Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions
Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases, but thei...
Saved in:
Published in | Cell research Vol. 23; no. 9; pp. 1119 - 1132 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.09.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases, but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early devel- opmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4), glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs, including hESCs and hiPSCs, into homoge- neous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 107-fold when the differentiation-inducing signals from BMP, GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore, these CVPCs exhibited expected genome-wide molecular features of CVPCs, retained potentials to generate major cardiovascular lineages including cardiomyocytes, smooth muscle cells and endothelial cells in vitro, and were non-tumorigenic in vivo. Altogether, the established systems reported here permit efficient generation and stable maintenance of hPSC- derived CVPCs, which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine. |
---|---|
AbstractList | Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases, but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early developmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4), glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs, including hESCs and hiPSCs, into homogeneous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 10(7)-fold when the differentiation-inducing signals from BMP, GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore, these CVPCs exhibited expected genome-wide molecular features of CVPCs, retained potentials to generate major cardiovascular lineages including cardiomyocytes, smooth muscle cells and endothelial cells in vitro, and were non-tumorigenic in vivo. Altogether, the established systems reported here permit efficient generation and stable maintenance of hPSC-derived CVPCs, which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine. Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases, but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early developmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4), glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs, including hESCs and hiPSCs, into homogeneous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 10(7)-fold when the differentiation-inducing signals from BMP, GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore, these CVPCs exhibited expected genome-wide molecular features of CVPCs, retained potentials to generate major cardiovascular lineages including cardiomyocytes, smooth muscle cells and endothelial cells in vitro, and were non-tumorigenic in vivo. Altogether, the established systems reported here permit efficient generation and stable maintenance of hPSC-derived CVPCs, which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine.Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases, but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early developmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4), glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs, including hESCs and hiPSCs, into homogeneous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 10(7)-fold when the differentiation-inducing signals from BMP, GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore, these CVPCs exhibited expected genome-wide molecular features of CVPCs, retained potentials to generate major cardiovascular lineages including cardiomyocytes, smooth muscle cells and endothelial cells in vitro, and were non-tumorigenic in vivo. Altogether, the established systems reported here permit efficient generation and stable maintenance of hPSC-derived CVPCs, which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine. Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases, but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early developmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4), glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs, including hESCs and hiPSCs, into homogeneous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 10 7 -fold when the differentiation-inducing signals from BMP, GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore, these CVPCs exhibited expected genome-wide molecular features of CVPCs, retained potentials to generate major cardiovascular lineages including cardiomyocytes, smooth muscle cells and endothelial cells in vitro , and were non-tumorigenic in vivo . Altogether, the established systems reported here permit efficient generation and stable maintenance of hPSC-derived CVPCs, which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine. Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases, but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early devel- opmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4), glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs, including hESCs and hiPSCs, into homoge- neous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 107-fold when the differentiation-inducing signals from BMP, GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore, these CVPCs exhibited expected genome-wide molecular features of CVPCs, retained potentials to generate major cardiovascular lineages including cardiomyocytes, smooth muscle cells and endothelial cells in vitro, and were non-tumorigenic in vivo. Altogether, the established systems reported here permit efficient generation and stable maintenance of hPSC- derived CVPCs, which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine. Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases, but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early developmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4), glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs, including hESCs and hiPSCs, into homogeneous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 10 super(7)-fold when the differentiation-inducing signals from BMP, GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore, these CVPCs exhibited expected genome-wide molecular features of CVPCs, retained potentials to generate major cardiovascular lineages including cardiomyocytes, smooth muscle cells and endothelial cells in vitro, and were non-tumorigenic in vivo. Altogether, the established systems reported here permit efficient generation and stable maintenance of hPSC-derived CVPCs, which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine. |
Author | Nan Cao He Liang Jijun Huang Jia Wang Yixiong Chen Zhongyan Chen Huang-Tian Yang |
AuthorAffiliation | Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China |
Author_xml | – sequence: 1 givenname: Nan surname: Cao fullname: Cao, Nan organization: Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTUSM) – sequence: 2 givenname: He surname: Liang fullname: Liang, He organization: Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTUSM) – sequence: 3 givenname: Jijun surname: Huang fullname: Huang, Jijun organization: Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTUSM) – sequence: 4 givenname: Jia surname: Wang fullname: Wang, Jia organization: Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTUSM) – sequence: 5 givenname: Yixiong surname: Chen fullname: Chen, Yixiong organization: Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTUSM) – sequence: 6 givenname: Zhongyan surname: Chen fullname: Chen, Zhongyan organization: Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTUSM) – sequence: 7 givenname: Huang-Tian surname: Yang fullname: Yang, Huang-Tian email: htyang@sibs.ac.cn organization: Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine (SJTUSM) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23896987$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktrFTEUxwep2Ieu3EvEjaBT85hJMptCKWqFghtdh0xy5t6UmeQ2yRT6Ufy2zXjvLbV04SIkh_zO_zyPqwMfPFTVW4JPCWbyi4mnFBNWDPqiOiKikbWQTB6UN8akxhzTw-o4pWuMadu05FV1SJnseCfFUfXn0q3W4x2CYXDGgc_IeTub7IJH2ls0Br-qM8QJTdr5DF57AygMaJrH7DYhLy5GR-vCrU5mHnVEmxhW4F0OMaEhhgmt50l7tBnnuPdIGSZkYBwTmr2FiCwMzoNFJnjrlujpdfVy0GOCN7v7pPr97euvi8v66uf3HxfnV7VpBck17XtBOia5NJwPlJGhvBjn3PbSNoR22ALljTU94aLHjIKUrdGa9A20sqXspDrb6m7mfgJrSnpRj2oT3aTjnQraqX9_vFurVbhVTAjWirYIfNwJxHAzQ8pqcmmpTXsIc1KkKXFYOeQ_UNpxhoXoCvrhCXod5uhLJ_5SlGEsFsF3j5N_yHo_4AKQLWBiSCnCoIzLemlwqcWNimC1LJEyUS1LVIylI5-e-Oxln6c_b-lUKL-C-CjRZ_H3O_F1Wa2b4vGg3ogyDsoFuwf4ceU6 |
CitedBy_id | crossref_primary_10_1186_s13619_015_0017_8 crossref_primary_10_18632_aging_103088 crossref_primary_10_3390_cells7060048 crossref_primary_10_7554_eLife_31706 crossref_primary_10_1038_s41598_019_52516_8 crossref_primary_10_1016_j_acvd_2020_01_002 crossref_primary_10_1016_j_biologicals_2017_09_003 crossref_primary_10_1161_CIRCULATIONAHA_121_054744 crossref_primary_10_1161_ATVBAHA_117_309196 crossref_primary_10_1089_scd_2017_0240 crossref_primary_10_1093_cvr_cvae118 crossref_primary_10_1186_s13287_015_0260_5 crossref_primary_10_1002_term_2117 crossref_primary_10_1016_j_stem_2016_02_010 crossref_primary_10_1172_JCI82735 crossref_primary_10_1146_annurev_genet_112414_054911 crossref_primary_10_1002_dvdy_24441 crossref_primary_10_1016_j_lfs_2015_12_023 crossref_primary_10_3390_jcdd9120409 crossref_primary_10_1039_C8BM01095A crossref_primary_10_1089_ars_2018_7688 crossref_primary_10_1016_j_scr_2018_07_020 crossref_primary_10_1016_j_biomaterials_2021_120713 crossref_primary_10_1002_1873_3468_13930 crossref_primary_10_1016_j_stem_2016_02_001 crossref_primary_10_1002_sctm_19_0340 crossref_primary_10_1049_iet_syb_2018_5037 crossref_primary_10_1016_j_celrep_2016_04_066 crossref_primary_10_3390_ijms21124354 crossref_primary_10_3390_ijms22179517 crossref_primary_10_1161_HCG_0000000000000043 crossref_primary_10_1042_BJ20141078 crossref_primary_10_1016_j_stem_2015_12_001 crossref_primary_10_1089_cell_2015_0003 crossref_primary_10_1002_sctm_20_0456 crossref_primary_10_1016_j_apmt_2023_101773 crossref_primary_10_1016_j_stemcr_2018_07_001 crossref_primary_10_1186_s13287_019_1274_1 crossref_primary_10_3389_fcell_2021_672039 crossref_primary_10_1007_s11886_024_02099_2 crossref_primary_10_1186_s13287_024_03899_7 crossref_primary_10_1016_j_stemcr_2014_07_001 crossref_primary_10_1038_s41419_020_2508_y crossref_primary_10_1007_s00784_023_05452_x crossref_primary_10_4244_EIJ_D_17_00467 crossref_primary_10_1038_aps_2017_29 crossref_primary_10_1089_ten_tec_2013_0646 crossref_primary_10_1186_scrt401 crossref_primary_10_1016_j_stemcr_2016_08_008 crossref_primary_10_1172_JCI80575 crossref_primary_10_1161_CIRCULATIONAHA_121_056198 crossref_primary_10_15283_ijsc21051 crossref_primary_10_4137_BMI_S20050 crossref_primary_10_1039_C5TB02428E crossref_primary_10_4252_wjsc_v16_i2_137 crossref_primary_10_1113_JP276754 crossref_primary_10_1016_j_scr_2017_02_002 