Exploring the transcriptome of non-model oleaginous microalga Dunaliella tertiolecta through high-throughput sequencing and high performance computing
Background RNA-Seq technology has received a lot of attention in recent years for microalgal global transcriptomic profiling. It is widely used in transcriptome-wide analysis of gene expression., particularly for microalgal strains with potential as biofuel sources. However, insufficient genomic or...
Saved in:
Published in | BMC bioinformatics Vol. 18; no. 1; p. 122 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
22.02.2017
BioMed Central Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2105 1471-2105 |
DOI | 10.1186/s12859-017-1551-x |
Cover
Abstract | Background
RNA-Seq technology has received a lot of attention in recent years for microalgal global transcriptomic profiling. It is widely used in transcriptome-wide analysis of gene expression., particularly for microalgal strains with potential as biofuel sources. However, insufficient genomic or transcriptomic information of non-model microalgae has limited the understanding of their regulatory mechanisms and hampered genetic manipulation to enhance biofuel production. As such, an optimal microalgal transcriptomic database construction is a subject of urgent investigation.
Results
Dunaliella tertiolecta
, a non-model oleaginous microalgal species, was sequenced via Illumina MISEQ and HISEQ 4000 in RNA-Seq studies. The high quality high-throughout sequencing data were explored using high performance computing (HPC) in a petascale data center and subjected to
de novo
assembly and parallelized mpiBLASTX search with multiple species. As a result, a transcriptome database of 17,845 was constructed (~95% completeness). This enlarged database constructed fueled the RNA-Seq data analysis, which was validated by a nitrogen deprivation (ND) study that induces triacylglycerol (TAG) production.
Conclusions
The new paralleled assembly and annotation method under HPC presented here allows the solution of large-scale data processing problems in acceptable computation time. There is significant increase in the number of transcriptomic data achieved and observable heterogeneity in the performance to identify differentially expressed genes in the ND treatment paradigm. The results provide new insights as to how response to ND treatment in microalgae is regulated. ND analyses highlight the advantages of this database generated in this study that could also serve as a useful resource for future gene manipulation and transcriptome-wide analysis. We thus demonstrate the usefulness of exploring the transcriptome as an informative platform for functional studies and genetic manipulations in similar species. |
---|---|
AbstractList | BACKGROUNDRNA-Seq technology has received a lot of attention in recent years for microalgal global transcriptomic profiling. It is widely used in transcriptome-wide analysis of gene expression., particularly for microalgal strains with potential as biofuel sources. However, insufficient genomic or transcriptomic information of non-model microalgae has limited the understanding of their regulatory mechanisms and hampered genetic manipulation to enhance biofuel production. As such, an optimal microalgal transcriptomic database construction is a subject of urgent investigation.RESULTSDunaliella tertiolecta, a non-model oleaginous microalgal species, was sequenced via Illumina MISEQ and HISEQ 4000 in RNA-Seq studies. The high quality high-throughout sequencing data were explored using high performance computing (HPC) in a petascale data center and subjected to de novo assembly and parallelized mpiBLASTX search with multiple species. As a result, a transcriptome database of 17,845 was constructed (~95% completeness). This enlarged database constructed fueled the RNA-Seq data analysis, which was validated by a nitrogen deprivation (ND) study that induces triacylglycerol (TAG) production.CONCLUSIONSThe new paralleled assembly and annotation method under HPC presented here allows the solution of large-scale data processing problems in acceptable computation time. There is significant increase in the number of transcriptomic data achieved and observable heterogeneity in the performance to identify differentially expressed genes in the ND treatment paradigm. The results provide new insights as to how response to ND treatment in microalgae is regulated. ND analyses highlight the advantages of this database generated in this study that could also serve as a useful resource for future gene manipulation and transcriptome-wide analysis. We thus demonstrate the usefulness of exploring the transcriptome as an informative platform for functional studies and genetic manipulations in similar species. Background RNA-Seq technology has