Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions

Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases, but thei...

Full description

Saved in:
Bibliographic Details
Published inCell research Vol. 23; no. 9; pp. 1119 - 1132
Main Authors Cao, Nan, Liang, He, Huang, Jijun, Wang, Jia, Chen, Yixiong, Chen, Zhongyan, Yang, Huang-Tian
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.09.2013
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases, but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early devel- opmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4), glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs, including hESCs and hiPSCs, into homoge- neous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 107-fold when the differentiation-inducing signals from BMP, GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore, these CVPCs exhibited expected genome-wide molecular features of CVPCs, retained potentials to generate major cardiovascular lineages including cardiomyocytes, smooth muscle cells and endothelial cells in vitro, and were non-tumorigenic in vivo. Altogether, the established systems reported here permit efficient generation and stable maintenance of hPSC- derived CVPCs, which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine.
AbstractList Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases, but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early developmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4), glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs, including hESCs and hiPSCs, into homogeneous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 10(7)-fold when the differentiation-inducing signals from BMP, GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore, these CVPCs exhibited expected genome-wide molecular features of CVPCs, retained potentials to generate major cardiovascular lineages including cardiomyocytes, smooth muscle cells and endothelial cells in vitro, and were non-tumorigenic in vivo. Altogether, the established systems reported here permit efficient generation and stable maintenance of hPSC-derived CVPCs, which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine.
Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases, but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early developmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4), glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs, including hESCs and hiPSCs, into homogeneous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 10(7)-fold when the differentiation-inducing signals from BMP, GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore, these CVPCs exhibited expected genome-wide molecular features of CVPCs, retained potentials to generate major cardiovascular lineages including cardiomyocytes, smooth muscle cells and endothelial cells in vitro, and were non-tumorigenic in vivo. Altogether, the established systems reported here permit efficient generation and stable maintenance of hPSC-derived CVPCs, which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine.Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases, but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early developmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4), glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs, including hESCs and hiPSCs, into homogeneous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 10(7)-fold when the differentiation-inducing signals from BMP, GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore, these CVPCs exhibited expected genome-wide molecular features of CVPCs, retained potentials to generate major cardiovascular lineages including cardiomyocytes, smooth muscle cells and endothelial cells in vitro, and were non-tumorigenic in vivo. Altogether, the established systems reported here permit efficient generation and stable maintenance of hPSC-derived CVPCs, which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine.
Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases, but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early developmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4), glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs, including hESCs and hiPSCs, into homogeneous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 10 7 -fold when the differentiation-inducing signals from BMP, GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore, these CVPCs exhibited expected genome-wide molecular features of CVPCs, retained potentials to generate major cardiovascular lineages including cardiomyocytes, smooth muscle cells and endothelial cells in vitro , and were non-tumorigenic in vivo . Altogether, the established systems reported here permit efficient generation and stable maintenance of hPSC-derived CVPCs, which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine.
Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases, but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early devel- opmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4), glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs, including hESCs and hiPSCs, into homoge- neous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 107-fold when the differentiation-inducing signals from BMP, GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore, these CVPCs exhibited expected genome-wide molecular features of CVPCs, retained potentials to generate major cardiovascular lineages including cardiomyocytes, smooth muscle cells and endothelial cells in vitro, and were non-tumorigenic in vivo. Altogether, the established systems reported here permit efficient generation and stable maintenance of hPSC- derived CVPCs, which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine.
Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases, but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early developmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4), glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs, including hESCs and hiPSCs, into homogeneous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 10 super(7)-fold when the differentiation-inducing signals from BMP, GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore, these CVPCs exhibited expected genome-wide molecular features of CVPCs, retained potentials to generate major cardiovascular lineages including cardiomyocytes, smooth muscle cells and endothelial cells in vitro, and were non-tumorigenic in vivo. Altogether, the established systems reported here permit efficient generation and stable maintenance of hPSC-derived CVPCs, which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine.
Author Nan Cao He Liang Jijun Huang Jia Wang Yixiong Chen Zhongyan Chen Huang-Tian Yang
AuthorAffiliation Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
Author_xml – sequence: 1
  givenname: Nan
  surname: Cao
  fullname: Cao, Nan
  organization: Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTUSM)
– sequence: 2
  givenname: He
  surname: Liang
  fullname: Liang, He
  organization: Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTUSM)
– sequence: 3
  givenname: Jijun
  surname: Huang
  fullname: Huang, Jijun
  organization: Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTUSM)
– sequence: 4
  givenname: Jia
  surname: Wang
  fullname: Wang, Jia