crossref_primary_10_1016_j_bioactmat_2023_05_015 crossref_primary_10_1016_j_lfs_2018_01_009 crossref_primary_10_1007_s10735_020_09926_0 crossref_primary_10_1146_annurev_bioeng_071813_105108 crossref_primary_10_3390_cells8121536 crossref_primary_10_1016_j_biomaterials_2015_09_008 crossref_primary_10_31083_j_rcm2312392 crossref_primary_10_1016_j_stemcr_2019_04_013 crossref_primary_10_1038_nrcardio_2016_129 crossref_primary_10_1016_j_stem_2013_08_002 crossref_primary_10_1126_scitranslmed_3008921 crossref_primary_10_1038_s41401_020_00528_w crossref_primary_10_1161_ATVBAHA_117_309962 crossref_primary_10_3389_fphar_2021_613837 crossref_primary_10_1038_ncomms10774 crossref_primary_10_1002_smsc_202400261 crossref_primary_10_1074_jbc_R113_529156 crossref_primary_10_1038_nrg3764 crossref_primary_10_1016_j_celrep_2023_112330 crossref_primary_10_1007_s12015_014_9564_6 crossref_primary_10_1007_s13238_013_3074_1 crossref_primary_10_1002_stem_3068 crossref_primary_10_1161_CIRCRESAHA_117_311578 crossref_primary_10_3389_fcell_2021_639699 crossref_primary_10_31083_j_fbl2708239 crossref_primary_10_15406_atroa_2017_03_00064 crossref_primary_10_1186_s13287_016_0455_4 crossref_primary_10_1159_000479182 crossref_primary_10_1007_s12015_015_9596_6 crossref_primary_10_1517_14712598_2016_1118460 crossref_primary_10_1161_CIRCRESAHA_116_308679 crossref_primary_10_1016_j_ijcard_2018_06_089 crossref_primary_10_1002_stem_2484 crossref_primary_10_1186_s13287_018_0794_4 crossref_primary_10_1371_journal_pone_0222946 crossref_primary_10_1186_s13287_024_03919_6 crossref_primary_10_1007_s11302_016_9512_9 crossref_primary_10_1021_acsomega_0c06187 crossref_primary_10_1038_s41551_022_00865_7 crossref_primary_10_1002_jbm_a_36005 crossref_primary_10_1016_j_ymeth_2015_09_019 |
Cites_doi | 10.1371/journal.pone.0003474 10.1038/cr.2011.195 10.1096/fj.09-139477 10.1016/j.scr.2007.06.001 10.1016/j.stem.2013.03.004 10.1016/S1534-5807(03)00363-0 10.1038/nbt1310 10.1038/nbt1327 10.1161/ATVBAHA.107.143149 10.1242/dev.001883 10.1172/JCI31731 10.1016/j.stem.2011.12.013 10.1371/journal.pone.0023657 10.1038/nature08191 10.1016/j.cell.2008.02.008 10.1038/nprot.2008.116 10.1038/nature06968 10.1016/j.scr.2009.02.002 10.1016/j.cell.2006.10.029 10.1016/j.celrep.2012.09.015 10.1093/hmg/ddp386 10.1073/pnas.1200250109 10.1093/eurheartj/ehr166 10.1007/s00246-009-9450-1 10.1371/journal.pone.0018293 10.1016/j.stem.2007.05.018 10.1161/CIRCRESAHA.110.227512 10.1172/JCI40120 10.1038/nbt.2107 10.1161/CIRCRESAHA.110.223792 10.1038/cr.2011.48 10.1016/j.stem.2010.12.008 10.1634/stemcells.2007-0808 10.1161/CIRCRESAHA.110.227058 10.1016/j.stem.2008.06.009 10.2174/157488810791824584 10.1161/CIRCRESAHA.112.273144 10.1038/nature06894 10.1038/nmeth.1740 10.1083/jcb.201007063 |
ContentType | Journal Article |
Copyright | Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2013 Copyright Nature Publishing Group Sep 2013 Copyright © 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences |
Copyright_xml | – notice: Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2013 – notice: Copyright Nature Publishing Group Sep 2013 – notice: Copyright © 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences |
DBID | 2RA 92L CQIGP W94 WU4 ~WA AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.1038/cr.2013.102 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库-自然科学-生物科学 中文科技期刊数据库- 镜像站点 CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions Induction and renewal of cardiovascular precursors |
EISSN | 1748-7838 |
EndPage | 1132 |
ExternalDocumentID | PMC3773575 3060346911 23896987 10_1038_cr_2013_102 47523267 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -01 -0A -Q- -SA -S~ 0R~ 29B 2B. 2C. 2RA 2WC 36B 39C 3V. 4.4 406 53G 5GY 5VR 5XA 5XB 5XL 6J9 70F 7X7 88E 8FE 8FH 8FI 8FJ 92E 92I 92L 92M 92Q 93N 9D9 9DA AADWK AANZL AATNV AAWBL AAYFA AAYJO AAZLF ABAWZ ABGIJ ABJNI ABUWG ACAOD ACBMV ACBRV ACBYP ACGFO ACGFS ACIGE ACIWK ACKTT ACPRK ACRQY ACTTH ACVWB ACZOJ ADBBV ADFRT ADHDB ADMDM ADQMX ADYYL AEDAW AEFTE AEJRE AENEX AESKC AEVLU AEXYK AFKRA AFNRJ AFRAH AFSHS AFUIB AGEZK AGGBP AGHAI AHMBA AHSBF AILAN AJCLW AJDOV AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMRJV AMYLF AOIJS AXYYD BAWUL BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C1A CAG CAJEA CAJUS CCEZO CCPQU CCVFK CHBEP COF CQIGP CS3 CW9 DIK DNIVK DPUIP DU5 E3Z EBLON EBS EE. EIOEI EJD EMB EMOBN F5P FA0 FDQFY FERAY FIZPM FSGXE FYUFA GX1 HCIFZ HMCUK HYE HZ~ IWAJR JSO JUIAU JZLTJ KQ8 LK8 M1P M7P NAO NQJWS NXXTH NYICJ O9- OK1 P2P PQQKQ PROAC PSQYO Q-- Q-0 R-A RNS RNT RNTTT RPM RT1 S.. SNX SNYQT SOHCF SRMVM SV3 SWTZT T8Q TAOOD TBHMF TCJ TDRGL TGP TR2 U1F U1G U5A U5K UKHRP W94 WFFXF WU4 XSB ~88 ~WA AACDK AAHBH AASML AAXDM AAYZH ABAKF ABZZP ACMJI AEFQL AEMSY AEUYN AFBBN AGQEE AIGIU ALIPV FIGPU LGEZI LOTEE NADUK ROL SOJ AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c571t-2bb7193868c66f231f68c3666db8d41290de264dcb167b032e885caa1b4e58523 |
IEDL.DBID | 7X7 |
ISSN | 1001-0602 1748-7838 |
IngestDate | Thu Aug 21 18:18:46 EDT 2025 Fri Jul 11 08:05:59 EDT 2025 Fri Jul 11 06:36:05 EDT 2025 Fri Jul 25 09:12:32 EDT 2025 Thu Apr 03 06:55:23 EDT 2025 Tue Jul 01 03:41:31 EDT 2025 Thu Apr 24 23:04:00 EDT 2025 Fri Feb 21 02:38:10 EST 2025 Wed Feb 14 10:39:16 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | directed differentiation human pluripotent stem cells cardiovascular progenitor cells chemically defined medium progenitor maintenance |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c571t-2bb7193868c66f231f68c3666db8d41290de264dcb167b032e885caa1b4e58523 |