received a lot of attention in recent years for microalgal global transcriptomic profiling. It is widely used in transcriptome-wide analysis of gene expression., particularly for microalgal strains with potential as biofuel sources. However, insufficient genomic or transcriptomic information of non-model microalgae has limited the understanding of their regulatory mechanisms and hampered genetic manipulation to enhance biofuel production. As such, an optimal microalgal transcriptomic database construction is a subject of urgent investigation. Results Dunaliella tertiolecta , a non-model oleaginous microalgal species, was sequenced via Illumina MISEQ and HISEQ 4000 in RNA-Seq studies. The high quality high-throughout sequencing data were explored using high performance computing (HPC) in a petascale data center and subjected to de novo assembly and parallelized mpiBLASTX search with multiple species. As a result, a transcriptome database of 17,845 was constructed (~95% completeness). This enlarged database constructed fueled the RNA-Seq data analysis, which was validated by a nitrogen deprivation (ND) study that induces triacylglycerol (TAG) production. Conclusions The new paralleled assembly and annotation method under HPC presented here allows the solution of large-scale data processing problems in acceptable computation time. There is significant increase in the number of transcriptomic data achieved and observable heterogeneity in the performance to identify differentially expressed genes in the ND treatment paradigm. The results provide new insights as to how response to ND treatment in microalgae is regulated. ND analyses highlight the advantages of this database generated in this study that could also serve as a useful resource for future gene manipulation and transcriptome-wide analysis. We thus demonstrate the usefulness of exploring the transcriptome as an informative platform for functional studies and genetic manipulations in similar species. Background RNA-Seq technology has received a lot of attention in recent years for microalgal global transcriptomic profiling. It is widely used in transcriptome-wide analysis of gene expression., particularly for microalgal strains with potential as biofuel sources. However, insufficient genomic or transcriptomic information of non-model microalgae has limited the understanding of their regulatory mechanisms and hampered genetic manipulation to enhance biofuel production. As such, an optimal microalgal transcriptomic database construction is a subject of urgent investigation. Results Dunaliella tertiolecta, a non-model oleaginous microalgal species, was sequenced via Illumina MISEQ and HISEQ 4000 in RNA-Seq studies. The high quality high-throughout sequencing data were explored using high performance computing (HPC) in a petascale data center and subjected to de novo assembly and parallelized mpiBLASTX search with multiple species. As a result, a transcriptome database of 17,845 was constructed (~95% completeness). This enlarged database constructed fueled the RNA-Seq data analysis, which was validated by a nitrogen deprivation (ND) study that induces triacylglycerol (TAG) production. Conclusions The new paralleled assembly and annotation method under HPC presented here allows the solution of large-scale data processing problems in acceptable computation time. There is significant increase in the number of transcriptomic data achieved and observable heterogeneity in the performance to identify differentially expressed genes in the ND treatment paradigm. The results provide new insights as to how response to ND treatment in microalgae is regulated. ND analyses highlight the advantages of this database generated in this study that could also serve as a useful resource for future gene manipulation and transcriptome-wide analysis. We thus demonstrate the usefulness of exploring the transcriptome as an informative platform for functional studies and genetic manipulations in similar species. RNA-Seq technology has received a lot of attention in recent years for microalgal global transcriptomic profiling. It is widely used in transcriptome-wide analysis of gene expression., particularly for microalgal strains with potential as biofuel sources. However, insufficient genomic or transcriptomic information of non-model microalgae has limited the understanding of their regulatory mechanisms and hampered genetic manipulation to enhance biofuel production. As such, an optimal microalgal transcriptomic database construction is a subject of urgent investigation. Dunaliella tertiolecta, a non-model oleaginous microalgal species, was sequenced via Illumina MISEQ and HISEQ 4000 in RNA-Seq studies. The high quality high-throughout sequencing data were explored using high performance computing (HPC) in a