  organization: Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTUSM)
– sequence: 5
  givenname: Yixiong
  surname: Chen
  fullname: Chen, Yixiong
  organization: Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTUSM)
– sequence: 6
  givenname: Zhongyan
  surname: Chen
  fullname: Chen, Zhongyan
  organization: Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTUSM)
– sequence: 7
  givenname: Huang-Tian
  surname: Yang
  fullname: Yang, Huang-Tian
  email: htyang@sibs.ac.cn
  organization: Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine (SJTUSM)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23896987$$D View this record in MEDLINE/PubMed
BookMark eNqNkktrFTEUxwep2Ieu3EvEjaBT85hJMptCKWqFghtdh0xy5t6UmeQ2yRT6Ufy2zXjvLbV04SIkh_zO_zyPqwMfPFTVW4JPCWbyi4mnFBNWDPqiOiKikbWQTB6UN8akxhzTw-o4pWuMadu05FV1SJnseCfFUfXn0q3W4x2CYXDGgc_IeTub7IJH2ls0Br-qM8QJTdr5DF57AygMaJrH7DYhLy5GR-vCrU5mHnVEmxhW4F0OMaEhhgmt50l7tBnnuPdIGSZkYBwTmr2FiCwMzoNFJnjrlujpdfVy0GOCN7v7pPr97euvi8v66uf3HxfnV7VpBck17XtBOia5NJwPlJGhvBjn3PbSNoR22ALljTU94aLHjIKUrdGa9A20sqXspDrb6m7mfgJrSnpRj2oT3aTjnQraqX9_vFurVbhVTAjWirYIfNwJxHAzQ8pqcmmpTXsIc1KkKXFYOeQ_UNpxhoXoCvrhCXod5uhLJ_5SlGEsFsF3j5N_yHo_4AKQLWBiSCnCoIzLemlwqcWNimC1LJEyUS1LVIylI5-e-Oxln6c_b-lUKL-C-CjRZ_H3O_F1Wa2b4vGg3ogyDsoFuwf4ceU6
CitedBy_id crossref_primary_10_1186_s13619_015_0017_8
crossref_primary_10_18632_aging_103088
crossref_primary_10_3390_cells7060048
crossref_primary_10_7554_eLife_31706
crossref_primary_10_1038_s41598_019_52516_8
crossref_primary_10_1016_j_acvd_2020_01_002
crossref_primary_10_1016_j_biologicals_2017_09_003
crossref_primary_10_1161_CIRCULATIONAHA_121_054744
crossref_primary_10_1161_ATVBAHA_117_309196
crossref_primary_10_1089_scd_2017_0240
crossref_primary_10_1093_cvr_cvae118
crossref_primary_10_1186_s13287_015_0260_5
crossref_primary_10_1002_term_2117
crossref_primary_10_1016_j_stem_2016_02_010
crossref_primary_10_1172_JCI82735
crossref_primary_10_1146_annurev_genet_112414_054911
crossref_primary_10_1002_dvdy_24441
crossref_primary_10_1016_j_lfs_2015_12_023
crossref_primary_10_3390_jcdd9120409
crossref_primary_10_1039_C8BM01095A
crossref_primary_10_1089_ars_2018_7688
crossref_primary_10_1016_j_scr_2018_07_020
crossref_primary_10_1016_j_biomaterials_2021_120713
crossref_primary_10_1002_1873_3468_13930
crossref_primary_10_1016_j_stem_2016_02_001
crossref_primary_10_1002_sctm_19_0340
crossref_primary_10_1049_iet_syb_2018_5037
crossref_primary_10_1016_j_celrep_2016_04_066
crossref_primary_10_3390_ijms21124354
crossref_primary_10_3390_ijms22179517
crossref_primary_10_1161_HCG_0000000000000043
crossref_primary_10_1042_BJ20141078
crossref_primary_10_1016_j_stem_2015_12_001
crossref_primary_10_1089_cell_2015_0003
crossref_primary_10_1002_sctm_20_0456
crossref_primary_10_1016_j_apmt_2023_101773
crossref_primary_10_1016_j_stemcr_2018_07_001
crossref_primary_10_1186_s13287_019_1274_1
crossref_primary_10_3389_fcell_2021_672039
crossref_primary_10_1007_s11886_024_02099_2
crossref_primary_10_1186_s13287_024_03899_7
crossref_primary_10_1016_j_stemcr_2014_07_001
crossref_primary_10_1038_s41419_020_2508_y
crossref_primary_10_1007_s00784_023_05452_x
crossref_primary_10_4244_EIJ_D_17_00467
crossref_primary_10_1038_aps_2017_29
crossref_primary_10_1089_ten_tec_2013_0646
crossref_primary_10_1186_scrt401
crossref_primary_10_1016_j_stemcr_2016_08_008
crossref_primary_10_1172_JCI80575
crossref_primary_10_1161_CIRCULATIONAHA_121_056198
crossref_primary_10_15283_ijsc21051
crossref_primary_10_4137_BMI_S20050
crossref_primary_10_1039_C5TB02428E
crossref_primary_10_4252_wjsc_v16_i2_137
crossref_primary_10_1113_JP276754
crossref_primary_10_1016_j_scr_2017_02_002
crossref_primary_10_1016_j_bioactmat_2023_05_015
crossref_primary_10_1016_j_lfs_2018_01_009
crossref_primary_10_1007_s10735_020_09926_0
crossref_primary_10_1146_annurev_bioeng_071813_105108
crossref_primary_10_3390_cells8121536
crossref_primary_10_1016_j_biomaterials_2015_09_008
crossref_primary_10_31083_j_rcm2312392
crossref_primary_10_1016_j_stemcr_2019_04_013
crossref_primary_10_1038_nrcardio_2016_129
crossref_primary_10_1016_j_stem_2013_08_002
crossref_primary_10_1126_scitranslmed_3008921
crossref_primary_10_1038_s41401_020_00528_w
crossref_primary_10_1161_ATVBAHA_117_309962
crossref_primary_10_3389_fphar_2021_613837
crossref_primary_10_1038_ncomms10774
crossref_primary_10_1002_smsc_202400261
crossref_primary_10_1074_jbc_R113_529156
crossref_primary_10_1038_nrg3764
crossref_primary_10_1016_j_celrep_2023_112330
crossref_primary_10_1007_s12015_014_9564_6
crossref_primary_10_1007_s13238_013_3074_1
crossref_primary_10_1002_stem_3068
crossref_primary_10_1161_CIRCRESAHA_117_311578
crossref_primary_10_3389_fcell_2021_639699
crossref_primary_10_31083_j_fbl2708239
crossref_primary_10_15406_atroa_2017_03_00064
crossref_primary_10_1186_s13287_016_0455_4
crossref_primary_10_1159_000479182
crossref_primary_10_1007_s12015_015_9596_6
crossref_primary_10_1517_14712598_2016_1118460
crossref_primary_10_1161_CIRCRESAHA_116_308679
crossref_primary_10_1016_j_ijcard_2018_06_089
crossref_primary_10_1002_stem_2484
crossref_primary_10_1186_s13287_018_0794_4
crossref_primary_10_1371_journal_pone_0222946
crossref_primary_10_1186_s13287_024_03919_6
crossref_primary_10_1007_s11302_016_9512_9
crossref_primary_10_1021_acsomega_0c06187
crossref_primary_10_1038_s41551_022_00865_7
crossref_primary_10_1002_jbm_a_36005
crossref_primary_10_1016_j_ymeth_2015_09_019
Cites_doi 10.1371/journal.pone.0003474
10.1038/cr.2011.195
10.1096/fj.09-139477
10.1016/j.scr.2007.06.001
10.1016/j.stem.2013.03.004
10.1016/S1534-5807(03)00363-0
10.1038/nbt1310
10.1038/nbt1327
10.1161/ATVBAHA.107.143149
10.1242/dev.001883
10.1172/JCI31731
10.1016/j.stem.2011.12.013
10.1371/journal.pone.0023657
10.1038/nature08191
10.1016/j.cell.2008.02.008
10.1038/nprot.2008.116
10.1038/nature06968
10.1016/j.scr.2009.02.002
10.1016/j.cell.2006.10.029
10.1016/j.celrep.2012.09.015
10.1093/hmg/ddp386
10.1073/pnas.1200250109
10.1093/eurheartj/ehr166
10.1007/s00246-009-9450-1
10.1371/journal.pone.0018293
10.1016/j.stem.2007.05.018
10.1161/CIRCRESAHA.110.227512
10.1172/JCI40120
10.1038/nbt.2107
10.1161/CIRCRESAHA.110.223792
10.1038/cr.2011.48
10.1016/j.stem.2010.12.008
10.1634/stemcells.2007-0808
10.1161/CIRCRESAHA.110.227058
10.1016/j.stem.2008.06.009
10.2174/157488810791824584
10.1161/CIRCRESAHA.112.273144
10.1038/nature06894
10.1038/nmeth.1740
10.1083/jcb.201007063
ContentType Journal Article
Copyright Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2013
Copyright Nature Publishing Group Sep 2013
Copyright © 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
Copyright_xml – notice: Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2013
– notice: Copyright Nature Publishing Group Sep 2013
– notice: Copyright © 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
DBID 2RA
92L
CQIGP
W94
WU4
~WA
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/cr.2013.102
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库-自然科学-生物科学
中文科技期刊数据库- 镜像站点
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE - Academic


Engineering Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions
Induction and renewal of cardiovascular precursors
EISSN 1748-7838
EndPage 1132
ExternalDocumentID PMC3773575
3060346911
23896987
10_1038_cr_2013_102
47523267
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-01
-0A
-Q-
-SA
-S~
0R~
29B
2B.
