10.1084/jem.156.5.1516 10.1073/pnas.93.15.7644 10.1007/s00223-013-9829-0 10.1158/0008-5472.CAN-12-2202 10.1016/j.cytogfr.2014.01.002 10.1016/j.clinbiochem.2013.04.012 10.2217/fon.13.28 10.4161/onci.21990 10.1056/NEJMra030831 10.1002/jbmr.2211 10.1016/S8756-3282(03)00064-4 10.1056/NEJMoa1305224 10.1074/jbc.M112.426080 10.1073/pnas.1114656108 10.1172/JCI35711 10.1542/peds.93.2.247 10.1016/j.maturitas.2009.09.011 10.5312/wjo.v3.i9.142 10.1074/jbc.M113.485938 10.1002/jbmr.474 10.1038/nm.2793 10.1016/j.micron.2005.06.008 10.1371/journal.pone.0064539 10.1371/journal.pone.0038378 10.1002/stem.1040 10.1002/jcp.24246 10.1359/jbmr.060313 10.1186/1479-5876-11-303 10.1126/scitranslmed.3007764 10.1172/JCI64060 10.1371/journal.pone.0003537 10.1038/360741a0 10.1002/jcp.22411 10.1016/j.bone.2013.07.023 10.1038/nrd3705 10.1002/jbmr.1695 10.1002/jbmr.1603 10.1359/jbmr.2003.18.10.1905 10.1002/jbmr.559 10.4049/jimmunol.0803897 10.1002/jcb.24801 10.1182/blood-2009-11-255026 10.1186/1471-2407-10-462 10.1172/JCI46262 10.1093/rheumatology/ken454 10.4161/cam.20888 10.1056/NEJMoa035725 10.1038/nm.3084 10.1016/j.bone.2007.08.038 10.1016/S0002-9440(10)63798-4 10.2353/ajpath.2009.081026 10.1038/nm.2489 10.1074/jbc.M110.101964 10.1007/s00018-010-0465-9 10.1359/jbmr.080706 10.3324/haematol.2013.089466 10.1136/ard.2007.080713 10.1038/nm1417 10.1038/ng2076 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd Elsevier Ltd Copyright © 2014 Elsevier Ltd. All rights reserved. 2014 Elsevier Ltd. All rights reserved. 2014 |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. – notice: 2014 Elsevier Ltd. All rights reserved. 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.molmed.2014.06.001 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1471-499X |
EndPage | 459 |
ExternalDocumentID | PMC4119859 25008556 10_1016_j_molmed_2014_06_001 S1471491414000884 1_s2_0_S1471491414000884 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: K08 AR054859 – fundername: NIAMS NIH HHS grantid: K08 AR062590 – fundername: NIA NIH HHS grantid: R01 AG046257 – fundername: NIAMS NIH HHS grantid: R01 AR060363 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABGSF ABJNI ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFS ACIEU ACIWK ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W K-O KOM L7B M41 MO0 N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSH SSZ T5K Z5R ~G- AACTN AEHWI AFCTW AFKWA AJOXV AMFUW RCE RIG SSU AAIAV ABLVK ABYKQ AJBFU DOVZS EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c571t-6f7e182c1c7ed13f104d44d4f4a69fcf4da06d8d22511f8472f114e07a76b5bf3 |
IEDL.DBID | .~1 |
ISSN | 1471-4914 1471-499X |
IngestDate | Thu Aug 21 14:07:34 EDT 2025 Mon Jul 21 11:23:35 EDT 2025 Mon Jul 21 06:02:46 EDT 2025 Tue Jul 01 04:26:44 EDT 2025 Thu Apr 24 22:57:45 EDT 2025 Fri Feb 23 02:23:45 EST 2024 Sun Feb 23 10:18:44 EST 2025 Tue Aug 26 16:33:15 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | bone remodeling osteopetrosis osteoblast osteoclast osteoporosis PTH |
Language | English |
License | Copyright © 2014 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c571t-6f7e182c1c7ed13f104d44d4f4a69fcf4da06d8d22511f8472f114e07a76b5bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/j.molmed.2014.06.001 |
PMID | 25008556 |
PQID | 1562664104 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4119859 proquest_miscellaneous_1562664104 pubmed_primary_25008556 crossref_primary_10_1016_j_molmed_2014_06_001 crossref_citationtrail_10_1016_j_molmed_2014_06_001 elsevier_sciencedirect_doi_10_1016_j_molmed_2014_06_001 elsevier_clinicalkeyesjournals_1_s2_0_S1471491414000884 elsevier_clinicalkey_doi_10_1016_j_molmed_2014_06_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Trends in molecular medicine |
PublicationTitleAlternate | Trends Mol Med |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Rogers (bib0225) 2011; 49 Langdahl (bib0270) 2012; 27 Buchwald (bib0545) 2012; 7 Yamane (bib0280) 2009; 44 Ishii (bib0190) 2009; 458 Boyce (bib0355) 2012; 27 Sims, Martin (bib0005) 2014; 3 Guihard (bib0075) 2012; 30 Del Fattore (bib0125) 2006; 43 Takahashi (bib0440) 1996; 74 Pangrazio (bib0120) 2012; 27 Kanaya (bib0480) 2012; 13 Vukicevic, Grgurevic (bib0630) 2009; 20 Del Fattore (bib0600) 2008; 23 Jones (bib0040) 2011; 121 Kimura (bib0165) 2008; 3 Mundy (bib0575) 2002; 2 Pusic, DiPersio (bib0420) 2010; 17 Kollet (bib0450) 2006; 12 Marzia (bib0130) 2000; 151 Bozec (bib0555) 2014; 6 Black (bib0235) 2003; 349 Danilin (bib0520) 2012; 1 Henriksen (bib0085) 2011; 32 US Department of Health and Human Services (bib0030) 2004 Pennypacker (bib0260) 2014 Jacquin (bib0495) 2006; 21 Pederson (bib0185) 2008; 105 Yamamoto (bib0345) 1996; 98 Tawfeek (bib0080) 2010; 5 Serafini (bib0510) 2013; 57 Pierroz (bib0230) 2010; 285 Kiechl (bib0485) 2013; 19 Negishi-Koga (bib0595) 2011; 17 Furuya (bib0215) 2013; 288 Takeshita (bib0170) 2013; 123 Gerritsen (bib0115) 1994; 93 Regard (bib0335) 2011; 108 Monge (bib0320) 2013; 8 Xian (bib0100) 2012; 18 Ota (bib0620) 2013; 57 Mansour (bib0385) 2012; 209 Boyce (bib0025) 2013; 92 Li (bib0535) 2010; 116 Ryu (bib0180) 2006; 25 Lacey (bib0020) 2012; 11 Jacome-Galarza (bib0390) 2014; 115 Sigl, Penninger (bib0490) 2014; 25 Karsdal (bib0110) 2007; 22 Lymperi (bib0395) 2011; 117 Bedi (bib0070) 2012; 109 Kubota (bib0660) 2002; 13 Dai (bib0150) 2004; 19 Boyle (bib0015) 2003; 423 Segovia-Silvestre (bib0045) 2009; 124 Kook (bib0455) 2013; 123 Lotinun (bib0145) 2013; 123 Thomas (bib0310) 2010; 11 Balke (bib0300) 2010; 10 Borzutzky (bib0430) 2006; 28 Bukhari (bib0220) 2009; 48 Akiyama (bib0475) 2012; 3 Young, Coleman (bib0590) 2013; 9 Takamatsu (bib0445) 1998; 92 Kolliker (bib0060) 1873 Aliprantis (bib0505) 2008; 118 Brown, Coleman (bib0585) 2012; 9 Kiesel (bib0540) 2009; 182 Sobacchi (bib0050) 2007; 39 Baron, Kneissel (bib0065) 2013; 19 Kreja (bib0650) 2010; 109 Riminucci (bib0340) 2003; 33 Wiktor-Jedrzejczak (bib0470) 1982; 156 Korpal (bib0580) 2009; 15 Sun (bib0460) 2013; 46 Grassi (bib0515) 2011; 226 Teti (bib0010) 2013; 2 McClung (bib0285) 2014; 370 Silverberg (bib0370) 1989; 4 Finkelstein (bib0240) 2003; 349 Dale (bib0425) 2006; 3 Matsuo, Otaki (bib0200) 2012; 6 Axmann (bib0560) 2008; 67 Guise (bib0565) 2010; 37 Ohishi (bib0375) 2009; 174 Lapid (bib0410) 2008 Li (bib0435) 2013; 228 Sobacchi (bib0055) 2013; 9 Pennypacker (bib0135) 2009; 44 Ishii (bib0195) 2010; 207 Zhen (bib0105) 2013; 19 Everts (bib0090) 2009; 1792 Cosman (bib0245) 2011; 26 Sakagami (bib0155) 2005; 36 Vilardaga (bib0330) 2011; 68 Miyamoto (bib0405) 2011; 208 Walker (bib0615) 2008; 23 Kim (bib0625) 2012; 51 Tse (bib0305) 2008; 42 Chen (bib0645) 2012; 7 Branstetter (bib0315) 2012; 18 Hayman, Cox (bib0610) 2003; 18 Abrahamsen (bib0035) 2009; 20 Takahashi (bib0295) 2011; 16 Buchwald (bib0550) 2013; 56 Morrison (bib0415) 1997; 94 Sanchez-Fernandez (bib0655) 2008; 3 Riddle, Bui (bib0325) 2013; 137 Matsuoka (bib0175) 2014 Zhao (bib0210) 2006; 4 Cusick (bib0275) 2012; 27 Rhee (bib0265) 2013; 288 Li (bib0140) 2006; 21 Charles (bib0500) 2012; 122 Grano (bib0640) 1996; 93 Morrison, Scadden (bib0380) 2014; 505 Thomsen, Rejnmark (bib0350) 2014; 94 Wang (bib0160) 1992; 360 Zhuang (bib0530) 2012; 7 Sawant (bib0525) 2013; 73 van Lierop (bib0290) 2011; 26 Angel (bib0605) 2000; 15 Flores (bib0400) 2013; 98 Roodman (bib0570) 2004; 350 Tsai (bib0250) 2013; 382 Ota (bib0635) 2013; 114 Tang (bib0095) 2009; 15 Irie (bib0205) 2009; 284 Munoz-Torres (bib0465) 2009; 64 Taranta (bib0365) 2003; 162 Ganda, Seibel (bib0360) 2014; 25 Xu (bib0255) 2013; 11 Wiktor-Jedrzejczak (10.1016/j.molmed.2014.06.001_bib0470) 1982; 156 Danilin (10.1016/j.molmed.2014.06.001_bib0520) 2012; 1 Lapid (10.1016/j.molmed.2014.06.001_bib0410) 2008 Buchwald (10.1016/j.molmed.2014.06.001_bib0545) 2012; 7 Finkelstein (10.1016/j.molmed.2014.06.001_bib0240) 2003; 349 Sigl (10.1016/j.molmed.2014.06.001_bib0490) 2014; 25 Regard (10.1016/j.molmed.2014.06.001_bib0335) 2011; 108 Li (10.1016/j.molmed.2014.06.001_bib0435) 2013; 228 Young (10.1016/j.molmed.2014.06.001_bib0590) 2013; 9 Pennypacker (10.1016/j.molmed.2014.06.001_bib0135) 2009; 44 Pusic (10.1016/j.molmed.2014.06.001_bib0420) 2010; 17 Rogers (10.1016/j.molmed.2014.06.001_bib0225) 2011; 49 Langdahl (10.1016/j.molmed.2014.06.001_bib0270) 2012; 27 Roodman (10.1016/j.molmed.2014.06.001_bib0570) 2004; 350 Kanaya (10.1016/j.molmed.2014.06.001_bib0480) 2012; 13 Ota (10.1016/j.molmed.2014.06.001_bib0620) 2013; 57 Kolliker (10.1016/j.molmed.2014.06.001_bib0060) 1873 Morrison (10.1016/j.molmed.2014.06.001_bib0415) 1997; 94 Boyle (10.1016/j.molmed.2014.06.001_bib0015) 2003; 423 Jones (10.1016/j.molmed.2014.06.001_bib0040) 2011; 121 Kiechl (10.1016/j.molmed.2014.06.001_bib0485) 2013; 19 Pierroz (10.1016/j.molmed.2014.06.001_bib0230) 2010; 285 Angel (10.1016/j.molmed.2014.06.001_bib0605) 2000; 15 Boyce (10.1016/j.molmed.2014.06.001_bib0025) 2013; 92 Teti (10.1016/j.molmed.2014.06.001_bib0010) 2013; 2 Miyamoto (10.1016/j.molmed.2014.06.001_bib0405) 2011; 208 Cusick (10.1016/j.molmed.2014.06.001_bib0275) 2012; 27 Vilardaga (10.1016/j.molmed.2014.06.001_bib0330) 2011; 68 Flores (10.1016/j.molmed.2014.06.001_bib0400) 2013; 98 Li (10.1016/j.molmed.2014.06.001_bib0140) 2006; 21 Sun (10.1016/j.molmed.2014.06.001_bib0460) 2013; 46 Vukicevic (10.1016/j.molmed.2014.06.001_bib0630) 