petascale data center and subjected to de novo assembly and parallelized mpiBLASTX search with multiple species. As a result, a transcriptome database of 17,845 was constructed (~95% completeness). This enlarged database constructed fueled the RNA-Seq data analysis, which was validated by a nitrogen deprivation (ND) study that induces triacylglycerol (TAG) production. The new paralleled assembly and annotation method under HPC presented here allows the solution of large-scale data processing problems in acceptable computation time. There is significant increase in the number of transcriptomic data achieved and observable heterogeneity in the performance to identify differentially expressed genes in the ND treatment paradigm. The results provide new insights as to how response to ND treatment in microalgae is regulated. ND analyses highlight the advantages of this database generated in this study that could also serve as a useful resource for future gene manipulation and transcriptome-wide analysis. We thus demonstrate the usefulness of exploring the transcriptome as an informative platform for functional studies and genetic manipulations in similar species. |
ArticleNumber | 122 |
Audience | Academic |
Author | Tan, Kenneth Wei Min Tan, Tin Wee Lee, Yuan Kun Yao, Lina |
Author_xml | – sequence: 1 givenname: Lina surname: Yao fullname: Yao, Lina organization: Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore – sequence: 2 givenname: Kenneth Wei Min surname: Tan fullname: Tan, Kenneth Wei Min organization: Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore – sequence: 3 givenname: Tin Wee surname: Tan fullname: Tan, Tin Wee organization: Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, National Supercomputing Centre (NSCC) – sequence: 4 givenname: Yuan Kun surname: Lee fullname: Lee, Yuan Kun email: yuan_kun_lee@nuhs.edu.sg organization: Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28228091$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kt1u1DAQhSNURNuFB-AGWeIGLlJsJ9nYN0hVKVCpEhI_15bXmWRdJXawnWp5EZ6XSXcpuxWgSIkdf2dGPnNOsyPnHWTZc0bPGBPLN5FxUcmcsjpnVcXyzaPshJU1yzmj1dHe-jg7jfGGIiho9SQ75oJzQSU7yX5ebsbeB-s6ktZAUtAummDH5AcgviXYMR98Az3xPejOOj9FMlgTvO47Td5NTvcW-l6TBCFZhEzC9Tr4qVuTte3W-W4zTolE-D6BM3M37Zq7YzJCaH0YtDNAjB8Qw-On2eNW9xGe7b6L7Nv7y68XH_PrTx-uLs6vc1PVLOVLZoCCaEpZCy7kSlAj8FW0JZegJVvRZikboRmtC8rBlDUXdSHKBmQpNfBikb3d1h2n1QCNAYcO9GoMdtDhh_LaqsMTZ9eq87eqKjivsNMie7UrEDzeLSY12GhmQxygVYqJeh5NLWtEXz5Ab_wU0L87quCSlUv5h-p0D8q61mNfMxdV5yWOjRUlF0id_YXCpwEcDqaktfj_QPD6QIBMgk3q9BSjuvry-ZB9sW_KvRu_U4MA2wIYgxgDtPcIo2pOptomU2Hg1Hx9tUFN_UBjbNKYmNlX2_9XybfKOM45hbDn2z9FvwCLzfn2 |
CitedBy_id | crossref_primary_10_1186_s12864_020_6507_2 crossref_primary_10_1007_s10811_024_03368_x crossref_primary_10_1080_10408398_2019_1680525 crossref_primary_10_1371_journal_pone_0196669 crossref_primary_10_1007_s00343_021_0164_4 crossref_primary_10_1016_j_phytochem_2021_112936 crossref_primary_10_1071_FP23002 crossref_primary_10_1016_j_aquaculture_2024_741782 crossref_primary_10_3389_fmars_2018_00311 crossref_primary_10_3390_ijms242015374 crossref_primary_10_1016_j_procbio_2024_08_014 |
Cites_doi | 10.1007/BF00163235 10.1038/nrg3068 10.1038/nbt.1883 10.1186/gb-2007-8-1-r3 10.1002/j.1460-2075.1991.tb07806.x 10.1126/science.1143609 10.1186/1471-2164-12-148 10.1186/1754-6834-5-74 10.1371/journal.pone.0126492 10.1016/j.biortech.2015.07.002 10.1371/journal.pone.0103389 10.1186/s13068-014-0179-6 10.1038/nrg3642 10.1093/bioinformatics/btp367 10.1074/jbc.M113.490425 10.1186/1471-2105-12-1 10.1186/1471-2164-15-1117 10.1186/1471-2164-14-167 10.1186/1472-6750-11-7 10.1038/nmeth.1223 10.1146/annurev.arplant.58.032806.103754 10.1186/gb-2012-13-5-r39 10.1007/s00216-014-8155-3 10.1186/1754-6834-6-1 10.1016/S0378-1119(98)00474-0 10.1016/j.cbpa.2013.03.038 10.1371/journal.pone.0016036 10.1371/journal.pone.0010972 10.1016/0378-1119(91)90364-H 10.1126/science.1188800 10.1186/s13059-015-0596-2 10.1007/s00216-012-5814-0 10.1016/j.algal.2015.12.012 10.1038/nrg2484 10.1105/tpc.110.076406 10.1002/0471250953.bi0203s00 10.1093/genetics/159.2.907 10.1186/1471-2105-11-94 10.1038/srep37235 10.1145/2335755.2335842 10.1126/science.1167222 10.1039/C4CS00189C 10.1016/j.gene.2004.10.022 10.1073/pnas.0807121105 10.1038/nprot.2013.084 10.1093/bioinformatics/btt087 10.1093/nar/gkn916 10.1371/journal.pone.0011900 10.1146/annurev.biochem.72.121801.161720 10.1093/bioinformatics/btp336 10.1128/EC.00363-12 10.1101/gr.074492.107 10.1016/j.biochi.2011.12.024 10.1073/pnas.0611046104 10.1007/BF00040537 10.1111/pbi.12648 10.1101/gad.1788009 10.1371/journal.pone.0072415 |
ContentType | Journal Article |
Copyright | The Author(s). 2017 COPYRIGHT 2017 BioMed Central Ltd. Copyright BioMed Central 2017 |