2C.
2RA
2WC
36B
39C
3V.
4.4
406
53G
5GY
5VR
5XA
5XB
5XL
6J9
70F
7X7
88E
8FE
8FH
8FI
8FJ
92E
92I
92L
92M
92Q
93N
9D9
9DA
AADWK
AANZL
AATNV
AAWBL
AAYFA
AAYJO
AAZLF
ABAWZ
ABGIJ
ABJNI
ABUWG
ACAOD
ACBMV
ACBRV
ACBYP
ACGFO
ACGFS
ACIGE
ACIWK
ACKTT
ACPRK
ACRQY
ACTTH
ACVWB
ACZOJ
ADBBV
ADFRT
ADHDB
ADMDM
ADQMX
ADYYL
AEDAW
AEFTE
AEJRE
AENEX
AESKC
AEVLU
AEXYK
AFKRA
AFNRJ
AFRAH
AFSHS
AFUIB
AGEZK
AGGBP
AGHAI
AHMBA
AHSBF
AILAN
AJCLW
AJDOV
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMRJV
AMYLF
AOIJS
AXYYD
BAWUL
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
C1A
CAG
CAJEA
CAJUS
CCEZO
CCPQU
CCVFK
CHBEP
COF
CQIGP
CS3
CW9
DIK
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EE.
EIOEI
EJD
EMB
EMOBN
F5P
FA0
FDQFY
FERAY
FIZPM
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HYE
HZ~
IWAJR
JSO
JUIAU
JZLTJ
KQ8
LK8
M1P
M7P
NAO
NQJWS
NXXTH
NYICJ
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
Q--
Q-0
R-A
RNS
RNT
RNTTT
RPM
RT1
S..
SNX
SNYQT
SOHCF
SRMVM
SV3
SWTZT
T8Q
TAOOD
TBHMF
TCJ
TDRGL
TGP
TR2
U1F
U1G
U5A
U5K
UKHRP
W94
WFFXF
WU4
XSB
~88
~WA
AACDK
AAHBH
AASML
AAXDM
AAYZH
ABAKF
ABZZP
ACMJI
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AIGIU
ALIPV
FIGPU
LGEZI
LOTEE
NADUK
ROL
SOJ
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7T5
7TK
7TM
7TO
7U9
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c571t-2bb7193868c66f231f68c3666db8d41290de264dcb167b032e885caa1b4e58523
IEDL.DBID 7X7
ISSN 1001-0602
1748-7838
IngestDate Thu Aug 21 18:18:46 EDT 2025
Fri Jul 11 08:05:59 EDT 2025
Fri Jul 11 06:36:05 EDT 2025
Fri Jul 25 09:12:32 EDT 2025
Thu Apr 03 06:55:23 EDT 2025
Tue Jul 01 03:41:31 EDT 2025
Thu Apr 24 23:04:00 EDT 2025
Fri Feb 21 02:38:10 EST 2025
Wed Feb 14 10:39:16 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords directed differentiation
human pluripotent stem cells
cardiovascular progenitor cells
chemically defined medium
progenitor maintenance
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c571t-2bb7193868c66f231f68c3666db8d41290de264dcb167b032e885caa1b4e58523
Notes 31-1568/Q
human pluripotent stem cells; directed differentiation; progenitor maintenance; cardiovascular progenitor cells; chemically defined medium
Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases, but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early devel- opmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4), glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs, including hESCs and hiPSCs, into homoge- neous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 107-fold when the differentiation-inducing signals from BMP, GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore, these CVPCs exhibited expected genome-wide molecular features of CVPCs, retained potentials to generate major cardiovascular lineages including cardiomyocytes, smooth muscle cells and endothelial cells in vitro, and were non-tumorigenic in vivo. Altogether, the established systems reported here permit efficient generation and stable maintenance of hPSC- derived CVPCs, which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
These two authors contributed equally to this work.