Notes | 31-1568/Q human pluripotent stem cells; directed differentiation; progenitor maintenance; cardiovascular progenitor cells; chemically defined medium Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases, but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early devel- opmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4), glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs, including hESCs and hiPSCs, into homoge- neous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 107-fold when the differentiation-inducing signals from BMP, GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore, these CVPCs exhibited expected genome-wide molecular features of CVPCs, retained potentials to generate major cardiovascular lineages including cardiomyocytes, smooth muscle cells and endothelial cells in vitro, and were non-tumorigenic in vivo. Altogether, the established systems reported here permit efficient generation and stable maintenance of hPSC- derived CVPCs, which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 These two authors contributed equally to this work. |
OpenAccessLink | https://www.nature.com/articles/cr2013102.pdf |
PMID | 23896987 |
PQID | 1429230071 |
PQPubID | 536307 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3773575 proquest_miscellaneous_1458535851 proquest_miscellaneous_1429630779 proquest_journals_1429230071 pubmed_primary_23896987 crossref_citationtrail_10_1038_cr_2013_102 crossref_primary_10_1038_cr_2013_102 springer_journals_10_1038_cr_2013_102 chongqing_primary_47523267 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-01 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Cell research |
PublicationTitleAbbrev | Cell Res |
PublicationTitleAlternate | Cell Research |
PublicationYear | 2013 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Cheung, Bernardo, Trotter, Pedersen, Sinha (CR7) 2012; 30 Kattman, Witty, Gagliardi (CR5) 2011; 8 Mauritz, Martens, Rojas (CR18) 2011; 32 Laflamme, Chen, Naumova (CR12) 2007; 25 Lam, Moretti, Laugwitz (CR15) 2009; 30 Cohen, Wang, Lepore (CR36) 2007; 117 Burridge, Keller, Gold, Wu (CR1) 2012; 10 Cao, Liao, Liu (CR41) 2011; 21 Leschik, Stefanovic, Brinon, Puceat (CR24) 2008; 3 Nelson, Faustino, Chiriac (CR27) 2008; 26 Christoforou, Miller, Hill (CR37) 2008; 118 Elliott, Braam, Koutsis (CR21) 2011; 8 Bu, Jiang, Martin-Puig (CR19) 2009; 460 Murry, Keller (CR4) 2008; 132 Blin, Nury, Stefanovic (CR20) 2010; 120 Mummery, Zhang, Ng (CR2) 2012; 111 Yang, Soonpaa, Adler (CR17) 2008; 453 Watanabe, Ueno, Kamiya (CR23) 2007; 25 Sone, Itoh, Yamahara (CR6) 2007; 27 Bondue, Blanpain (CR25) 2010; 107 Bondue, Lapouge, Paulissen (CR30) 2008; 3 van Laake, Passier, Monshouwer-Kloots (CR13) 2007; 1 Hentze, Soong, Wang (CR11) 2009; 2 Cao, Wagner, Wilson (CR14) 2008; 3 Uosaki, Fukushima, Takeuchi (CR31) 2011; 6 Cao, Liu, Chen (CR22) 2012; 22 Li, Zhou, Shi (CR40) 2009; 18 Laugwitz, Moretti, Caron, Nakano, Chien (CR33) 2008; 135 Cai, Liang, Shi (CR38) 2003; 5 Zhang, Klos, Wilson (CR9) 2012; 111 Chan, Shi, Toyama (CR32) 2013; 12 Lian, Hsiao, Wilson (CR8) 2012; 109 Minami, Yamada, Otsuji (CR10) 2012; 2 Blin, Neri, Stefanovic, Puceat (CR3) 2010; 5 Moretti, Bellin, Jung (CR26) 2010; 24 Bondue, Tannler, Chiapparo (CR28) 2011; 192 Noseda, Peterkin, Simoes, Patient, Schneider (CR16) 2011; 108 Ying, Wray, Nichols (CR39) 2008; 453 Burridge, Thompson, Millrod (CR29) 2011; 6 Qyang, Martin-Puig, Chiravuri (CR35) 2007; 1 Moretti, Caron, Nakano (CR34) 2006; 127 H Hentze (BFcr2013102_CR11) 2009; 2 N Cao (BFcr2013102_CR22) 2012; 22 H Uosaki (BFcr2013102_CR31) 2011; 6 CL Mummery (BFcr2013102_CR2) 2012; 111 X Lian (BFcr2013102_CR8) 2012; 109 I Minami (BFcr2013102_CR10) 2012; 2 N Cao (BFcr2013102_CR41) 2011; 21 TJ Nelson (BFcr2013102_CR27) 2008; 26 C Mauritz (BFcr2013102_CR18) 2011; 32 J Zhang (BFcr2013102_CR9) 2012; 111 C Li (BFcr2013102_CR40) 2009; 18 G Blin (BFcr2013102_CR20) 2010; 120 A Bondue (BFcr2013102_CR30) 2008; 3 N Christoforou (BFcr2013102_CR37) 2008; 118 CL Cai (BFcr2013102_CR38) 2003; 5 MA Laflamme (BFcr2013102_CR12) 2007; 25 A Bondue (BFcr2013102_CR25) 2010; 107 G Blin (BFcr2013102_CR3) 2010; 5 K Watanabe (BFcr2013102_CR23) 2007; 25 CE Murry (BFcr2013102_CR4) 2008; 132 A Moretti (BFcr2013102_CR34) 2006; 127 F Cao (BFcr2013102_CR14) 2008; 3 PW Burridge (BFcr2013102_CR29) 2011; 6 L Bu (BFcr2013102_CR19) 2009; 460 QL Ying (BFcr2013102_CR39) 2008; 453 J Leschik (BFcr2013102_CR24) 2008; 3 SS Chan (BFcr2013102_CR32) 2013; 12 M Noseda (BFcr2013102_CR16) 2011; 108 A Bondue (BFcr2013102_CR28) 2011; 192 A Moretti (BFcr2013102_CR26) 2010; 24 SJ Kattman (BFcr2013102_CR5) 2011; 8 JT Lam (BFcr2013102_CR15) 2009; 30 PW Burridge (BFcr2013102_CR1) 2012; 10 DA Elliott (BFcr2013102_CR21) 2011; 8 C Cheung (BFcr2013102_CR7) 2012; 30 Y Qyang (BFcr2013102_CR35) 2007; 1 KL Laugwitz (BFcr2013102_CR33) 2008; 135 ED Cohen (BFcr2013102_CR36) 2007; 117 L Yang (BFcr2013102_CR17) 2008; 453 M Sone (BFcr2013102_CR6) 2007; 27 LW van Laake (BFcr2013102_CR13) 2007; 1 20335662 - J Clin Invest. 2010 Apr;120(4):1125-39 23642367 - Cell Stem Cell. 2013 May 2;12(5):587-601 18593560 - Cell Stem Cell. 2008 Jul 3;3(1):69-84 21494607 - PLoS One. 2011;6(4):e18293 22226352 - Cell Stem Cell. 2012 Jan 6;10(1):16-28 18497825 - Nature. 2008 May 22;453(7194):519-23 21148448 - Circ Res. 2010 Dec 10;107(12):1414-27 22020065 - Nat Methods. 