Copyright_xml | – notice: The Author(s). 2017 – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: Copyright BioMed Central 2017 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1186/s12859-017-1551-x |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2105 |
EndPage | 122 |
ExternalDocumentID | PMC5322580 4317818621 A482213428 28228091 10_1186_s12859_017_1551_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Research Foundation (NRF), Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) Programme grantid: Grant No. R-182-000-205-592 – fundername: ; grantid: Grant No. R-182-000-205-592 |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM PMFND 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c571t-61ce0e8d4978289b80c8b803f429ea91b0d69d8a107302ec47287384de949ae23 |
IEDL.DBID | M48 |
ISSN | 1471-2105 |
IngestDate | Thu Aug 21 14:01:12 EDT 2025 Thu Sep 04 22:51:14 EDT 2025 Fri Jul 25 10:57:09 EDT 2025 Tue Jun 17 21:24:51 EDT 2025 Tue Jun 10 20:28:06 EDT 2025 Fri Jun 27 04:04:59 EDT 2025 Thu Apr 03 07:08:00 EDT 2025 Tue Jul 01 03:38:23 EDT 2025 Thu Apr 24 22:59:44 EDT 2025 Sat Sep 06 07:27:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Microalgae HPC RNA-Seq Transcriptome Dunaliella tertiolecta |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c571t-61ce0e8d4978289b80c8b803f429ea91b0d69d8a107302ec47287384de949ae23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-017-1551-x |
PMID | 28228091 |
PQID | 1873291469 |
PQPubID | 44065 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5322580 proquest_miscellaneous_1871551797 proquest_journals_1873291469 gale_infotracmisc_A482213428 gale_infotracacademiconefile_A482213428 gale_incontextgauss_ISR_A482213428 pubmed_primary_28228091 crossref_primary_10_1186_s12859_017_1551_x crossref_citationtrail_10_1186_s12859_017_1551_x springer_journals_10_1186_s12859_017_1551_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-22 |
PublicationDateYYYYMMDD | 2017-02-22 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | BMC series – open, inclusive and trusted |
PublicationTitle | BMC bioinformatics |
PublicationTitleAbbrev | BMC Bioinformatics |
PublicationTitleAlternate | BMC Bioinformatics |
PublicationYear | 2017 |
Publisher | BioMed Central BioMed Central Ltd |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd |
References | A Darling (1551_CR33) 2003; 2003 H Rismani-Yazdi (1551_CR14) 2012; 5 D Mouchiroud (1551_CR38) 1991; 100 L Chen (1551_CR55) 2015; 10 BJ Blencowe (1551_CR43) 2009; 23 G Parra (1551_CR40) 2009; 37 G Blanc (1551_CR5) 2012; 13 C Shang (1551_CR11) 2016; 13 K Jabbari (1551_CR37) 1998; 224 L Yao (1551_CR16) 2015; 8 LR Cavonius (1551_CR25) 2014; 406 S-H Kim (1551_CR62) 2013; 8 I Birol (1551_CR18) 2009; 25 Z Chang (1551_CR2) 2015; 16 AS Reddy (1551_CR30) 2007; 58 T Huang (1551_CR54) 2010; 5 G Blanc (1551_CR6) 2010; 22 BJ Haas (1551_CR20) 2013; 8 B Li (1551_CR27) 2011; 12 1551_CR58 LM Laurens (1551_CR26) 2012; 403 JH Bullard (1551_CR42) 2010; 11 ALG Lomana de (1551_CR49) 2015; 8 GJ Goodall (1551_CR47) 1991; 10 T Huang (1551_CR52) 2010; 5 SE Prochnik (1551_CR10) 2010; 329 H Rismani-Yazdi (1551_CR13) 2011; 12 DL Black (1551_CR29) 2003; 72 JA Martin (1551_CR4) 2011; 12 D Sims (1551_CR34) 2014; 15 WR Francis (1551_CR45) 2013; 14 L Duret (1551_CR35) 1995; 40 D Simionato (1551_CR60) 2013; 12 EI Urzica (1551_CR61) 2013; 288 T Huang (1551_CR56) 2012; 94 1551_CR28 R Li (1551_CR19) 2009; 25 B Palenik (1551_CR9) 2007; 104 M Siaut (1551_CR50) 2011; 11 1551_CR63 L Fang (1551_CR12) 2015; 8 1551_CR21 S Stamm (1551_CR31) 2005; 344 A Kianianmomeni (1551_CR39) 2014; 15 1551_CR23 GJ Martin (1551_CR59) 2014; 9 1551_CR22 N Galtier (1551_CR36) 2001; 159 AZ Worden (1551_CR8) 2009; 324 Z Wang (1551_CR1) 2009; 10 MG Grabherr (1551_CR3) 2011; 29 H Shin (1551_CR15) 2015; 194 N Cloonan (1551_CR44) 2008; 5 P Carmona-Saez (1551_CR51) 2007; 8 DR Zerbino (1551_CR17) 2008; 18 T Huang (1551_CR53) 2011; 6 H Li (1551_CR46) 2008; 105 Z-K Yang (1551_CR57) 2013; 6 O White (1551_CR48) 1992; 19 1551_CR32 JA Gimpel (1551_CR41) 2013; 17 SS Merchant (1551_CR7) 2007; 318 AF Lee (1551_CR24) 2014; 43 22630137 - Genome Biol. 2012 May 25;13(5):R39 25516378 - BMC Genomics. 2014 Dec 16;15:1117 17222076 - Annu Rev Plant Biol. 2007;58:267-94 19528315 - Genes Dev. 2009 Jun 15;23(12):1379-86 19015660 - Nat Rev Genet. 2009 Jan;10(1):57-63 17932292 - Science. 2007 Oct 12;318(5848):245-50 1868837 - EMBO J. 1991 Sep;10(9):2635-44 20852019 - Plant Cell. 2010 Sep;22(9):2943-55 18792934 - Curr Protoc Bioinformatics. 2002 Aug;Chapter 2:Unit 2.3 15656968 - Gene. 2005 Jan 3;344:1-20 20616280 - Science. 2010 Jul 9;329(5988):223-6 21897427 - Nat Rev Genet. 2011 Sep 07;12(10):671-82 21401935 - BMC Genomics. 2011 Mar 14;12:148 21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52 9931467 - Gene. 1998 Dec 11;224(1-2):123-7 2055469 - Gene. 1991 Apr;100:181-7 24434847 - Nat Rev Genet. 