OpenAccessLink https://www.nature.com/articles/cr2013102.pdf
PMID 23896987
PQID 1429230071
PQPubID 536307
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3773575
proquest_miscellaneous_1458535851
proquest_miscellaneous_1429630779
proquest_journals_1429230071
pubmed_primary_23896987
crossref_citationtrail_10_1038_cr_2013_102
crossref_primary_10_1038_cr_2013_102
springer_journals_10_1038_cr_2013_102
chongqing_primary_47523267
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Cell research
PublicationTitleAbbrev Cell Res
PublicationTitleAlternate Cell Research
PublicationYear 2013
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Cheung, Bernardo, Trotter, Pedersen, Sinha (CR7) 2012; 30
Kattman, Witty, Gagliardi (CR5) 2011; 8
Mauritz, Martens, Rojas (CR18) 2011; 32
Laflamme, Chen, Naumova (CR12) 2007; 25
Lam, Moretti, Laugwitz (CR15) 2009; 30
Cohen, Wang, Lepore (CR36) 2007; 117
Burridge, Keller, Gold, Wu (CR1) 2012; 10
Cao, Liao, Liu (CR41) 2011; 21
Leschik, Stefanovic, Brinon, Puceat (CR24) 2008; 3
Nelson, Faustino, Chiriac (CR27) 2008; 26
Christoforou, Miller, Hill (CR37) 2008; 118
Elliott, Braam, Koutsis (CR21) 2011; 8
Bu, Jiang, Martin-Puig (CR19) 2009; 460
Murry, Keller (CR4) 2008; 132
Blin, Nury, Stefanovic (CR20) 2010; 120
Mummery, Zhang, Ng (CR2) 2012; 111
Yang, Soonpaa, Adler (CR17) 2008; 453
Watanabe, Ueno, Kamiya (CR23) 2007; 25
Sone, Itoh, Yamahara (CR6) 2007; 27
Bondue, Blanpain (CR25) 2010; 107
Bondue, Lapouge, Paulissen (CR30) 2008; 3
van Laake, Passier, Monshouwer-Kloots (CR13) 2007; 1
Hentze, Soong, Wang (CR11) 2009; 2
Cao, Wagner, Wilson (CR14) 2008; 3
Uosaki, Fukushima, Takeuchi (CR31) 2011; 6
Cao, Liu, Chen (CR22) 2012; 22
Li, Zhou, Shi (CR40) 2009; 18
Laugwitz, Moretti, Caron, Nakano, Chien (CR33) 2008; 135
Cai, Liang, Shi (CR38) 2003; 5
Zhang, Klos, Wilson (CR9) 2012; 111
Chan, Shi, Toyama (CR32) 2013; 12
Lian, Hsiao, Wilson (CR8) 2012; 109
Minami, Yamada, Otsuji (CR10) 2012; 2
Blin, Neri, Stefanovic, Puceat (CR3) 2010; 5
Moretti, Bellin, Jung (CR26) 2010; 24
Bondue, Tannler, Chiapparo (CR28) 2011; 192
Noseda, Peterkin, Simoes, Patient, Schneider (CR16) 2011; 108
Ying, Wray, Nichols (CR39) 2008; 453
Burridge, Thompson, Millrod (CR29) 2011; 6
Qyang, Martin-Puig, Chiravuri (CR35) 2007; 1
Moretti, Caron, Nakano (CR34) 2006; 127
H Hentze (BFcr2013102_CR11) 2009; 2
N Cao (BFcr2013102_CR22) 2012; 22
H Uosaki (BFcr2013102_CR31) 2011; 6
CL Mummery (BFcr2013102_CR2) 2012; 111
X Lian (BFcr2013102_CR8) 2012; 109
I Minami (BFcr2013102_CR10) 2012; 2
N Cao (BFcr2013102_CR41) 2011; 21
TJ Nelson (BFcr2013102_CR27) 2008; 26
C Mauritz (BFcr2013102_CR18) 2011; 32
J Zhang (BFcr2013102_CR9) 2012; 111
C Li (BFcr2013102_CR40) 2009; 18
G Blin (BFcr2013102_CR20) 2010; 120
A Bondue (BFcr2013102_CR30) 2008; 3
N Christoforou (BFcr2013102_CR37) 2008; 118
CL Cai (BFcr2013102_CR38) 2003; 5
MA Laflamme (BFcr2013102_CR12) 2007; 25
A Bondue (BFcr2013102_CR25) 2010; 107
G Blin (BFcr2013102_CR3) 2010; 5
K Watanabe (BFcr2013102_CR23) 2007; 25
CE Murry (BFcr2013102_CR4) 2008; 132
A Moretti (BFcr2013102_CR34) 2006; 127
F Cao (BFcr2013102_CR14) 2008; 3
PW Burridge (BFcr2013102_CR29) 2011; 6
L Bu (BFcr2013102_CR19) 2009; 460
QL Ying (BFcr2013102_CR39) 2008; 453
J Leschik (BFcr2013102_CR24) 2008; 3
SS Chan (BFcr2013102_CR32) 2013; 12
M Noseda (BFcr2013102_CR16) 2011; 108
A Bondue (BFcr2013102_CR28) 2011; 192
A Moretti (BFcr2013102_CR26) 2010; 24
SJ Kattman (BFcr2013102_CR5) 2011; 8
JT Lam (BFcr2013102_CR15) 2009; 30
PW Burridge (BFcr2013102_CR1) 2012; 10
DA Elliott (BFcr2013102_CR21) 2011; 8
C Cheung (BFcr2013102_CR7) 2012; 30
Y Qyang (BFcr2013102_CR35) 2007; 1
KL Laugwitz (BFcr2013102_CR33) 2008; 135
ED Cohen (BFcr2013102_CR36) 2007; 117
L Yang (BFcr2013102_CR17) 2008; 453
M Sone (BFcr2013102_CR6) 2007; 27
LW van Laake (BFcr2013102_CR13) 2007; 1
20335662 - J Clin Invest. 2010 Apr;120(4):1125-39
23642367 - Cell Stem Cell. 2013 May 2;12(5):587-601
18593560 - Cell Stem Cell. 2008 Jul 3;3(1):69-84
21494607 - PLoS One. 2011;6(4):e18293
22226352 - Cell Stem Cell. 2012 Jan 6;10(1):16-28
18497825 - Nature. 2008 May 22;453(7194):519-23
21148448 - Circ Res. 2010 Dec 10;107(12):1414-27
22020065 - Nat Methods. 2011 Dec;8(12):1037-40
19679563 - Hum Mol Genet. 2009 Nov 15;18(22):4340-9
18941512 - PLoS One. 2008;3(10):e3474
22252507 - Nat Biotechnol. 2012 Feb;30(2):165-73
21212394 - Circ Res. 2011 Jan 7;108(1):129-52
21423272 - Cell Res. 2011 Sep;21(9):1316-31
18246200 - J Clin Invest. 2008 Mar;118(3):894-903
22143566 - Cell Res. 2012 Jan;22(1):219-36
18295582 - Cell. 2008 Feb 22;132(4):661-80
19383383 - Stem Cell Res. 2007 Oct;1(1):9-24
22645348 - Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1848-57
21383076 - J Cell Biol. 2011 Mar 7;192(5):751-65
17607356 - J Clin Invest. 2007 Jul;117(7):1794-804
22912385 - Circ Res. 2012 Oct 12;111(9):1125-36
19415155 - Pediatr Cardiol. 2009 Jul;30(5):690-8
19393593 - Stem Cell Res. 2009 May;2(3):198-210
17721512 - Nat Biotechnol. 2007 Sep;25(9):1015-24
18432194 - Nature. 2008 May 22;453(7194):524-8
18369102 - Stem Cells. 2008 Jun;26(6):1464-73
18371348 - Cell Stem Cell. 2007 Aug 16;1(2):165-79
17123592 - Cell. 2006 Dec 15;127(6):1151-65
20214559 - Curr Stem Cell Res Ther. 2010 Sep;5(3):215-26
17872458 - Arterioscler Thromb Vasc Biol. 2007 Oct;27(10):2127-34
18156162 - Development. 2008 Jan;135(2):193-205
23103164 - Cell Rep. 2012 Nov 29;2(5):1448-60
14667410 - Dev Cell. 2003 Dec;5(6):877-89
21295278 - Cell Stem Cell. 2011 Feb 4;8(2):228-40
