Targeting hypoxia in solid and haematological malignancies

Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand for oxygen can outstrip supply reducing tumour oxygenation. In solid tumours this is contributed to by disorganized blood vessel development....

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental & clinical cancer research Vol. 41; no. 1; pp. 1 - 16
Main Authors Harris, Bill, Saleem, Sana, Cook, Natalie, Searle, Emma
Format Journal Article
LanguageEnglish
Published London BioMed Central Ltd 02.11.2022
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand for oxygen can outstrip supply reducing tumour oxygenation. In solid tumours this is contributed to by disorganized blood vessel development. Tumour hypoxia is associated with resistance to treatment, more aggressive disease behaviour and an increased likelihood of metastatic progression. It can be measured using both invasive and non-invasive methods to varying degrees of accuracy. The presence of hypoxia stimulates a complex cellular network of downstream factors including Hypoxia Inducible Factor 1 (HIF1), C-X-C motif chemokine 4 (CXCR4) and Hypoxia‐inducible glycolytic enzyme hexokinase‐2 (HK2) amongst many others. They work by affecting different mechanisms including influencing angiogenesis, treatment resistance, immune surveillance and the ability to metastasize all of which contribute to a more aggressive disease pattern. Tumour hypoxia has been correlated with poorer outcomes and worse prognosis in patients. The correlation between hypoxic microenvironments and poor prognosis has led to an interest in trying to therapeutically target this phenomenon. Various methods have been used to target hypoxic microenvironments. Hypoxia-activated prodrugs (HAPs) are drugs that are only activated within hypoxic environments and these agents have been subject to investigation in several clinical trials. Drugs that target downstream factors of hypoxic environments including HIF inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (anti-VEGF) therapies are also in development and being used in combination in clinical trials. Despite promising pre-clinical data, clinical trials of hypoxia targeting strategies have proven challenging. Further understanding of the effect of hypoxia and related molecular mechanisms in human rather than animal models is required to guide novel therapeutic strategies and future trial design. This review will discuss the currently available methods of hypoxia targeting and assessments that may be considered in planning future clinical trials. It will also outline key trials to date in both the solid and haemato-oncology treatment spheres and discuss the limitations that may have impacted on clinical success to date.
AbstractList Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand for oxygen can outstrip supply reducing tumour oxygenation. In solid tumours this is contributed to by disorganized blood vessel development. Tumour hypoxia is associated with resistance to treatment, more aggressive disease behaviour and an increased likelihood of metastatic progression. It can be measured using both invasive and non-invasive methods to varying degrees of accuracy. The presence of hypoxia stimulates a complex cellular network of downstream factors including Hypoxia Inducible Factor 1 (HIF1), C-X-C motif chemokine 4 (CXCR4) and Hypoxia‐inducible glycolytic enzyme hexokinase‐2 (HK2) amongst many others. They work by affecting different mechanisms including influencing angiogenesis, treatment resistance, immune surveillance and the ability to metastasize all of which contribute to a more aggressive disease pattern. Tumour hypoxia has been correlated with poorer outcomes and worse prognosis in patients. The correlation between hypoxic microenvironments and poor prognosis has led to an interest in trying to therapeutically target this phenomenon. Various methods have been used to target hypoxic microenvironments. Hypoxia-activated prodrugs (HAPs) are drugs that are only activated within hypoxic environments and these agents have been subject to investigation in several clinical trials. Drugs that target downstream factors of hypoxic environments including HIF inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (anti-VEGF) therapies are also in development and being used in combination in clinical trials. Despite promising pre-clinical data, clinical trials of hypoxia targeting strategies have proven challenging. Further understanding of the effect of hypoxia and related molecular mechanisms in human rather than animal models is required to guide novel therapeutic strategies and future trial design. This review will discuss the currently available methods of hypoxia targeting and assessments that may be considered in planning future clinical trials. It will also outline key trials to date in both the solid and haemato-oncology treatment spheres and discuss the limitations that may have impacted on clinical success to date.
Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand for oxygen can outstrip supply reducing tumour oxygenation. In solid tumours this is contributed to by disorganized blood vessel development. Tumour hypoxia is associated with resistance to treatment, more aggressive disease behaviour and an increased likelihood of metastatic progression. It can be measured using both invasive and non-invasive methods to varying degrees of accuracy. The presence of hypoxia stimulates a complex cellular network of downstream factors including Hypoxia Inducible Factor 1 (HIF1), C-X-C motif chemokine 4 (CXCR4) and Hypoxia-inducible glycolytic enzyme hexokinase-2 (HK2) amongst many others. They work by affecting different mechanisms including influencing angiogenesis, treatment resistance, immune surveillance and the ability to metastasize all of which contribute to a more aggressive disease pattern. Tumour hypoxia has been correlated with poorer outcomes and worse prognosis in patients. The correlation between hypoxic microenvironments and poor prognosis has led to an interest in trying to therapeutically target this phenomenon. Various methods have been used to target hypoxic microenvironments. Hypoxia-activated prodrugs (HAPs) are drugs that are only activated within hypoxic environments and these agents have been subject to investigation in several clinical trials. Drugs that target downstream factors of hypoxic environments including HIF inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (anti-VEGF) therapies are also in development and being used in combination in clinical trials. Despite promising pre-clinical data, clinical trials of hypoxia targeting strategies have proven challenging. Further understanding of the effect of hypoxia and related molecular mechanisms in human rather than animal models is required to guide novel therapeutic strategies and future trial design. This review will discuss the currently available methods of hypoxia targeting and assessments that may be considered in planning future clinical trials. It will also outline key trials to date in both the solid and haemato-oncology treatment spheres and discuss the limitations that may have impacted on clinical success to date. Keywords: Hypoxia, Cancer, Haematological, Solid tumours
Abstract Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand for oxygen can outstrip supply reducing tumour oxygenation. In solid tumours this is contributed to by disorganized blood vessel development. Tumour hypoxia is associated with resistance to treatment, more aggressive disease behaviour and an increased likelihood of metastatic progression. It can be measured using both invasive and non-invasive methods to varying degrees of accuracy. The presence of hypoxia stimulates a complex cellular network of downstream factors including Hypoxia Inducible Factor 1 (HIF1), C-X-C motif chemokine 4 (CXCR4) and Hypoxia‐inducible glycolytic enzyme hexokinase‐2 (HK2) amongst many others. They work by affecting different mechanisms including influencing angiogenesis, treatment resistance, immune surveillance and the ability to metastasize all of which contribute to a more aggressive disease pattern. Tumour hypoxia has been correlated with poorer outcomes and worse prognosis in patients. The correlation between hypoxic microenvironments and poor prognosis has led to an interest in trying to therapeutically target this phenomenon. Various methods have been used to target hypoxic microenvironments. Hypoxia-activated prodrugs (HAPs) are drugs that are only activated within hypoxic environments and these agents have been subject to investigation in several clinical trials. Drugs that target downstream factors of hypoxic environments including HIF inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (anti-VEGF) therapies are also in development and being used in combination in clinical trials. Despite promising pre-clinical data, clinical trials of hypoxia targeting strategies have proven challenging. Further understanding of the effect of hypoxia and related molecular mechanisms in human rather than animal models is required to guide novel therapeutic strategies and future trial design. This review will discuss the currently available methods of hypoxia targeting and assessments that may be considered in planning future clinical trials. It will also outline key trials to date in both the solid and haemato-oncology treatment spheres and discuss the limitations that may have impacted on clinical success to date.
Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand for oxygen can outstrip supply reducing tumour oxygenation. In solid tumours this is contributed to by disorganized blood vessel development. Tumour hypoxia is associated with resistance to treatment, more aggressive disease behaviour and an increased likelihood of metastatic progression. It can be measured using both invasive and non-invasive methods to varying degrees of accuracy. The presence of hypoxia stimulates a complex cellular network of downstream factors including Hypoxia Inducible Factor 1 (HIF1), C-X-C motif chemokine 4 (CXCR4) and Hypoxia-inducible glycolytic enzyme hexokinase-2 (HK2) amongst many others. They work by affecting different mechanisms including influencing angiogenesis, treatment resistance, immune surveillance and the ability to metastasize all of which contribute to a more aggressive disease pattern. Tumour hypoxia has been correlated with poorer outcomes and worse prognosis in patients. The correlation between hypoxic microenvironments and poor prognosis has led to an interest in trying to therapeutically target this phenomenon. Various methods have been used to target hypoxic microenvironments. Hypoxia-activated prodrugs (HAPs) are drugs that are only activated within hypoxic environments and these agents have been subject to investigation in several clinical trials. Drugs that target downstream factors of hypoxic environments including HIF inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (anti-VEGF) therapies are also in development and being used in combination in clinical trials. Despite promising pre-clinical data, clinical trials of hypoxia targeting strategies have proven challenging. Further understanding of the effect of hypoxia and related molecular mechanisms in human rather than animal models is required to guide novel therapeutic strategies and future trial design. This review will discuss the currently available methods of hypoxia targeting and assessments that may be considered in planning future clinical trials. It will also outline key trials to date in both the solid and haemato-oncology treatment spheres and discuss the limitations that may have impacted on clinical success to date.Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand for oxygen can outstrip supply reducing tumour oxygenation. In solid tumours this is contributed to by disorganized blood vessel development. Tumour hypoxia is associated with resistance to treatment, more aggressive disease behaviour and an increased likelihood of metastatic progression. It can be measured using both invasive and non-invasive methods to varying degrees of accuracy. The presence of hypoxia stimulates a complex cellular network of downstream factors including Hypoxia Inducible Factor 1 (HIF1), C-X-C motif chemokine 4 (CXCR4) and Hypoxia-inducible glycolytic enzyme hexokinase-2 (HK2) amongst many others. They work by affecting different mechanisms including influencing angiogenesis, treatment resistance, immune surveillance and the ability to metastasize all of which contribute to a more aggressive disease pattern. Tumour hypoxia has been correlated with poorer outcomes and worse prognosis in patients. The correlation between hypoxic microenvironments and poor prognosis has led to an interest in trying to therapeutically target this phenomenon. Various methods have been used to target hypoxic microenvironments. Hypoxia-activated prodrugs (HAPs) are drugs that are only activated within hypoxic environments and these agents have been subject to investigation in several clinical trials. Drugs that target downstream factors of hypoxic environments including HIF inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (anti-VEGF) therapies are also in development and being used in combination in clinical trials. Despite promising pre-clinical data, clinical trials of hypoxia targeting strategies have proven challenging. Further understanding of the effect of hypoxia and related molecular mechanisms in human rather than animal models is required to guide novel therapeutic strategies and future trial design. This review will discuss the currently available methods of hypoxia targeting and assessments that may be considered in planning future clinical trials. It will also outline key trials to date in both the solid and haemato-oncology treatment spheres and discuss the limitations that may have impacted on clinical success to date.
ArticleNumber 318
Audience Academic
Author Searle, Emma
Harris, Bill
Saleem, Sana
Cook, Natalie
Author_xml – sequence: 1
  givenname: Bill
  surname: Harris
  fullname: Harris, Bill
– sequence: 2
  givenname: Sana
  surname: Saleem
  fullname: Saleem, Sana
– sequence: 3
  givenname: Natalie
  surname: Cook
  fullname: Cook, Natalie
– sequence: 4
  givenname: Emma
  orcidid: 0000-0002-3942-3081
  surname: Searle
  fullname: Searle, Emma
BookMark eNp9UltrFDEYHaSCbfUP-DQgiC9Tc5tcfBBK0bZQ8KU-h28ymZksmWRNZsT992a7FbtFJORCcs75TpJzVp2EGGxVvcXoAmPJP2ZMEeMNIqT0toy7F9UpFi1vlOL85Mn6VXWW8wYhjhVWp9Wne0ijXVwY62m3jb8c1C7UOXrX1xD6egI7wxJ9HJ0BX8_g3RggGGfz6-rlAD7bN4_zefX965f7q5vm7tv17dXlXWNagZeGFz8d413x11NseowHJYRQxcJAWsyM5a3oMJItpUwIySShEjgXzGLoJafn1e1Bt4-w0dvkZkg7HcHph42YRg1pccZbrTphwMoO9YNilFmJh1Z2dmCG4uKAFK3PB63t2s22NzYsCfyR6PFJcJMe40-tOJFYoCLw4VEgxR-rzYueXTbWewg2rlkTQTEjivK973fPoJu4plCeao8SvFyYqb-oEcoFXBhiqWv2ovpSECYZQkoU1MU_UKX1dnamZGFwZf-I8P4JYbLgl6n86rq4GPIxUB6AJsWckx20cQvsYaWC8xojvU-YPiRMl4Tph4TpXaGSZ9Q_7_gf0m8BbNI6
CitedBy_id crossref_primary_10_1186_s12964_024_01762_z
crossref_primary_10_1016_j_biopha_2024_116783
crossref_primary_10_1007_s12672_024_01282_9
crossref_primary_10_1186_s12935_024_03558_0
crossref_primary_10_1007_s12282_024_01543_z
crossref_primary_10_1016_j_canlet_2024_217116
crossref_primary_10_1021_acsnano_3c08346
crossref_primary_10_1002_smll_202410214
crossref_primary_10_1016_j_advms_2024_07_007
crossref_primary_10_1186_s13148_023_01566_x
crossref_primary_10_1177_15330338241261615
crossref_primary_10_3390_life13051176
crossref_primary_10_1002_bmc_5981
crossref_primary_10_1016_j_actbio_2024_01_010
crossref_primary_10_3390_cancers16030505
crossref_primary_10_1111_jpi_12900
crossref_primary_10_1016_j_heliyon_2024_e41346
crossref_primary_10_3389_fmolb_2023_1261273
crossref_primary_10_3892_ijo_2024_5684
crossref_primary_10_1007_s00424_023_02902_z
crossref_primary_10_18632_aging_205517
crossref_primary_10_1016_j_mtbio_2024_101009
crossref_primary_10_1016_j_xgen_2025_100764
crossref_primary_10_1016_j_cellsig_2024_111236
crossref_primary_10_1002_mco2_791
crossref_primary_10_1210_endocr_bqad139
crossref_primary_10_3390_biology13110860
crossref_primary_10_3390_polym15061400
Cites_doi 10.1016/j.ejro.2015.11.003
10.1016/S1053-4296(96)80034-8
10.1200/JCO.2001.19.16.3660
10.1002/pbc.26414
10.1038/leu.2010.193
10.1158/0008-5472.CAN-05-4598
10.3324/haematol.2017.183418
10.1126/science.1228522
10.1200/JCO.2016.70.5350
10.1016/B978-0-12-394307-1.00003-5
10.4161/cbt.28163
10.1128/MCB.00552-06
10.1111/j.1349-7006.2009.01195.x
10.1186/s12943-019-1089-9
10.1182/blood-2004-07-2958
10.1038/bjc.2017.430
10.1111/cas.15087
10.1093/annonc/mdw188
10.1093/annonc/mdx493
10.1158/0008-5472.CAN-13-0992
10.1186/1471-2407-12-496
10.1002/cncr.33338
10.1007/BF01612759
10.1084/jem.20100587
10.1182/blood.V124.21.386.386
10.1016/j.ceb.2012.01.005
10.1200/JCO.2016.34.15_suppl.4007
10.1038/nature15748
10.5966/sctm.2013-0166
10.1056/NEJMoa2103425
10.2147/HP.S93413
10.2967/jnumed.112.109330
10.1158/1078-0432.CCR-03-0135
10.18632/oncotarget.3142
10.4161/cc.3.2.618
10.1158/0008-5472.CAN-15-3435
10.1182/blood-2011-09-380410
10.1038/nrc3183
10.2174/092986712800167392
10.1634/stemcells.2007-1016
10.1073/pnas.1603018113
10.1007/s00066-008-1813-7
10.1038/s41374-018-0114-8
10.1200/JCO.2005.01.3771
10.1080/09553000903043059
10.1111/j.1600-065X.2012.01155.x
10.1016/j.stem.2011.02.006
10.1158/0008-5472.CAN-08-4023
10.1038/s41586-020-1971-z
10.1016/j.dnarep.2015.04.030
10.2174/156802609789895719
10.1038/nature16064
10.1593/tlo.12319
10.1007/s00280-009-1188-1
10.1200/JCO.2014.55.7504
10.1007/s00330-013-2937-4
10.1007/BF00689805
10.1007/s00280-017-3256-2
10.1200/JCO.2015.60.9727
10.1200/JCO.2001.19.2.535
10.1038/cdd.2008.21
10.18632/oncotarget.2163
10.1038/bjc.2016.218
10.1007/s10549-012-2398-5
10.1074/jbc.M111.257055
10.1038/bjc.2011.555
10.1158/0008-5472.CAN-08-2516
10.1007/s10555-007-9055-1
10.1007/s13277-014-2056-0
10.1200/JCO.2008.21.3868
10.1172/JCI30487
10.4161/cbt.20838
10.1016/j.ijrobp.2007.01.071
10.1016/j.cell.2011.02.013
10.1038/nrc1276
10.1016/j.molcel.2009.09.006
10.1634/stemcells.20-4-347
10.1038/s41591-021-01324-7
10.1158/1078-0432.CCR-05-2690
10.1016/j.stem.2010.06.020
10.1002/ijc.2910560124
10.3324/haematol.2014.118455
10.1158/0008-5472.CAN-20-0950
10.1002/ajh.24415
10.1016/S0163-7258(97)00086-7
10.1038/ni.3273
10.1007/s00277-018-3229-5
10.3324/haematol.2009.015628
10.7717/peerj.11275
10.1002/nbm.1940070305
10.1007/s10549-007-9742-1
10.1182/blood-2003-07-2490
10.1021/jm701028q
10.1016/j.nano.2011.09.007
10.1016/j.cell.2012.01.021
10.2337/diabetes.50.6.1482
10.1111/bjh.12560
10.1111/imr.12233
10.1046/j.1365-2184.2000.00183.x
10.1038/onc.2010.455
10.1158/1078-0432.CCR-06-2250
10.1097/MD.0000000000006561
10.1016/j.ijrobp.2007.01.018
10.1002/nbm.2804
10.1016/j.leukres.2015.04.019
10.1016/S1470-2045(17)30381-9
10.1158/0008-5472.CAN-10-1439
10.2147/JHC.S304275
10.1007/s10637-013-9946-7
10.1182/blood-2007-11-120576
10.2967/jnumed.107.048520
10.1158/1535-7163.MCT-09-0150
10.1158/1078-0432.CCR-13-0674
10.1124/mol.62.5.975
10.1038/onc.2013.171
10.1200/JCO.2017.74.2627
10.1200/JCO.2007.13.7083
10.1007/s10637-011-9739-9
10.1016/j.ejca.2013.05.020
10.31557/APJCP.2019.20.3.705
10.1002/1522-2586(200012)12:6%3C929::AID-JMRI17%3E3.0.CO
10.1073/pnas.0506070102
10.1016/j.apsb.2015.05.007
10.1200/JCO.2007.13.3652
10.1158/0008-5472.CAN-03-3139
10.1158/1078-0432.CCR-08-0364
10.1093/jnci/dji251
10.1016/S0888-7543(03)00215-5
10.1158/0008-5472.CAN-13-2584
10.1016/j.radonc.2021.03.014
10.1158/1078-0432.CCR-11-0666
10.1021/bc0340924
10.1074/jbc.M109.020925
10.1158/1078-0432.CCR-18-1325
10.1038/s41568-020-0245-2
10.18632/oncotarget.13955
10.1038/nature13034
ContentType Journal Article
Copyright COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
The Author(s) 2022
Copyright_xml – notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
– notice: The Author(s) 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13046-022-02522-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


Publicly Available Content Database



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1756-9966
EndPage 16
ExternalDocumentID oai_doaj_org_article_9b7cae8b0df9434e81f58bef4c316b02
PMC9628170
A724840097
10_1186_s13046_022_02522_y
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID ---
0R~
29K
2WC
4.4
5GY
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
D-I
DIK
DU5
E3Z
EBD
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
TR2
TUS
UKHRP
~8M
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c571t-6252b46b046d31cd11f97779006f2514ce657b108533477848238a6674e1ad863
IEDL.DBID 7X7
ISSN 1756-9966
0392-9078
IngestDate Wed Aug 27 01:15:01 EDT 2025
Thu Aug 21 18:39:01 EDT 2025
Fri Jul 11 02:43:11 EDT 2025
Fri Jul 25 23:12:36 EDT 2025
Tue Jun 17 21:44:18 EDT 2025
Tue Jun 10 20:25:32 EDT 2025
Thu May 22 21:21:56 EDT 2025
Thu Apr 24 23:10:05 EDT 2025
Tue Jul 01 02:26:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c571t-6252b46b046d31cd11f97779006f2514ce657b108533477848238a6674e1ad863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3942-3081
OpenAccessLink https://www.proquest.com/docview/2737685349?pq-origsite=%requestingapplication%
PQID 2737685349
PQPubID 105475
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_9b7cae8b0df9434e81f58bef4c316b02
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9628170
proquest_miscellaneous_2731429366
proquest_journals_2737685349
gale_infotracmisc_A724840097
gale_infotracacademiconefile_A724840097
gale_healthsolutions_A724840097
crossref_citationtrail_10_1186_s13046_022_02522_y
crossref_primary_10_1186_s13046_022_02522_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-02
PublicationDateYYYYMMDD 2022-11-02
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of experimental & clinical cancer research
PublicationYear 2022
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References C Christodoulou (2522_CR10) 2020; 578
O Frolova (2522_CR52) 2012; 13
2522_CR83
2522_CR84
2522_CR86
2522_CR88
2522_CR89
D Mahadevan (2522_CR66) 2004; 104
M Liu (2522_CR87) 2013; 23
GJ Hutchison (2522_CR72) 2004; 10
T Hillestad (2522_CR85) 2020; 80
R Raja (2522_CR82) 2014; 33
2522_CR70
2522_CR71
2522_CR75
2522_CR77
2522_CR79
D Martínez-Cuadrón (2522_CR133) 2018; 97
S Portwood (2522_CR74) 2013; 19
A Yamada (2522_CR65) 2013; 137
2522_CR143
2522_CR142
E Griessinger (2522_CR25) 2014; 3
2522_CR141
S Colla (2522_CR19) 2010; 24
X Zheng (2522_CR31) 2015; 527
2522_CR21
2522_CR23
2522_CR24
KR Fischer (2522_CR30) 2015; 527
2522_CR27
2522_CR29
JA Loncaster (2522_CR76) 2001; 61
ST Shibutani (2522_CR38) 2015; 16
DZ Qian (2522_CR59) 2006; 66
Y Hu (2522_CR54) 2009; 8
2522_CR90
2522_CR132
2522_CR91
2522_CR131
2522_CR130
2522_CR93
2522_CR94
2522_CR95
2522_CR96
2522_CR97
2522_CR98
2522_CR11
2522_CR99
2522_CR139
2522_CR12
2522_CR138
2522_CR13
2522_CR137
2522_CR14
2522_CR136
2522_CR135
2522_CR16
2522_CR17
2522_CR18
E van Cutsem (2522_CR119) 2016; 34
2522_CR123
2522_CR122
2522_CR121
2522_CR120
2522_CR40
2522_CR41
DJ Manalo (2522_CR44) 2005; 105
2522_CR43
2522_CR129
2522_CR128
2522_CR45
2522_CR127
2522_CR46
2522_CR126
2522_CR47
2522_CR125
2522_CR48
2522_CR124
2522_CR49
PS Becker (2522_CR134) 2014; 124
EB Rankin (2522_CR4) 2008; 15
X Jing (2522_CR62) 2019; 18
JHAM Kaanders (2522_CR73) 2002; 62
2522_CR112
2522_CR111
V Desplat (2522_CR22) 2002; 20
2522_CR110
DH Shin (2522_CR50) 2008; 111
LH Patterson (2522_CR92) 1993; 12
2522_CR32
2522_CR118
2522_CR33
2522_CR117
2522_CR34
2522_CR116
2522_CR35
2522_CR115
2522_CR36
2522_CR114
2522_CR37
2522_CR113
Y Liu (2522_CR28) 2014; 35
JR Porter (2522_CR101) 2009; 9
E Dean (2522_CR42) 2012; 106
FJ Rodríguez-Jiménez (2522_CR39) 2008; 26
M Tsubaki (2522_CR55) 2019; 99
2522_CR100
2522_CR1
P Swietach (2522_CR140) 2010; 29
2522_CR2
W Krüger (2522_CR7) 1991; 117
2522_CR60
2522_CR61
2522_CR63
2522_CR109
2522_CR8
2522_CR64
2522_CR108
2522_CR9
2522_CR107
2522_CR106
2522_CR3
2522_CR105
2522_CR68
2522_CR104
2522_CR69
2522_CR103
2522_CR102
CP Sodhi (2522_CR80) 2001; 50
P Vaupel (2522_CR5) 2007; 26
AK Azab (2522_CR20) 2012; 119
M Kappler (2522_CR78) 2008; 184
2522_CR51
EP Hui (2522_CR81) 2008; 14
Y Yamamoto (2522_CR6) 2008; 110
2522_CR53
2522_CR56
S Méndez-Ferrer (2522_CR15) 2020; 20
2522_CR57
2522_CR58
A Palmeira (2522_CR67) 2012; 19
U Cavallaro (2522_CR26) 2004; 4
References_xml – ident: 2522_CR89
  doi: 10.1016/j.ejro.2015.11.003
– ident: 2522_CR68
  doi: 10.1016/S1053-4296(96)80034-8
– ident: 2522_CR77
  doi: 10.1200/JCO.2001.19.16.3660
– ident: 2522_CR131
  doi: 10.1002/pbc.26414
– ident: 2522_CR103
– volume: 24
  start-page: 1967
  year: 2010
  ident: 2522_CR19
  publication-title: Leukemia
  doi: 10.1038/leu.2010.193
– volume: 66
  start-page: 8814
  year: 2006
  ident: 2522_CR59
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-4598
– ident: 2522_CR132
  doi: 10.3324/haematol.2017.183418
– ident: 2522_CR29
  doi: 10.1126/science.1228522
– ident: 2522_CR61
  doi: 10.1200/JCO.2016.70.5350
– ident: 2522_CR69
  doi: 10.1016/B978-0-12-394307-1.00003-5
– ident: 2522_CR60
  doi: 10.4161/cbt.28163
– ident: 2522_CR49
  doi: 10.1128/MCB.00552-06
– ident: 2522_CR70
  doi: 10.1111/j.1349-7006.2009.01195.x
– volume: 18
  start-page: 157
  year: 2019
  ident: 2522_CR62
  publication-title: Mol Cancer
  doi: 10.1186/s12943-019-1089-9
– volume: 105
  start-page: 659
  year: 2005
  ident: 2522_CR44
  publication-title: Blood
  doi: 10.1182/blood-2004-07-2958
– ident: 2522_CR143
  doi: 10.1038/bjc.2017.430
– ident: 2522_CR53
  doi: 10.1111/cas.15087
– ident: 2522_CR109
  doi: 10.1093/annonc/mdw188
– ident: 2522_CR110
  doi: 10.1093/annonc/mdx493
– ident: 2522_CR14
– ident: 2522_CR37
  doi: 10.1158/0008-5472.CAN-13-0992
– ident: 2522_CR125
  doi: 10.1186/1471-2407-12-496
– ident: 2522_CR130
  doi: 10.1002/cncr.33338
– volume: 117
  start-page: 409
  year: 1991
  ident: 2522_CR7
  publication-title: J Cancer Res Clin Oncol.
  doi: 10.1007/BF01612759
– ident: 2522_CR32
  doi: 10.1084/jem.20100587
– volume: 124
  start-page: 386
  year: 2014
  ident: 2522_CR134
  publication-title: Blood
  doi: 10.1182/blood.V124.21.386.386
– ident: 2522_CR13
  doi: 10.1016/j.ceb.2012.01.005
– volume: 34
  start-page: 4007
  year: 2016
  ident: 2522_CR119
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2016.34.15_suppl.4007
– volume: 527
  start-page: 472
  year: 2015
  ident: 2522_CR30
  publication-title: Nature
  doi: 10.1038/nature15748
– volume: 3
  start-page: 520
  year: 2014
  ident: 2522_CR25
  publication-title: Stem Cells Transl Med
  doi: 10.5966/sctm.2013-0166
– ident: 2522_CR111
  doi: 10.1056/NEJMoa2103425
– ident: 2522_CR3
  doi: 10.2147/HP.S93413
– ident: 2522_CR90
  doi: 10.2967/jnumed.112.109330
– volume: 10
  start-page: 8405
  year: 2004
  ident: 2522_CR72
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-03-0135
– ident: 2522_CR138
  doi: 10.18632/oncotarget.3142
– ident: 2522_CR75
  doi: 10.4161/cc.3.2.618
– ident: 2522_CR107
  doi: 10.1158/0008-5472.CAN-15-3435
– volume: 119
  start-page: 5782
  year: 2012
  ident: 2522_CR20
  publication-title: Blood
  doi: 10.1182/blood-2011-09-380410
– ident: 2522_CR2
  doi: 10.1038/nrc3183
– volume: 19
  start-page: 1946
  year: 2012
  ident: 2522_CR67
  publication-title: Curr Med Chem
  doi: 10.2174/092986712800167392
– volume: 61
  start-page: 6394
  year: 2001
  ident: 2522_CR76
  publication-title: Cancer Res
– volume: 26
  start-page: 2052
  year: 2008
  ident: 2522_CR39
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2007-1016
– ident: 2522_CR108
  doi: 10.1073/pnas.1603018113
– volume: 184
  start-page: 393
  year: 2008
  ident: 2522_CR78
  publication-title: Strahlentherapie und Onkologie
  doi: 10.1007/s00066-008-1813-7
– volume: 99
  start-page: 72
  year: 2019
  ident: 2522_CR55
  publication-title: Lab Investig
  doi: 10.1038/s41374-018-0114-8
– ident: 2522_CR124
  doi: 10.1200/JCO.2005.01.3771
– ident: 2522_CR86
  doi: 10.1080/09553000903043059
– ident: 2522_CR95
  doi: 10.1111/j.1600-065X.2012.01155.x
– ident: 2522_CR24
  doi: 10.1016/j.stem.2011.02.006
– ident: 2522_CR94
  doi: 10.1158/0008-5472.CAN-08-4023
– volume: 578
  start-page: 278
  year: 2020
  ident: 2522_CR10
  publication-title: Nature
  doi: 10.1038/s41586-020-1971-z
– ident: 2522_CR41
  doi: 10.1016/j.dnarep.2015.04.030
– volume: 9
  start-page: 1386
  year: 2009
  ident: 2522_CR101
  publication-title: Curr Top Med Chem
  doi: 10.2174/156802609789895719
– volume: 527
  start-page: 525
  year: 2015
  ident: 2522_CR31
  publication-title: Nature
  doi: 10.1038/nature16064
– ident: 2522_CR84
  doi: 10.1593/tlo.12319
– ident: 2522_CR126
  doi: 10.1007/s00280-009-1188-1
– ident: 2522_CR116
  doi: 10.1200/JCO.2014.55.7504
– volume: 23
  start-page: 3221
  year: 2013
  ident: 2522_CR87
  publication-title: Eur Radiol
  doi: 10.1007/s00330-013-2937-4
– volume: 12
  start-page: 119
  year: 1993
  ident: 2522_CR92
  publication-title: Cancer Metastasis Rev
  doi: 10.1007/BF00689805
– ident: 2522_CR114
  doi: 10.1007/s00280-017-3256-2
– ident: 2522_CR46
  doi: 10.1200/JCO.2015.60.9727
– ident: 2522_CR121
  doi: 10.1200/JCO.2001.19.2.535
– volume: 15
  start-page: 678
  year: 2008
  ident: 2522_CR4
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2008.21
– ident: 2522_CR47
  doi: 10.18632/oncotarget.2163
– ident: 2522_CR139
  doi: 10.1038/bjc.2016.218
– volume: 137
  start-page: 773
  year: 2013
  ident: 2522_CR65
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-012-2398-5
– ident: 2522_CR58
  doi: 10.1074/jbc.M111.257055
– volume: 106
  start-page: 468
  year: 2012
  ident: 2522_CR42
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2011.555
– ident: 2522_CR136
  doi: 10.1158/0008-5472.CAN-08-2516
– volume: 26
  start-page: 225
  year: 2007
  ident: 2522_CR5
  publication-title: Cancer Metastasis Rev
  doi: 10.1007/s10555-007-9055-1
– volume: 35
  start-page: 8103
  year: 2014
  ident: 2522_CR28
  publication-title: Tumor Biology
  doi: 10.1007/s13277-014-2056-0
– ident: 2522_CR123
  doi: 10.1200/JCO.2008.21.3868
– ident: 2522_CR27
  doi: 10.1172/JCI30487
– volume: 13
  start-page: 858
  year: 2012
  ident: 2522_CR52
  publication-title: Cancer Biol Ther Taylor Francis
  doi: 10.4161/cbt.20838
– ident: 2522_CR79
  doi: 10.1016/j.ijrobp.2007.01.071
– ident: 2522_CR9
  doi: 10.1016/j.cell.2011.02.013
– volume: 4
  start-page: 118
  year: 2004
  ident: 2522_CR26
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1276
– volume: 62
  start-page: 7066
  year: 2002
  ident: 2522_CR73
  publication-title: Cancer Res
– ident: 2522_CR135
  doi: 10.1016/j.molcel.2009.09.006
– volume: 20
  start-page: 347
  year: 2002
  ident: 2522_CR22
  publication-title: Stem Cells
  doi: 10.1634/stemcells.20-4-347
– ident: 2522_CR112
  doi: 10.1038/s41591-021-01324-7
– ident: 2522_CR56
  doi: 10.1158/1078-0432.CCR-05-2690
– ident: 2522_CR12
  doi: 10.1016/j.stem.2010.06.020
– ident: 2522_CR93
  doi: 10.1002/ijc.2910560124
– ident: 2522_CR127
  doi: 10.3324/haematol.2014.118455
– volume: 80
  start-page: 3993
  year: 2020
  ident: 2522_CR85
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-20-0950
– ident: 2522_CR115
  doi: 10.1002/ajh.24415
– ident: 2522_CR63
  doi: 10.1016/S0163-7258(97)00086-7
– volume: 16
  start-page: 1014
  year: 2015
  ident: 2522_CR38
  publication-title: Nat Immunol.
  doi: 10.1038/ni.3273
– volume: 97
  start-page: 763
  year: 2018
  ident: 2522_CR133
  publication-title: Ann Hematol
  doi: 10.1007/s00277-018-3229-5
– ident: 2522_CR17
  doi: 10.3324/haematol.2009.015628
– ident: 2522_CR40
  doi: 10.7717/peerj.11275
– ident: 2522_CR8
  doi: 10.1002/nbm.1940070305
– volume: 110
  start-page: 465
  year: 2008
  ident: 2522_CR6
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-007-9742-1
– volume: 104
  start-page: 1940
  year: 2004
  ident: 2522_CR66
  publication-title: Blood
  doi: 10.1182/blood-2003-07-2490
– ident: 2522_CR96
  doi: 10.1021/jm701028q
– ident: 2522_CR106
  doi: 10.1016/j.nano.2011.09.007
– ident: 2522_CR1
  doi: 10.1016/j.cell.2012.01.021
– volume: 50
  start-page: 1482
  year: 2001
  ident: 2522_CR80
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.6.1482
– ident: 2522_CR48
  doi: 10.1111/bjh.12560
– ident: 2522_CR16
  doi: 10.1111/imr.12233
– ident: 2522_CR21
  doi: 10.1046/j.1365-2184.2000.00183.x
– volume: 29
  start-page: 6509
  year: 2010
  ident: 2522_CR140
  publication-title: Oncogene
  doi: 10.1038/onc.2010.455
– ident: 2522_CR18
– ident: 2522_CR128
  doi: 10.1158/1078-0432.CCR-06-2250
– ident: 2522_CR64
  doi: 10.1097/MD.0000000000006561
– ident: 2522_CR71
  doi: 10.1016/j.ijrobp.2007.01.018
– ident: 2522_CR88
  doi: 10.1002/nbm.2804
– ident: 2522_CR51
  doi: 10.1016/j.leukres.2015.04.019
– ident: 2522_CR118
  doi: 10.1016/S1470-2045(17)30381-9
– ident: 2522_CR33
  doi: 10.1158/0008-5472.CAN-10-1439
– ident: 2522_CR122
  doi: 10.2147/JHC.S304275
– ident: 2522_CR102
  doi: 10.1007/s10637-013-9946-7
– volume: 111
  start-page: 3131
  year: 2008
  ident: 2522_CR50
  publication-title: Blood
  doi: 10.1182/blood-2007-11-120576
– ident: 2522_CR91
  doi: 10.2967/jnumed.107.048520
– volume: 8
  start-page: 2329
  year: 2009
  ident: 2522_CR54
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-09-0150
– volume: 19
  start-page: 6506
  year: 2013
  ident: 2522_CR74
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-13-0674
– ident: 2522_CR99
  doi: 10.1124/mol.62.5.975
– volume: 33
  start-page: 2053
  year: 2014
  ident: 2522_CR82
  publication-title: Oncogene
  doi: 10.1038/onc.2013.171
– ident: 2522_CR113
  doi: 10.1200/JCO.2017.74.2627
– ident: 2522_CR120
– ident: 2522_CR57
  doi: 10.1200/JCO.2007.13.7083
– ident: 2522_CR129
  doi: 10.1007/s10637-011-9739-9
– ident: 2522_CR43
  doi: 10.1016/j.ejca.2013.05.020
– ident: 2522_CR23
  doi: 10.31557/APJCP.2019.20.3.705
– ident: 2522_CR83
  doi: 10.1002/1522-2586(200012)12:6%3C929::AID-JMRI17%3E3.0.CO
– ident: 2522_CR36
  doi: 10.1073/pnas.0506070102
– ident: 2522_CR97
  doi: 10.1016/j.apsb.2015.05.007
– ident: 2522_CR141
  doi: 10.1200/JCO.2007.13.3652
– ident: 2522_CR104
  doi: 10.1158/0008-5472.CAN-03-3139
– volume: 14
  start-page: 7080
  year: 2008
  ident: 2522_CR81
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-08-0364
– ident: 2522_CR100
  doi: 10.1093/jnci/dji251
– ident: 2522_CR35
  doi: 10.1016/S0888-7543(03)00215-5
– ident: 2522_CR34
  doi: 10.1158/0008-5472.CAN-13-2584
– ident: 2522_CR142
  doi: 10.1016/j.radonc.2021.03.014
– ident: 2522_CR45
  doi: 10.1158/1078-0432.CCR-11-0666
– ident: 2522_CR105
  doi: 10.1021/bc0340924
– ident: 2522_CR137
  doi: 10.1074/jbc.M109.020925
– ident: 2522_CR117
  doi: 10.1158/1078-0432.CCR-18-1325
– volume: 20
  start-page: 285
  year: 2020
  ident: 2522_CR15
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-020-0245-2
– ident: 2522_CR98
  doi: 10.18632/oncotarget.13955
– ident: 2522_CR11
  doi: 10.1038/nature13034
SSID ssj0061919
Score 2.4731824
SecondaryResourceType review_article
Snippet Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand...
Abstract Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Analysis
Angiogenesis
Apoptosis
Biomarkers
Biopsy
Blood cancer
Bone marrow
Book publishing
Breast cancer
Cancer
Cancer therapies
Chemotherapy
Clinical outcomes
Enzymes
Epidemiology
Gene expression
Haematological
Hematology
Human subjects
Hypoxia
Immune system
Leukemia
Metabolism
Metastasis
Multiple myeloma
Oncology, Experimental
Patients
Radiation therapy
Review
Signal transduction
Solid tumours
Stem cells
Supply and demand
T cell receptors
Treatment resistance
Tumors
Vascular endothelial growth factor
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hHhAXRPkQgRaChMQBRY1jx3a4tRVVhQSnVurN8lfYlSBbsVup--87YyerBiS4cNnDeiKt33g88zbjZ4D3ymHW76Wu6sBihXzDYkh1vFLIDQLmy9rZpPb5TZ5fii9X7dW9q76oJyzLA2fgjjqnvI3a1aEnKbOoWd9qF3vhOZMuy0hizpvIVN6DkRWwbjoio-XRmtELwIo61zHH4-d2loaSWv-fe_LvfZL3Es_ZE3g8Vozlcf6l-_AgDk_h4dfxnfgz-HSRmrkxBZWL7fXqdmnL5VDiklqG0g6hXFiSZZ32uPInFt7f85286-dwefb54vS8Gm9EqHyr2KZCstI4gdMWMnDmA2M91m-qwxn3WKgIH2WrHB0o4FwopYXGjGylVCIyG7TkL2BvWA3xJZTCKY6lS91rj6SldU6gz7D-qEO06DddAJsAMn6UC6dbK36YRBu0NBlUg6CaBKrZFvBx98x1Fsv4q_UJ4b6zJKHr9AW634zuN_9yfwFvyWsmnxrdhas5Vo1A7lp3qoAPyYICFifg7XjuAGEg6auZ5cHMEgPNz4enlWHGQF8bhBAJW8tFV8C73TA9Sc1rQ1zdJBuGaZ9LWYCarajZ3Ocjw3KRxL472ZCG4qv_AdZreNRQDNC_4s0B7G1-3cRDrKk27k0Knztfthtm
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB9qBfFF6heuVl1B8EFWN5tskhVEqliKUJ960LeQZLO9g3av3l2h9993JvuBq6Uv-7CZ7JLJzP5mNslvAN4rh6jfSJ3lNQsZ5hsWXarimcLcoEa8zJ2NbJ-_5dFM_DotT3dgKHfUK3B9a2pH9aRmq_NP13-239Dhv0aH1_LzmtHyXkb70hHB8bq9B_cRmRRVNDgW46oC5gqx0Acipswozh8O0dz6jAlQRT7__7_a_-6k_AuaDvfgUR9TpgedETyGndA-gQfH_ar5U_hyErd7I0il8-3l8nph00WbotEt6tS2dTq3RNw6fAXTCwzNz7qqvetnMDv8efLjKOtrJmS-VGyTYTpTOCEdDqbmzNeMNRjhqQpH32AoI3yQpXJ05IBzoZQWGjHbSqlEYLbWkj-H3XbZhheQCqc4Bjd5oz2mNaVzAmcVI5S8DhZnVifABgUZ3xOKU12LcxMTCy1Np1SDSjVRqWabwMexz2VHp3Gn9HfS-yhJVNjxxnJ1ZnrPMpVT3gbt8rohrrugWVNqFxrhOUM9FAm8pVkz3bnS0aHNgSoEZrd5pRL4ECXIyHAA3vYnE1ANRI41kdyfSKIr-mnzYBlmsGSDKsSUruSiSuDd2Ew9aXtbG5ZXUYZhYMClTEBNLGoy9mlLu5hHOvBKFsSy-PLul7-ChwVZN_0RL_Zhd7O6Cq8xntq4N9FJbgBe2hdj
  priority: 102
  providerName: Scholars Portal
Title Targeting hypoxia in solid and haematological malignancies
URI https://www.proquest.com/docview/2737685349
https://www.proquest.com/docview/2731429366
https://pubmed.ncbi.nlm.nih.gov/PMC9628170
https://doaj.org/article/9b7cae8b0df9434e81f58bef4c316b02
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDDdbC2MvZZ8sW3fLYLCHERonju3sZfRGSxm0jNLCsRfjr_QOuuTau8Luv5_kOLdlg774IZYJliVLsuWfCPkgDFj9hsssd9RnEG9oUKm6zATEBg7sZW50QPs84yeX7NusmsUDt1VMqxz2xLBRu87iGfkBmFnwjKuS1V-WNxlWjcLb1VhC4yHZRegylGox2wZcEBuEwh5gIXmGfv3waEbygxXFK8EMc9nB6kO7GRmmgN___y79b-bkX6bo-AnZiz5ketgv-lPywLfPyKPTeEv-nHy-COndYJTS-WbZ_VrodNGmIGQLl-rWpXONQK3Drpf-BFf8qq_Su3pBLo-PLr6eZLFGQmYrQdcZhC-FYdzAZFxJraO0AY9O1DD7BlwXZj2vhMEnBmXJhJBMgo3WnAvmqXaSly_JTtu1_hVJmRElcDlvpIUwpjKGwSqCR5I7r2ElZULowCBlI4A41rG4ViGQkFz1TFXAVBWYqjYJ-bQds-zhM-6lniLft5QIfR0-dLdXKmqSqo2w2kuTuwax7bykTSWNb5gtKfChSMg7XDXVvyPdKrA6FAWDaDavRUI-BgpUYZiA1fElArABwbBGlPsjSlA9O-4eJENF1V-pP4KakPfbbhyJ6Wyt7-4CDQVHoOQ8IWIkUaO5j3vaxTzAf9e8QFTF1_f__A15XKB04wl4sU921rd3_i34T2szCUoyIbvTo7Pv55NwCgHtKZPQnk9__AZkJRiH
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgEXxFO4FGokEAdk1Wuvd9dICJVHldLHKZVyW3btdRMJ7LRJBflT_EZm1nbAIPXWSw7xOJFnZ-abzzs7A_BSWkT9SqgoLpmLkG8YdKk8jSRygxLxMrbGd_s8EaNT_mWSTTbgV38Whsoq-5joA3XZFPSOfBdhFjPjLOX5-_l5RFOjaHe1H6HRmsWhW_1AyrZ4d_AJ1_dVkux_Hn8cRd1UgajIJFtGmPAnlguLxLBMWVEyVmEOJHM0vwrBnhdOZNJSUX6acikVV4hqRgjJHTOlEin-7g24icAbE9mTkzXBQy7iB4kgIouIeER_SEeJ3QWjLciIaucxy8DP1QAI_byA_1Hh30rNv6Bv_x7c7XLWcK81svuw4eoHcOu425V_CG_HvpwcQTCcrubNz5kJZ3WIRj0rQ1OX4dRQY9g-yobfMfU_a6cCLx7B6bVo7zFs1k3tnkDIrUxxVeNKFUibMms5Wg1mQHHpDFqOCoD1CtJF17Cc5mZ80564KKFbpWpUqvZK1asA3qzvmbftOq6U_kB6X0tSq23_RXNxpjvP1bmVhXHKxmVFvfScYlWmrKt4kTLUQxLADq2abs-trgOG3pMJR_Yc5zKA116CQgY-QGG6kw-oBmq-NZDcHkiiqxfDy71l6C7ULPQfxwjgxfoy3Unlc7VrLr0Mw8QjFSIAObCowbMPr9SzqW83nouEujhuXf3nO3B7ND4-0kcHJ4dP4U5Clk5v35Nt2FxeXLpnmLst7XPvMCF8vW4P_Q1hBE0I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+hypoxia+in+solid+and+haematological+malignancies&rft.jtitle=Journal+of+experimental+%26+clinical+cancer+research&rft.au=Harris%2C+Bill&rft.au=Saleem%2C+Sana&rft.au=Cook%2C+Natalie&rft.au=Searle%2C+Emma&rft.date=2022-11-02&rft.pub=BioMed+Central&rft.issn=1756-9966&rft.volume=41&rft.spage=1&rft_id=info:doi/10.1186%2Fs13046-022-02522-y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-9966&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-9966&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-9966&client=summon