2011 Dec;8(12):1037-40 19679563 - Hum Mol Genet. 2009 Nov 15;18(22):4340-9 18941512 - PLoS One. 2008;3(10):e3474 22252507 - Nat Biotechnol. 2012 Feb;30(2):165-73 21212394 - Circ Res. 2011 Jan 7;108(1):129-52 21423272 - Cell Res. 2011 Sep;21(9):1316-31 18246200 - J Clin Invest. 2008 Mar;118(3):894-903 22143566 - Cell Res. 2012 Jan;22(1):219-36 18295582 - Cell. 2008 Feb 22;132(4):661-80 19383383 - Stem Cell Res. 2007 Oct;1(1):9-24 22645348 - Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1848-57 21383076 - J Cell Biol. 2011 Mar 7;192(5):751-65 17607356 - J Clin Invest. 2007 Jul;117(7):1794-804 22912385 - Circ Res. 2012 Oct 12;111(9):1125-36 19415155 - Pediatr Cardiol. 2009 Jul;30(5):690-8 19393593 - Stem Cell Res. 2009 May;2(3):198-210 17721512 - Nat Biotechnol. 2007 Sep;25(9):1015-24 18432194 - Nature. 2008 May 22;453(7194):524-8 18369102 - Stem Cells. 2008 Jun;26(6):1464-73 18371348 - Cell Stem Cell. 2007 Aug 16;1(2):165-79 17123592 - Cell. 2006 Dec 15;127(6):1151-65 20214559 - Curr Stem Cell Res Ther. 2010 Sep;5(3):215-26 17872458 - Arterioscler Thromb Vasc Biol. 2007 Oct;27(10):2127-34 18156162 - Development. 2008 Jan;135(2):193-205 23103164 - Cell Rep. 2012 Nov 29;2(5):1448-60 14667410 - Dev Cell. 2003 Dec;5(6):877-89 21295278 - Cell Stem Cell. 2011 Feb 4;8(2):228-40 21876760 - PLoS One. 2011;6(8):e23657 19850773 - FASEB J. 2010 Mar;24(3):700-11 21596799 - Eur Heart J. 2011 Nov;32(21):2634-41 17529971 - Nat Biotechnol. 2007 Jun;25(6):681-6 22821908 - Circ Res. 2012 Jul 20;111(3):344-58 19571884 - Nature. 2009 Jul 2;460(7251):113-7 18772864 - Nat Protoc. 2008;3(9):1381-7 |
References_xml | – volume: 3 start-page: e3474 year: 2008 ident: CR14 article-title: Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes publication-title: PLoS One doi: 10.1371/journal.pone.0003474 – volume: 22 start-page: 219 year: 2012 end-page: 236 ident: CR22 article-title: Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells publication-title: Cell Res doi: 10.1038/cr.2011.195 – volume: 24 start-page: 700 year: 2010 end-page: 711 ident: CR26 article-title: Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors publication-title: FASEB J doi: 10.1096/fj.09-139477 – volume: 1 start-page: 9 year: 2007 end-page: 24 ident: CR13 article-title: Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction publication-title: Stem Cell Res doi: 10.1016/j.scr.2007.06.001 – volume: 12 start-page: 587 year: 2013 end-page: 601 ident: CR32 article-title: Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.03.004 – volume: 5 start-page: 877 year: 2003 end-page: 889 ident: CR38 article-title: Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart publication-title: Dev Cell doi: 10.1016/S1534-5807(03)00363-0 – volume: 25 start-page: 681 year: 2007 end-page: 686 ident: CR23 article-title: A ROCK inhibitor permits survival of dissociated human embryonic stem cells publication-title: Nat Biotechnol doi: 10.1038/nbt1310 – volume: 118 start-page: 894 year: 2008 end-page: 903 ident: CR37 article-title: Mouse ES cell-derived cardiac precursor cells are multipotent and facilitate identification of novel cardiac genes publication-title: J Clin Invest – volume: 25 start-page: 1015 year: 2007 end-page: 1024 ident: CR12 article-title: Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts publication-title: Nat Biotechnol doi: 10.1038/nbt1327 – volume: 27 start-page: 2127 year: 2007 end-page: 2134 ident: CR6 article-title: Pathway for differentiation of human embryonic stem cells to vascular cell components and their potential for vascular regeneration publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.107.143149 – volume: 135 start-page: 193 year: 2008 end-page: 205 ident: CR33 article-title: Islet1 cardiovascular progenitors: a single source for heart lineages? publication-title: Development doi: 10.1242/dev.001883 – volume: 117 start-page: 1794 year: 2007 end-page: 1804 ident: CR36 article-title: Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling publication-title: J Clin Invest doi: 10.1172/JCI31731 – volume: 10 start-page: 16 year: 2012 end-page: 28 ident: CR1 article-title: Production of cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.12.013 – volume: 6 start-page: e23657 year: 2011 ident: CR31 article-title: Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression publication-title: PLoS One doi: 10.1371/journal.pone.0023657 – volume: 460 start-page: 113 year: 2009 end-page: 117 ident: CR19 article-title: Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages publication-title: Nature doi: 10.1038/nature08191 – volume: 132 start-page: 661 year: 2008 end-page: 680 ident: CR4 article-title: Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development publication-title: Cell doi: 10.1016/j.cell.2008.02.008 – volume: 3 start-page: 1381 year: 2008 end-page: 1387 ident: CR24 article-title: Cardiac commitment of primate embryonic stem cells publication-title: Nat Protoc doi: 10.1038/nprot.2008.116 – volume: 453 start-page: 519 year: 2008 end-page: 523 ident: CR39 article-title: The ground state of embryonic stem cell self-renewal publication-title: Nature doi: 10.1038/nature06968 – volume: 2 start-page: 198 year: 2009 end-page: 210 ident: CR11 article-title: Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies publication-title: Stem Cell Res doi: 10.1016/j.scr.2009.02.002 – volume: 127 start-page: 1151 year: 2006 end-page: 1165 ident: CR34 article-title: Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification publication-title: Cell doi: 10.1016/j.cell.2006.10.029 – volume: 2 start-page: 1448 year: 2012 end-page: 1460 ident: CR10 article-title: A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions publication-title: Cell Rep doi: 10.1016/j.celrep.2012.09.015 – volume: 18 start-page: 4340 year: 2009 end-page: 4349 ident: CR40 article-title: Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells publication-title: Hum Mol Genet doi: 10.1093/hmg/ddp386 – volume: 109 start-page: E1848 year: 2012 end-page: E1857 ident: CR8 article-title: Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1200250109 – volume: 32 start-page: 2634 year: 2011 end-page: 2641 ident: CR18 article-title: Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction publication-title: Eur Heart J doi: 10.1093/eurheartj/ehr166 – volume: 30 start-page: 690 year: 2009 end-page: 698 ident: CR15 article-title: Multipotent progenitor cells in regenerative cardiovascular medicine publication-title: Pediatr Cardiol doi: 10.1007/s00246-009-9450-1 – volume: 6 start-page: e18293 year: 2011 ident: CR29 article-title: A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability publication-title: PLoS One doi: 10.1371/journal.pone.0018293 – volume: 1 start-page: 165 year: 2007 end-page: 179 ident: CR35 article-title: The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.05.018 – volume: 111 start-page: 344 year: 2012 end-page: 358 ident: CR2 article-title: Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview publication-title: Circ Res doi: 10.1161/CIRCRESAHA.110.227512 – volume: 120 start-page: 1125 year: 2010 end-page: 1139 ident: CR20 article-title: A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates publication-title: J Clin Invest doi: 10.1172/JCI40120 – volume: 30 start-page: 165 year: 2012 end-page: 173 ident: CR7 article-title: Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility publication-title: Nat Biotechnol doi: 10.1038/nbt.2107 – volume: 108 start-page: 129 year: 2011 end-page: 152 ident: CR16 article-title: Cardiopoietic factors: extracellular signals for cardiac lineage commitment publication-title: Circ Res doi: 10.1161/CIRCRESAHA.110.223792 – volume: 21 start-page: 1316 year: 2011 end-page: 1331 ident: CR41 article-title: differentiation of rat embryonic stem cells into functional cardiomyocytes publication-title: Cell Res doi: 10.1038/cr.2011.48 – volume: 8 start-page: 228 year: 2011 end-page: 240 ident: CR5 article-title: Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.12.008 – volume: 26 start-page: 1464 year: 2008 end-page: 1473 ident: CR27 article-title: CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells publication-title: Stem Cells doi: 10.1634/stemcells.2007-0808 – volume: 107 start-page: 1414 year: 2010 end-page: 1427 ident: CR25 article-title: Mesp1: a key regulator of cardiovascular lineage commitment publication-title: Circ Res doi: 10.1161/CIRCRESAHA.110.227058 – volume: 3 start-page: 69 year: 2008 end-page: 84 ident: CR30 article-title: Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.06.009 – volume: 5 start-page: 215 year: 2010 end-page: 226 ident: CR3 article-title: Human embryonic and induced pluripotent stem cells in basic and clinical research in cardiology publication-title: Curr Stem Cell Res Ther doi: 10.2174/157488810791824584 – volume: 111 start-page: 1125 year: 2012 end-page: 1136 ident: CR9 article-title: Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method publication-title: Circ Res doi: 10.1161/CIRCRESAHA.112.273144 – volume: 453 start-page: 524 year: 2008 end-page: 528 ident: CR17 article-title: Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population publication-title: Nature doi: 10.1038/nature06894 – volume: 8 start-page: 1037 year: 2011 end-page: 1040 ident: CR21 article-title: NKX2–5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes publication-title: Nat Methods doi: 10.1038/nmeth.1740 – volume: 192 start-page: 751 year: 2011 end-page: 765 ident: CR28 article-title: Defining the earliest step of cardiovascular progenitor specification during embryonic stem cell differentiation publication-title: J Cell Biol doi: 10.1083/jcb.201007063 – volume: 30 start-page: 690 year: 2009 ident: BFcr2013102_CR15 publication-title: Pediatr Cardiol doi: 10.1007/s00246-009-9450-1 – volume: 192 start-page: 751 year: 2011 ident: BFcr2013102_CR28 publication-title: J Cell Biol doi: 10.1083/jcb.201007063 – volume: 111 start-page: 1125 year: 2012 ident: BFcr2013102_CR9 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.112.273144 – volume: 10 start-page: 16 year: 2012 ident: BFcr2013102_CR1 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.12.013 – volume: 3 start-page: 69 year: 2008 ident: BFcr2013102_CR30 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.06.009 – volume: 111 start-page: 344 year: 2012 ident: BFcr2013102_CR2 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.110.227512 – volume: 25 start-page: 681 year: 2007 ident: BFcr2013102_CR23 publication-title: Nat Biotechnol doi: 10.1038/nbt1310 – volume: 26 start-page: 1464 year: 2008 ident: BFcr2013102_CR27 publication-title: Stem Cells doi: 10.1634/stemcells.2007-0808 – volume: 27 start-page: 2127 year: 2007 ident: BFcr2013102_CR6 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.107.143149 – volume: 21 start-page: 1316 year: 2011 ident: BFcr2013102_CR41 publication-title: Cell Res doi: 10.1038/cr.2011.48 – volume: 453 start-page: 519 year: 2008 ident: BFcr2013102_CR39 publication-title: Nature doi: 10.1038/nature06968 – volume: 18 start-page: 4340 year: 2009 ident: BFcr2013102_CR40 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddp386 – volume: 107 start-page: 1414 year: 2010 ident: BFcr2013102_CR25 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.110.227058 – volume: 3 start-page: 1381 year: 2008 ident: BFcr2013102_CR24 publication-title: Nat Protoc doi: 10.1038/nprot.2008.116 – volume: 127 start-page: 1151 year: 2006 ident: BFcr2013102_CR34 publication-title: Cell doi: 10.1016/j.cell.2006.10.029 – volume: 8 start-page: 228 year: 2011 ident: BFcr2013102_CR5 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.12.008 – volume: 5 start-page: 215 year: 2010 ident: BFcr2013102_CR3 publication-title: Curr Stem Cell Res Ther doi: 10.2174/157488810791824584 – volume: 6 start-page: e18293 year: 2011 ident: BFcr2013102_CR29 publication-title: PLoS One doi: 10.1371/journal.pone.0018293 – volume: 120 start-page: 1125 year: 2010 ident: BFcr2013102_CR20 publication-title: J Clin Invest doi: 10.1172/JCI40120 – volume: 117 start-page: 1794 year: 2007 ident: BFcr2013102_CR36 publication-title: J Clin Invest doi: 10.1172/JCI31731 – volume: 22 start-page: 219 year: 2012 ident: BFcr2013102_CR22 publication-title: Cell Res doi: 10.1038/cr.2011.195 – volume: 12 start-page: 587 year: 2013 ident: BFcr2013102_CR32 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.03.004 – volume: 1 start-page: 165 year: 2007 ident: BFcr2013102_CR35 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.05.018 – volume: 5 start-page: 877 year: 2003 ident: BFcr2013102_CR38 publication-title: Dev Cell doi: 10.1016/S1534-5807(03)00363-0 – volume: 3 start-page: e3474 year: 2008 ident: BFcr2013102_CR14 publication-title: PLoS One doi: 10.1371/journal.pone.0003474 – volume: 453 start-page: 524 year: 2008 ident: BFcr2013102_CR17 publication-title: Nature doi: 10.1038/nature06894 – volume: 132 start-page: 661 year: 2008 ident: BFcr2013102_CR4 publication-title: Cell doi: 10.1016/j.cell.2008.02.008 – volume: 118 start-page: 894 year: 2008 ident: BFcr2013102_CR37 publication-title: J Clin Invest – volume: 32 start-page: 2634 year: 2011 ident: BFcr2013102_CR18 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehr166 – volume: 108 start-page: 129 year: 2011 ident: BFcr2013102_CR16 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.110.223792 – volume: 2 start-page: 198 year: 2009 ident: BFcr2013102_CR11 publication-title: Stem Cell Res doi: 10.1016/j.scr.2009.02.002 – volume: 25 start-page: 1015 year: 2007 ident: BFcr2013102_CR12 publication-title: Nat Biotechnol doi: 10.1038/nbt1327 – volume: 1 start-page: 9 year: 2007 ident: BFcr2013102_CR13 publication-title: Stem Cell Res doi: 10.1016/j.scr.2007.06.001 – volume: 460 start-page: 113 year: 2009 ident: BFcr2013102_CR19 publication-title: Nature doi: 10.1038/nature08191 – volume: 24 start-page: 700 year: 2010 ident: BFcr2013102_CR26 publication-title: FASEB J doi: 10.1096/fj.09-139477 – volume: 135 start-page: 193 year: 2008 ident: BFcr2013102_CR33 publication-title: Development doi: 10.1242/dev.001883 – volume: 30 start-page: 165 year: 2012 ident: BFcr2013102_CR7 publication-title: Nat Biotechnol doi: 10.1038/nbt.2107 – volume: 6 start-page: e23657 year: 2011 ident: BFcr2013102_CR31 publication-title: PLoS One doi: 10.1371/journal.pone.0023657 – volume: 109 start-page: E1848 year: 2012 ident: BFcr2013102_CR8 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1200250109 – volume: 2 start-page: 1448 year: 2012 ident: BFcr2013102_CR10 publication-title: Cell Rep doi: 10.1016/j.celrep.2012.09.015 – volume: 8 start-page: 1037 year: 2011 ident: BFcr2013102_CR21 publication-title: Nat Methods doi: 10.1038/nmeth.1740 – reference: 19415155 - Pediatr Cardiol. 2009 Jul;30(5):690-8 – reference: 18497825 - Nature. 2008 May 22;453(7194):519-23 – reference: 19679563 - Hum Mol Genet. 2009 Nov 15;18(22):4340-9 – reference: 22020065 - Nat Methods. 2011 Dec;8(12):1037-40 – reference: 18772864 - Nat Protoc. 2008;3(9):1381-7 – reference: 22912385 - Circ Res. 2012 Oct 12;111(9):1125-36 – reference: 19571884 - Nature. 2009 Jul 2;460(7251):113-7 – reference: 18295582 - Cell. 2008 Feb 22;132(4):661-80 – reference: 20335662 - J Clin Invest. 2010 Apr;120(4):1125-39 – reference: 21494607 - PLoS One. 2011;6(4):e18293 – reference: 18371348 - Cell Stem Cell. 2007 Aug 16;1(2):165-79 – reference: 18432194 - Nature. 2008 May 22;453(7194):524-8 – reference: 18593560 - Cell Stem Cell. 2008 Jul 3;3(1):69-84 – reference: 22821908 - Circ Res. 2012 Jul 20;111(3):344-58 – reference: 21212394 - Circ Res. 2011 Jan 7;108(1):129-52 – reference: 19393593 - Stem Cell Res. 2009 May;2(3):198-210 – reference: 17529971 - Nat Biotechnol. 2007 Jun;25(6):681-6 – reference: 22252507 - Nat Biotechnol. 2012 Feb;30(2):165-73 – reference: 17123592 - Cell. 2006 Dec 15;127(6):1151-65 – reference: 21423272 - Cell Res. 2011 Sep;21(9):1316-31 – reference: 18156162 - Development. 2008 Jan;135(2):193-205 – reference: 21596799 - Eur Heart J. 2011 Nov;32(21):2634-41 – reference: 18941512 - PLoS One. 2008;3(10):e3474 – reference: 21148448 - Circ Res. 2010 Dec 10;107(12):1414-27 – reference: 17872458 - Arterioscler Thromb Vasc Biol. 2007 Oct;27(10):2127-34 – reference: 14667410 - Dev Cell. 2003 Dec;5(6):877-89 – reference: 23103164 - Cell Rep. 2012 Nov 29;2(5):1448-60 – reference: 20214559 - Curr Stem Cell Res Ther. 2010 Sep;5(3):215-26 – reference: 22143566 - Cell Res. 2012 Jan;22(1):219-36 – reference: 22645348 - Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1848-57 – reference: 23642367 - Cell Stem Cell. 2013 May 2;12(5):587-601 – reference: 18246200 - J Clin Invest. 2008 Mar;118(3):894-903 – reference: 21876760 - PLoS One. 2011;6(8):e23657 – reference: 21295278 - Cell Stem Cell. 2011 Feb 4;8(2):228-40 – reference: 19850773 - FASEB J. 2010 Mar;24(3):700-11 – reference: 17607356 - J Clin Invest. 2007 Jul;117(7):1794-804 – reference: 17721512 - Nat Biotechnol. 2007 Sep;25(9):1015-24 – reference: 21383076 - J Cell Biol. 2011 Mar 7;192(5):751-65 – reference: 22226352 - Cell Stem Cell. 2012 Jan 6;10(1):16-28 – reference: 19383383 - Stem Cell Res. 2007 Oct;1(1):9-24 – reference: 18369102 - Stem Cells. 2008 Jun;26(6):1464-73 |
SSID | ssj0025451 |
Score | 2.4384747 |
Snippet | Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced... Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced... |
SourceID | pubmedcentral proquest pubmed crossref springer chongqing |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1119 |
SubjectTerms | 631/136/532/1360 631/136/532/2064 631/1647/1407/651 692/699/75 Ascorbic Acid - pharmacology Biomedical and Life Sciences Bone Morphogenetic Protein 4 - pharmacology Cardiovascular diseases Cell Biology Cell Culture Techniques Cell Differentiation - drug effects Cell- and Tissue-Based Therapy Cells, Cultured Embryonic Stem Cells - drug effects Embryonic Stem Cells - metabolism Glycogen Synthase Kinase 3 - antagonists & inhibitors Heart - embryology Heart Diseases - therapy Humans Induced Pluripotent Stem Cells - drug effects Induced Pluripotent Stem Cells - metabolism Life Sciences Myocardium - cytology Original original-article Pyridines - pharmacology Pyrimidines - pharmacology Stem cells 人类胚胎干细胞 分化诱导 多能干细胞 心血管 祖细胞 自我更新 血管发育 骨形态发生蛋白 |
Title | Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions |
URI | http://lib.cqvip.com/qk/85240X/201309/47523267.html https://link.springer.com/article/10.1038/cr.2013.102 https://www.ncbi.nlm.nih.gov/pubmed/23896987 https://www.proquest.com/docview/1429230071 https://www.proquest.com/docview/1429630779 https://www.proquest.com/docview/1458535851 https://pubmed.ncbi.nlm.nih.gov/PMC3773575 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7ShEIvJUlfzgsV0kvBxLa8knwqbUkIPYRQGtib0ctNYWNvvLuH_JT-287Ij3S7JYeFXTwW0koafSN9-gbgNDEiKTLrYgwudJzrxMcGfXGce55ym5oUP8S2uBKXN_m36WTab7gtelrl4BODo3aNpT3ys5TyKnFaET_N72PKGkWnq30KjWewQ9JlROmS08eAC9FBCLgCbUgQk2e_u2auzixpgaaclAtIVeG2qX_e41qxvjptQM5N5uQ_x6dhVbrYhZc9nGSfu_7fgy1f78PzLsHkwyv4TTSO2QPzQSgCS2MYgnd6sUzXjs2wQjE5Z3anSTiC1Dc8ayrW8QybJb1i1yirjBhdnhxBu2B0OYWFNH9sPlu1wxskDs3oSGDB6I5ay5yvEM06hsG36zhir-Hm4vzH18u4T8YQ24lMl3FmjESwp4SyQlSICiv8xjH4cUa5nHaznEdw5axJhTQJz7xSE6t1anKPIUnG38B23dT-HTArLS6JiPRsYjC8sziMVJVZUeSJFrrSERyMHVLOO9GNMpdYRiZkBB-HHiptL2NO2TRmZThO56q0bUldiz-yCE5H46Gg_5odDV1d9lN4UT4OuAjej49x8tHfp2vfrDobgV5SFk_ZYPM5nb5G8LYbPWNdEC8VolDYKLk2rkYDEv9ef1L_ug0i4FxKjlA7gg_DCPyr6ptNPHi6iYfwIgt5Pog8dwTby3bljxFtLc1JmFInsPPl_Or6-x9nsi7H |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqRBcEJRHXQosUntBsmp7nbV9QIhHq5SWCKFW6s3syxQp2KmTCOWn8Cf4jcx4bUMI6q0HS7G8Xu1mZme-8c5-A7AXKBFkkTY-BhfSj2VgfYW22I8tD7kOVYgXZVuMxeg8_nAxvNiAX91ZGEqr7GxiY6hNpekb-UFIdZU4ecTX0yufqkbR7mpXQsOpxYld_sCQbfbq-D3Kdz-Kjg7P3o38tqqAr4dJOPcjpRJELalItRAFwpsCf3FE8UalJqbPMsYiSjBahSJRAY9smg61lKGKLWJrIjpAk78ZcwxlBrD59nD86XMf4iEeaUK8JlFJUO7QljvYnh5oYh8NOXElEI_DZVV-vULvtOoP10Dueq7mPxu2jR88ugd3WwDL3jiNuw8bttyCW66k5fIB_KTEkcmS2YaaAntjGPQ7hlomS8MmOCCf3AH7Lomqgvg-LKsK5jIbqzm9oleSZBnlkFkyPfWM0XEY1hQWZNPJou7eIDpqRpsQM0an4mpmbIH42TAM943LSnsI5zciqEcwKKvSbgPTiUYnjNhSBwoDSo2KmxaRFlkcSCEL6cFOL5B86mg-8jjBPiKRePCyk1CuW-J0qt8xyZsNfJ7mus5JtHgTebDXN-46-m-z3U7UeWs0ZvkfFffgRf8Ylzv9fbK01cK1EWiXk-y6Njh9Tvu9Hjx22tOPBRFaJrIUJ5Ws6FXfgOjGV5-U3y4b2nGeJBzBvQf7nQb-NfT1Ke5cP8XncHt09vE0Pz0enzyBO1FTZYRS93ZhMK8X9ilivbl61i4wBl9uek3_BkTPaiA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWmIRAvE4yvjAFG2l6QoiZxYicPCCFGtTE08cCkvgV_hSGVpEtbTf0p_BV-HffaSUYp2tseKrWKE9m919fnxsfnEnIQKR4ViTYhJBcyTGVkQwWxOEwti5mOVQwfZFuc8ePz9NMkm2yR3_1ZGKRV9jHRBWrTaHxHPoqxrhLDFXFUdbSIL0fjd7PLECtI4U5rX07Du8ipXV1B-jZ_e3IEtj5MkvHHrx-Ow67CQKgzES_CRCkBCCbnuea8AqhTwTcGiN6o3KT4isZYQAxGq5gLFbHE5nmmpYxVagFno-gBhP87gmUxzjExuU72AJm4ZM9RljiyiHb9Efd8pFGHNGaomoCKDhdN_f0S1qn1lXED7m6yNv_ZunUr4vgB2emgLH3vfe8h2bL1Lrnri1uuHpFfSCGZrqh1IhXwNArpv9eqpbI2dAodCnFhoD8lilag8oelTUU9x7FZ4C16jS5LkU1mMQi1c4oHY6grMUhn02Xb34HC1BS3I-YUz8e11NgKkLShkPgbz097TM5vxUxPyHbd1PYZoVpoWI4BZepIQWqpwYXzKtG8SCPJZSUDsjcYpJx5wY8yFfCMhIuAvOktVOpOQh0reUxLt5XP8lK3JZoWfiQBORga9w_6b7P93tRlFz7m5bWzB-T1cBkmPv59srbN0rfhEKFFcVMbGD7Dnd-APPXeM_QFsFrBixwGJdb8amiAwuPrV-ofF06AnAnweJEF5LD3wL-6vjnEvZuH-Ircg5lcfj45O31O7ieu3Ahy-PbJ9qJd2hcA-hbqpZtdlHy77en8B-nUbPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+induction+and+long-term+maintenance+of+multipotent+cardiovascular+progenitors+from+human+pluripotent+stem+cells+under+defined+conditions&rft.jtitle=Cell+research&rft.au=Cao%2C+Nan&rft.au=Liang%2C+He&rft.au=Huang%2C+Jijun&rft.au=Wang%2C+Jia&rft.date=2013-09-01&rft.issn=1001-0602&rft.volume=23&rft.issue=9&rft.spage=1119&rft.epage=1132&rft_id=info:doi/10.1038%2Fcr.2013.102&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85240X%2F85240X.jpg |