21876760 - PLoS One. 2011;6(8):e23657
19850773 - FASEB J. 2010 Mar;24(3):700-11
21596799 - Eur Heart J. 2011 Nov;32(21):2634-41
17529971 - Nat Biotechnol. 2007 Jun;25(6):681-6
22821908 - Circ Res. 2012 Jul 20;111(3):344-58
19571884 - Nature. 2009 Jul 2;460(7251):113-7
18772864 - Nat Protoc. 2008;3(9):1381-7
References_xml – volume: 3
  start-page: e3474
  year: 2008
  ident: CR14
  article-title: Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003474
– volume: 22
  start-page: 219
  year: 2012
  end-page: 236
  ident: CR22
  article-title: Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells
  publication-title: Cell Res
  doi: 10.1038/cr.2011.195
– volume: 24
  start-page: 700
  year: 2010
  end-page: 711
  ident: CR26
  article-title: Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors
  publication-title: FASEB J
  doi: 10.1096/fj.09-139477
– volume: 1
  start-page: 9
  year: 2007
  end-page: 24
  ident: CR13
  article-title: Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction
  publication-title: Stem Cell Res
  doi: 10.1016/j.scr.2007.06.001
– volume: 12
  start-page: 587
  year: 2013
  end-page: 601
  ident: CR32
  article-title: Mesp1 patterns mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a context-dependent manner
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.03.004
– volume: 5
  start-page: 877
  year: 2003
  end-page: 889
  ident: CR38
  article-title: Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart
  publication-title: Dev Cell
  doi: 10.1016/S1534-5807(03)00363-0
– volume: 25
  start-page: 681
  year: 2007
  end-page: 686
  ident: CR23
  article-title: A ROCK inhibitor permits survival of dissociated human embryonic stem cells
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1310
– volume: 118
  start-page: 894
  year: 2008
  end-page: 903
  ident: CR37
  article-title: Mouse ES cell-derived cardiac precursor cells are multipotent and facilitate identification of novel cardiac genes
  publication-title: J Clin Invest
– volume: 25
  start-page: 1015
  year: 2007
  end-page: 1024
  ident: CR12
  article-title: Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1327
– volume: 27
  start-page: 2127
  year: 2007
  end-page: 2134
  ident: CR6
  article-title: Pathway for differentiation of human embryonic stem cells to vascular cell components and their potential for vascular regeneration
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.107.143149
– volume: 135
  start-page: 193
  year: 2008
  end-page: 205
  ident: CR33
  article-title: Islet1 cardiovascular progenitors: a single source for heart lineages?
  publication-title: Development
  doi: 10.1242/dev.001883
– volume: 117
  start-page: 1794
  year: 2007
  end-page: 1804
  ident: CR36
  article-title: Wnt/beta-catenin signaling promotes expansion of Isl-1-positive cardiac progenitor cells through regulation of FGF signaling
  publication-title: J Clin Invest
  doi: 10.1172/JCI31731
– volume: 10
  start-page: 16
  year: 2012
  end-page: 28
  ident: CR1
  article-title: Production of cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.12.013
– volume: 6
  start-page: e23657
  year: 2011
  ident: CR31
  article-title: Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0023657
– volume: 460
  start-page: 113
  year: 2009
  end-page: 117
  ident: CR19
  article-title: Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages
  publication-title: Nature
  doi: 10.1038/nature08191
– volume: 132
  start-page: 661
  year: 2008
  end-page: 680
  ident: CR4
  article-title: Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development
  publication-title: Cell
  doi: 10.1016/j.cell.2008.02.008
– volume: 3
  start-page: 1381
  year: 2008
  end-page: 1387
  ident: CR24
  article-title: Cardiac commitment of primate embryonic stem cells
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2008.116
– volume: 453
  start-page: 519
  year: 2008
  end-page: 523
  ident: CR39
  article-title: The ground state of embryonic stem cell self-renewal
  publication-title: Nature
  doi: 10.1038/nature06968
– volume: 2
  start-page: 198
  year: 2009
  end-page: 210
  ident: CR11
  article-title: Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies
  publication-title: Stem Cell Res
  doi: 10.1016/j.scr.2009.02.002
– volume: 127
  start-page: 1151
  year: 2006
  end-page: 1165
  ident: CR34
  article-title: Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification
  publication-title: Cell
  doi: 10.1016/j.cell.2006.10.029
– volume: 2
  start-page: 1448
  year: 2012
  end-page: 1460
  ident: CR10
  article-title: A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.09.015
– volume: 18
  start-page: 4340
  year: 2009
  end-page: 4349
  ident: CR40
  article-title: Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddp386
– volume: 109
  start-page: E1848
  year: 2012
  end-page: E1857
  ident: CR8
  article-title: Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1200250109
– volume: 32
  start-page: 2634
  year: 2011
  end-page: 2641
  ident: CR18
  article-title: Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehr166
– volume: 30
  start-page: 690
  year: 2009
  end-page: 698
  ident: CR15
  article-title: Multipotent progenitor cells in regenerative cardiovascular medicine
  publication-title: Pediatr Cardiol
  doi: 10.1007/s00246-009-9450-1
– volume: 6
  start-page: e18293
  year: 2011
  ident: CR29
  article-title: A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018293