2014 Feb;15(2):121-32 1511130 - Plant Mol Biol. 1992 Sep;19(6):1057-64 19497933 - Bioinformatics. 2009 Aug 1;25(15):1966-7 19088194 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20179-84 26322124 - Biotechnol Biofuels. 2015 Aug 28;8:130 23845962 - Nat Protoc. 2013 Aug;8(8):1494-512 22239951 - Biochimie. 2012 Apr;94(4):1017-25 7723057 - J Mol Evol. 1995 Mar;40(3):308-17 21253596 - PLoS One. 2011 Jan 06;6(1):e16036 17460045 - Proc Natl Acad Sci U S A. 2007 May 1;104(18):7705-10 17204154 - Genome Biol. 2007;8(1):R3 23642220 - Biotechnol Biofuels. 2013 May 04;6(1):67 22349344 - Anal Bioanal Chem. 2012 Apr;403(1):167-78 24957179 - Chem Soc Rev. 2014 Nov 21;43(22):7887-916 23428641 - Bioinformatics. 2013 Apr 15;29(8):1035-43 21816040 - BMC Bioinformatics. 2011 Aug 04;12:323 25723335 - Genome Biol. 2015 Feb 11;16:30 21255402 - BMC Biotechnol. 2011 Jan 21;11:7 12626338 - Annu Rev Biochem. 2003;72:291-336 23496952 - BMC Genomics. 2013 Mar 12;14:167 26633994 - Biotechnol Biofuels. 2015 Dec 02;8:207 27849022 - Sci Rep. 2016 Nov 16;6:37235 20689580 - PLoS One. 2010 Jul 30;5(7):e11900 23983122 - J Biol Chem. 2013 Oct 18;288(42):30246-58 25951454 - PLoS One. 2015 May 07;10(5):e0126492 20167110 - BMC Bioinformatics. 2010 Feb 18;11:94 23006831 - Biotechnol Biofuels. 2012 Sep 24;5(1):74 11693127 - Genetics. 2001 Oct;159(2):907-11 26613001 - Biotechnol Biofuels. 2015 Nov 25;8:191 18516046 - Nat Methods. 2008 Jul;5(7):613-9 26185926 - Bioresour Technol. 2015 Oct;194:57-66 19528083 - Bioinformatics. 2009 Nov 1;25(21):2872-7 20532046 - PLoS One. 2010 Jun 04;5(6):e10972 25224639 - Anal Bioanal Chem. 2014 Nov;406(28):7313-22 18349386 - Genome Res. 2008 May;18(5):821-9 19359590 - Science. 2009 Apr 10;324(5924):268-72 25171084 - PLoS One. 2014 Aug 29;9(8):e103389 24039760 - PLoS One. 2013 Sep 05;8(9):e72415 23684717 - Curr Opin Chem Biol. 2013 Jun;17(3):489-95 27734577 - Plant Biotechnol J. 2016 Oct 13;:null 19042974 - Nucleic Acids Res. 2009 Jan;37(1):289-97 23457191 - Eukaryot Cell. 2013 May;12(5):665-76 |
References_xml | – volume: 40 start-page: 308 issue: 3 year: 1995 ident: 1551_CR35 publication-title: J Mol Evol doi: 10.1007/BF00163235 – volume: 12 start-page: 671 issue: 10 year: 2011 ident: 1551_CR4 publication-title: Nat Rev Genet doi: 10.1038/nrg3068 – volume: 29 start-page: 644 issue: 7 year: 2011 ident: 1551_CR3 publication-title: Nat Biotechnol doi: 10.1038/nbt.1883 – volume: 8 start-page: R3 issue: 1 year: 2007 ident: 1551_CR51 publication-title: Genome Biol doi: 10.1186/gb-2007-8-1-r3 – volume: 10 start-page: 2635 issue: 9 year: 1991 ident: 1551_CR47 publication-title: EMBO J doi: 10.1002/j.1460-2075.1991.tb07806.x – volume: 318 start-page: 245 issue: 5848 year: 2007 ident: 1551_CR7 publication-title: Science doi: 10.1126/science.1143609 – volume: 12 start-page: 148 issue: 1 year: 2011 ident: 1551_CR13 publication-title: BMC Genomics doi: 10.1186/1471-2164-12-148 – volume: 5 start-page: 1 issue: 1 year: 2012 ident: 1551_CR14 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-5-74 – volume: 10 start-page: e0126492 issue: 5 year: 2015 ident: 1551_CR55 publication-title: PLoS One doi: 10.1371/journal.pone.0126492 – volume: 194 start-page: 57 year: 2015 ident: 1551_CR15 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.07.002 – volume: 9 start-page: e103389 issue: 8 year: 2014 ident: 1551_CR59 publication-title: PLoS One doi: 10.1371/journal.pone.0103389 – volume: 8 start-page: 1 issue: 1 year: 2015 ident: 1551_CR12 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-014-0179-6 – volume: 15 start-page: 121 issue: 2 year: 2014 ident: 1551_CR34 publication-title: Nat Rev Genet doi: 10.1038/nrg3642 – volume: 25 start-page: 2872 issue: 21 year: 2009 ident: 1551_CR18 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp367 – volume: 2003 start-page: 13 year: 2003 ident: 1551_CR33 publication-title: Proceed ClusterWorld – volume: 288 start-page: 30246 issue: 42 year: 2013 ident: 1551_CR61 publication-title: J Biol Chem doi: 10.1074/jbc.M113.490425 – volume: 12 start-page: 1 issue: 1 year: 2011 ident: 1551_CR27 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-1 – volume: 15 start-page: 1117 issue: 1 year: 2014 ident: 1551_CR39 publication-title: BMC Genomics doi: 10.1186/1471-2164-15-1117 – volume: 14 start-page: 1 issue: 1 year: 2013 ident: 1551_CR45 publication-title: BMC Genomics doi: 10.1186/1471-2164-14-167 – volume: 11 start-page: 7 issue: 1 year: 2011 ident: 1551_CR50 publication-title: BMC Biotechnol doi: 10.1186/1472-6750-11-7 – volume: 5 start-page: 613 issue: 7 year: 2008 ident: 1551_CR44 publication-title: Nat Methods doi: 10.1038/nmeth.1223 – volume: 58 start-page: 267 year: 2007 ident: 1551_CR30 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.58.032806.103754 – volume: 8 start-page: 1 issue: 1 year: 2015 ident: 1551_CR49 