Targeting hypoxia in solid and haematological malignancies
Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand for oxygen can outstrip supply reducing tumour oxygenation. In solid tumours this is contributed to by disorganized blood vessel development....
Saved in:
Published in | Journal of experimental & clinical cancer research Vol. 41; no. 1; pp. 1 - 16 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central Ltd
02.11.2022
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand for oxygen can outstrip supply reducing tumour oxygenation. In solid tumours this is contributed to by disorganized blood vessel development. Tumour hypoxia is associated with resistance to treatment, more aggressive disease behaviour and an increased likelihood of metastatic progression. It can be measured using both invasive and non-invasive methods to varying degrees of accuracy. The presence of hypoxia stimulates a complex cellular network of downstream factors including Hypoxia Inducible Factor 1 (HIF1), C-X-C motif chemokine 4 (CXCR4) and Hypoxia‐inducible glycolytic enzyme hexokinase‐2 (HK2) amongst many others. They work by affecting different mechanisms including influencing angiogenesis, treatment resistance, immune surveillance and the ability to metastasize all of which contribute to a more aggressive disease pattern. Tumour hypoxia has been correlated with poorer outcomes and worse prognosis in patients. The correlation between hypoxic microenvironments and poor prognosis has led to an interest in trying to therapeutically target this phenomenon. Various methods have been used to target hypoxic microenvironments. Hypoxia-activated prodrugs (HAPs) are drugs that are only activated within hypoxic environments and these agents have been subject to investigation in several clinical trials. Drugs that target downstream factors of hypoxic environments including HIF inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (anti-VEGF) therapies are also in development and being used in combination in clinical trials. Despite promising pre-clinical data, clinical trials of hypoxia targeting strategies have proven challenging. Further understanding of the effect of hypoxia and related molecular mechanisms in human rather than animal models is required to guide novel therapeutic strategies and future trial design. This review will discuss the currently available methods of hypoxia targeting and assessments that may be considered in planning future clinical trials. It will also outline key trials to date in both the solid and haemato-oncology treatment spheres and discuss the limitations that may have impacted on clinical success to date. |
---|---|
AbstractList | Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand for oxygen can outstrip supply reducing tumour oxygenation. In solid tumours this is contributed to by disorganized blood vessel development. Tumour hypoxia is associated with resistance to treatment, more aggressive disease behaviour and an increased likelihood of metastatic progression. It can be measured using both invasive and non-invasive methods to varying degrees of accuracy. The presence of hypoxia stimulates a complex cellular network of downstream factors including Hypoxia Inducible Factor 1 (HIF1), C-X-C motif chemokine 4 (CXCR4) and Hypoxia‐inducible glycolytic enzyme hexokinase‐2 (HK2) amongst many others. They work by affecting different mechanisms including influencing angiogenesis, treatment resistance, immune surveillance and the ability to metastasize all of which contribute to a more aggressive disease pattern. Tumour hypoxia has been correlated with poorer outcomes and worse prognosis in patients. The correlation between hypoxic microenvironments and poor prognosis has led to an interest in trying to therapeutically target this phenomenon. Various methods have been used to target hypoxic microenvironments. Hypoxia-activated prodrugs (HAPs) are drugs that are only activated within hypoxic environments and these agents have been subject to investigation in several clinical trials. Drugs that target downstream factors of hypoxic environments including HIF inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (anti-VEGF) therapies are also in development and being used in combination in clinical trials. Despite promising pre-clinical data, clinical trials of hypoxia targeting strategies have proven challenging. Further understanding of the effect of hypoxia and related molecular mechanisms in human rather than animal models is required to guide novel therapeutic strategies and future trial design. This review will discuss the currently available methods of hypoxia targeting and assessments that may be considered in planning future clinical trials. It will also outline key trials to date in both the solid and haemato-oncology treatment spheres and discuss the limitations that may have impacted on clinical success to date. Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand for oxygen can outstrip supply reducing tumour oxygenation. In solid tumours this is contributed to by disorganized blood vessel development. Tumour hypoxia is associated with resistance to treatment, more aggressive disease behaviour and an increased likelihood of metastatic progression. It can be measured using both invasive and non-invasive methods to varying degrees of accuracy. The presence of hypoxia stimulates a complex cellular network of downstream factors including Hypoxia Inducible Factor 1 (HIF1), C-X-C motif chemokine 4 (CXCR4) and Hypoxia-inducible glycolytic enzyme hexokinase-2 (HK2) amongst many others. They work by affecting different mechanisms including influencing angiogenesis, treatment resistance, immune surveillance and the ability to metastasize all of which contribute to a more aggressive disease pattern. Tumour hypoxia has been correlated with poorer outcomes and worse prognosis in patients. The correlation between hypoxic microenvironments and poor prognosis has led to an interest in trying to therapeutically target this phenomenon. Various methods have been used to target hypoxic microenvironments. Hypoxia-activated prodrugs (HAPs) are drugs that are only activated within hypoxic environments and these agents have been subject to investigation in several clinical trials. Drugs that target downstream factors of hypoxic environments including HIF inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (anti-VEGF) therapies are also in development and being used in combination in clinical trials. Despite promising pre-clinical data, clinical trials of hypoxia targeting strategies have proven challenging. Further understanding of the effect of hypoxia and related molecular mechanisms in human rather than animal models is required to guide novel therapeutic strategies and future trial design. This review will discuss the currently available methods of hypoxia targeting and assessments that may be considered in planning future clinical trials. It will also outline key trials to date in both the solid and haemato-oncology treatment spheres and discuss the limitations that may have impacted on clinical success to date. Keywords: Hypoxia, Cancer, Haematological, Solid tumours Abstract Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand for oxygen can outstrip supply reducing tumour oxygenation. In solid tumours this is contributed to by disorganized blood vessel development. Tumour hypoxia is associated with resistance to treatment, more aggressive disease behaviour and an increased likelihood of metastatic progression. It can be measured using both invasive and non-invasive methods to varying degrees of accuracy. The presence of hypoxia stimulates a complex cellular network of downstream factors including Hypoxia Inducible Factor 1 (HIF1), C-X-C motif chemokine 4 (CXCR4) and Hypoxia‐inducible glycolytic enzyme hexokinase‐2 (HK2) amongst many others. They work by affecting different mechanisms including influencing angiogenesis, treatment resistance, immune surveillance and the ability to metastasize all of which contribute to a more aggressive disease pattern. Tumour hypoxia has been correlated with poorer outcomes and worse prognosis in patients. The correlation between hypoxic microenvironments and poor prognosis has led to an interest in trying to therapeutically target this phenomenon. Various methods have been used to target hypoxic microenvironments. Hypoxia-activated prodrugs (HAPs) are drugs that are only activated within hypoxic environments and these agents have been subject to investigation in several clinical trials. Drugs that target downstream factors of hypoxic environments including HIF inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (anti-VEGF) therapies are also in development and being used in combination in clinical trials. Despite promising pre-clinical data, clinical trials of hypoxia targeting strategies have proven challenging. Further understanding of the effect of hypoxia and related molecular mechanisms in human rather than animal models is required to guide novel therapeutic strategies and future trial design. This review will discuss the currently available methods of hypoxia targeting and assessments that may be considered in planning future clinical trials. It will also outline key trials to date in both the solid and haemato-oncology treatment spheres and discuss the limitations that may have impacted on clinical success to date. Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand for oxygen can outstrip supply reducing tumour oxygenation. In solid tumours this is contributed to by disorganized blood vessel development. Tumour hypoxia is associated with resistance to treatment, more aggressive disease behaviour and an increased likelihood of metastatic progression. It can be measured using both invasive and non-invasive methods to varying degrees of accuracy. The presence of hypoxia stimulates a complex cellular network of downstream factors including Hypoxia Inducible Factor 1 (HIF1), C-X-C motif chemokine 4 (CXCR4) and Hypoxia-inducible glycolytic enzyme hexokinase-2 (HK2) amongst many others. They work by affecting different mechanisms including influencing angiogenesis, treatment resistance, immune surveillance and the ability to metastasize all of which contribute to a more aggressive disease pattern. Tumour hypoxia has been correlated with poorer outcomes and worse prognosis in patients. The correlation between hypoxic microenvironments and poor prognosis has led to an interest in trying to therapeutically target this phenomenon. Various methods have been used to target hypoxic microenvironments. Hypoxia-activated prodrugs (HAPs) are drugs that are only activated within hypoxic environments and these agents have been subject to investigation in several clinical trials. Drugs that target downstream factors of hypoxic environments including HIF inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (anti-VEGF) therapies are also in development and being used in combination in clinical trials. Despite promising pre-clinical data, clinical trials of hypoxia targeting strategies have proven challenging. Further understanding of the effect of hypoxia and related molecular mechanisms in human rather than animal models is required to guide novel therapeutic strategies and future trial design. This review will discuss the currently available methods of hypoxia targeting and assessments that may be considered in planning future clinical trials. It will also outline key trials to date in both the solid and haemato-oncology treatment spheres and discuss the limitations that may have impacted on clinical success to date.Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand for oxygen can outstrip supply reducing tumour oxygenation. In solid tumours this is contributed to by disorganized blood vessel development. Tumour hypoxia is associated with resistance to treatment, more aggressive disease behaviour and an increased likelihood of metastatic progression. It can be measured using both invasive and non-invasive methods to varying degrees of accuracy. The presence of hypoxia stimulates a complex cellular network of downstream factors including Hypoxia Inducible Factor 1 (HIF1), C-X-C motif chemokine 4 (CXCR4) and Hypoxia-inducible glycolytic enzyme hexokinase-2 (HK2) amongst many others. They work by affecting different mechanisms including influencing angiogenesis, treatment resistance, immune surveillance and the ability to metastasize all of which contribute to a more aggressive disease pattern. Tumour hypoxia has been correlated with poorer outcomes and worse prognosis in patients. The correlation between hypoxic microenvironments and poor prognosis has led to an interest in trying to therapeutically target this phenomenon. Various methods have been used to target hypoxic microenvironments. Hypoxia-activated prodrugs (HAPs) are drugs that are only activated within hypoxic environments and these agents have been subject to investigation in several clinical trials. Drugs that target downstream factors of hypoxic environments including HIF inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (anti-VEGF) therapies are also in development and being used in combination in clinical trials. Despite promising pre-clinical data, clinical trials of hypoxia targeting strategies have proven challenging. Further understanding of the effect of hypoxia and related molecular mechanisms in human rather than animal models is required to guide novel therapeutic strategies and future trial design. This review will discuss the currently available methods of hypoxia targeting and assessments that may be considered in planning future clinical trials. It will also outline key trials to date in both the solid and haemato-oncology treatment spheres and discuss the limitations that may have impacted on clinical success to date. |
ArticleNumber | 318 |
Audience | Academic |
Author | Searle, Emma Harris, Bill Saleem, Sana Cook, Natalie |
Author_xml | – sequence: 1 givenname: Bill surname: Harris fullname: Harris, Bill – sequence: 2 givenname: Sana surname: Saleem fullname: Saleem, Sana – sequence: 3 givenname: Natalie surname: Cook fullname: Cook, Natalie – sequence: 4 givenname: Emma orcidid: 0000-0002-3942-3081 surname: Searle fullname: Searle, Emma |
BookMark | eNp9UltrFDEYHaSCbfUP-DQgiC9Tc5tcfBBK0bZQ8KU-h28ymZksmWRNZsT992a7FbtFJORCcs75TpJzVp2EGGxVvcXoAmPJP2ZMEeMNIqT0toy7F9UpFi1vlOL85Mn6VXWW8wYhjhVWp9Wne0ijXVwY62m3jb8c1C7UOXrX1xD6egI7wxJ9HJ0BX8_g3RggGGfz6-rlAD7bN4_zefX965f7q5vm7tv17dXlXWNagZeGFz8d413x11NseowHJYRQxcJAWsyM5a3oMJItpUwIySShEjgXzGLoJafn1e1Bt4-w0dvkZkg7HcHph42YRg1pccZbrTphwMoO9YNilFmJh1Z2dmCG4uKAFK3PB63t2s22NzYsCfyR6PFJcJMe40-tOJFYoCLw4VEgxR-rzYueXTbWewg2rlkTQTEjivK973fPoJu4plCeao8SvFyYqb-oEcoFXBhiqWv2ovpSECYZQkoU1MU_UKX1dnamZGFwZf-I8P4JYbLgl6n86rq4GPIxUB6AJsWckx20cQvsYaWC8xojvU-YPiRMl4Tph4TpXaGSZ9Q_7_gf0m8BbNI6 |
CitedBy_id | crossref_primary_10_1186_s12964_024_01762_z crossref_primary_10_1016_j_biopha_2024_116783 crossref_primary_10_1007_s12672_024_01282_9 crossref_primary_10_1186_s12935_024_03558_0 crossref_primary_10_1007_s12282_024_01543_z crossref_primary_10_1016_j_canlet_2024_217116 crossref_primary_10_1021_acsnano_3c08346 crossref_primary_10_1002_smll_202410214 crossref_primary_10_1016_j_advms_2024_07_007 crossref_primary_10_1186_s13148_023_01566_x crossref_primary_10_1177_15330338241261615 crossref_primary_10_3390_life13051176 crossref_primary_10_1002_bmc_5981 crossref_primary_10_1016_j_actbio_2024_01_010 crossref_primary_10_3390_cancers16030505 crossref_primary_10_1111_jpi_12900 crossref_primary_10_1016_j_heliyon_2024_e41346 crossref_primary_10_3389_fmolb_2023_1261273 crossref_primary_10_3892_ijo_2024_5684 crossref_primary_10_1007_s00424_023_02902_z crossref_primary_10_18632_aging_205517 crossref_primary_10_1016_j_mtbio_2024_101009 crossref_primary_10_1016_j_xgen_2025_100764 crossref_primary_10_1016_j_cellsig_2024_111236 crossref_primary_10_1002_mco2_791 crossref_primary_10_1210_endocr_bqad139 crossref_primary_10_3390_biology13110860 crossref_primary_10_3390_polym15061400 |
Cites_doi | 10.1016/j.ejro.2015.11.003 10.1016/S1053-4296(96)80034-8 10.1200/JCO.2001.19.16.3660 10.1002/pbc.26414 10.1038/leu.2010.193 10.1158/0008-5472.CAN-05-4598 10.3324/haematol.2017.183418 10.1126/science.1228522 10.1200/JCO.2016.70.5350 10.1016/B978-0-12-394307-1.00003-5 10.4161/cbt.28163 10.1128/MCB.00552-06 10.1111/j.1349-7006.2009.01195.x 10.1186/s12943-019-1089-9 10.1182/blood-2004-07-2958 10.1038/bjc.2017.430 10.1111/cas.15087 10.1093/annonc/mdw188 10.1093/annonc/mdx493 10.1158/0008-5472.CAN-13-0992 10.1186/1471-2407-12-496 10.1002/cncr.33338 10.1007/BF01612759 10.1084/jem.20100587 10.1182/blood.V124.21.386.386 10.1016/j.ceb.2012.01.005 10.1200/JCO.2016.34.15_suppl.4007 10.1038/nature15748 10.5966/sctm.2013-0166 10.1056/NEJMoa2103425 10.2147/HP.S93413 10.2967/jnumed.112.109330 10.1158/1078-0432.CCR-03-0135 10.18632/oncotarget.3142 10.4161/cc.3.2.618 10.1158/0008-5472.CAN-15-3435 10.1182/blood-2011-09-380410 10.1038/nrc3183 10.2174/092986712800167392 10.1634/stemcells.2007-1016 10.1073/pnas.1603018113 10.1007/s00066-008-1813-7 10.1038/s41374-018-0114-8 10.1200/JCO.2005.01.3771 10.1080/09553000903043059 10.1111/j.1600-065X.2012.01155.x 10.1016/j.stem.2011.02.006 10.1158/0008-5472.CAN-08-4023 10.1038/s41586-020-1971-z 10.1016/j.dnarep.2015.04.030 10.2174/156802609789895719 10.1038/nature16064 10.1593/tlo.12319 10.1007/s00280-009-1188-1 10.1200/JCO.2014.55.7504 10.1007/s00330-013-2937-4 10.1007/BF00689805 10.1007/s00280-017-3256-2 10.1200/JCO.2015.60.9727 10.1200/JCO.2001.19.2.535 10.1038/cdd.2008.21 10.18632/oncotarget.2163 10.1038/bjc.2016.218 10.1007/s10549-012-2398-5 10.1074/jbc.M111.257055 10.1038/bjc.2011.555 10.1158/0008-5472.CAN-08-2516 10.1007/s10555-007-9055-1 10.1007/s13277-014-2056-0 10.1200/JCO.2008.21.3868 10.1172/JCI30487 10.4161/cbt.20838 10.1016/j.ijrobp.2007.01.071 10.1016/j.cell.2011.02.013 10.1038/nrc1276 10.1016/j.molcel.2009.09.006 10.1634/stemcells.20-4-347 10.1038/s41591-021-01324-7 10.1158/1078-0432.CCR-05-2690 10.1016/j.stem.2010.06.020 10.1002/ijc.2910560124 10.3324/haematol.2014.118455 10.1158/0008-5472.CAN-20-0950 10.1002/ajh.24415 10.1016/S0163-7258(97)00086-7 10.1038/ni.3273 10.1007/s00277-018-3229-5 10.3324/haematol.2009.015628 10.7717/peerj.11275 10.1002/nbm.1940070305 10.1007/s10549-007-9742-1 10.1182/blood-2003-07-2490 10.1021/jm701028q 10.1016/j.nano.2011.09.007 10.1016/j.cell.2012.01.021 10.2337/diabetes.50.6.1482 10.1111/bjh.12560 10.1111/imr.12233 10.1046/j.1365-2184.2000.00183.x 10.1038/onc.2010.455 10.1158/1078-0432.CCR-06-2250 10.1097/MD.0000000000006561 10.1016/j.ijrobp.2007.01.018 10.1002/nbm.2804 10.1016/j.leukres.2015.04.019 10.1016/S1470-2045(17)30381-9 10.1158/0008-5472.CAN-10-1439 10.2147/JHC.S304275 10.1007/s10637-013-9946-7 10.1182/blood-2007-11-120576 10.2967/jnumed.107.048520 10.1158/1535-7163.MCT-09-0150 10.1158/1078-0432.CCR-13-0674 10.1124/mol.62.5.975 10.1038/onc.2013.171 10.1200/JCO.2017.74.2627 10.1200/JCO.2007.13.7083 10.1007/s10637-011-9739-9 10.1016/j.ejca.2013.05.020 10.31557/APJCP.2019.20.3.705 10.1002/1522-2586(200012)12:6%3C929::AID-JMRI17%3E3.0.CO 10.1073/pnas.0506070102 10.1016/j.apsb.2015.05.007 10.1200/JCO.2007.13.3652 10.1158/0008-5472.CAN-03-3139 10.1158/1078-0432.CCR-08-0364 10.1093/jnci/dji251 10.1016/S0888-7543(03)00215-5 10.1158/0008-5472.CAN-13-2584 10.1016/j.radonc.2021.03.014 10.1158/1078-0432.CCR-11-0666 10.1021/bc0340924 10.1074/jbc.M109.020925 10.1158/1078-0432.CCR-18-1325 10.1038/s41568-020-0245-2 10.18632/oncotarget.13955 10.1038/nature13034 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 BioMed Central Ltd. 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). The Author(s) 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 BioMed Central Ltd. – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). – notice: The Author(s) 2022 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s13046-022-02522-y |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1756-9966 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_9b7cae8b0df9434e81f58bef4c316b02 PMC9628170 A724840097 10_1186_s13046_022_02522_y |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GroupedDBID | --- 0R~ 29K 2WC 4.4 5GY 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 D-I DIK DU5 E3Z EBD EBLON EBS ESX F5P FYUFA GROUPED_DOAJ HMCUK HYE IAO IEA IHR IHW INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SMD SOJ TR2 TUS UKHRP ~8M PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c571t-6252b46b046d31cd11f97779006f2514ce657b108533477848238a6674e1ad863 |
IEDL.DBID | 7X7 |
ISSN | 1756-9966 0392-9078 |
IngestDate | Wed Aug 27 01:15:01 EDT 2025 Thu Aug 21 18:39:01 EDT 2025 Fri Jul 11 02:43:11 EDT 2025 Fri Jul 25 23:12:36 EDT 2025 Tue Jun 17 21:44:18 EDT 2025 Tue Jun 10 20:25:32 EDT 2025 Thu May 22 21:21:56 EDT 2025 Thu Apr 24 23:10:05 EDT 2025 Tue Jul 01 02:26:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c571t-6252b46b046d31cd11f97779006f2514ce657b108533477848238a6674e1ad863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3942-3081 |
OpenAccessLink | https://www.proquest.com/docview/2737685349?pq-origsite=%requestingapplication% |
PQID | 2737685349 |
PQPubID | 105475 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9b7cae8b0df9434e81f58bef4c316b02 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9628170 proquest_miscellaneous_2731429366 proquest_journals_2737685349 gale_infotracmisc_A724840097 gale_infotracacademiconefile_A724840097 gale_healthsolutions_A724840097 crossref_citationtrail_10_1186_s13046_022_02522_y crossref_primary_10_1186_s13046_022_02522_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-02 |
PublicationDateYYYYMMDD | 2022-11-02 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of experimental & clinical cancer research |
PublicationYear | 2022 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | C Christodoulou (2522_CR10) 2020; 578 O Frolova (2522_CR52) 2012; 13 2522_CR83 2522_CR84 2522_CR86 2522_CR88 2522_CR89 D Mahadevan (2522_CR66) 2004; 104 M Liu (2522_CR87) 2013; 23 GJ Hutchison (2522_CR72) 2004; 10 T Hillestad (2522_CR85) 2020; 80 R Raja (2522_CR82) 2014; 33 2522_CR70 2522_CR71 2522_CR75 2522_CR77 2522_CR79 D Martínez-Cuadrón (2522_CR133) 2018; 97 S Portwood (2522_CR74) 2013; 19 A Yamada (2522_CR65) 2013; 137 2522_CR143 2522_CR142 E Griessinger (2522_CR25) 2014; 3 2522_CR141 S Colla (2522_CR19) 2010; 24 X Zheng (2522_CR31) 2015; 527 2522_CR21 2522_CR23 2522_CR24 KR Fischer (2522_CR30) 2015; 527 2522_CR27 2522_CR29 JA Loncaster (2522_CR76) 2001; 61 ST Shibutani (2522_CR38) 2015; 16 DZ Qian (2522_CR59) 2006; 66 Y Hu (2522_CR54) 2009; 8 2522_CR90 2522_CR132 2522_CR91 2522_CR131 2522_CR130 2522_CR93 2522_CR94 2522_CR95 2522_CR96 2522_CR97 2522_CR98 2522_CR11 2522_CR99 2522_CR139 2522_CR12 2522_CR138 2522_CR13 2522_CR137 2522_CR14 2522_CR136 2522_CR135 2522_CR16 2522_CR17 2522_CR18 E van Cutsem (2522_CR119) 2016; 34 2522_CR123 2522_CR122 2522_CR121 2522_CR120 2522_CR40 2522_CR41 DJ Manalo (2522_CR44) 2005; 105 2522_CR43 2522_CR129 2522_CR128 2522_CR45 2522_CR127 2522_CR46 2522_CR126 2522_CR47 2522_CR125 2522_CR48 2522_CR124 2522_CR49 PS Becker (2522_CR134) 2014; 124 EB Rankin (2522_CR4) 2008; 15 X Jing (2522_CR62) 2019; 18 JHAM Kaanders (2522_CR73) 2002; 62 2522_CR112 2522_CR111 V Desplat (2522_CR22) 2002; 20 2522_CR110 DH Shin (2522_CR50) 2008; 111 LH Patterson (2522_CR92) 1993; 12 2522_CR32 2522_CR118 2522_CR33 2522_CR117 2522_CR34 2522_CR116 2522_CR35 2522_CR115 2522_CR36 2522_CR114 2522_CR37 2522_CR113 Y Liu (2522_CR28) 2014; 35 JR Porter (2522_CR101) 2009; 9 E Dean (2522_CR42) 2012; 106 FJ Rodríguez-Jiménez (2522_CR39) 2008; 26 M Tsubaki (2522_CR55) 2019; 99 2522_CR100 2522_CR1 P Swietach (2522_CR140) 2010; 29 2522_CR2 W Krüger (2522_CR7) 1991; 117 2522_CR60 2522_CR61 2522_CR63 2522_CR109 2522_CR8 2522_CR64 2522_CR108 2522_CR9 2522_CR107 2522_CR106 2522_CR3 2522_CR105 2522_CR68 2522_CR104 2522_CR69 2522_CR103 2522_CR102 CP Sodhi (2522_CR80) 2001; 50 P Vaupel (2522_CR5) 2007; 26 AK Azab (2522_CR20) 2012; 119 M Kappler (2522_CR78) 2008; 184 2522_CR51 EP Hui (2522_CR81) 2008; 14 Y Yamamoto (2522_CR6) 2008; 110 2522_CR53 2522_CR56 S Méndez-Ferrer (2522_CR15) 2020; 20 2522_CR57 2522_CR58 A Palmeira (2522_CR67) 2012; 19 U Cavallaro (2522_CR26) 2004; 4 |
References_xml | – ident: 2522_CR89 doi: 10.1016/j.ejro.2015.11.003 – ident: 2522_CR68 doi: 10.1016/S1053-4296(96)80034-8 – ident: 2522_CR77 doi: 10.1200/JCO.2001.19.16.3660 – ident: 2522_CR131 doi: 10.1002/pbc.26414 – ident: 2522_CR103 – volume: 24 start-page: 1967 year: 2010 ident: 2522_CR19 publication-title: Leukemia doi: 10.1038/leu.2010.193 – volume: 66 start-page: 8814 year: 2006 ident: 2522_CR59 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-4598 – ident: 2522_CR132 doi: 10.3324/haematol.2017.183418 – ident: 2522_CR29 doi: 10.1126/science.1228522 – ident: 2522_CR61 doi: 10.1200/JCO.2016.70.5350 – ident: 2522_CR69 doi: 10.1016/B978-0-12-394307-1.00003-5 – ident: 2522_CR60 doi: 10.4161/cbt.28163 – ident: 2522_CR49 doi: 10.1128/MCB.00552-06 – ident: 2522_CR70 doi: 10.1111/j.1349-7006.2009.01195.x – volume: 18 start-page: 157 year: 2019 ident: 2522_CR62 publication-title: Mol Cancer doi: 10.1186/s12943-019-1089-9 – volume: 105 start-page: 659 year: 2005 ident: 2522_CR44 publication-title: Blood doi: 10.1182/blood-2004-07-2958 – ident: 2522_CR143 doi: 10.1038/bjc.2017.430 – ident: 2522_CR53 doi: 10.1111/cas.15087 – ident: 2522_CR109 doi: 10.1093/annonc/mdw188 – ident: 2522_CR110 doi: 10.1093/annonc/mdx493 – ident: 2522_CR14 – ident: 2522_CR37 doi: 10.1158/0008-5472.CAN-13-0992 – ident: 2522_CR125 doi: 10.1186/1471-2407-12-496 – ident: 2522_CR130 doi: 10.1002/cncr.33338 – volume: 117 start-page: 409 year: 1991 ident: 2522_CR7 publication-title: J Cancer Res Clin Oncol. doi: 10.1007/BF01612759 – ident: 2522_CR32 doi: 10.1084/jem.20100587 – volume: 124 start-page: 386 year: 2014 ident: 2522_CR134 publication-title: Blood doi: 10.1182/blood.V124.21.386.386 – ident: 2522_CR13 doi: 10.1016/j.ceb.2012.01.005 – volume: 34 start-page: 4007 year: 2016 ident: 2522_CR119 publication-title: J Clin Oncol doi: 10.1200/JCO.2016.34.15_suppl.4007 – volume: 527 start-page: 472 year: 2015 ident: 2522_CR30 publication-title: Nature doi: 10.1038/nature15748 – volume: 3 start-page: 520 year: 2014 ident: 2522_CR25 publication-title: Stem Cells Transl Med doi: 10.5966/sctm.2013-0166 – ident: 2522_CR111 doi: 10.1056/NEJMoa2103425 – ident: 2522_CR3 doi: 10.2147/HP.S93413 – ident: 2522_CR90 doi: 10.2967/jnumed.112.109330 – volume: 10 start-page: 8405 year: 2004 ident: 2522_CR72 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-03-0135 – ident: 2522_CR138 doi: 10.18632/oncotarget.3142 – ident: 2522_CR75 doi: 10.4161/cc.3.2.618 – ident: 2522_CR107 doi: 10.1158/0008-5472.CAN-15-3435 – volume: 119 start-page: 5782 year: 2012 ident: 2522_CR20 publication-title: Blood doi: 10.1182/blood-2011-09-380410 – ident: 2522_CR2 doi: 10.1038/nrc3183 – volume: 19 start-page: 1946 year: 2012 ident: 2522_CR67 publication-title: Curr Med Chem doi: 10.2174/092986712800167392 – volume: 61 start-page: 6394 year: 2001 ident: 2522_CR76 publication-title: Cancer Res – volume: 26 start-page: 2052 year: 2008 ident: 2522_CR39 publication-title: Stem Cells doi: 10.1634/stemcells.2007-1016 – ident: 2522_CR108 doi: 10.1073/pnas.1603018113 – volume: 184 start-page: 393 year: 2008 ident: 2522_CR78 publication-title: Strahlentherapie und Onkologie doi: 10.1007/s00066-008-1813-7 – volume: 99 start-page: 72 year: 2019 ident: 2522_CR55 publication-title: Lab Investig doi: 10.1038/s41374-018-0114-8 – ident: 2522_CR124 doi: 10.1200/JCO.2005.01.3771 – ident: 2522_CR86 doi: 10.1080/09553000903043059 – ident: 2522_CR95 doi: 10.1111/j.1600-065X.2012.01155.x – ident: 2522_CR24 doi: 10.1016/j.stem.2011.02.006 – ident: 2522_CR94 doi: 10.1158/0008-5472.CAN-08-4023 – volume: 578 start-page: 278 year: 2020 ident: 2522_CR10 publication-title: Nature doi: 10.1038/s41586-020-1971-z – ident: 2522_CR41 doi: 10.1016/j.dnarep.2015.04.030 – volume: 9 start-page: 1386 year: 2009 ident: 2522_CR101 publication-title: Curr Top Med Chem doi: 10.2174/156802609789895719 – volume: 527 start-page: 525 year: 2015 ident: 2522_CR31 publication-title: Nature doi: 10.1038/nature16064 – ident: 2522_CR84 doi: 10.1593/tlo.12319 – ident: 2522_CR126 doi: 10.1007/s00280-009-1188-1 – ident: 2522_CR116 doi: 10.1200/JCO.2014.55.7504 – volume: 23 start-page: 3221 year: 2013 ident: 2522_CR87 publication-title: Eur Radiol doi: 10.1007/s00330-013-2937-4 – volume: 12 start-page: 119 year: 1993 ident: 2522_CR92 publication-title: Cancer Metastasis Rev doi: 10.1007/BF00689805 – ident: 2522_CR114 doi: 10.1007/s00280-017-3256-2 – ident: 2522_CR46 doi: 10.1200/JCO.2015.60.9727 – ident: 2522_CR121 doi: 10.1200/JCO.2001.19.2.535 – volume: 15 start-page: 678 year: 2008 ident: 2522_CR4 publication-title: Cell Death Differ doi: 10.1038/cdd.2008.21 – ident: 2522_CR47 doi: 10.18632/oncotarget.2163 – ident: 2522_CR139 doi: 10.1038/bjc.2016.218 – volume: 137 start-page: 773 year: 2013 ident: 2522_CR65 publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-012-2398-5 – ident: 2522_CR58 doi: 10.1074/jbc.M111.257055 – volume: 106 start-page: 468 year: 2012 ident: 2522_CR42 publication-title: Br J Cancer doi: 10.1038/bjc.2011.555 – ident: 2522_CR136 doi: 10.1158/0008-5472.CAN-08-2516 – volume: 26 start-page: 225 year: 2007 ident: 2522_CR5 publication-title: Cancer Metastasis Rev doi: 10.1007/s10555-007-9055-1 – volume: 35 start-page: 8103 year: 2014 ident: 2522_CR28 publication-title: Tumor Biology doi: 10.1007/s13277-014-2056-0 – ident: 2522_CR123 doi: 10.1200/JCO.2008.21.3868 – ident: 2522_CR27 doi: 10.1172/JCI30487 – volume: 13 start-page: 858 year: 2012 ident: 2522_CR52 publication-title: Cancer Biol Ther Taylor Francis doi: 10.4161/cbt.20838 – ident: 2522_CR79 doi: 10.1016/j.ijrobp.2007.01.071 – ident: 2522_CR9 doi: 10.1016/j.cell.2011.02.013 – volume: 4 start-page: 118 year: 2004 ident: 2522_CR26 publication-title: Nat Rev Cancer doi: 10.1038/nrc1276 – volume: 62 start-page: 7066 year: 2002 ident: 2522_CR73 publication-title: Cancer Res – ident: 2522_CR135 doi: 10.1016/j.molcel.2009.09.006 – volume: 20 start-page: 347 year: 2002 ident: 2522_CR22 publication-title: Stem Cells doi: 10.1634/stemcells.20-4-347 – ident: 2522_CR112 doi: 10.1038/s41591-021-01324-7 – ident: 2522_CR56 doi: 10.1158/1078-0432.CCR-05-2690 – ident: 2522_CR12 doi: 10.1016/j.stem.2010.06.020 – ident: 2522_CR93 doi: 10.1002/ijc.2910560124 – ident: 2522_CR127 doi: 10.3324/haematol.2014.118455 – volume: 80 start-page: 3993 year: 2020 ident: 2522_CR85 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-20-0950 – ident: 2522_CR115 doi: 10.1002/ajh.24415 – ident: 2522_CR63 doi: 10.1016/S0163-7258(97)00086-7 – volume: 16 start-page: 1014 year: 2015 ident: 2522_CR38 publication-title: Nat Immunol. doi: 10.1038/ni.3273 – volume: 97 start-page: 763 year: 2018 ident: 2522_CR133 publication-title: Ann Hematol doi: 10.1007/s00277-018-3229-5 – ident: 2522_CR17 doi: 10.3324/haematol.2009.015628 – ident: 2522_CR40 doi: 10.7717/peerj.11275 – ident: 2522_CR8 doi: 10.1002/nbm.1940070305 – volume: 110 start-page: 465 year: 2008 ident: 2522_CR6 publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-007-9742-1 – volume: 104 start-page: 1940 year: 2004 ident: 2522_CR66 publication-title: Blood doi: 10.1182/blood-2003-07-2490 – ident: 2522_CR96 doi: 10.1021/jm701028q – ident: 2522_CR106 doi: 10.1016/j.nano.2011.09.007 – ident: 2522_CR1 doi: 10.1016/j.cell.2012.01.021 – volume: 50 start-page: 1482 year: 2001 ident: 2522_CR80 publication-title: Diabetes doi: 10.2337/diabetes.50.6.1482 – ident: 2522_CR48 doi: 10.1111/bjh.12560 – ident: 2522_CR16 doi: 10.1111/imr.12233 – ident: 2522_CR21 doi: 10.1046/j.1365-2184.2000.00183.x – volume: 29 start-page: 6509 year: 2010 ident: 2522_CR140 publication-title: Oncogene doi: 10.1038/onc.2010.455 – ident: 2522_CR18 – ident: 2522_CR128 doi: 10.1158/1078-0432.CCR-06-2250 – ident: 2522_CR64 doi: 10.1097/MD.0000000000006561 – ident: 2522_CR71 doi: 10.1016/j.ijrobp.2007.01.018 – ident: 2522_CR88 doi: 10.1002/nbm.2804 – ident: 2522_CR51 doi: 10.1016/j.leukres.2015.04.019 – ident: 2522_CR118 doi: 10.1016/S1470-2045(17)30381-9 – ident: 2522_CR33 doi: 10.1158/0008-5472.CAN-10-1439 – ident: 2522_CR122 doi: 10.2147/JHC.S304275 – ident: 2522_CR102 doi: 10.1007/s10637-013-9946-7 – volume: 111 start-page: 3131 year: 2008 ident: 2522_CR50 publication-title: Blood doi: 10.1182/blood-2007-11-120576 – ident: 2522_CR91 doi: 10.2967/jnumed.107.048520 – volume: 8 start-page: 2329 year: 2009 ident: 2522_CR54 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-09-0150 – volume: 19 start-page: 6506 year: 2013 ident: 2522_CR74 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-13-0674 – ident: 2522_CR99 doi: 10.1124/mol.62.5.975 – volume: 33 start-page: 2053 year: 2014 ident: 2522_CR82 publication-title: Oncogene doi: 10.1038/onc.2013.171 – ident: 2522_CR113 doi: 10.1200/JCO.2017.74.2627 – ident: 2522_CR120 – ident: 2522_CR57 doi: 10.1200/JCO.2007.13.7083 – ident: 2522_CR129 doi: 10.1007/s10637-011-9739-9 – ident: 2522_CR43 doi: 10.1016/j.ejca.2013.05.020 – ident: 2522_CR23 doi: 10.31557/APJCP.2019.20.3.705 – ident: 2522_CR83 doi: 10.1002/1522-2586(200012)12:6%3C929::AID-JMRI17%3E3.0.CO – ident: 2522_CR36 doi: 10.1073/pnas.0506070102 – ident: 2522_CR97 doi: 10.1016/j.apsb.2015.05.007 – ident: 2522_CR141 doi: 10.1200/JCO.2007.13.3652 – ident: 2522_CR104 doi: 10.1158/0008-5472.CAN-03-3139 – volume: 14 start-page: 7080 year: 2008 ident: 2522_CR81 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-08-0364 – ident: 2522_CR100 doi: 10.1093/jnci/dji251 – ident: 2522_CR35 doi: 10.1016/S0888-7543(03)00215-5 – ident: 2522_CR34 doi: 10.1158/0008-5472.CAN-13-2584 – ident: 2522_CR142 doi: 10.1016/j.radonc.2021.03.014 – ident: 2522_CR45 doi: 10.1158/1078-0432.CCR-11-0666 – ident: 2522_CR105 doi: 10.1021/bc0340924 – ident: 2522_CR137 doi: 10.1074/jbc.M109.020925 – ident: 2522_CR117 doi: 10.1158/1078-0432.CCR-18-1325 – volume: 20 start-page: 285 year: 2020 ident: 2522_CR15 publication-title: Nat Rev Cancer doi: 10.1038/s41568-020-0245-2 – ident: 2522_CR98 doi: 10.18632/oncotarget.13955 – ident: 2522_CR11 doi: 10.1038/nature13034 |
SSID | ssj0061919 |
Score | 2.4731824 |
SecondaryResourceType | review_article |
Snippet | Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells proliferate, demand... Abstract Tumour hypoxia is a known and extensively researched phenomenon that occurs in both solid and haematological malignancies. As cancer cells... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1 |
SubjectTerms | Analysis Angiogenesis Apoptosis Biomarkers Biopsy Blood cancer Bone marrow Book publishing Breast cancer Cancer Cancer therapies Chemotherapy Clinical outcomes Enzymes Epidemiology Gene expression Haematological Hematology Human subjects Hypoxia Immune system Leukemia Metabolism Metastasis Multiple myeloma Oncology, Experimental Patients Radiation therapy Review Signal transduction Solid tumours Stem cells Supply and demand T cell receptors Treatment resistance Tumors Vascular endothelial growth factor |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hHhAXRPkQgRaChMQBRY1jx3a4tRVVhQSnVurN8lfYlSBbsVup--87YyerBiS4cNnDeiKt33g88zbjZ4D3ymHW76Wu6sBihXzDYkh1vFLIDQLmy9rZpPb5TZ5fii9X7dW9q76oJyzLA2fgjjqnvI3a1aEnKbOoWd9qF3vhOZMuy0hizpvIVN6DkRWwbjoio-XRmtELwIo61zHH4-d2loaSWv-fe_LvfZL3Es_ZE3g8Vozlcf6l-_AgDk_h4dfxnfgz-HSRmrkxBZWL7fXqdmnL5VDiklqG0g6hXFiSZZ32uPInFt7f85286-dwefb54vS8Gm9EqHyr2KZCstI4gdMWMnDmA2M91m-qwxn3WKgIH2WrHB0o4FwopYXGjGylVCIyG7TkL2BvWA3xJZTCKY6lS91rj6SldU6gz7D-qEO06DddAJsAMn6UC6dbK36YRBu0NBlUg6CaBKrZFvBx98x1Fsv4q_UJ4b6zJKHr9AW634zuN_9yfwFvyWsmnxrdhas5Vo1A7lp3qoAPyYICFifg7XjuAGEg6auZ5cHMEgPNz4enlWHGQF8bhBAJW8tFV8C73TA9Sc1rQ1zdJBuGaZ9LWYCarajZ3Ocjw3KRxL472ZCG4qv_AdZreNRQDNC_4s0B7G1-3cRDrKk27k0Knztfthtm priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB9qBfFF6heuVl1B8EFWN5tskhVEqliKUJ960LeQZLO9g3av3l2h9993JvuBq6Uv-7CZ7JLJzP5mNslvAN4rh6jfSJ3lNQsZ5hsWXarimcLcoEa8zJ2NbJ-_5dFM_DotT3dgKHfUK3B9a2pH9aRmq_NP13-239Dhv0aH1_LzmtHyXkb70hHB8bq9B_cRmRRVNDgW46oC5gqx0Acipswozh8O0dz6jAlQRT7__7_a_-6k_AuaDvfgUR9TpgedETyGndA-gQfH_ar5U_hyErd7I0il8-3l8nph00WbotEt6tS2dTq3RNw6fAXTCwzNz7qqvetnMDv8efLjKOtrJmS-VGyTYTpTOCEdDqbmzNeMNRjhqQpH32AoI3yQpXJ05IBzoZQWGjHbSqlEYLbWkj-H3XbZhheQCqc4Bjd5oz2mNaVzAmcVI5S8DhZnVifABgUZ3xOKU12LcxMTCy1Np1SDSjVRqWabwMexz2VHp3Gn9HfS-yhJVNjxxnJ1ZnrPMpVT3gbt8rohrrugWVNqFxrhOUM9FAm8pVkz3bnS0aHNgSoEZrd5pRL4ECXIyHAA3vYnE1ANRI41kdyfSKIr-mnzYBlmsGSDKsSUruSiSuDd2Ew9aXtbG5ZXUYZhYMClTEBNLGoy9mlLu5hHOvBKFsSy-PLul7-ChwVZN_0RL_Zhd7O6Cq8xntq4N9FJbgBe2hdj priority: 102 providerName: Scholars Portal |
Title | Targeting hypoxia in solid and haematological malignancies |
URI | https://www.proquest.com/docview/2737685349 https://www.proquest.com/docview/2731429366 https://pubmed.ncbi.nlm.nih.gov/PMC9628170 https://doaj.org/article/9b7cae8b0df9434e81f58bef4c316b02 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9wwDDdbC2MvZZ8sW3fLYLCHERonju3sZfRGSxm0jNLCsRfjr_QOuuTau8Luv5_kOLdlg774IZYJliVLsuWfCPkgDFj9hsssd9RnEG9oUKm6zATEBg7sZW50QPs84yeX7NusmsUDt1VMqxz2xLBRu87iGfkBmFnwjKuS1V-WNxlWjcLb1VhC4yHZRegylGox2wZcEBuEwh5gIXmGfv3waEbygxXFK8EMc9nB6kO7GRmmgN___y79b-bkX6bo-AnZiz5ketgv-lPywLfPyKPTeEv-nHy-COndYJTS-WbZ_VrodNGmIGQLl-rWpXONQK3Drpf-BFf8qq_Su3pBLo-PLr6eZLFGQmYrQdcZhC-FYdzAZFxJraO0AY9O1DD7BlwXZj2vhMEnBmXJhJBMgo3WnAvmqXaSly_JTtu1_hVJmRElcDlvpIUwpjKGwSqCR5I7r2ElZULowCBlI4A41rG4ViGQkFz1TFXAVBWYqjYJ-bQds-zhM-6lniLft5QIfR0-dLdXKmqSqo2w2kuTuwax7bykTSWNb5gtKfChSMg7XDXVvyPdKrA6FAWDaDavRUI-BgpUYZiA1fElArABwbBGlPsjSlA9O-4eJENF1V-pP4KakPfbbhyJ6Wyt7-4CDQVHoOQ8IWIkUaO5j3vaxTzAf9e8QFTF1_f__A15XKB04wl4sU921rd3_i34T2szCUoyIbvTo7Pv55NwCgHtKZPQnk9__AZkJRiH |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgEXxFO4FGokEAdk1Wuvd9dICJVHldLHKZVyW3btdRMJ7LRJBflT_EZm1nbAIPXWSw7xOJFnZ-abzzs7A_BSWkT9SqgoLpmLkG8YdKk8jSRygxLxMrbGd_s8EaNT_mWSTTbgV38Whsoq-5joA3XZFPSOfBdhFjPjLOX5-_l5RFOjaHe1H6HRmsWhW_1AyrZ4d_AJ1_dVkux_Hn8cRd1UgajIJFtGmPAnlguLxLBMWVEyVmEOJHM0vwrBnhdOZNJSUX6acikVV4hqRgjJHTOlEin-7g24icAbE9mTkzXBQy7iB4kgIouIeER_SEeJ3QWjLciIaucxy8DP1QAI_byA_1Hh30rNv6Bv_x7c7XLWcK81svuw4eoHcOu425V_CG_HvpwcQTCcrubNz5kJZ3WIRj0rQ1OX4dRQY9g-yobfMfU_a6cCLx7B6bVo7zFs1k3tnkDIrUxxVeNKFUibMms5Wg1mQHHpDFqOCoD1CtJF17Cc5mZ80564KKFbpWpUqvZK1asA3qzvmbftOq6U_kB6X0tSq23_RXNxpjvP1bmVhXHKxmVFvfScYlWmrKt4kTLUQxLADq2abs-trgOG3pMJR_Yc5zKA116CQgY-QGG6kw-oBmq-NZDcHkiiqxfDy71l6C7ULPQfxwjgxfoy3Unlc7VrLr0Mw8QjFSIAObCowbMPr9SzqW83nouEujhuXf3nO3B7ND4-0kcHJ4dP4U5Clk5v35Nt2FxeXLpnmLst7XPvMCF8vW4P_Q1hBE0I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+hypoxia+in+solid+and+haematological+malignancies&rft.jtitle=Journal+of+experimental+%26+clinical+cancer+research&rft.au=Harris%2C+Bill&rft.au=Saleem%2C+Sana&rft.au=Cook%2C+Natalie&rft.au=Searle%2C+Emma&rft.date=2022-11-02&rft.pub=BioMed+Central&rft.issn=1756-9966&rft.volume=41&rft.spage=1&rft_id=info:doi/10.1186%2Fs13046-022-02522-y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-9966&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-9966&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-9966&client=summon |