2009; 20 Bedi (10.1016/j.molmed.2014.06.001_bib0070) 2012; 109 Yamane (10.1016/j.molmed.2014.06.001_bib0280) 2009; 44 Branstetter (10.1016/j.molmed.2014.06.001_bib0315) 2012; 18 Guise (10.1016/j.molmed.2014.06.001_bib0565) 2010; 37 Dale (10.1016/j.molmed.2014.06.001_bib0425) 2006; 3 Segovia-Silvestre (10.1016/j.molmed.2014.06.001_bib0045) 2009; 124 Sanchez-Fernandez (10.1016/j.molmed.2014.06.001_bib0655) 2008; 3 Ota (10.1016/j.molmed.2014.06.001_bib0635) 2013; 114 Matsuo (10.1016/j.molmed.2014.06.001_bib0200) 2012; 6 Pederson (10.1016/j.molmed.2014.06.001_bib0185) 2008; 105 Silverberg (10.1016/j.molmed.2014.06.001_bib0370) 1989; 4 Tawfeek (10.1016/j.molmed.2014.06.001_bib0080) 2010; 5 Gerritsen (10.1016/j.molmed.2014.06.001_bib0115) 1994; 93 Takamatsu (10.1016/j.molmed.2014.06.001_bib0445) 1998; 92 Del Fattore (10.1016/j.molmed.2014.06.001_bib0600) 2008; 23 van Lierop (10.1016/j.molmed.2014.06.001_bib0290) 2011; 26 Ohishi (10.1016/j.molmed.2014.06.001_bib0375) 2009; 174 Bozec (10.1016/j.molmed.2014.06.001_bib0555) 2014; 6 Everts (10.1016/j.molmed.2014.06.001_bib0090) 2009; 1792 Dai (10.1016/j.molmed.2014.06.001_bib0150) 2004; 19 Kollet (10.1016/j.molmed.2014.06.001_bib0450) 2006; 12 Lotinun (10.1016/j.molmed.2014.06.001_bib0145) 2013; 123 Baron (10.1016/j.molmed.2014.06.001_bib0065) 2013; 19 Wang (10.1016/j.molmed.2014.06.001_bib0160) 1992; 360 Kimura (10.1016/j.molmed.2014.06.001_bib0165) 2008; 3 Monge (10.1016/j.molmed.2014.06.001_bib0320) 2013; 8 Xian (10.1016/j.molmed.2014.06.001_bib0100) 2012; 18 Bukhari (10.1016/j.molmed.2014.06.001_bib0220) 2009; 48 Sawant (10.1016/j.molmed.2014.06.001_bib0525) 2013; 73 Mundy (10.1016/j.molmed.2014.06.001_bib0575) 2002; 2 Lacey (10.1016/j.molmed.2014.06.001_bib0020) 2012; 11 Zhen (10.1016/j.molmed.2014.06.001_bib0105) 2013; 19 Ryu (10.1016/j.molmed.2014.06.001_bib0180) 2006; 25 Charles (10.1016/j.molmed.2014.06.001_bib0500) 2012; 122 Takeshita (10.1016/j.molmed.2014.06.001_bib0170) 2013; 123 Zhuang (10.1016/j.molmed.2014.06.001_bib0530) 2012; 7 Borzutzky (10.1016/j.molmed.2014.06.001_bib0430) 2006; 28 Henriksen (10.1016/j.molmed.2014.06.001_bib0085) 2011; 32 Pennypacker (10.1016/j.molmed.2014.06.001_bib0260) 2014 Matsuoka (10.1016/j.molmed.2014.06.001_bib0175) 2014 Jacome-Galarza (10.1016/j.molmed.2014.06.001_bib0390) 2014; 115 Buchwald (10.1016/j.molmed.2014.06.001_bib0550) 2013; 56 US Department of Health and Human Services (10.1016/j.molmed.2014.06.001_bib0030) 2004 Balke (10.1016/j.molmed.2014.06.001_bib0300) 2010; 10 Brown (10.1016/j.molmed.2014.06.001_bib0585) 2012; 9 Korpal (10.1016/j.molmed.2014.06.001_bib0580) 2009; 15 Walker (10.1016/j.molmed.2014.06.001_bib0615) 2008; 23 Pangrazio (10.1016/j.molmed.2014.06.001_bib0120) 2012; 27 Aliprantis (10.1016/j.molmed.2014.06.001_bib0505) 2008; 118 Ishii (10.1016/j.molmed.2014.06.001_bib0195) 2010; 207 Serafini (10.1016/j.molmed.2014.06.001_bib0510) 2013; 57 Karsdal (10.1016/j.molmed.2014.06.001_bib0110) 2007; 22 Akiyama (10.1016/j.molmed.2014.06.001_bib0475) 2012; 3 Tse (10.1016/j.molmed.2014.06.001_bib0305) 2008; 42 Mansour (10.1016/j.molmed.2014.06.001_bib0385) 2012; 209 Kiesel (10.1016/j.molmed.2014.06.001_bib0540) 2009; 182 Thomsen (10.1016/j.molmed.2014.06.001_bib0350) 2014; 94 Morrison (10.1016/j.molmed.2014.06.001_bib0380) 2014; 505 Irie (10.1016/j.molmed.2014.06.001_bib0205) 2009; 284 Chen (10.1016/j.molmed.2014.06.001_bib0645) 2012; 7 Kubota (10.1016/j.molmed.2014.06.001_bib0660) 2002; 13 Tsai (10.1016/j.molmed.2014.06.001_bib0250) 2013; 382 Yamamoto (10.1016/j.molmed.2014.06.001_bib0345) 1996; 98 Grassi (10.1016/j.molmed.2014.06.001_bib0515) 2011; 226 Takahashi (10.1016/j.molmed.2014.06.001_bib0295) 2011; 16 Sakagami (10.1016/j.molmed.2014.06.001_bib0155) 2005; 36 Thomas (10.1016/j.molmed.2014.06.001_bib0310) 2010; 11 Kook (10.1016/j.molmed.2014.06.001_bib0455) 2013; 123 Hayman (10.1016/j.molmed.2014.06.001_bib0610) 2003; 18 Munoz-Torres (10.1016/j.molmed.2014.06.001_bib0465) 2009; 64 Cosman (10.1016/j.molmed.2014.06.001_bib0245) 2011; 26 McClung (10.1016/j.molmed.2014.06.001_bib0285) 2014; 370 Riminucci (10.1016/j.molmed.2014.06.001_bib0340) 2003; 33 Taranta (10.1016/j.molmed.2014.06.001_bib0365) 2003; 162 Grano (10.1016/j.molmed.2014.06.001_bib0640) 1996; 93 Abrahamsen (10.1016/j.molmed.2014.06.001_bib0035) 2009; 20 Furuya (10.1016/j.molmed.2014.06.001_bib0215) 2013; 288 Del Fattore (10.1016/j.molmed.2014.06.001_bib0125) 2006; 43 Sims (10.1016/j.molmed.2014.06.001_bib0005) 2014; 3 Tang (10.1016/j.molmed.2014.06.001_bib0095) 2009; 15 Rhee (10.1016/j.molmed.2014.06.001_bib0265) 2013; 288 Riddle (10.1016/j.molmed.2014.06.001_bib0325) 2013; 137 Boyce (10.1016/j.molmed.2014.06.001_bib0355) 2012; 27 Axmann (10.1016/j.molmed.2014.06.001_bib0560) 2008; 67 Zhao (10.1016/j.molmed.2014.06.001_bib0210) 2006; 4 Lymperi (10.1016/j.molmed.2014.06.001_bib0395) 2011; 117 Sobacchi (10.1016/j.molmed.2014.06.001_bib0055) 2013; 9 Ganda (10.1016/j.molmed.2014.06.001_bib0360) 2014; 25 Kreja (10.1016/j.molmed.2014.06.001_bib0650) 2010; 109 Marzia (10.1016/j.molmed.2014.06.001_bib0130) 2000; 151 Sobacchi (10.1016/j.molmed.2014.06.001_bib0050) 2007; 39 Li (10.1016/j.molmed.2014.06.001_bib0535) 2010; 116 Black (10.1016/j.molmed.2014.06.001_bib0235) 2003; 349 Guihard (10.1016/j.molmed.2014.06.001_bib0075) 2012; 30 Xu (10.1016/j.molmed.2014.06.001_bib0255) 2013; 11 Ishii (10.1016/j.molmed.2014.06.001_bib0190) 2009; 458 Takahashi (10.1016/j.molmed.2014.06.001_bib0440) 1996; 74 Jacquin (10.1016/j.molmed.2014.06.001_bib0495) 2006; 21 Negishi-Koga (10.1016/j.molmed.2014.06.001_bib0595) 2011; 17 Kim (10.1016/j.molmed.2014.06.001_bib0625) 2012; 51 |
References_xml | – volume: 21 start-page: 67 year: 2006 end-page: 77 ident: bib0495 article-title: Identification of multiple osteoclast precursor populations in murine bone marrow publication-title: J. Bone Miner. Res. – volume: 20 start-page: 1633 year: 2009 end-page: 1650 ident: bib0035 article-title: Excess mortality following hip fracture: a systematic epidemiological review publication-title: Osteoporos. Int. – volume: 92 start-page: 3465 year: 1998 end-page: 3473 ident: bib0445 article-title: Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization publication-title: Blood – volume: 349 start-page: 1207 year: 2003 end-page: 1215 ident: bib0235 article-title: The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis publication-title: N. Engl. J. Med. – volume: 108 start-page: 20101 year: 2011 end-page: 20106 ident: bib0335 article-title: Wnt/beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 9 start-page: 522 year: 2013 end-page: 536 ident: bib0055 article-title: Osteopetrosis: genetics, treatment and new insights into osteoclast function publication-title: Nat. Rev. Endocrinol. – volume: 25 start-page: 5840 year: 2006 end-page: 5851 ident: bib0180 article-title: Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling publication-title: EMBO J. – volume: 13 start-page: 62 year: 2002 end-page: 71 ident: bib0660 article-title: PDGF BB purified from osteoclasts acts as osteoblastogenesis inhibitory factor (OBIF) publication-title: J. Biomol. Tech. – volume: 284 start-page: 14637 year: 2009 end-page: 14644 ident: bib0205 article-title: Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis publication-title: J. Biol. Chem. – volume: 1 start-page: 1484 year: 2012 end-page: 1494 ident: bib0520 article-title: Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction publication-title: Oncoimmunology – volume: 19 start-page: 179 year: 2013 end-page: 192 ident: bib0065 article-title: WNT signaling in bone homeostasis and disease: from human mutations to treatments publication-title: Nat. Med. – volume: 46 start-page: 1601 year: 2013 end-page: 1606 ident: bib0460 article-title: The development and characterization of an ELISA specifically detecting the active form of cathepsin K publication-title: Clin. Biochem. – volume: 349 start-page: 1216 year: 2003 end-page: 1226 ident: bib0240 article-title: The effects of parathyroid hormone, alendronate, or both in men with osteoporosis publication-title: N. Engl. J. Med. – volume: 6 start-page: 235ra260 year: 2014 ident: bib0555 article-title: T cell costimulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan pathway publication-title: Sci. Transl. Med. – volume: 360 start-page: 741 year: 1992 end-page: 745 ident: bib0160 article-title: Bone and haematopoietic defects in mice lacking c-fos publication-title: Nature – volume: 94 start-page: 1908 year: 1997 end-page: 1913 ident: bib0415 article-title: Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 92 start-page: 860 year: 2013 end-page: 867 ident: bib0025 article-title: Advances in the regulation of osteoclasts and osteoclast functions publication-title: J. Dent. Res. – volume: 16 start-page: 21 year: 2011 end-page: 30 ident: bib0295 article-title: Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals publication-title: Front. Biosci. – volume: 285 start-page: 28164 year: 2010 end-page: 28173 ident: bib0230 article-title: Are osteoclasts needed for the bone anabolic response to parathyroid hormone? A study of intermittent parathyroid hormone with denosumab or alendronate in knock-in mice expressing humanized RANKL publication-title: J. Biol. Chem. – volume: 11 start-page: 303 year: 2013 ident: bib0255 article-title: Basic research and clinical applications of bisphosphonates in bone disease: what have we learned over the last 40 years? publication-title: J. Transl. Med. – volume: 22 start-page: 487 year: 2007 end-page: 494 ident: bib0110 article-title: Are nonresorbing osteoclasts sources of bone anabolic activity? publication-title: J. Bone Mineral Res. – volume: 26 start-page: 503 year: 2011 end-page: 511 ident: bib0245 article-title: Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1-34)] in postmenopausal osteoporosis publication-title: J. Bone Miner. Res. – volume: 207 start-page: 2793 year: 2010 end-page: 2798 ident: bib0195 article-title: Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo publication-title: J. Exp. Med. – volume: 3 start-page: 220 year: 2006 end-page: 231 ident: bib0425 article-title: The Severe Chronic Neutropenia International Registry: 10-year follow-up report publication-title: Support. Cancer Ther. – volume: 28 start-page: 205 year: 2006 end-page: 209 ident: bib0430 article-title: Osteoporosis in children with severe congenital neutropenia: bone mineral density and treatment with bisphosphonates publication-title: J. Pediatr. Hematol. Oncol. – year: 2004 ident: bib0030 article-title: Bone Health and Osteoporosis: A Report of the Surgeon General – volume: 423 start-page: 337 year: 2003 end-page: 342 ident: bib0015 article-title: Osteoclast differentiation and activation publication-title: Nature – year: 2014 ident: bib0260 article-title: Inhibition of cathepsin K increases modeling-based bone formation, and improves cortical dimension and strength in adult ovariectomized monkeys publication-title: J. Bone Miner. Res. – volume: 18 start-page: 4415 year: 2012 end-page: 4424 ident: bib0315 article-title: Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone publication-title: Clin. Cancer Res. – volume: 12 start-page: 657 year: 2006 end-page: 664 ident: bib0450 article-title: Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells publication-title: Nat. Med. – volume: 44 start-page: 199 year: 2009 end-page: 207 ident: bib0135 article-title: Bone density, strength, and formation in adult cathepsin K publication-title: Bone – volume: 117 start-page: 1540 year: 2011 end-page: 1549 ident: bib0395 article-title: Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo publication-title: Blood – year: 2014 ident: bib0175 article-title: Osteoclast-derived complement component 3a stimulates osteoblast differentiation publication-title: J. Bone Miner. Res. – volume: 19 start-page: 358 year: 2013 end-page: 363 ident: bib0485 article-title: Blockade of receptor activator of nuclear factor-kappaB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus publication-title: Nat. Med. – volume: 156 start-page: 1516 year: 1982 end-page: 1527 ident: bib0470 article-title: Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation publication-title: J. Exp. Med. – volume: 26 start-page: 2804 year: 2011 end-page: 2811 ident: bib0290 article-title: Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover publication-title: J. Bone Miner. Res. – volume: 49 start-page: 34 year: 2011 end-page: 41 ident: bib0225 article-title: Biochemical and molecular mechanisms of action of bisphosphonates publication-title: Bone – volume: 68 start-page: 1 year: 2011 end-page: 13 ident: bib0330 article-title: Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm publication-title: Cell. Mol. Life Sci. – volume: 182 start-page: 5477 year: 2009 end-page: 5487 ident: bib0540 article-title: Cross-presentation by osteoclasts induces FoxP3 in CD8 publication-title: J. Immunol. – volume: 288 start-page: 5562 year: 2013 end-page: 5571 ident: bib0215 article-title: Stimulation of bone formation in cortical bone of mice treated with a receptor activator of nuclear factor-kappaB ligand (RANKL)-binding peptide that possesses osteoclastogenesis inhibitory activity publication-title: J. Biol. Chem. – volume: 21 start-page: 865 year: 2006 end-page: 875 ident: bib0140 article-title: Mice lacking cathepsin K maintain bone remodeling but develop bone fragility despite high bone mass publication-title: J. Bone Miner. Res. – volume: 25 start-page: 205 year: 2014 end-page: 214 ident: bib0490 article-title: RANKL/RANK – from bone physiology to breast cancer publication-title: Cytokine Growth Factor Rev. – volume: 15 start-page: 757 year: 2009 end-page: 765 ident: bib0095 article-title: TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation publication-title: Nat. Med. – volume: 228 start-page: 1002 year: 2013 end-page: 1009 ident: bib0435 article-title: A pivotal role of bone remodeling in granulocyte colony stimulating factor induced hematopoietic stem/progenitor cells mobilization publication-title: J. Cell. Physiol. – volume: 30 start-page: 762 year: 2012 end-page: 772 ident: bib0075 article-title: Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling publication-title: Stem Cells – volume: 44 start-page: 1055 year: 2009 end-page: 1062 ident: bib0280 article-title: The anabolic action of intermittent PTH in combination with cathepsin K inhibitor or alendronate differs depending on the remodeling status in bone in ovariectomized mice publication-title: Bone – volume: 174 start-page: 2160 year: 2009 end-page: 2171 ident: bib0375 article-title: Osteoprotegerin abrogated cortical porosity and bone marrow fibrosis in a mouse model of constitutive activation of the PTH/PTHrP receptor publication-title: Am. J. Pathol. – volume: 20 start-page: 441 year: 2009 end-page: 448 ident: bib0630 article-title: BMP-6 and mesenchymal stem cell differentiation publication-title: Cytokine Growth Factor Rev. – year: 1873 ident: bib0060 article-title: Die normale Resorption des Knochengewebes und ihre Bedeutung die Entstehung der typischen Knochenformen – volume: 48 start-page: 327 year: 2009 end-page: 329 ident: bib0220 article-title: The National Osteoporosis Guideline Group's new guidelines: what is new? publication-title: Rheumatology – volume: 162 start-page: 57 year: 2003 end-page: 68 ident: bib0365 article-title: Genotype–phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis publication-title: Am. J. Pathol. – volume: 57 start-page: 68 year: 2013 end-page: 75 ident: bib0620 article-title: Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors publication-title: Bone – volume: 151 start-page: 311 year: 2000 end-page: 320 ident: bib0130 article-title: Decreased c-Src expression enhances osteoblast differentiation and bone formation publication-title: J. Cell Biol. – volume: 10 start-page: 462 year: 2010 ident: bib0300 article-title: Bisphosphonate treatment of aggressive primary, recurrent and metastatic giant cell tumour of bone publication-title: BMC Cancer – volume: 109 start-page: 347 year: 2010 end-page: 355 ident: bib0650 article-title: Non-resorbing osteoclasts induce migration and osteogenic differentiation of mesenchymal stem cells publication-title: J. Cell. Biochem. – volume: 19 start-page: 704 year: 2013 end-page: 712 ident: bib0105 article-title: Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis publication-title: Nat. Med. – volume: 3 start-page: e3174 year: 2008 ident: bib0165 article-title: Cthrc1 is a positive regulator of osteoblastic bone formation publication-title: PLoS ONE – volume: 370 start-page: 412 year: 2014 end-page: 420 ident: bib0285 article-title: Romosozumab in postmenopausal women with low bone mineral density publication-title: N. Engl. J. Med. – volume: 57 start-page: 172 year: 2013 end-page: 184 ident: bib0510 article-title: Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly publication-title: Immunol. Res. – volume: 350 start-page: 1655 year: 2004 end-page: 1664 ident: bib0570 article-title: Mechanisms of bone metastasis publication-title: N. Engl. J. Med. – volume: 15 start-page: 103 year: 2000 end-page: 110 ident: bib0605 article-title: Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover publication-title: J. Bone Miner. Res. – volume: 105 start-page: 20764 year: 2008 end-page: 20769 ident: bib0185 article-title: Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 123 start-page: 3420 year: 2013 end-page: 3435 ident: bib0455 article-title: The nucleotide sugar UDP-glucose mobilizes long-term repopulating primitive hematopoietic cells publication-title: J. Clin. Invest. – volume: 226 start-page: 982 year: 2011 end-page: 990 ident: bib0515 article-title: T cell suppression by osteoclasts in vitro publication-title: J. Cell. Physiol. – volume: 9 start-page: 110 year: 2012 end-page: 118 ident: bib0585 article-title: Denosumab in patients with cancer-a surgical strike against the osteoclast publication-title: Nat. Rev. Clin. Oncol. – volume: 32 start-page: 31 year: 2011 end-page: 63 ident: bib0085 article-title: Osteoclast activity and subtypes as a function of physiology and pathology – implications for future treatments of osteoporosis publication-title: Endocr. Rev. – volume: 6 start-page: 148 year: 2012 end-page: 156 ident: bib0200 article-title: Bone cell interactions through Eph/ephrin: bone modeling, remodeling and associated diseases publication-title: Cell Adh. Migr. – volume: 288 start-page: 29809 year: 2013 end-page: 29820 ident: bib0265 article-title: Resorption controls bone anabolism driven by parathyroid hormone (PTH) receptor signaling in osteocytes publication-title: J. Biol. Chem. – volume: 11 start-page: 275 year: 2010 end-page: 280 ident: bib0310 article-title: Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study publication-title: Lancet Oncol. – volume: 23 start-page: 2025 year: 2008 end-page: 2032 ident: bib0615 article-title: Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling publication-title: J. Bone Miner. Res. – volume: 33 start-page: 434 year: 2003 end-page: 442 ident: bib0340 article-title: Osteoclastogenesis in fibrous dysplasia of bone: in situ and in vitro analysis of IL-6 expression publication-title: Bone – volume: 4 start-page: 283 year: 1989 end-page: 291 ident: bib0370 article-title: Skeletal disease in primary hyperparathyroidism publication-title: J. Bone Miner. Res. – volume: 458 start-page: 524 year: 2009 end-page: 528 ident: bib0190 article-title: Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis publication-title: Nature – volume: 137 start-page: 134 year: 2013 end-page: 138 ident: bib0325 article-title: Fibrous dysplasia publication-title: Arch. Pathol. Lab. Med. – volume: 98 start-page: 30 year: 1996 end-page: 35 ident: bib0345 article-title: Increased IL-6-production by cells isolated from the fibrous bone dysplasia tissues in patients with McCune–Albright syndrome publication-title: J. Clin. Invest. – volume: 25 start-page: 777 year: 2014 end-page: 782 ident: bib0360 article-title: Rapid biochemical response to denosumab in fibrous dysplasia of bone: report of two cases publication-title: Osteoporos. Int. – volume: 27 start-page: 342 year: 2012 end-page: 351 ident: bib0120 article-title: RANK-dependent autosomal recessive osteopetrosis: characterization of five new cases with novel mutations publication-title: J. Bone Mineral Res. – volume: 209 start-page: 537 year: 2012 end-page: 549 ident: bib0385 article-title: Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow publication-title: J. Exp. Med. – volume: 94 start-page: 384 year: 2014 end-page: 395 ident: bib0350 article-title: Clinical and radiological observations in a case series of 26 patients with fibrous dysplasia publication-title: Calcif. Tissue Int. – year: 2008 ident: bib0410 article-title: Egress and mobilization of hematopoietic stem and progenitor cells: a dynamic multi-facet process publication-title: StemBook – volume: 17 start-page: 319 year: 2010 end-page: 326 ident: bib0420 article-title: Update on clinical experience with AMD3100, an SDF-1/CXCL12–CXCR4 inhibitor, in mobilization of hematopoietic stem and progenitor cells publication-title: Curr. Opin. Hematol. – volume: 39 start-page: 960 year: 2007 end-page: 962 ident: bib0050 article-title: Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL publication-title: Nat. Genet. – volume: 93 start-page: 247 year: 1994 end-page: 253 ident: bib0115 article-title: Autosomal recessive osteopetrosis: variability of findings at diagnosis and during the natural course publication-title: Pediatrics – volume: 43 start-page: 315 year: 2006 end-page: 325 ident: bib0125 article-title: Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment publication-title: J. Med. Genet. – volume: 98 start-page: 1848 year: 2013 end-page: 1855 ident: bib0400 article-title: Osteoclasts are not crucial for hematopoietic stem cell maintenance in adult mice publication-title: Haematologica – volume: 2 start-page: 584 year: 2002 end-page: 593 ident: bib0575 article-title: Metastasis to bone: causes, consequences and therapeutic opportunities publication-title: Nat. Rev. Cancer – volume: 18 start-page: 1095 year: 2012 end-page: 1101 ident: bib0100 article-title: Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells publication-title: Nat. Med. – volume: 3 start-page: 481 year: 2014 ident: bib0005 article-title: Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit publication-title: Bonekey Rep. – volume: 3 start-page: 142 year: 2012 end-page: 150 ident: bib0475 article-title: RANKL–RANK interaction in immune regulatory systems publication-title: World J. Orthop. – volume: 122 start-page: 4592 year: 2012 end-page: 4605 ident: bib0500 article-title: Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function publication-title: J. Clin. Invest. – volume: 123 start-page: 666 year: 2013 end-page: 681 ident: bib0145 article-title: Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation publication-title: J. Clin. Invest. – volume: 27 start-page: 524 year: 2012 end-page: 537 ident: bib0275 article-title: Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey publication-title: J. Bone Miner. Res. – volume: 505 start-page: 327 year: 2014 end-page: 334 ident: bib0380 article-title: The bone marrow niche for haematopoietic stem cells publication-title: Nature – volume: 51 start-page: 431 year: 2012 end-page: 440 ident: bib0625 article-title: Afamin secreted from nonresorbing osteoclasts acts as a chemokine for preosteoblasts via the Akt-signaling pathway publication-title: Bone – volume: 5 start-page: e12290 year: 2010 ident: bib0080 article-title: Disruption of PTH receptor 1 in T cells protects against PTH-induced bone loss publication-title: PLoS ONE – volume: 123 start-page: 3914 year: 2013 end-page: 3924 ident: bib0170 article-title: Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation publication-title: J. Clin. Invest. – volume: 1792 start-page: 757 year: 2009 end-page: 765 ident: bib0090 article-title: Osteoclast heterogeneity: lessons from osteopetrosis and inflammatory conditions publication-title: Biochim. Biophys. Acta – volume: 7 start-page: e38199 year: 2012 ident: bib0545 article-title: Osteoclast activated FoxP3 publication-title: PLoS ONE – volume: 116 start-page: 210 year: 2010 end-page: 217 ident: bib0535 article-title: Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4 publication-title: Blood – volume: 93 start-page: 7644 year: 1996 end-page: 7648 ident: bib0640 article-title: Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 37 start-page: S2 year: 2010 end-page: S14 ident: bib0565 article-title: Examining the metastatic niche: targeting the microenvironment publication-title: Semin. Oncol. – volume: 27 start-page: 2251 year: 2012 end-page: 2258 ident: bib0270 article-title: Odanacatib in the treatment of postmenopausal women with low bone mineral density: five years of continued therapy in a phase 2 study publication-title: J. Bone Miner. Res. – volume: 208 start-page: 2175 year: 2011 end-page: 2181 ident: bib0405 article-title: Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization publication-title: J. Exp. Med. – volume: 115 start-page: 1449 year: 2014 end-page: 1457 ident: bib0390 article-title: Altered hematopoietic stem cell and osteoclast precursor frequency in cathepsin K null mice publication-title: J. Cell. Biochem. – volume: 13 start-page: 729 year: 2012 end-page: 736 ident: bib0480 article-title: The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells publication-title: Nat. Immunol. – volume: 36 start-page: 688 year: 2005 end-page: 695 ident: bib0155 article-title: Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice publication-title: Micron – volume: 56 start-page: 163 year: 2013 end-page: 173 ident: bib0550 article-title: Osteoclast-induced Foxp3 publication-title: Bone – volume: 4 start-page: 111 year: 2006 end-page: 121 ident: bib0210 article-title: Bidirectional ephrinB2–EphB4 signaling controls bone homeostasis publication-title: Cell Metab. – volume: 114 start-page: 1901 year: 2013 end-page: 1907 ident: bib0635 article-title: Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization publication-title: J. Cell. Biochem. – volume: 67 start-page: 1603 year: 2008 end-page: 1609 ident: bib0560 article-title: CTLA-4 directly inhibits osteoclast formation publication-title: Ann. Rheum. Dis. – volume: 8 start-page: e64539 year: 2013 ident: bib0320 article-title: Fibrous dysplasia in a 120,000+ year old Neandertal from Krapina, Croatia publication-title: PLoS ONE – volume: 118 start-page: 3775 year: 2008 end-page: 3789 ident: bib0505 article-title: NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism publication-title: J. Clin. Invest. – volume: 11 start-page: 401 year: 2012 end-page: 419 ident: bib0020 article-title: Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the development of denosumab publication-title: Nat. Rev. Drug Discov. – volume: 74 start-page: 827 year: 1996 end-page: 834 ident: bib0440 article-title: Overexpression of the granulocyte colony-stimulating factor gene leads to osteoporosis in mice publication-title: Lab. Invest. – volume: 9 start-page: 633 year: 2013 end-page: 643 ident: bib0590 article-title: Zoledronic acid to prevent and treat cancer metastasis: new prospects for an old drug publication-title: Future Oncol. – volume: 42 start-page: 68 year: 2008 end-page: 73 ident: bib0305 article-title: Bisphosphonates reduce local recurrence in extremity giant cell tumor of bone: a case–control study publication-title: Bone – volume: 3 start-page: e3537 year: 2008 ident: bib0655 article-title: Osteoclasts control osteoblast chemotaxis via PDGF-BB/PDGF receptor beta signaling publication-title: PLOS ONE – volume: 7 start-page: e48871 year: 2012 ident: bib0530 article-title: Osteoclasts in multiple myeloma are derived from Gr-1 publication-title: PLoS ONE – volume: 2 start-page: 449 year: 2013 ident: bib0010 article-title: Mechanisms of osteoclast-dependent bone formation publication-title: Bonekey Rep. – volume: 64 start-page: 188 year: 2009 end-page: 192 ident: bib0465 article-title: Serum cathepsin K as a marker of bone metabolism in postmenopausal women treated with alendronate publication-title: Maturitas – volume: 27 start-page: 1462 year: 2012 end-page: 1470 ident: bib0355 article-title: Denosumab treatment for fibrous dysplasia publication-title: J. Bone Miner. Res. – volume: 18 start-page: 1905 year: 2003 end-page: 1907 ident: bib0610 article-title: Tartrate-resistant acid phosphatase knockout mice publication-title: J. Bone Miner. Res. – volume: 121 start-page: 2534 year: 2011 end-page: 2542 ident: bib0040 article-title: Osteoimmunology at the nexus of arthritis, osteoporosis, cancer, and infection publication-title: J. Clin. Invest. – volume: 382 start-page: 50 year: 2013 end-page: 56 ident: bib0250 article-title: Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial publication-title: Lancet – volume: 17 start-page: 1473 year: 2011 end-page: 1480 ident: bib0595 article-title: Suppression of bone formation by osteoclastic expression of semaphorin 4D publication-title: Nat. Med. – volume: 124 start-page: 561 year: 2009 end-page: 577 ident: bib0045 article-title: Advances in osteoclast biology resulting from the study of osteopetrotic mutations publication-title: Hum. Genet. – volume: 109 start-page: E725 year: 2012 end-page: E733 ident: bib0070 article-title: Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 7 start-page: e38378 year: 2012 ident: bib0645 article-title: Hepatocyte growth factor increases osteopontin expression in human osteoblasts through PI3K, Akt, c-Src, and AP-1 signaling pathway publication-title: PLoS ONE – volume: 19 start-page: 1441 year: 2004 end-page: 1451 ident: bib0150 article-title: Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone publication-title: J. Bone Miner. Res. – volume: 15 start-page: 960 year: 2009 end-page: 966 ident: bib0580 article-title: Imaging transforming growth factor-beta signaling dynamics and therapeutic response in breast cancer bone metastasis publication-title: Nat. Med. – volume: 23 start-page: 380 year: 2008 end-page: 391 ident: bib0600 article-title: A new heterozygous mutation (R714C) of the osteopetrosis gene, pleckstrin homolog domain containing family M (with run domain) member 1 (PLEKHM1), impairs vesicular acidification and increases TRACP secretion in osteoclasts publication-title: J. Bone Miner. Res. – volume: 73 start-page: 672 year: 2013 end-page: 682 ident: bib0525 article-title: Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer publication-title: Cancer Res. – volume: 209 start-page: 537 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0385 article-title: Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow publication-title: J. Exp. Med. doi: 10.1084/jem.20110994 – volume: 137 start-page: 134 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0325 article-title: Fibrous dysplasia publication-title: Arch. Pathol. Lab. Med. doi: 10.5858/arpa.2012.0013-RS – volume: 26 start-page: 503 year: 2011 ident: 10.1016/j.molmed.2014.06.001_bib0245 article-title: Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1-34)] in postmenopausal osteoporosis publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.238 – year: 2008 ident: 10.1016/j.molmed.2014.06.001_bib0410 article-title: Egress and mobilization of hematopoietic stem and progenitor cells: a dynamic multi-facet process – volume: 22 start-page: 487 year: 2007 ident: 10.1016/j.molmed.2014.06.001_bib0110 article-title: Are nonresorbing osteoclasts sources of bone anabolic activity? publication-title: J. Bone Mineral Res. doi: 10.1359/jbmr.070109 – volume: 20 start-page: 441 year: 2009 ident: 10.1016/j.molmed.2014.06.001_bib0630 article-title: BMP-6 and mesenchymal stem cell differentiation publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2009.10.020 – volume: 3 start-page: e3174 year: 2008 ident: 10.1016/j.molmed.2014.06.001_bib0165 article-title: Cthrc1 is a positive regulator of osteoblastic bone formation publication-title: PLoS ONE doi: 10.1371/journal.pone.0003174 – volume: 92 start-page: 3465 year: 1998 ident: 10.1016/j.molmed.2014.06.001_bib0445 article-title: Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization publication-title: Blood doi: 10.1182/blood.V92.9.3465 – volume: 74 start-page: 827 year: 1996 ident: 10.1016/j.molmed.2014.06.001_bib0440 article-title: Overexpression of the granulocyte colony-stimulating factor gene leads to osteoporosis in mice publication-title: Lab. Invest. – volume: 109 start-page: E725 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0070 article-title: Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1120735109 – volume: 7 start-page: e38199 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0545 article-title: Osteoclast activated FoxP3+ CD8+ T-cells suppress bone resorption in vitro publication-title: PLoS ONE doi: 10.1371/journal.pone.0038199 – volume: 1792 start-page: 757 year: 2009 ident: 10.1016/j.molmed.2014.06.001_bib0090 article-title: Osteoclast heterogeneity: lessons from osteopetrosis and inflammatory conditions publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2009.05.004 – volume: 114 start-page: 1901 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0635 article-title: Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization publication-title: J. Cell. Biochem. doi: 10.1002/jcb.24537 – volume: 51 start-page: 431 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0625 article-title: Afamin secreted from nonresorbing osteoclasts acts as a chemokine for preosteoblasts via the Akt-signaling pathway publication-title: Bone doi: 10.1016/j.bone.2012.06.015 – volume: 19 start-page: 179 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0065 article-title: WNT signaling in bone homeostasis and disease: from human mutations to treatments publication-title: Nat. Med. doi: 10.1038/nm.3074 – volume: 2 start-page: 584 year: 2002 ident: 10.1016/j.molmed.2014.06.001_bib0575 article-title: Metastasis to bone: causes, consequences and therapeutic opportunities publication-title: Nat. Rev. Cancer doi: 10.1038/nrc867 – volume: 56 start-page: 163 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0550 article-title: Osteoclast-induced Foxp3+ CD8 T-cells limit bone loss in mice publication-title: Bone doi: 10.1016/j.bone.2013.05.024 – volume: 7 start-page: e48871 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0530 article-title: Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+ myeloid-derived suppressor cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0048871 – volume: 9 start-page: 110 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0585 article-title: Denosumab in patients with cancer-a surgical strike against the osteoclast publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2011.197 – volume: 117 start-page: 1540 year: 2011 ident: 10.1016/j.molmed.2014.06.001_bib0395 article-title: Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo publication-title: Blood doi: 10.1182/blood-2010-05-282855 – volume: 15 start-page: 960 year: 2009 ident: 10.1016/j.molmed.2014.06.001_bib0580 article-title: Imaging transforming growth factor-beta signaling dynamics and therapeutic response in breast cancer bone metastasis publication-title: Nat. Med. doi: 10.1038/nm.1943 – volume: 44 start-page: 1055 year: 2009 ident: 10.1016/j.molmed.2014.06.001_bib0280 article-title: The anabolic action of intermittent PTH in combination with cathepsin K inhibitor or alendronate differs depending on the remodeling status in bone in ovariectomized mice publication-title: Bone doi: 10.1016/j.bone.2008.05.010 – volume: 98 start-page: 30 year: 1996 ident: 10.1016/j.molmed.2014.06.001_bib0345 article-title: Increased IL-6-production by cells isolated from the fibrous bone dysplasia tissues in patients with McCune–Albright syndrome publication-title: J. Clin. Invest. doi: 10.1172/JCI118773 – volume: 3 start-page: 220 year: 2006 ident: 10.1016/j.molmed.2014.06.001_bib0425 article-title: The Severe Chronic Neutropenia International Registry: 10-year follow-up report publication-title: Support. Cancer Ther. doi: 10.3816/SCT.2006.n.020 – volume: 123 start-page: 3914 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0170 article-title: Osteoclast-secreted CTHRC1 in the coupling of bone resorption to formation publication-title: J. Clin. Invest. doi: 10.1172/JCI69493 – volume: 92 start-page: 860 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0025 article-title: Advances in the regulation of osteoclasts and osteoclast functions publication-title: J. Dent. Res. doi: 10.1177/0022034513500306 – volume: 5 start-page: e12290 year: 2010 ident: 10.1016/j.molmed.2014.06.001_bib0080 article-title: Disruption of PTH receptor 1 in T cells protects against PTH-induced bone loss publication-title: PLoS ONE doi: 10.1371/journal.pone.0012290 – volume: 19 start-page: 1441 year: 2004 ident: 10.1016/j.molmed.2014.06.001_bib0150 article-title: Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone publication-title: J. Bone Miner. Res. doi: 10.1359/JBMR.040514 – volume: 124 start-page: 561 year: 2009 ident: 10.1016/j.molmed.2014.06.001_bib0045 article-title: Advances in osteoclast biology resulting from the study of osteopetrotic mutations publication-title: Hum. Genet. doi: 10.1007/s00439-008-0583-8 – volume: 13 start-page: 729 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0480 article-title: The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells publication-title: Nat. Immunol. doi: 10.1038/ni.2352 – volume: 284 start-page: 14637 year: 2009 ident: 10.1016/j.molmed.2014.06.001_bib0205 article-title: Bidirectional signaling through ephrinA2-EphA2 enhances osteoclastogenesis and suppresses osteoblastogenesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M807598200 – volume: 3 start-page: 481 year: 2014 ident: 10.1016/j.molmed.2014.06.001_bib0005 article-title: Coupling the activities of bone formation and resorption: a multitude of signals within the basic multicellular unit publication-title: Bonekey Rep. doi: 10.1038/bonekey.2013.215 – volume: 25 start-page: 5840 year: 2006 ident: 10.1016/j.molmed.2014.06.001_bib0180 article-title: Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling publication-title: EMBO J. doi: 10.1038/sj.emboj.7601430 – year: 2004 ident: 10.1016/j.molmed.2014.06.001_bib0030 – volume: 105 start-page: 20764 year: 2008 ident: 10.1016/j.molmed.2014.06.001_bib0185 article-title: Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0805133106 – volume: 11 start-page: 275 year: 2010 ident: 10.1016/j.molmed.2014.06.001_bib0310 article-title: Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(10)70010-3 – volume: 151 start-page: 311 year: 2000 ident: 10.1016/j.molmed.2014.06.001_bib0130 article-title: Decreased c-Src expression enhances osteoblast differentiation and bone formation publication-title: J. Cell Biol. doi: 10.1083/jcb.151.2.311 – volume: 15 start-page: 103 year: 2000 ident: 10.1016/j.molmed.2014.06.001_bib0605 article-title: Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.2000.15.1.103 – volume: 109 start-page: 347 year: 2010 ident: 10.1016/j.molmed.2014.06.001_bib0650 article-title: Non-resorbing osteoclasts induce migration and osteogenic differentiation of mesenchymal stem cells publication-title: J. Cell. Biochem. doi: 10.1002/jcb.22406 – volume: 423 start-page: 337 year: 2003 ident: 10.1016/j.molmed.2014.06.001_bib0015 article-title: Osteoclast differentiation and activation publication-title: Nature doi: 10.1038/nature01658 – volume: 43 start-page: 315 year: 2006 ident: 10.1016/j.molmed.2014.06.001_bib0125 article-title: Clinical, genetic, and cellular analysis of 49 osteopetrotic patients: implications for diagnosis and treatment publication-title: J. Med. Genet. doi: 10.1136/jmg.2005.036673 – volume: 122 start-page: 4592 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0500 article-title: Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function publication-title: J. Clin. Invest. doi: 10.1172/JCI60920 – volume: 18 start-page: 4415 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0315 article-title: Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-12-0578 – volume: 9 start-page: 522 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0055 article-title: Osteopetrosis: genetics, treatment and new insights into osteoclast function publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2013.137 – volume: 505 start-page: 327 year: 2014 ident: 10.1016/j.molmed.2014.06.001_bib0380 article-title: The bone marrow niche for haematopoietic stem cells publication-title: Nature doi: 10.1038/nature12984 – volume: 37 start-page: S2 issue: Suppl. 2 year: 2010 ident: 10.1016/j.molmed.2014.06.001_bib0565 article-title: Examining the metastatic niche: targeting the microenvironment publication-title: Semin. Oncol. doi: 10.1053/j.seminoncol.2010.10.007 – volume: 20 start-page: 1633 year: 2009 ident: 10.1016/j.molmed.2014.06.001_bib0035 article-title: Excess mortality following hip fracture: a systematic epidemiological review publication-title: Osteoporos. Int. doi: 10.1007/s00198-009-0920-3 – volume: 458 start-page: 524 year: 2009 ident: 10.1016/j.molmed.2014.06.001_bib0190 article-title: Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis publication-title: Nature doi: 10.1038/nature07713 – volume: 15 start-page: 757 year: 2009 ident: 10.1016/j.molmed.2014.06.001_bib0095 article-title: TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation publication-title: Nat. Med. doi: 10.1038/nm.1979 – volume: 123 start-page: 666 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0145 article-title: Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation publication-title: J. Clin. Invest. – volume: 207 start-page: 2793 year: 2010 ident: 10.1016/j.molmed.2014.06.001_bib0195 article-title: Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo publication-title: J. Exp. Med. doi: 10.1084/jem.20101474 – volume: 4 start-page: 283 year: 1989 ident: 10.1016/j.molmed.2014.06.001_bib0370 article-title: Skeletal disease in primary hyperparathyroidism publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.5650040302 – volume: 28 start-page: 205 year: 2006 ident: 10.1016/j.molmed.2014.06.001_bib0430 article-title: Osteoporosis in children with severe congenital neutropenia: bone mineral density and treatment with bisphosphonates publication-title: J. Pediatr. Hematol. Oncol. doi: 10.1097/01.mph.0000210409.48877.c3 – volume: 57 start-page: 172 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0510 article-title: Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly publication-title: Immunol. Res. doi: 10.1007/s12026-013-8455-2 – volume: 4 start-page: 111 year: 2006 ident: 10.1016/j.molmed.2014.06.001_bib0210 article-title: Bidirectional ephrinB2–EphB4 signaling controls bone homeostasis publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.05.012 – volume: 25 start-page: 777 year: 2014 ident: 10.1016/j.molmed.2014.06.001_bib0360 article-title: Rapid biochemical response to denosumab in fibrous dysplasia of bone: report of two cases publication-title: Osteoporos. Int. doi: 10.1007/s00198-013-2585-1 – volume: 49 start-page: 34 year: 2011 ident: 10.1016/j.molmed.2014.06.001_bib0225 article-title: Biochemical and molecular mechanisms of action of bisphosphonates publication-title: Bone doi: 10.1016/j.bone.2010.11.008 – volume: 208 start-page: 2175 year: 2011 ident: 10.1016/j.molmed.2014.06.001_bib0405 article-title: Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization publication-title: J. Exp. Med. doi: 10.1084/jem.20101890 – volume: 94 start-page: 1908 year: 1997 ident: 10.1016/j.molmed.2014.06.001_bib0415 article-title: Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.94.5.1908 – volume: 382 start-page: 50 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0250 article-title: Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial publication-title: Lancet doi: 10.1016/S0140-6736(13)60856-9 – volume: 349 start-page: 1207 year: 2003 ident: 10.1016/j.molmed.2014.06.001_bib0235 article-title: The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa031975 – volume: 19 start-page: 704 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0105 article-title: Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis publication-title: Nat. Med. doi: 10.1038/nm.3143 – volume: 32 start-page: 31 year: 2011 ident: 10.1016/j.molmed.2014.06.001_bib0085 article-title: Osteoclast activity and subtypes as a function of physiology and pathology – implications for future treatments of osteoporosis publication-title: Endocr. Rev. doi: 10.1210/er.2010-0006 – volume: 16 start-page: 21 year: 2011 ident: 10.1016/j.molmed.2014.06.001_bib0295 article-title: Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals publication-title: Front. Biosci. doi: 10.2741/3673 – volume: 2 start-page: 449 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0010 article-title: Mechanisms of osteoclast-dependent bone formation publication-title: Bonekey Rep. doi: 10.1038/bonekey.2013.183 – volume: 44 start-page: 199 year: 2009 ident: 10.1016/j.molmed.2014.06.001_bib0135 article-title: Bone density, strength, and formation in adult cathepsin K−/− mice publication-title: Bone doi: 10.1016/j.bone.2008.08.130 – volume: 23 start-page: 380 year: 2008 ident: 10.1016/j.molmed.2014.06.001_bib0600 article-title: A new heterozygous mutation (R714C) of the osteopetrosis gene, pleckstrin homolog domain containing family M (with run domain) member 1 (PLEKHM1), impairs vesicular acidification and increases TRACP secretion in osteoclasts publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.071107 – year: 2014 ident: 10.1016/j.molmed.2014.06.001_bib0175 article-title: Osteoclast-derived complement component 3a stimulates osteoblast differentiation publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2187 – volume: 27 start-page: 524 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0275 article-title: Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1477 – volume: 21 start-page: 67 year: 2006 ident: 10.1016/j.molmed.2014.06.001_bib0495 article-title: Identification of multiple osteoclast precursor populations in murine bone marrow publication-title: J. Bone Miner. Res. doi: 10.1359/JBMR.051007 – volume: 17 start-page: 319 year: 2010 ident: 10.1016/j.molmed.2014.06.001_bib0420 article-title: Update on clinical experience with AMD3100, an SDF-1/CXCL12–CXCR4 inhibitor, in mobilization of hematopoietic stem and progenitor cells publication-title: Curr. Opin. Hematol. doi: 10.1097/MOH.0b013e328338b7d5 – volume: 156 start-page: 1516 year: 1982 ident: 10.1016/j.molmed.2014.06.001_bib0470 article-title: Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation publication-title: J. Exp. Med. doi: 10.1084/jem.156.5.1516 – volume: 93 start-page: 7644 year: 1996 ident: 10.1016/j.molmed.2014.06.001_bib0640 article-title: Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.93.15.7644 – volume: 94 start-page: 384 year: 2014 ident: 10.1016/j.molmed.2014.06.001_bib0350 article-title: Clinical and radiological observations in a case series of 26 patients with fibrous dysplasia publication-title: Calcif. Tissue Int. doi: 10.1007/s00223-013-9829-0 – volume: 73 start-page: 672 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0525 article-title: Myeloid-derived suppressor cells function as novel osteoclast progenitors enhancing bone loss in breast cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-2202 – year: 1873 ident: 10.1016/j.molmed.2014.06.001_bib0060 – volume: 25 start-page: 205 year: 2014 ident: 10.1016/j.molmed.2014.06.001_bib0490 article-title: RANKL/RANK – from bone physiology to breast cancer publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2014.01.002 – volume: 46 start-page: 1601 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0460 article-title: The development and characterization of an ELISA specifically detecting the active form of cathepsin K publication-title: Clin. Biochem. doi: 10.1016/j.clinbiochem.2013.04.012 – volume: 9 start-page: 633 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0590 article-title: Zoledronic acid to prevent and treat cancer metastasis: new prospects for an old drug publication-title: Future Oncol. doi: 10.2217/fon.13.28 – volume: 1 start-page: 1484 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0520 article-title: Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction publication-title: Oncoimmunology doi: 10.4161/onci.21990 – volume: 350 start-page: 1655 year: 2004 ident: 10.1016/j.molmed.2014.06.001_bib0570 article-title: Mechanisms of bone metastasis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra030831 – year: 2014 ident: 10.1016/j.molmed.2014.06.001_bib0260 article-title: Inhibition of cathepsin K increases modeling-based bone formation, and improves cortical dimension and strength in adult ovariectomized monkeys publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2211 – volume: 33 start-page: 434 year: 2003 ident: 10.1016/j.molmed.2014.06.001_bib0340 article-title: Osteoclastogenesis in fibrous dysplasia of bone: in situ and in vitro analysis of IL-6 expression publication-title: Bone doi: 10.1016/S8756-3282(03)00064-4 – volume: 370 start-page: 412 year: 2014 ident: 10.1016/j.molmed.2014.06.001_bib0285 article-title: Romosozumab in postmenopausal women with low bone mineral density publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1305224 – volume: 288 start-page: 5562 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0215 article-title: Stimulation of bone formation in cortical bone of mice treated with a receptor activator of nuclear factor-kappaB ligand (RANKL)-binding peptide that possesses osteoclastogenesis inhibitory activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.426080 – volume: 108 start-page: 20101 year: 2011 ident: 10.1016/j.molmed.2014.06.001_bib0335 article-title: Wnt/beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1114656108 – volume: 118 start-page: 3775 year: 2008 ident: 10.1016/j.molmed.2014.06.001_bib0505 article-title: NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism publication-title: J. Clin. Invest. doi: 10.1172/JCI35711 – volume: 93 start-page: 247 year: 1994 ident: 10.1016/j.molmed.2014.06.001_bib0115 article-title: Autosomal recessive osteopetrosis: variability of findings at diagnosis and during the natural course publication-title: Pediatrics doi: 10.1542/peds.93.2.247 – volume: 64 start-page: 188 year: 2009 ident: 10.1016/j.molmed.2014.06.001_bib0465 article-title: Serum cathepsin K as a marker of bone metabolism in postmenopausal women treated with alendronate publication-title: Maturitas doi: 10.1016/j.maturitas.2009.09.011 – volume: 3 start-page: 142 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0475 article-title: RANKL–RANK interaction in immune regulatory systems publication-title: World J. Orthop. doi: 10.5312/wjo.v3.i9.142 – volume: 288 start-page: 29809 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0265 article-title: Resorption controls bone anabolism driven by parathyroid hormone (PTH) receptor signaling in osteocytes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.485938 – volume: 26 start-page: 2804 year: 2011 ident: 10.1016/j.molmed.2014.06.001_bib0290 article-title: Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.474 – volume: 18 start-page: 1095 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0100 article-title: Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells publication-title: Nat. Med. doi: 10.1038/nm.2793 – volume: 36 start-page: 688 year: 2005 ident: 10.1016/j.molmed.2014.06.001_bib0155 article-title: Reduced osteoblastic population and defective mineralization in osteopetrotic (op/op) mice publication-title: Micron doi: 10.1016/j.micron.2005.06.008 – volume: 8 start-page: e64539 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0320 article-title: Fibrous dysplasia in a 120,000+ year old Neandertal from Krapina, Croatia publication-title: PLoS ONE doi: 10.1371/journal.pone.0064539 – volume: 7 start-page: e38378 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0645 article-title: Hepatocyte growth factor increases osteopontin expression in human osteoblasts through PI3K, Akt, c-Src, and AP-1 signaling pathway publication-title: PLoS ONE doi: 10.1371/journal.pone.0038378 – volume: 30 start-page: 762 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0075 article-title: Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling publication-title: Stem Cells doi: 10.1002/stem.1040 – volume: 228 start-page: 1002 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0435 article-title: A pivotal role of bone remodeling in granulocyte colony stimulating factor induced hematopoietic stem/progenitor cells mobilization publication-title: J. Cell. Physiol. doi: 10.1002/jcp.24246 – volume: 21 start-page: 865 year: 2006 ident: 10.1016/j.molmed.2014.06.001_bib0140 article-title: Mice lacking cathepsin K maintain bone remodeling but develop bone fragility despite high bone mass publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.060313 – volume: 11 start-page: 303 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0255 article-title: Basic research and clinical applications of bisphosphonates in bone disease: what have we learned over the last 40 years? publication-title: J. Transl. Med. doi: 10.1186/1479-5876-11-303 – volume: 6 start-page: 235ra260 year: 2014 ident: 10.1016/j.molmed.2014.06.001_bib0555 article-title: T cell costimulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan pathway publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3007764 – volume: 123 start-page: 3420 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0455 article-title: The nucleotide sugar UDP-glucose mobilizes long-term repopulating primitive hematopoietic cells publication-title: J. Clin. Invest. doi: 10.1172/JCI64060 – volume: 3 start-page: e3537 year: 2008 ident: 10.1016/j.molmed.2014.06.001_bib0655 article-title: Osteoclasts control osteoblast chemotaxis via PDGF-BB/PDGF receptor beta signaling publication-title: PLOS ONE doi: 10.1371/journal.pone.0003537 – volume: 360 start-page: 741 year: 1992 ident: 10.1016/j.molmed.2014.06.001_bib0160 article-title: Bone and haematopoietic defects in mice lacking c-fos publication-title: Nature doi: 10.1038/360741a0 – volume: 226 start-page: 982 year: 2011 ident: 10.1016/j.molmed.2014.06.001_bib0515 article-title: T cell suppression by osteoclasts in vitro publication-title: J. Cell. Physiol. doi: 10.1002/jcp.22411 – volume: 57 start-page: 68 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0620 article-title: Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors publication-title: Bone doi: 10.1016/j.bone.2013.07.023 – volume: 11 start-page: 401 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0020 article-title: Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the development of denosumab publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3705 – volume: 27 start-page: 2251 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0270 article-title: Odanacatib in the treatment of postmenopausal women with low bone mineral density: five years of continued therapy in a phase 2 study publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1695 – volume: 27 start-page: 1462 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0355 article-title: Denosumab treatment for fibrous dysplasia publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1603 – volume: 18 start-page: 1905 year: 2003 ident: 10.1016/j.molmed.2014.06.001_bib0610 article-title: Tartrate-resistant acid phosphatase knockout mice publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.2003.18.10.1905 – volume: 13 start-page: 62 year: 2002 ident: 10.1016/j.molmed.2014.06.001_bib0660 article-title: PDGF BB purified from osteoclasts acts as osteoblastogenesis inhibitory factor (OBIF) publication-title: J. Biomol. Tech. – volume: 27 start-page: 342 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0120 article-title: RANK-dependent autosomal recessive osteopetrosis: characterization of five new cases with novel mutations publication-title: J. Bone Mineral Res. doi: 10.1002/jbmr.559 – volume: 182 start-page: 5477 year: 2009 ident: 10.1016/j.molmed.2014.06.001_bib0540 article-title: Cross-presentation by osteoclasts induces FoxP3 in CD8+ T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.0803897 – volume: 115 start-page: 1449 year: 2014 ident: 10.1016/j.molmed.2014.06.001_bib0390 article-title: Altered hematopoietic stem cell and osteoclast precursor frequency in cathepsin K null mice publication-title: J. Cell. Biochem. doi: 10.1002/jcb.24801 – volume: 116 start-page: 210 year: 2010 ident: 10.1016/j.molmed.2014.06.001_bib0535 article-title: Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells publication-title: Blood doi: 10.1182/blood-2009-11-255026 – volume: 10 start-page: 462 year: 2010 ident: 10.1016/j.molmed.2014.06.001_bib0300 article-title: Bisphosphonate treatment of aggressive primary, recurrent and metastatic giant cell tumour of bone publication-title: BMC Cancer doi: 10.1186/1471-2407-10-462 – volume: 121 start-page: 2534 year: 2011 ident: 10.1016/j.molmed.2014.06.001_bib0040 article-title: Osteoimmunology at the nexus of arthritis, osteoporosis, cancer, and infection publication-title: J. Clin. Invest. doi: 10.1172/JCI46262 – volume: 48 start-page: 327 year: 2009 ident: 10.1016/j.molmed.2014.06.001_bib0220 article-title: The National Osteoporosis Guideline Group's new guidelines: what is new? publication-title: Rheumatology doi: 10.1093/rheumatology/ken454 – volume: 6 start-page: 148 year: 2012 ident: 10.1016/j.molmed.2014.06.001_bib0200 article-title: Bone cell interactions through Eph/ephrin: bone modeling, remodeling and associated diseases publication-title: Cell Adh. Migr. doi: 10.4161/cam.20888 – volume: 349 start-page: 1216 year: 2003 ident: 10.1016/j.molmed.2014.06.001_bib0240 article-title: The effects of parathyroid hormone, alendronate, or both in men with osteoporosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa035725 – volume: 19 start-page: 358 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0485 article-title: Blockade of receptor activator of nuclear factor-kappaB (RANKL) signaling improves hepatic insulin resistance and prevents development of diabetes mellitus publication-title: Nat. Med. doi: 10.1038/nm.3084 – volume: 42 start-page: 68 year: 2008 ident: 10.1016/j.molmed.2014.06.001_bib0305 article-title: Bisphosphonates reduce local recurrence in extremity giant cell tumor of bone: a case–control study publication-title: Bone doi: 10.1016/j.bone.2007.08.038 – volume: 162 start-page: 57 year: 2003 ident: 10.1016/j.molmed.2014.06.001_bib0365 article-title: Genotype–phenotype relationship in human ATP6i-dependent autosomal recessive osteopetrosis publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)63798-4 – volume: 174 start-page: 2160 year: 2009 ident: 10.1016/j.molmed.2014.06.001_bib0375 article-title: Osteoprotegerin abrogated cortical porosity and bone marrow fibrosis in a mouse model of constitutive activation of the PTH/PTHrP receptor publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2009.081026 – volume: 17 start-page: 1473 year: 2011 ident: 10.1016/j.molmed.2014.06.001_bib0595 article-title: Suppression of bone formation by osteoclastic expression of semaphorin 4D publication-title: Nat. Med. doi: 10.1038/nm.2489 – volume: 285 start-page: 28164 year: 2010 ident: 10.1016/j.molmed.2014.06.001_bib0230 article-title: Are osteoclasts needed for the bone anabolic response to parathyroid hormone? A study of intermittent parathyroid hormone with denosumab or alendronate in knock-in mice expressing humanized RANKL publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.101964 – volume: 68 start-page: 1 year: 2011 ident: 10.1016/j.molmed.2014.06.001_bib0330 article-title: Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-010-0465-9 – volume: 23 start-page: 2025 year: 2008 ident: 10.1016/j.molmed.2014.06.001_bib0615 article-title: Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.080706 – volume: 98 start-page: 1848 year: 2013 ident: 10.1016/j.molmed.2014.06.001_bib0400 article-title: Osteoclasts are not crucial for hematopoietic stem cell maintenance in adult mice publication-title: Haematologica doi: 10.3324/haematol.2013.089466 – volume: 67 start-page: 1603 year: 2008 ident: 10.1016/j.molmed.2014.06.001_bib0560 article-title: CTLA-4 directly inhibits osteoclast formation publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.2007.080713 – volume: 12 start-page: 657 year: 2006 ident: 10.1016/j.molmed.2014.06.001_bib0450 article-title: Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells publication-title: Nat. Med. doi: 10.1038/nm1417 – volume: 39 start-page: 960 year: 2007 ident: 10.1016/j.molmed.2014.06.001_bib0050 article-title: Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL publication-title: Nat. Genet. doi: 10.1038/ng2076 |
SSID | ssj0015778 |
Score | 2.572502 |
SecondaryResourceType | review_article |
Snippet | •Osteoclasts modify the skeletal environment beyond their ability to resorb bone.•Bone-forming osteoblasts and their precursors are regulated by... Highlights • Osteoclasts modify the skeletal environment beyond their ability to resorb bone. • Bone-forming osteoblasts and their precursors are regulated by... As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone-forming osteoblasts, and... As the only cells definitively shown to degrade bone, osteoclasts are key mediators of skeletal diseases including osteoporosis. Bone forming osteoblasts, and... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 449 |
SubjectTerms | Animals Bone and Bones - metabolism Bone and Bones - pathology Bone Remodeling Bone Resorption - metabolism Bone Resorption - pathology Fibrous Dysplasia of Bone - metabolism Fibrous Dysplasia of Bone - pathology Giant Cell Tumor of Bone - metabolism Giant Cell Tumor of Bone - pathology Humans osteoblast osteoclast Osteoclasts - cytology Osteoclasts - metabolism Osteoclasts - pathology Osteogenesis osteopetrosis Osteopetrosis - metabolism Osteopetrosis - pathology osteoporosis Osteoporosis - metabolism Osteoporosis - pathology Pathology PTH |
Title | Osteoclasts: more than ‘bone eaters’ |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1471491414000884 https://www.clinicalkey.es/playcontent/1-s2.0-S1471491414000884 https://dx.doi.org/10.1016/j.molmed.2014.06.001 https://www.ncbi.nlm.nih.gov/pubmed/25008556 https://www.proquest.com/docview/1562664104 https://pubmed.ncbi.nlm.nih.gov/PMC4119859 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hUKteKgpt2ZaiVOqhF7PrrH8SbgiBtq2gB4rEzYr_1K1KFnWXQy8Vj9G-Hk_CTJysWKCiqpSLE1t2JuNvZuLPY4B3hZcazW7Ooqs8EzzXzBayYD6KEFXQCJy0G_nwSI1OxMdTeboEe91eGKJVttifML1B6_ZOv5Vm_3w87h9zxFVRcoEhAhqygnKCCqFJy7d_zWkeXOoGjakyo9rd9rmG43VGtH_KF8rFdlqV-Jt5uut-3mZR3jBLB6vwtPUns9005GewFOo1eJROmPy5Bo8P27XzdXj_GT_oxKG3PJvuZMSvzei3eXZ1-dtO6pAhKKMreHX55zmcHOx_2Rux9pwE5qTmM6aiDhgmOO508HwYMcLyAq8oKlVGF4WvBsoXPqdwIqI5yiNGQWGgK62stHH4ApZr7GgDstxZXZQqBDl0AguWW6lFtDHPuR_IogfDTjzGtUnE6SyL76Zji30zSaiGhGoSaa4HbN7qPCXReKC-7CRvug2iCGkGUf6Bdvq-dmHazsup4Waam4G5ozs3Wy6o3z_0-bZTDYMzk5ZbqjpMLrAvdC2VEvg1evAyqcr87dHxJIKgwn4XlGhegbJ-Lz6px1-b7N-C87KQ5av_HvFreEKlxGLchOXZj4vwBj2rmd1qps4WrOx--DQ6ugbpQSPO |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6FolIuCNJXeG6lHri4iTd-7HJDFVWAphyaSr1Z65caRDdVkx56Qf0Z8Pf6Sxivd6OGgIqQ9rJrW_bOjr-ZWX8eA-xmlks0uynxprCE0VQSnfGMWM-cF04icIbdyMMjMThhn075aQv2m70wgVZZY3_E9Aqt6yfdWprdi_G4e0wRV1lOGYYIaMgy9gAeMpy-4RiDve9zngflsoLjUJuE6s3-uYrkdR54_yFhKGV7cVnib_Zp2f_8nUZ5xy4dPIUntUOZvI9jfgYtV7ZhNR4xed2GR8N68Xwd3n7BLzox6C7Ppu-SQLBNwn_z5Pbmh56ULkFURl_w9ubnBpwcfBjtD0h9UAIxXNIZEV46jBMMNdJZ2vcYYlmGl2eFyL3xzBY9YTObhnjCoz1KPYZBricLKTTXvr8JKyV2tA1JarTMcuEc7xuGN5pqLpnXPk2p7fGsA_1GPMrUWcTDYRbfVEMX-6qiUFUQqoqsuQ6QeauLmEXjnvq8kbxqdogipimE-XvayT-1c9N6Yk4VVdNU9dSS8txtuaB__9DnTqMaCqdmWG8pSje5wr7QtxSC4dfowFZUlfnbo-cZGIIC-11QonmFkPZ7saQcn1Xpvxmlecbz5_894jewNhgND9Xhx6PPL-BxKImUxpewMru8cq_QzZrp19U0-gVXOiVc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Osteoclasts%3A+more+than+%E2%80%98bone+eaters%E2%80%99&rft.jtitle=Trends+in+molecular+medicine&rft.au=Charles%2C+Julia+F.&rft.au=Aliprantis%2C+Antonios+O.&rft.date=2014-08-01&rft.pub=Elsevier+Ltd&rft.issn=1471-4914&rft.volume=20&rft.issue=8&rft.spage=449&rft.epage=459&rft_id=info:doi/10.1016%2Fj.molmed.2014.06.001&rft.externalDocID=S1471491414000884 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F14714914%2FS1471491414X00079%2Fcov150h.gif |