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-014-0179-6 – volume: 13 start-page: R39 issue: 5 year: 2012 ident: 1551_CR5 publication-title: Genome Biol doi: 10.1186/gb-2012-13-5-r39 – volume: 406 start-page: 7313 issue: 28 year: 2014 ident: 1551_CR25 publication-title: Anal Bioanal Chem doi: 10.1007/s00216-014-8155-3 – volume: 6 start-page: 1 issue: 1 year: 2013 ident: 1551_CR57 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-6-1 – volume: 224 start-page: 123 issue: 1 year: 1998 ident: 1551_CR37 publication-title: Gene doi: 10.1016/S0378-1119(98)00474-0 – volume: 17 start-page: 489 issue: 3 year: 2013 ident: 1551_CR41 publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2013.03.038 – volume: 6 start-page: e16036 issue: 1 year: 2011 ident: 1551_CR53 publication-title: PLoS One doi: 10.1371/journal.pone.0016036 – volume: 5 start-page: e10972 issue: 6 year: 2010 ident: 1551_CR52 publication-title: PLoS One doi: 10.1371/journal.pone.0010972 – volume: 100 start-page: 181 year: 1991 ident: 1551_CR38 publication-title: Gene doi: 10.1016/0378-1119(91)90364-H – volume: 329 start-page: 223 issue: 5988 year: 2010 ident: 1551_CR10 publication-title: Science doi: 10.1126/science.1188800 – volume: 16 start-page: 30 issue: 1 year: 2015 ident: 1551_CR2 publication-title: Genome Biol doi: 10.1186/s13059-015-0596-2 – ident: 1551_CR23 – volume: 403 start-page: 167 issue: 1 year: 2012 ident: 1551_CR26 publication-title: Anal Bioanal Chem doi: 10.1007/s00216-012-5814-0 – volume: 13 start-page: 318 year: 2016 ident: 1551_CR11 publication-title: Algal Res doi: 10.1016/j.algal.2015.12.012 – volume: 10 start-page: 57 issue: 1 year: 2009 ident: 1551_CR1 publication-title: Nat Rev Genet doi: 10.1038/nrg2484 – volume: 22 start-page: 2943 issue: 9 year: 2010 ident: 1551_CR6 publication-title: Plant Cell Online doi: 10.1105/tpc.110.076406 – ident: 1551_CR32 doi: 10.1002/0471250953.bi0203s00 – volume: 8 start-page: 1 issue: 1 year: 2015 ident: 1551_CR16 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-014-0179-6 – volume: 159 start-page: 907 issue: 2 year: 2001 ident: 1551_CR36 publication-title: Genetics doi: 10.1093/genetics/159.2.907 – volume: 11 start-page: 1 issue: 1 year: 2010 ident: 1551_CR42 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-94 – ident: 1551_CR58 doi: 10.1038/srep37235 – ident: 1551_CR21 doi: 10.1145/2335755.2335842 – volume: 324 start-page: 268 issue: 5924 year: 2009 ident: 1551_CR8 publication-title: Science doi: 10.1126/science.1167222 – volume: 43 start-page: 7887 issue: 22 year: 2014 ident: 1551_CR24 publication-title: Chem Soc Rev doi: 10.1039/C4CS00189C – volume: 344 start-page: 1 year: 2005 ident: 1551_CR31 publication-title: Gene doi: 10.1016/j.gene.2004.10.022 – volume: 105 start-page: 20179 issue: 51 year: 2008 ident: 1551_CR46 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0807121105 – volume: 8 start-page: 1494 issue: 8 year: 2013 ident: 1551_CR20 publication-title: Nat Protoc doi: 10.1038/nprot.2013.084 – ident: 1551_CR22 – ident: 1551_CR28 doi: 10.1093/bioinformatics/btt087 – volume: 37 start-page: 289 issue: 1 year: 2009 ident: 1551_CR40 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn916 – volume: 5 start-page: e11900 issue: 7 year: 2010 ident: 1551_CR54 publication-title: PLoS One doi: 10.1371/journal.pone.0011900 – volume: 72 start-page: 291 issue: 1 year: 2003 ident: 1551_CR29 publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.72.121801.161720 – volume: 25 start-page: 1966 issue: 15 year: 2009 ident: 1551_CR19 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp336 – volume: 12 start-page: 665 issue: 5 year: 2013 ident: 1551_CR60 publication-title: Eukaryot Cell doi: 10.1128/EC.00363-12 – volume: 18 start-page: 821 issue: 5 year: 2008 ident: 1551_CR17 publication-title: Genome Res doi: 10.1101/gr.074492.107 – volume: 94 start-page: 1017 issue: 4 year: 2012 ident: 1551_CR56 publication-title: Biochimie doi: 10.1016/j.biochi.2011.12.024 – volume: 104 start-page: 7705 issue: 18 year: 2007 ident: 1551_CR9 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0611046104 – volume: 19 start-page: 1057 issue: 6 year: 1992 ident: 1551_CR48 publication-title: Plant Mol Biol doi: 10.1007/BF00040537 – ident: 1551_CR63 doi: 10.1111/pbi.12648 – volume: 23 start-page: 1379 issue: 12 year: 2009 ident: 1551_CR43 publication-title: Genes Dev doi: 10.1101/gad.1788009 – volume: 8 start-page: e72415 issue: 9 year: 2013 ident: 1551_CR62 publication-title: PLoS One doi: 10.1371/journal.pone.0072415 – reference: 21401935 - BMC Genomics. 2011 Mar 14;12:148 – reference: 19088194 - Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20179-84 – reference: 26185926 - Bioresour Technol. 2015 Oct;194:57-66 – reference: 20167110 - BMC Bioinformatics. 2010 Feb 18;11:94 – reference: 21253596 - PLoS One. 2011 Jan 06;6(1):e16036 – reference: 24434847 - Nat Rev Genet. 