– volume: 1
  start-page: 165
  year: 2007
  end-page: 179
  ident: CR35
  article-title: The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/beta-catenin pathway
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.05.018
– volume: 111
  start-page: 344
  year: 2012
  end-page: 358
  ident: CR2
  article-title: Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.110.227512
– volume: 120
  start-page: 1125
  year: 2010
  end-page: 1139
  ident: CR20
  article-title: A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates
  publication-title: J Clin Invest
  doi: 10.1172/JCI40120
– volume: 30
  start-page: 165
  year: 2012
  end-page: 173
  ident: CR7
  article-title: Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2107
– volume: 108
  start-page: 129
  year: 2011
  end-page: 152
  ident: CR16
  article-title: Cardiopoietic factors: extracellular signals for cardiac lineage commitment
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.110.223792
– volume: 21
  start-page: 1316
  year: 2011
  end-page: 1331
  ident: CR41
  article-title: differentiation of rat embryonic stem cells into functional cardiomyocytes
  publication-title: Cell Res
  doi: 10.1038/cr.2011.48
– volume: 8
  start-page: 228
  year: 2011
  end-page: 240
  ident: CR5
  article-title: Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.12.008
– volume: 26
  start-page: 1464
  year: 2008
  end-page: 1473
  ident: CR27
  article-title: CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2007-0808
– volume: 107
  start-page: 1414
  year: 2010
  end-page: 1427
  ident: CR25
  article-title: Mesp1: a key regulator of cardiovascular lineage commitment
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.110.227058
– volume: 3
  start-page: 69
  year: 2008
  end-page: 84
  ident: CR30
  article-title: Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.06.009
– volume: 5
  start-page: 215
  year: 2010
  end-page: 226
  ident: CR3
  article-title: Human embryonic and induced pluripotent stem cells in basic and clinical research in cardiology
  publication-title: Curr Stem Cell Res Ther
  doi: 10.2174/157488810791824584
– volume: 111
  start-page: 1125
  year: 2012
  end-page: 1136
  ident: CR9
  article-title: Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.112.273144
– volume: 453
  start-page: 524
  year: 2008
  end-page: 528
  ident: CR17
  article-title: Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population
  publication-title: Nature
  doi: 10.1038/nature06894
– volume: 8
  start-page: 1037
  year: 2011
  end-page: 1040
  ident: CR21
  article-title: NKX2–5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1740
– volume: 192
  start-page: 751
  year: 2011
  end-page: 765
  ident: CR28
  article-title: Defining the earliest step of cardiovascular progenitor specification during embryonic stem cell differentiation
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201007063
– volume: 30
  start-page: 690
  year: 2009
  ident: BFcr2013102_CR15
  publication-title: Pediatr Cardiol
  doi: 10.1007/s00246-009-9450-1
– volume: 192
  start-page: 751
  year: 2011
  ident: BFcr2013102_CR28
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201007063
– volume: 111
  start-page: 1125
  year: 2012
  ident: BFcr2013102_CR9
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.112.273144
– volume: 10
  start-page: 16
  year: 2012
  ident: BFcr2013102_CR1
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.12.013
– volume: 3
  start-page: 69
  year: 2008
  ident: BFcr2013102_CR30
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.06.009
– volume: 111
  start-page: 344
  year: 2012
  ident: BFcr2013102_CR2
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.110.227512
– volume: 25
  start-page: 681
  year: 2007
  ident: BFcr2013102_CR23
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1310
– volume: 26
  start-page: 1464
  year: 2008
  ident: BFcr2013102_CR27
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2007-0808
– volume: 27
  start-page: 2127
  year: 2007
  ident: BFcr2013102_CR6
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.107.143149
– volume: 21
  start-page: 1316
  year: 2011
  ident: BFcr2013102_CR41
  publication-title: Cell Res
  doi: 10.1038/cr.2011.48
– volume: 453
  start-page: 519
  year: 2008
  ident: BFcr2013102_CR39
  publication-title: Nature
  doi: 10.1038/nature06968
– volume: 18
  start-page: 4340
  year: 2009
  ident: BFcr2013102_CR40
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddp386
– volume: 107
  start-page: 1414
  year: 2010
  ident: BFcr2013102_CR25
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.110.227058
– volume: 3
  start-page: 1381
  year: 2008
  ident: BFcr2013102_CR24
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2008.116
– volume: 127
  start-page: 1151
  year: 2006
  ident: BFcr2013102_CR34
  publication-title: Cell
  doi: 10.1016/j.cell.2006.10.029
– volume: 8
  start-page: 228
  year: 2011
  ident: BFcr2013102_CR5
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.12.008
– volume: 5
  start-page: 215
  year: 2010
  ident: BFcr2013102_CR3
  publication-title: Curr Stem Cell Res Ther
  doi: 10.2174/157488810791824584
– volume: 6
  start-page: e18293
  year: 2011
  ident: BFcr2013102_CR29
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018293
– volume: 120
  start-page: 1125
  year: 2010
  ident: BFcr2013102_CR20
  publication-title: J Clin Invest
  doi: 10.1172/JCI40120
– volume: 117
  start-page: 1794
  year: 2007
  ident: BFcr2013102_CR36
  publication-title: J Clin Invest
  doi: 10.1172/JCI31731
– volume: 22
  start-page: 219
  year: 2012
  ident: BFcr2013102_CR22
  publication-title: Cell Res
  doi: 10.1038/cr.2011.195
– volume: 12
  start-page: 587
  year: 2013
  ident: BFcr2013102_CR32
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.03.004
– volume: 1
  start-page: 165
  year: 2007
  ident: BFcr2013102_CR35
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.05.018
– volume: 5
  start-page: 877
  year: 2003
  ident: BFcr2013102_CR38
  publication-title: Dev Cell
  doi: 10.1016/S1534-5807(03)00363-0
– volume: 3
  start-page: e3474
  year: 2008
  ident: BFcr2013102_CR14
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003474
– volume: 453
  start-page: 524
  year: 2008
  ident: BFcr2013102_CR17
  publication-title: Nature
  doi: 10.1038/nature06894
– volume: 132
  start-page: 661
  year: 2008
  ident: BFcr2013102_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2008.02.008
– volume: 118
  start-page: 894
  year: 2008
  ident: BFcr2013102_CR37
  publication-title: J Clin Invest
– volume: 32
  start-page: 2634
  year: 2011
  ident: BFcr2013102_CR18
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehr166
– volume: 108
  start-page: 129
  year: 2011
  ident: BFcr2013102_CR16
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.110.223792
– volume: 2
  start-page: 198
  year: 2009
  ident: BFcr2013102_CR11
  publication-title: Stem Cell Res
  doi: 10.1016/j.scr.2009.02.002
– volume: 25
  start-page: 1015
  year: 2007
  ident: BFcr2013102_CR12
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1327
– volume: 1
  start-page: 9
  year: 2007
  ident: BFcr2013102_CR13
  publication-title: Stem Cell Res
  doi: 10.1016/j.scr.2007.06.001
– volume: 460
  start-page: 113
  year: 2009
  ident: BFcr2013102_CR19
  publication-title: Nature
  doi: 10.1038/nature08191
– volume: 24
  start-page: 700
  year: 2010
  ident: BFcr2013102_CR26
  publication-title: FASEB J
  doi: 10.1096/fj.09-139477
– volume: 135
  start-page: 193
  year: 2008
  ident: BFcr2013102_CR33
  publication-title: Development
  doi: 10.1242/dev.001883
– volume: 30
  start-page: 165
  year: 2012
  ident: BFcr2013102_CR7
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2107
– volume: 6
  start-page: e23657
  year: 2011
  ident: BFcr2013102_CR31
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0023657
– volume: 109
  start-page: E1848
  year: 2012
  ident: BFcr2013102_CR8
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1200250109
– volume: 2
  start-page: 1448
  year: 2012
  ident: BFcr2013102_CR10
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.09.015
– volume: 8
  start-page: 1037
  year: 2011
  ident: BFcr2013102_CR21
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1740
– reference: 19415155 - Pediatr Cardiol. 2009 Jul;30(5):690-8
– reference: 18497825 - Nature. 2008 May 22;453(7194):519-23
– reference: 19679563 - Hum Mol Genet. 2009 Nov 15;18(22):4340-9
– reference: 22020065 - Nat Methods. 2011 Dec;8(12):1037-40
– reference: 18772864 - Nat Protoc. 2008;3(9):1381-7
– reference: 22912385 - Circ Res. 2012 Oct 12;111(9):1125-36
– reference: 19571884 - Nature. 2009 Jul 2;460(7251):113-7
– reference: 18295582 - Cell. 2008 Feb 22;132(4):661-80
– reference: 20335662 - J Clin Invest. 2010 Apr;120(4):1125-39
– reference: 21494607 - PLoS One. 2011;6(4):e18293
– reference: 18371348 - Cell Stem Cell. 2007 Aug 16;1(2):165-79
– reference: 18432194 - Nature. 2008 May 22;453(7194):524-8
– reference: 18593560 - Cell Stem Cell. 2008 Jul 3;3(1):69-84
– reference: 22821908 - Circ Res. 2012 Jul 20;111(3):344-58
– reference: 21212394 - Circ Res. 2011 Jan 7;108(1):129-52
– reference: 19393593 - Stem Cell Res. 2009 May;2(3):198-210
– reference: 17529971 - Nat Biotechnol. 2007 Jun;25(6):681-6
– reference: 22252507 - Nat Biotechnol. 2012 Feb;30(2):165-73
– reference: 17123592 - Cell. 2006 Dec 15;127(6):1151-65
– reference: 21423272 - Cell Res. 2011 Sep;21(9):1316-31
– reference: 18156162 - Development. 2008 Jan;135(2):193-205
– reference: 21596799 - Eur Heart J. 2011 Nov;32(21):2634-41
– reference: 18941512 - PLoS One. 2008;3(10):e3474
– reference: 21148448 - Circ Res. 2010 Dec 10;107(12):1414-27
– reference: 17872458 - Arterioscler Thromb Vasc Biol. 2007 Oct;27(10):2127-34
– reference: 14667410 - Dev Cell. 2003 Dec;5(6):877-89
– reference: 23103164 - Cell Rep. 2012 Nov 29;2(5):1448-60
– reference: 20214559 - Curr Stem Cell Res Ther. 2010 Sep;5(3):215-26
– reference: 22143566 - Cell Res. 2012 Jan;22(1):219-36
– reference: 22645348 - Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1848-57
– reference: 23642367 - Cell Stem Cell. 2013 May 2;12(5):587-601
– reference: 18246200 - J Clin Invest. 2008 Mar;118(3):894-903
– reference: 21876760 - PLoS One. 2011;6(8):e23657
– reference: 21295278 - Cell Stem Cell. 2011 Feb 4;8(2):228-40
– reference: 19850773 - FASEB J. 2010 Mar;24(3):700-11
– reference: 17607356 - J Clin Invest. 2007 Jul;117(7):1794-804
– reference: 17721512 - Nat Biotechnol. 2007 Sep;25(9):1015-24
– reference: 21383076 - J Cell Biol. 2011 Mar 7;192(5):751-65
– reference: 22226352 - Cell Stem Cell. 2012 Jan 6;10(1):16-28
– reference: 19383383 - Stem Cell Res. 2007 Oct;1(1):9-24
– reference: 18369102 - Stem Cells. 2008 Jun;26(6):1464-73
SSID ssj0025451
Score 2.4384747
Snippet Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced...
Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
chongqing
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1119
SubjectTerms 631/136/532/1360
631/136/532/2064
631/1647/1407/651
692/699/75
Ascorbic Acid - pharmacology
Biomedical and Life Sciences
Bone Morphogenetic Protein 4 - pharmacology
Cardiovascular diseases
Cell Biology
Cell Culture Techniques
Cell Differentiation - drug effects
Cell- and Tissue-Based Therapy
Cells, Cultured
Embryonic Stem Cells - drug effects
Embryonic Stem Cells - metabolism
Glycogen Synthase Kinase 3 - antagonists & inhibitors
Heart - embryology
Heart Diseases - therapy
Humans
Induced Pluripotent Stem Cells - drug effects
Induced Pluripotent Stem Cells - metabolism
Life Sciences
Myocardium - cytology
Original
original-article
Pyridines - pharmacology
Pyrimidines - pharmacology
Stem cells
人类胚胎干细胞
分化诱导
多能干细胞
心血管
祖细胞
自我更新
血管发育
骨形态发生蛋白
Title Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions
URI http://lib.cqvip.com/qk/85240X/201309/47523267.html
https://link.springer.com/article/10.1038/cr.2013.102
https://www.ncbi.nlm.nih.gov/pubmed/23896987
https://www.proquest.com/docview/1429230071
https://www.proquest.com/docview/1429630779
https://www.proquest.com/docview/1458535851
https://pubmed.ncbi.nlm.nih.gov/PMC3773575
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7ShEIvJUlfzgsV0kvBxLa8knwqbUkIPYRQGtib0ctNYWNvvLuH_JT-287Ij3S7JYeFXTwW0koafSN9-gbgNDEiKTLrYgwudJzrxMcGfXGce55ym5oUP8S2uBKXN_m36WTab7gtelrl4BODo3aNpT3ys5TyKnFaET_N72PKGkWnq30KjWewQ9JlROmS08eAC9FBCLgCbUgQk2e_u2auzixpgaaclAtIVeG2qX_e41qxvjptQM5N5uQ_x6dhVbrYhZc9nGSfu_7fgy1f78PzLsHkwyv4TTSO2QPzQSgCS2MYgnd6sUzXjs2wQjE5Z3anSTiC1Dc8ayrW8QybJb1i1yirjBhdnhxBu2B0OYWFNH9sPlu1wxskDs3oSGDB6I5ay5yvEM06hsG36zhir-Hm4vzH18u4T8YQ24lMl3FmjESwp4SyQlSICiv8xjH4cUa5nHaznEdw5axJhTQJz7xSE6t1anKPIUnG38B23dT-HTArLS6JiPRsYjC8sziMVJVZUeSJFrrSERyMHVLOO9GNMpdYRiZkBB-HHiptL2NO2TRmZThO56q0bUldiz-yCE5H46Gg_5odDV1d9lN4UT4OuAjej49x8tHfp2vfrDobgV5SFk_ZYPM5nb5G8LYbPWNdEC8VolDYKLk2rkYDEv9ef1L_ug0i4FxKjlA7gg_DCPyr6ptNPHi6iYfwIgt5Pog8dwTby3bljxFtLc1JmFInsPPl_Or6-x9nsi7H
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqRBcEJRHXQosUntBsmp7nbV9QIhHq5SWCKFW6s3syxQp2KmTCOWn8Cf4jcx4bUMI6q0HS7G8Xu1mZme-8c5-A7AXKBFkkTY-BhfSj2VgfYW22I8tD7kOVYgXZVuMxeg8_nAxvNiAX91ZGEqr7GxiY6hNpekb-UFIdZU4ecTX0yufqkbR7mpXQsOpxYld_sCQbfbq-D3Kdz-Kjg7P3o38tqqAr4dJOPcjpRJELalItRAFwpsCf3FE8UalJqbPMsYiSjBahSJRAY9smg61lKGKLWJrIjpAk78ZcwxlBrD59nD86XMf4iEeaUK8JlFJUO7QljvYnh5oYh8NOXElEI_DZVV-vULvtOoP10Dueq7mPxu2jR88ugd3WwDL3jiNuw8bttyCW66k5fIB_KTEkcmS2YaaAntjGPQ7hlomS8MmOCCf3AH7Lomqgvg-LKsK5jIbqzm9oleSZBnlkFkyPfWM0XEY1hQWZNPJou7eIDpqRpsQM0an4mpmbIH42TAM943LSnsI5zciqEcwKKvSbgPTiUYnjNhSBwoDSo2KmxaRFlkcSCEL6cFOL5B86mg-8jjBPiKRePCyk1CuW-J0qt8xyZsNfJ7mus5JtHgTebDXN-46-m-z3U7UeWs0ZvkfFffgRf8Ylzv9fbK01cK1EWiXk-y6Njh9Tvu9Hjx22tOPBRFaJrIUJ5Ws6FXfgOjGV5-U3y4b2nGeJBzBvQf7nQb-NfT1Ke5cP8XncHt09vE0Pz0enzyBO1FTZYRS93ZhMK8X9ilivbl61i4wBl9uek3_BkTPaiA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLWmIRAvE4yvjAFG2l6QoiZxYicPCCFGtTE08cCkvgV_hSGVpEtbTf0p_BV-HffaSUYp2tseKrWKE9m919fnxsfnEnIQKR4ViTYhJBcyTGVkQwWxOEwti5mOVQwfZFuc8ePz9NMkm2yR3_1ZGKRV9jHRBWrTaHxHPoqxrhLDFXFUdbSIL0fjd7PLECtI4U5rX07Du8ipXV1B-jZ_e3IEtj5MkvHHrx-Ow67CQKgzES_CRCkBCCbnuea8AqhTwTcGiN6o3KT4isZYQAxGq5gLFbHE5nmmpYxVagFno-gBhP87gmUxzjExuU72AJm4ZM9RljiyiHb9Efd8pFGHNGaomoCKDhdN_f0S1qn1lXED7m6yNv_ZunUr4vgB2emgLH3vfe8h2bL1Lrnri1uuHpFfSCGZrqh1IhXwNArpv9eqpbI2dAodCnFhoD8lilag8oelTUU9x7FZ4C16jS5LkU1mMQi1c4oHY6grMUhn02Xb34HC1BS3I-YUz8e11NgKkLShkPgbz097TM5vxUxPyHbd1PYZoVpoWI4BZepIQWqpwYXzKtG8SCPJZSUDsjcYpJx5wY8yFfCMhIuAvOktVOpOQh0reUxLt5XP8lK3JZoWfiQBORga9w_6b7P93tRlFz7m5bWzB-T1cBkmPv59srbN0rfhEKFFcVMbGD7Dnd-APPXeM_QFsFrBixwGJdb8amiAwuPrV-ofF06AnAnweJEF5LD3wL-6vjnEvZuH-Ircg5lcfj45O31O7ieu3Ahy-PbJ9qJd2hcA-hbqpZtdlHy77en8B-nUbPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+induction+and+long-term+maintenance+of+multipotent+cardiovascular+progenitors+from+human+pluripotent+stem+cells+under+defined+conditions&rft.jtitle=Cell+research&rft.au=Cao%2C+Nan&rft.au=Liang%2C+He&rft.au=Huang%2C+Jijun&rft.au=Wang%2C+Jia&rft.date=2013-09-01&rft.issn=1001-0602&rft.volume=23&rft.issue=9&rft.spage=1119&rft.epage=1132&rft_id=info:doi/10.1038%2Fcr.2013.102&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85240X%2F85240X.jpg