2014 Feb;15(2):121-32 – reference: 20532046 - PLoS One. 2010 Jun 04;5(6):e10972 – reference: 25224639 - Anal Bioanal Chem. 2014 Nov;406(28):7313-22 – reference: 2055469 - Gene. 1991 Apr;100:181-7 – reference: 17222076 - Annu Rev Plant Biol. 2007;58:267-94 – reference: 23642220 - Biotechnol Biofuels. 2013 May 04;6(1):67 – reference: 23428641 - Bioinformatics. 2013 Apr 15;29(8):1035-43 – reference: 21572440 - Nat Biotechnol. 2011 May 15;29(7):644-52 – reference: 19497933 - Bioinformatics. 2009 Aug 1;25(15):1966-7 – reference: 23457191 - Eukaryot Cell. 2013 May;12(5):665-76 – reference: 19359590 - Science. 2009 Apr 10;324(5924):268-72 – reference: 21816040 - BMC Bioinformatics. 2011 Aug 04;12:323 – reference: 23983122 - J Biol Chem. 2013 Oct 18;288(42):30246-58 – reference: 19015660 - Nat Rev Genet. 2009 Jan;10(1):57-63 – reference: 22349344 - Anal Bioanal Chem. 2012 Apr;403(1):167-78 – reference: 19528315 - Genes Dev. 2009 Jun 15;23(12):1379-86 – reference: 17932292 - Science. 2007 Oct 12;318(5848):245-50 – reference: 17460045 - Proc Natl Acad Sci U S A. 2007 May 1;104(18):7705-10 – reference: 25171084 - PLoS One. 2014 Aug 29;9(8):e103389 – reference: 24957179 - Chem Soc Rev. 2014 Nov 21;43(22):7887-916 – reference: 12626338 - Annu Rev Biochem. 2003;72:291-336 – reference: 18792934 - Curr Protoc Bioinformatics. 2002 Aug;Chapter 2:Unit 2.3 – reference: 26613001 - Biotechnol Biofuels. 2015 Nov 25;8:191 – reference: 25723335 - Genome Biol. 2015 Feb 11;16:30 – reference: 25516378 - BMC Genomics. 2014 Dec 16;15:1117 – reference: 20852019 - Plant Cell. 2010 Sep;22(9):2943-55 – reference: 1868837 - EMBO J. 1991 Sep;10(9):2635-44 – reference: 19042974 - Nucleic Acids Res. 2009 Jan;37(1):289-97 – reference: 15656968 - Gene. 2005 Jan 3;344:1-20 – reference: 18349386 - Genome Res. 2008 May;18(5):821-9 – reference: 9931467 - Gene. 1998 Dec 11;224(1-2):123-7 – reference: 27734577 - Plant Biotechnol J. 2016 Oct 13;:null – reference: 21255402 - BMC Biotechnol. 2011 Jan 21;11:7 – reference: 11693127 - Genetics. 2001 Oct;159(2):907-11 – reference: 27849022 - Sci Rep. 2016 Nov 16;6:37235 – reference: 22239951 - Biochimie. 2012 Apr;94(4):1017-25 – reference: 24039760 - PLoS One. 2013 Sep 05;8(9):e72415 – reference: 26322124 - Biotechnol Biofuels. 2015 Aug 28;8:130 – reference: 20689580 - PLoS One. 2010 Jul 30;5(7):e11900 – reference: 23006831 - Biotechnol Biofuels. 2012 Sep 24;5(1):74 – reference: 22630137 - Genome Biol. 2012 May 25;13(5):R39 – reference: 23684717 - Curr Opin Chem Biol. 2013 Jun;17(3):489-95 – reference: 21897427 - Nat Rev Genet. 2011 Sep 07;12(10):671-82 – reference: 23845962 - Nat Protoc. 2013 Aug;8(8):1494-512 – reference: 17204154 - Genome Biol. 2007;8(1):R3 – reference: 7723057 - J Mol Evol. 1995 Mar;40(3):308-17 – reference: 26633994 - Biotechnol Biofuels. 2015 Dec 02;8:207 – reference: 19528083 - Bioinformatics. 2009 Nov 1;25(21):2872-7 – reference: 18516046 - Nat Methods. 2008 Jul;5(7):613-9 – reference: 25951454 - PLoS One. 2015 May 07;10(5):e0126492 – reference: 23496952 - BMC Genomics. 2013 Mar 12;14:167 – reference: 20616280 - Science. 2010 Jul 9;329(5988):223-6 – reference: 1511130 - Plant Mol Biol. 1992 Sep;19(6):1057-64 |
SSID | ssj0017805 |
Score | 2.2656105 |
Snippet | Background
RNA-Seq technology has received a lot of attention in recent years for microalgal global transcriptomic profiling. It is widely used in... RNA-Seq technology has received a lot of attention in recent years for microalgal global transcriptomic profiling. It is widely used in transcriptome-wide... Background RNA-Seq technology has received a lot of attention in recent years for microalgal global transcriptomic profiling. It is widely used in... BACKGROUNDRNA-Seq technology has received a lot of attention in recent years for microalgal global transcriptomic profiling. It is widely used in... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 122 |
SubjectTerms | Algae Algorithms Biofuels Bioinformatics Biomass energy Biomedical and Life Sciences Chlorophyta - genetics Chlorophyta - growth & development Chlorophyta - metabolism Computational Biology/Bioinformatics Computer Appl. in Life Sciences Data processing Databases, Genetic Down-Regulation Gene expression Genetic aspects Heterogeneity High-Throughput Nucleotide Sequencing Life Sciences Microalgae Microarrays Molecular Sequence Annotation Nitrogen - metabolism Research Article RNA sequencing Sequence analysis (applications) Sequence Analysis, RNA Software Transcriptome Triglycerides - biosynthesis Up-Regulation |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0RPBF_LbnKVEEQQnXpNk2eZJDXE9BH9SDewttmqpw167XLpz_iH-vM2m2d13wXpYuM_1IZzIfzS8zAC-dRi_ovOLCqYKrXJRc17XkvpHoLWvhdABjfv6SHx6pT8eL4_jBrY-wyo1NDIa67hx9I98XusikwXlt3q5-c-oaRaursYXGdbgh0NOQnuvlh2kVger1x5VMofP9XlC1Nk52mQIFfj7zRdsW-ZJL2oZLbq2ZBle0vAO3YwzJDkah34Vrvr0HN8eukn_uw98JV8cwumMDeaNgG7pTz7qGYcLPQwMc1p14alKEyT87JWAe7etgGNJibE6gKEZ4AVq4dwMejw19GNU35vHPaj2wiMWmu5VtHchsdbEbgbnQNgLJD-Bo-f77u0Me2y9wtyjEgEml86nXNfWgw7Ss0qnT-JM16MJ8aUSV1rmpdSnISkiPssbsK9Oq9kaZ0svsIezgiPxjYHiV1GRVlRe-UugOjfCpbHQptXY6VVUC6UYQ1sXa5NQi48SGHEXndpSdRdlZkp09T-D1dMpqLMxxFfMLkq6lghctIWp-lOu-tx-_fbUHCkMkkWEWlsCryNR0eHNXxg0KOASqkTXj3Jtx4ox0c_JGiWy0CL290N8Enk9kOpME2noUNfHQ8xamSODRqHPT2AjuqzG4S6CYaePEQHXC55T2189QL3xBRlunCbzZ6O2lx_rfK9u9ehBP4JakiUSb--Ue7Axna_8Uw7Ohehbm4D8sojuA priority: 102 providerName: ProQuest – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9RAEB9KS8EXabVqbJVVCoKymN3sJbuPpViq0D7YFvq2JJuNFtrc4eWg_SJ-Xmc2e_FyqODLkWNmk2xmd38zzD-AQ6cRBZ1XXDhVcJWLkuu6ltw3EtGyFk6HYMyz8_z0Sn25nlzHYtGUC7Pqvxc6_zgXVGGN01lK4M5RXdyaiCwPftn8eHAYUGn-6LT847AR7Kwfvivosx4ZueYeDahzsgOPo7rIjnr57sKGb5_Adt9A8uEp_BxC6Bgqcqwj4AnHwPTOs2nD0LbnodcNm9566keEdj67oxg8SuFgqL2iGk7xT4xCA8hH7zq87nv3MCplzOOf2aJjMeyanla2dSCz2e_EA-ZChwgk78HVyafL41MeOy1wNylEh_aj86nXNbWbQwus0qnT-JM1iFa-NKJK69zUuhR0IEiPYkVDK9Oq9kaZ0svsGWzijPwLYHiX1GRVlRe-Uoh8RvhUNrqUWjudqiqBdCkI62IZcuqGcWuDOaJz28vOouwsyc7eJ_B-GDLra3D8i_ktSddSbYuWgme-lYv53H6--GqPFGpDIkODK4F3kamZ4sNdGXMRcApUDmvEeTDixM3nxuTlIrJx88-twG8jDUKQSeDNQKaRJNDWo6iJh963MEUCz_s1N8yNIns16nEJFKPVODBQSfAxpb35HkqDT-h81mkCH5brduW1_vbJXv4X9z48krSvKK1fHsBm92PhX6Fi1lWvw5b8BVDeNHw priority: 102 providerName: Springer Nature |
Title | Exploring the transcriptome of non-model oleaginous microalga Dunaliella tertiolecta through high-throughput sequencing and high performance computing |
URI | https://link.springer.com/article/10.1186/s12859-017-1551-x https://www.ncbi.nlm.nih.gov/pubmed/28228091 https://www.proquest.com/docview/1873291469 https://www.proquest.com/docview/1871551797 https://pubmed.ncbi.nlm.nih.gov/PMC5322580 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9RAcKgtgi_it9F6rCIIytpsspdsHkTq0bMKLVI9uLcl2WxUuCZnk4P2j_h7ndkk1-aofQkJM_nYnZmdmex8ALw2CrWgsZILI2MuI5FylecBt0WA2jIXRrlgzKPj6HAmv87H8y3o21t1E1hf69pRP6nZ2eL9-Z-LjyjwH5zAq2ivFlSFjdN6SwYAR5NyBxVTRL7YkbzcVKDy_S7ZKBYcPZ1xt8l57SMGampzsb6irTYjKTe2U52Wmt6Du515yfZbfrgPW7Z8ALfbhpMXD-HvOuSOoeHHGlJUbtmoTi2rClZWJXe9cVi1sNS_qFrV7JRi9ijlg6G1i2Y7xUsxCiWgPX3T4Hnb64dR6WPeXSxXDevCtOltaZk7MFteJiow4zpKIPgRzKYHPyaHvOvMwM04Fg36m8b6VuXUng49tkz5RuEhLFC72TQRmZ9HSa5SQQtIYJEN0DELlcxtIpPUBuFj2MYR2afA8Cl-EmZZFNtMImUSYf2gUGmglFG-zDzwe0Jo05Utp-4ZC-3cFxXplnYaaaeJdvrcg7frW5ZtzY6bkF8RdTXVwigp2OZnuqpr_eX7id6XaD2JEB00D950SEWFLzdpl7uAQ6DyWQPM3QEmCqsZgnsm0j2va4FzEySoshIPXq7BdCcRtLRIasKh742T2IMnLc-tx0aRwArtPg_iATeuEaiE-BBS_v7lSomPaT1Xvgfver698ln_m7JnN4_xOdwJSJAo7z_Yhe3mbGVfoOXWZCO4Fc9jPKrp5xHsfDo4_naCV5NoMnL_QkZOXv8B8GZFeA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQguiDeBAgaBkEBWYyebOAeEKqDapY8DtNLeTOI4gNQmC8mK9o_wM_iNzDiPNivRWy-rXXmyiTPjeSSf5wN4YRRGQWNDLkwY8zASKVd5LrktJEbLXBjlwJh7-9H0MPw0n8zX4G-_F4Zglb1PdI46rww9I98UKg5kgus6ebf4yYk1it6u9hQarVns2NPfWLLVb2cfUL8vpdz-ePB-yjtWAW4msWiwVjLWtyonajWsNjLlG4UfQYGe2aaJyPw8SnKVCjJ-aXEKWFQEKsxtEiappUYH6PKvhPRkHNdPPB8KPEH8AN2bU6GizVpQdzhOcYASE34yin2rEeBcCFyFZ668o3Whb_sm3OhyVrbVGtktWLPlbbjaslie3oE_A46PYTbJGop-zhdVx5ZVBSurkjvCHVYdWSJFqpY1OyYgIO0jYZhCYy1AICxG-AQCCpgGv7cEQoz6KfPux2LZsA77TWdLy9wNs8XZ7gdmHE0FDt-Fw0tRzD1YxxnZB8DwX_wkyLIotlmI4TcR1peFSqVSRvlh5oHfK0Kbrhc6UXIcaVcTqUi3utOoO0260ycevB4OWbSNQC4Sfk7a1dRgoyQEz7d0Wdd69uWz3goxJRMBVn0evOqEigpPbtJuQwROgXpyjSQ3RpLoAcx4uDci3XmgWp-tFw-eDcN0JCm0tKhqkqHrjZPYg_utzQ1zI3ixwmTSg3hkjYMA9SUfj5Q_vrv-5BMKEsr34E1vt-cu63-37OHFk3gK16YHe7t6d7a_8wiuS1pU1FhAbsB682tpH2Nq2GRP3Hpk8PWyHcA_CVt21w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB-kovhS_Da16iqCoCzNJnvJ7mOpHq0fRdRC35Zkd2MLbe4wOWj_Ef9eZ5JNbA4VfDlyzGySzezOb4aZnQF4aRWioPWSCytzLjNRcOVcwn2VIFo6YVWXjPnpMNs_ku-PZ8ehz2kzZLsPIcn-TANVaarbnaWr-i2usp1GUN01ThqWIJ-jEXldEvJRtDbbG8MIVLA_hDL_OGwCRusq-QomredLrgVNOyya34bNYESy3V7qd-Car-_Cjb6t5OU9-Dkm1jE071hLcNQph8W5Z4uKocfPuw44bHHmqUsRev_snDLz6GAHQ5sWjXPKimKUMECRe9vidd_Rh1GBYx7-LFctC8nY9LSidh2ZLX8fR2C26xuB5PtwNH_3bW-fh_4L3M5y0aJXaX3slaMmdOiXlSq2Cn_SCjHMF1qUscu0U4UgNZF4FDa6X6mSzmupC5-kD2ADZ-QfAcO7xDotyyz3pUQ81MLHSaWKRCmrYllGEA-CMDYUJ6ceGWemc1JUZnrZGZSdIdmZiwhej0OWfWWOfzG_IOkaqnhRU0rN92LVNObg6xezK9FGEim6YRG8CkzVAh9ui3BCAadARbImnNsTTtySdkoeFpEJKqExAr9NohGYdATPRzKNJIHWHkVNPPS-uc4jeNivuXFulO-rcI1HkE9W48hAhcKnlPr0pCsYPiOtreII3gzr9spr_e2Tbf0X9zO4-fnt3Hw8OPzwGG4ltMXo3H-yDRvtj5V_gpZbWz7tducvRD0_sA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+transcriptome+of+non-model+oleaginous+microalga+Dunaliella+tertiolecta+through+high-throughput+sequencing+and+high+performance+computing&rft.jtitle=BMC+bioinformatics&rft.au=Yao%2C+Lina&rft.au=Tan%2C+Kenneth+Wei+Min&rft.au=Tan%2C+Tin+Wee&rft.au=Lee%2C+Yuan+Kun&rft.date=2017-02-22&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-017-1551-x&rft.externalDocID=A482213428 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |