Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels

To effectively repair or replace damaged tissues, it is necessary to design scaffolds with tunable structural and biomechanical properties that closely mimic the host tissue. In this paper, we describe a newly synthesized photocrosslinkable interpenetrating polymer network (IPN) hydrogel based on ge...

Full description

Saved in:
Bibliographic Details
Published inActa biomaterialia Vol. 7; no. 6; pp. 2384 - 2393
Main Authors Xiao, Wenqian, He, Jiankang, Nichol, Jason W., Wang, Lianyong, Hutson, Ché B., Wang, Ben, Du, Yanan, Fan, Hongsong, Khademhosseini, Ali
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2011
Subjects
Online AccessGet full text
ISSN1742-7061
1878-7568
1878-7568
DOI10.1016/j.actbio.2011.01.016

Cover

Loading…
Abstract To effectively repair or replace damaged tissues, it is necessary to design scaffolds with tunable structural and biomechanical properties that closely mimic the host tissue. In this paper, we describe a newly synthesized photocrosslinkable interpenetrating polymer network (IPN) hydrogel based on gelatin methacrylate (GelMA) and silk fibroin (SF) formed by sequential polymerization, which possesses tunable structural and biological properties. Experimental results revealed that IPNs, where both the GelMA and SF were independently crosslinked in interpenetrating networks, demonstrated a lower swelling ratio, higher compressive modulus and lower degradation rate as compared to the GelMA and semi-IPN hydrogels, where only GelMA was crosslinked. These differences were likely caused by a higher degree of overall crosslinking due to the presence of crystallized SF in the IPN hydrogels. NIH-3T3 fibroblasts readily attached to, spread and proliferated on the surface of IPN hydrogels, as demonstrated by F-actin staining and analysis of mitochondrial activity (MTT). In addition, photolithography combined with lyophilization techniques was used to fabricate three-dimensional micropatterned and porous microscaffolds from GelMA–SF IPN hydrogels, furthering their versatility for use in various microscale tissue engineering applications. Overall, this study introduces a class of photocrosslinkable, mechanically robust and tunable IPN hydrogels that could be useful for various tissue engineering and regenerative medicine applications.
AbstractList To effectively repair or replace damaged tissues, it is necessary to design scaffolds with tunable structural and biomechanical properties that closely mimic the host tissue. In this paper, we describe a newly synthesized photocrosslinkable interpenetrating polymer network (IPN) hydrogel based on gelatin methacrylate (GelMA) and silk fibroin (SF) formed by sequential polymerization, which possesses tunable structural and biological properties. Experimental results revealed that IPNs, where both the GelMA and SF were independently crosslinked in interpenetrating networks, demonstrated a lower swelling ratio, higher compressive modulus and lower degradation rate as compared to the GelMA and semi-IPN hydrogels, where only GelMA was crosslinked. These differences were likely caused by a higher degree of overall crosslinking due to the presence of crystallized SF in the IPN hydrogels. NIH-3T3 fibroblasts readily attached to, spread and proliferated on the surface of IPN hydrogels, as demonstrated by F-actin staining and analysis of mitochondrial activity (MTT). In addition, photolithography combined with lyophilization techniques was used to fabricate three-dimensional micropatterned and porous microscaffolds from GelMA–SF IPN hydrogels, furthering their versatility for use in various microscale tissue engineering applications. Overall, this study introduces a class of photocrosslinkable, mechanically robust and tunable IPN hydrogels that could be useful for various tissue engineering and regenerative medicine applications.
To effectively repair or replace damaged tissues, it is necessary to design scaffolds with tunable structural and biomechanical properties that closely mimic the host tissue. In this paper, we describe a newly synthesized photocrosslinkable interpenetrating polymer network (IPN) hydrogel based on gelatin methacrylate (GelMA) and silk fibroin (SF) formed by sequential polymerization, which possesses tunable structural and biological properties. Experimental results revealed that IPNs, where both the GelMA and SF were independently crosslinked in interpenetrating networks, demonstrated a lower swelling ratio, higher compressive modulus and lower degradation rate as compared to the GelMA and semi-IPN hydrogels, where only GelMA was crosslinked. These differences were likely caused by a higher degree of overall crosslinking due to the presence of crystallized SF in the IPN hydrogels. NIH-3T3 fibroblasts readily attached to, spread, and proliferated on the surface of IPN hydrogels as demonstrated by F-actin staining and analysis of mitochondrial activity (MTT). In addition, photolithography combined with lyophilization techniques was used to fabricate 3D micropatterned and porous micro-scaffolds from GelMA-SF IPN hydrogels, furthering their versatility for use in various microscale tissue engineering applications. Overall, this study introduces a class of photocrosslinkable, mechanically robust and tunable IPN hydrogels that could be useful for various tissue engineering and regenerative medicine applications.
To effectively repair or replace damaged tissues, it is necessary to design scaffolds with tunable structural and biomechanical properties that closely mimic the host tissue. In this paper, we describe a newly synthesized photocrosslinkable interpenetrating polymer network (IPN) hydrogel based on gelatin methacrylate (GelMA) and silk fibroin (SF) formed by sequential polymerization, which possesses tunable structural and biological properties. Experimental results revealed that IPNs, where both the GelMA and SF were independently crosslinked in interpenetrating networks, demonstrated a lower swelling ratio, higher compressive modulus and lower degradation rate as compared to the GelMA and semi-IPN hydrogels, where only GelMA was crosslinked. These differences were likely caused by a higher degree of overall crosslinking due to the presence of crystallized SF in the IPN hydrogels. NIH-3T3 fibroblasts readily attached to, spread and proliferated on the surface of IPN hydrogels, as demonstrated by F-actin staining and analysis of mitochondrial activity (MTT). In addition, photolithography combined with lyophilization techniques was used to fabricate three-dimensional micropatterned and porous microscaffolds from GelMA-SF IPN hydrogels, furthering their versatility for use in various microscale tissue engineering applications. Overall, this study introduces a class of photocrosslinkable, mechanically robust and tunable IPN hydrogels that could be useful for various tissue engineering and regenerative medicine applications.To effectively repair or replace damaged tissues, it is necessary to design scaffolds with tunable structural and biomechanical properties that closely mimic the host tissue. In this paper, we describe a newly synthesized photocrosslinkable interpenetrating polymer network (IPN) hydrogel based on gelatin methacrylate (GelMA) and silk fibroin (SF) formed by sequential polymerization, which possesses tunable structural and biological properties. Experimental results revealed that IPNs, where both the GelMA and SF were independently crosslinked in interpenetrating networks, demonstrated a lower swelling ratio, higher compressive modulus and lower degradation rate as compared to the GelMA and semi-IPN hydrogels, where only GelMA was crosslinked. These differences were likely caused by a higher degree of overall crosslinking due to the presence of crystallized SF in the IPN hydrogels. NIH-3T3 fibroblasts readily attached to, spread and proliferated on the surface of IPN hydrogels, as demonstrated by F-actin staining and analysis of mitochondrial activity (MTT). In addition, photolithography combined with lyophilization techniques was used to fabricate three-dimensional micropatterned and porous microscaffolds from GelMA-SF IPN hydrogels, furthering their versatility for use in various microscale tissue engineering applications. Overall, this study introduces a class of photocrosslinkable, mechanically robust and tunable IPN hydrogels that could be useful for various tissue engineering and regenerative medicine applications.
Author Nichol, Jason W.
He, Jiankang
Hutson, Ché B.
Du, Yanan
Xiao, Wenqian
Fan, Hongsong
Wang, Ben
Khademhosseini, Ali
Wang, Lianyong
AuthorAffiliation e Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, PR. China
d State Key Laboratory of Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shanxi, 710049, PR China
b Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
c National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, PR China
a Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
AuthorAffiliation_xml – name: d State Key Laboratory of Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shanxi, 710049, PR China
– name: e Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, PR. China
– name: b Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– name: c National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, PR China
– name: a Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
Author_xml – sequence: 1
  givenname: Wenqian
  surname: Xiao
  fullname: Xiao, Wenqian
  organization: Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
– sequence: 2
  givenname: Jiankang
  surname: He
  fullname: He, Jiankang
  organization: Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
– sequence: 3
  givenname: Jason W.
  surname: Nichol
  fullname: Nichol, Jason W.
  organization: Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
– sequence: 4
  givenname: Lianyong
  surname: Wang
  fullname: Wang, Lianyong
  organization: Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
– sequence: 5
  givenname: Ché B.
  surname: Hutson
  fullname: Hutson, Ché B.
  organization: Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
– sequence: 6
  givenname: Ben
  surname: Wang
  fullname: Wang, Ben
  organization: Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
– sequence: 7
  givenname: Yanan
  surname: Du
  fullname: Du, Yanan
  organization: Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
– sequence: 8
  givenname: Hongsong
  surname: Fan
  fullname: Fan, Hongsong
  organization: National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People’s Republic of China
– sequence: 9
  givenname: Ali
  surname: Khademhosseini
  fullname: Khademhosseini, Ali
  email: alik@rics.bwh.harvard.edu, alik@mit.edu
  organization: Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21295165$$D View this record in MEDLINE/PubMed
BookMark eNqFUktv1DAQjlARfcA_QJAbXLJ4kvgRDpVQxUuqxKH0bDnOZONdrx3sbGH59Ti7bQUcWmkkWzPf983zNDty3mGWvQSyAALs3Wqh9NQavygJwILMxp5kJyC4KDhl4ij9eV0WnDA4zk5jXBFSCSjFs-y4hLKhwOhJ9utq56YBo4m5cl2uBxWSLAbzW03Gu9z3-Tj4yevgY7TGrVVrMV-iTWG3p0Rj13lv2uCTw7jEHdHhFGbAMh-93W0w5Mnz04d1Puy64BM9Ps-e9spGfHH7nmXXnz5-v_hSXH77_PXiw2WhKYepSK1iA1RXPbLUWVm3FHsmKKuU4L2mAigQWiuqOCBhWlDsSlLyjveAnYDqLDs_6I7bdoOdRpdKs3IMZqPCTnpl5L8RZwa59DeyIiJVwJPAm1uB4H9sMU5yY6JGa5VDv42yAUE4KWn1KFKwmvOmqUVCvn0QCYzPLdJ6Tv_q7_rvC79bYQK8PwD2KwrYS22m_fJSO8ZKIHK-F7mSh3uR871IMhtL5Po_8p3-I7TXB1qvvFTLYKK8vkoASggQMQ_jfuxp1XhjMMioDTqNnQmoJ9l583CKP3Ed6EY
CitedBy_id crossref_primary_10_1039_D0TB02099K
crossref_primary_10_1016_j_actbio_2013_01_002
crossref_primary_10_1039_C5TB00129C
crossref_primary_10_3390_polym8080269
crossref_primary_10_1002_mabi_202400050
crossref_primary_10_1039_c2jm34737g
crossref_primary_10_1371_journal_pone_0213303
crossref_primary_10_1177_08839115221138777
crossref_primary_10_1016_j_jtice_2018_07_024
crossref_primary_10_1016_j_eurpolymj_2016_10_023
crossref_primary_10_1088_1748_6041_10_2_025003
crossref_primary_10_3390_ma12111824
crossref_primary_10_1039_C3LC50884F
crossref_primary_10_1007_s42452_024_06043_5
crossref_primary_10_1016_j_heliyon_2024_e39101
crossref_primary_10_1016_j_mtla_2019_100525
crossref_primary_10_3390_mi10120814
crossref_primary_10_1021_acsami_9b22964
crossref_primary_10_1039_C8BM01532E
crossref_primary_10_1016_j_msec_2018_07_016
crossref_primary_10_3390_polym11122095
crossref_primary_10_1021_acsbiomaterials_1c01121
crossref_primary_10_1021_acsami_7b13602
crossref_primary_10_1002_mabi_202100442
crossref_primary_10_3390_pharmaceutics16010026
crossref_primary_10_1080_00914037_2022_2032702
crossref_primary_10_1080_09205063_2021_1932070
crossref_primary_10_1016_j_mtbio_2023_100550
crossref_primary_10_1080_09205063_2018_1493022
crossref_primary_10_3390_molecules21060685
crossref_primary_10_1016_j_eurpolymj_2023_112204
crossref_primary_10_2174_0113816128246888230920060802
crossref_primary_10_1002_smll_202106172
crossref_primary_10_1016_j_polymdegradstab_2022_109874
crossref_primary_10_1021_acsomega_1c01806
crossref_primary_10_3390_polym10010011
crossref_primary_10_1002_smll_201906539
crossref_primary_10_1016_j_colsurfb_2020_111361
crossref_primary_10_1039_C9RE00349E
crossref_primary_10_1088_1742_6596_1797_1_012060
crossref_primary_10_1021_acs_biomac_0c01671
crossref_primary_10_1177_0885328216659775
crossref_primary_10_1557_opl_2014_69
crossref_primary_10_1021_bm400991k
crossref_primary_10_1517_17425247_2014_974871
crossref_primary_10_3390_polym12091930
crossref_primary_10_1186_s12951_024_02462_z
crossref_primary_10_1016_j_nantod_2016_10_006
crossref_primary_10_1016_j_actbio_2022_10_038
crossref_primary_10_1088_1748_605X_aa5d5c
crossref_primary_10_1088_1758_5090_ab8707
crossref_primary_10_1007_s41745_019_00129_5
crossref_primary_10_1016_j_matlet_2014_04_018
crossref_primary_10_1021_acsbiomaterials_6b00226
crossref_primary_10_1002_jbm_a_35510
crossref_primary_10_1016_j_msec_2020_111143
crossref_primary_10_1016_j_apmt_2020_100859
crossref_primary_10_1088_1758_5082_6_2_025006
crossref_primary_10_1016_j_bioadv_2023_213539
crossref_primary_10_1088_1748_605X_aaf31b
crossref_primary_10_1007_s12015_019_09893_4
crossref_primary_10_1021_acsmacrolett_5b00362
crossref_primary_10_1088_1748_605X_abb615
crossref_primary_10_1038_s41598_017_04149_y
crossref_primary_10_1080_09506608_2018_1460943
crossref_primary_10_3389_fpls_2020_00122
crossref_primary_10_1016_j_biomaterials_2016_12_026
crossref_primary_10_1016_j_biomaterials_2018_04_023
crossref_primary_10_1039_C8BM00474A
crossref_primary_10_1016_j_biomaterials_2015_08_045
crossref_primary_10_1177_0883911512448692
crossref_primary_10_1002_ijch_201900083
crossref_primary_10_1080_21691401_2017_1392970
crossref_primary_10_3390_ma10070826
crossref_primary_10_1016_j_apmt_2018_08_005
crossref_primary_10_1016_j_ijbiomac_2024_130380
crossref_primary_10_1002_adhm_202403583
crossref_primary_10_1039_C6TB00021E
crossref_primary_10_1002_adhm_201601122
crossref_primary_10_1021_acs_biomac_9b00907
crossref_primary_10_1002_mame_201300274
crossref_primary_10_1002_adfm_202314500
crossref_primary_10_1021_acsami_9b11644
crossref_primary_10_1016_j_carbpol_2015_09_095
crossref_primary_10_1007_s10856_015_5442_2
crossref_primary_10_3390_polym15224419
crossref_primary_10_1002_mabi_201500305
crossref_primary_10_1016_j_bej_2013_05_006
crossref_primary_10_1039_C4NJ00161C
crossref_primary_10_1039_C7BM00765E
crossref_primary_10_1002_jbm_a_35268
crossref_primary_10_1007_s10971_015_3662_z
crossref_primary_10_1007_s10853_021_06733_0
crossref_primary_10_1002_mame_202200503
crossref_primary_10_1021_acsbiomaterials_8b00886
crossref_primary_10_51753_flsrt_982821
crossref_primary_10_1080_00914037_2024_2330420
crossref_primary_10_2166_wst_2020_502
crossref_primary_10_1016_j_actbio_2017_12_026
crossref_primary_10_1186_s12951_023_01892_5
crossref_primary_10_1039_D0TA09046H
crossref_primary_10_1016_j_bbrc_2023_01_097
crossref_primary_10_1177_09544119221125084
crossref_primary_10_1016_j_ijbiomac_2018_09_212
crossref_primary_10_1016_j_iliver_2024_100080
crossref_primary_10_1016_j_colsurfb_2015_12_011
crossref_primary_10_1021_acsbiomaterials_3c00741
crossref_primary_10_1038_s41467_019_10004_7
crossref_primary_10_1002_jbm_a_37310
crossref_primary_10_3390_gels8090535
crossref_primary_10_1002_adfm_201101662
crossref_primary_10_1007_s13346_023_01383_y
crossref_primary_10_1016_j_biomaterials_2017_03_021
crossref_primary_10_1088_1758_5090_aa90db
crossref_primary_10_1016_j_carbpol_2019_05_027
crossref_primary_10_1080_00914037_2021_2014484
crossref_primary_10_1002_adhm_201300155
crossref_primary_10_1016_j_eurpolymj_2014_07_011
crossref_primary_10_1016_j_jcis_2024_05_209
crossref_primary_10_1021_acsapm_1c01670
crossref_primary_10_26599_NTM_2022_9130005
crossref_primary_10_1080_1539445X_2011_642091
crossref_primary_10_1063_5_0015093
crossref_primary_10_1002_adhm_202200755
crossref_primary_10_1016_j_procbio_2022_12_012
crossref_primary_10_3390_jfb15040105
crossref_primary_10_1016_j_carpta_2023_100301
crossref_primary_10_1002_pi_4429
crossref_primary_10_1016_j_eurpolymj_2014_12_038
crossref_primary_10_1080_1023666X_2020_1737467
crossref_primary_10_3390_polym6102588
crossref_primary_10_1007_s13770_024_00649_x
crossref_primary_10_1021_acs_biomac_0c01131
crossref_primary_10_1088_1748_605X_ab3c74
crossref_primary_10_1557_opl_2013_242
crossref_primary_10_1002_adhm_201900506
crossref_primary_10_1088_1748_605X_ab04e0
crossref_primary_10_1039_c2jm31374j
crossref_primary_10_1002_adma_201104631
crossref_primary_10_1002_jbm_a_37796
crossref_primary_10_1016_j_actbio_2014_09_023
crossref_primary_10_1002_jbm_a_35930
crossref_primary_10_1016_j_polymer_2013_08_052
crossref_primary_10_1021_acsbiomaterials_6b00076
crossref_primary_10_1039_C9RA00655A
crossref_primary_10_1002_btpr_2058
crossref_primary_10_1016_j_eurpolymj_2015_03_056
crossref_primary_10_1155_2012_819464
crossref_primary_10_1007_s10965_020_02219_w
crossref_primary_10_1016_j_actbio_2021_02_043
crossref_primary_10_1016_j_msec_2019_01_079
crossref_primary_10_3390_jfb14010039
crossref_primary_10_1039_D1BM00535A
crossref_primary_10_3389_fbioe_2018_00099
crossref_primary_10_3390_ijms19113308
crossref_primary_10_1016_j_cis_2025_103413
crossref_primary_10_1080_09205063_2018_1553105
crossref_primary_10_1002_wnan_1160
crossref_primary_10_1007_s10971_019_05187_w
crossref_primary_10_1016_j_biomaterials_2019_119720
crossref_primary_10_1002_mabi_202200208
crossref_primary_10_3390_ijms17101697
crossref_primary_10_3390_jfb7030026
crossref_primary_10_1039_C6TB01055E
crossref_primary_10_1007_s10856_014_5261_x
crossref_primary_10_1039_D0NR05854H
crossref_primary_10_1016_j_biomaterials_2013_11_009
crossref_primary_10_1016_S1369_7021_12_70091_3
crossref_primary_10_1016_j_ijbiomac_2020_08_040
crossref_primary_10_1021_acsapm_2c01980
crossref_primary_10_1002_adfm_202207349
crossref_primary_10_1016_j_ijbiomac_2023_124820
crossref_primary_10_4028_www_scientific_net_AMR_750_752_1347
crossref_primary_10_1016_j_ijbiomac_2019_01_112
crossref_primary_10_1016_j_tibtech_2016_01_002
crossref_primary_10_1049_mnl_2016_0301
crossref_primary_10_1016_j_msec_2021_112493
crossref_primary_10_1002_adhm_202302470
crossref_primary_10_1002_adma_201403354
crossref_primary_10_1039_c2sm25536g
crossref_primary_10_1007_s40883_022_00277_8
crossref_primary_10_1016_j_apmt_2020_100664
crossref_primary_10_1002_adhm_201500005
crossref_primary_10_1007_s00289_020_03245_w
crossref_primary_10_1002_adfm_201501489
crossref_primary_10_1016_j_jddst_2022_103385
crossref_primary_10_1039_C6RA22908E
crossref_primary_10_1016_j_bioactmat_2022_03_036
crossref_primary_10_1016_j_jcis_2024_05_075
crossref_primary_10_1002_adhm_202200293
crossref_primary_10_1186_s12951_023_01811_8
crossref_primary_10_1007_s10735_020_09877_6
crossref_primary_10_1016_j_biomaterials_2013_03_076
crossref_primary_10_1021_acsami_7b18821
crossref_primary_10_1016_j_bioadv_2023_213677
crossref_primary_10_1016_j_msec_2014_06_013
crossref_primary_10_1007_s42242_018_0014_1
crossref_primary_10_1515_pac_2014_0713
crossref_primary_10_3390_chemistry3010014
crossref_primary_10_1002_bit_28907
crossref_primary_10_3390_ijms18030237
crossref_primary_10_1016_j_addma_2023_103598
crossref_primary_10_1016_j_ijbiomac_2021_04_019
crossref_primary_10_1021_acsbiomaterials_0c01183
crossref_primary_10_1021_bm501361c
crossref_primary_10_1002_jbm_b_33464
crossref_primary_10_1016_j_actbio_2021_09_024
crossref_primary_10_1016_j_matdes_2022_110670
crossref_primary_10_1021_acsbiomaterials_2c01243
crossref_primary_10_1002_adma_202005930
crossref_primary_10_1002_mabi_201500386
crossref_primary_10_1016_j_actbio_2015_11_034
crossref_primary_10_1016_j_bioactmat_2020_08_028
crossref_primary_10_1016_j_matchemphys_2013_11_052
crossref_primary_10_1016_j_actbio_2021_11_003
crossref_primary_10_1016_j_biomaterials_2020_120287
crossref_primary_10_1016_j_matlet_2016_01_079
crossref_primary_10_1080_13697137_2021_1921726
crossref_primary_10_1039_D2MA00568A
crossref_primary_10_1021_acsbiomaterials_3c01132
crossref_primary_10_1016_j_mtbio_2020_100046
crossref_primary_10_1007_s10876_024_02739_1
crossref_primary_10_1088_1758_5090_ad0071
crossref_primary_10_1016_j_mtbio_2023_100939
crossref_primary_10_1021_acs_biomac_6b00566
crossref_primary_10_1016_j_carbpol_2017_08_045
crossref_primary_10_1016_j_ijbiomac_2024_131720
crossref_primary_10_1038_srep31036
crossref_primary_10_1016_j_compositesb_2021_109100
crossref_primary_10_1039_D1TB02502C
crossref_primary_10_1016_j_matlet_2012_03_051
crossref_primary_10_3103_S0096392518010030
crossref_primary_10_1007_s00396_015_3660_2
crossref_primary_10_1002_adhm_202300395
crossref_primary_10_1080_09205063_2014_950033
crossref_primary_10_1002_adhm_201500236
crossref_primary_10_1111_ijac_13885
crossref_primary_10_1088_1758_5090_aa53bd
crossref_primary_10_3390_polym4031554
crossref_primary_10_1038_s41467_018_03759_y
crossref_primary_10_1039_C4TB00576G
crossref_primary_10_1016_j_biomaterials_2022_121969
crossref_primary_10_1016_j_msec_2020_111744
Cites_doi 10.1073/pnas.0801866105
10.1002/jbm.a.30382
10.1021/bm034327e
10.1016/j.polymer.2007.05.048
10.1016/j.biomaterials.2004.09.060
10.1016/S0142-9612(00)00236-2
10.1073/pnas.0737381100
10.1016/j.actbio.2010.07.014
10.1016/j.addr.2009.07.005
10.1002/mabi.200800284
10.1089/ten.tea.2008.0441
10.1002/mabi.201000173
10.1016/j.biomaterials.2008.01.012
10.1016/j.biomaterials.2007.07.021
10.1016/j.biomaterials.2009.01.040
10.1089/ten.1996.2.307
10.1016/j.biomaterials.2007.11.003
10.1016/j.biomaterials.2010.03.064
10.1016/j.biomaterials.2007.07.044
10.1089/ten.2006.12.2729
10.1016/j.biomaterials.2009.12.026
10.1016/S0142-9612(02)00353-8
10.1016/S0169-409X(01)00239-3
10.1089/ten.2007.0093
10.1016/j.msea.2006.09.042
10.1016/j.biomaterials.2009.02.002
10.1021/bm050622i
10.1016/j.biomaterials.2010.06.035
10.1089/ten.2006.12.3285
10.1038/scientificamerican0509-64
10.1038/nmat1822
10.1016/j.bpj.2009.07.028
10.1016/j.biomaterials.2010.05.056
10.1016/j.actbio.2009.08.041
10.1039/b814285h
10.1016/j.ejps.2009.02.005
10.1016/j.biomaterials.2007.09.001
10.1089/ten.teb.2009.0006
10.1016/S0142-9612(02)00326-5
10.1126/science.8493529
10.1021/cr000108x
10.1021/bm050396c
10.1039/B610522J
10.1002/adma.200501612
10.1016/j.biomaterials.2007.08.008
10.1002/adfm.200400405
10.1021/bm990017d
10.1016/j.biomaterials.2006.07.008
10.1002/mabi.200500076
10.1089/ten.tea.2008.0545
10.1039/b916319k
10.1016/j.actbio.2009.05.004
10.1016/j.biomaterials.2008.09.041
ContentType Journal Article
Copyright 2011 Acta Materialia Inc.
Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2011 Acta Materialia Inc.
– notice: Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7QO
8FD
FR3
P64
5PM
DOI 10.1016/j.actbio.2011.01.016
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList AGRICOLA

Engineering Research Database
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Medicine
Chemistry
EISSN 1878-7568
EndPage 2393
ExternalDocumentID PMC3085717
21295165
10_1016_j_actbio_2011_01_016
US201500108025
S1742706111000171
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: EB007249
– fundername: NIDCR NIH HHS
  grantid: DE019024
– fundername: NIBIB NIH HHS
  grantid: R21 EB007249
– fundername: NHLBI NIH HHS
  grantid: R01 HL092836
– fundername: NHLBI NIH HHS
  grantid: HL092836
– fundername: NIDCR NIH HHS
  grantid: RL1 DE019024
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSM
SSU
SSZ
T5K
~G-
ABPIF
FBQ
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7S9
L.6
7X8
7QO
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c571t-101e915c3fe687824b5ef68563a87fc58151054a5a71e06c85ed2027d7f1ed813
IEDL.DBID .~1
ISSN 1742-7061
1878-7568
IngestDate Thu Aug 21 13:50:41 EDT 2025
Fri Jul 11 16:18:47 EDT 2025
Mon Jul 21 11:32:30 EDT 2025
Fri Jul 11 09:59:53 EDT 2025
Mon Jul 21 05:56:30 EDT 2025
Thu Apr 24 23:07:22 EDT 2025
Tue Jul 01 01:16:53 EDT 2025
Wed Dec 27 19:08:44 EST 2023
Fri Feb 23 02:35:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Silk fibroin
Hydrogel
Interpenetrating polymer networks
Gelatin
Photocrosslinking
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c571t-101e915c3fe687824b5ef68563a87fc58151054a5a71e06c85ed2027d7f1ed813
Notes http://dx.doi.org/10.1016/j.actbio.2011.01.016
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21295165
PQID 1678563547
PQPubID 24069
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3085717
proquest_miscellaneous_918070253
proquest_miscellaneous_864779948
proquest_miscellaneous_1678563547
pubmed_primary_21295165
crossref_citationtrail_10_1016_j_actbio_2011_01_016
crossref_primary_10_1016_j_actbio_2011_01_016
fao_agris_US201500108025
elsevier_sciencedirect_doi_10_1016_j_actbio_2011_01_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-06-01
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Acta biomaterialia
PublicationTitleAlternate Acta Biomater
PublicationYear 2011
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Chang, Cheng, Tsai, Yao, Liu (b0205) 2005; 26
Coutinho, Sant, Shin, Oliveira, Gomes, Neves (b0050) 2010; 31
Khademhosseini, Vacanti, Langer (b0010) 2009; 300
Lovett, Cannizzaro, Daheron, Messmer, Vunjak-Novakovic, Kaplan (b0105) 2007; 28
Liu, Chan-Park (b0070) 2009; 30
Benton, DeForest, Vivekanandan, Anseth (b0090) 2009; 15
Mandal, Mann, Kundu (b0175) 2009; 37
Nichol, Koshy, Bae, Hwang, Yamanlar, Khademhosseini (b0045) 2010; 31
Murtuza, Nichol, Khademhosseini (b0215) 2009; 15
Nazarov, Jin, Kaplan (b0235) 2004; 5
Yang, Ding, Wu, Hu, Liu, Liu (b0110) 2007; 28
Yucel, Cebe, Kaplan (b0230) 2009; 97
Hofmann, Knecht, Langer, Kaplan, Vunjak-Novakovic, Merkle (b0100) 2006; 12
Mandal, Kapoor, Kundu (b0245) 2009; 30
Lee, Mooney (b0035) 2001; 101
Moutos, Freed, Guilak (b0255) 2007; 6
Wang, Kluge, Leisk, Kaplan (b0225) 2008; 29
He, Li, Liu, Yao, Lu, Lian (b0160) 2007; 48
Langer, Vacanti (b0005) 1993; 260
Wang, Kaplan (b0140) 2011; 11
Gobin, Froude, Mathur (b0150) 2005; 74
Wang, Kim, Vunjak-Novakovic, Kaplan (b0130) 2006; 27
Shin, Nichol, Khademhosseini (b0055) 2011; 1
Du, Lo, Ali, Khademhosseini (b0275) 2008; 105
Bigi, Cojazzi, Panzavolta, Rubini, Roveri (b0195) 2001; 22
Zhang, Reagan, Kaplan (b0120) 2009; 61
Suri, Schmidt (b0065) 2009; 5
Li, Ogiso, Minoura (b0270) 2003; 24
Peppas, Hilt, Khademhosseini, Langer (b0030) 2006; 18
Weng, Gouldstone, Wu, Chen (b0060) 2008; 29
Chiono, Pulieri, Vozzi, Ciardelli, Ahluwalia, Giusti (b0210) 2008; 19
Lutolf, Lauer-Fields, Schmoekel, Metters, Weber, Fields (b0015) 2003; 100
Altman, Diaz, Jakuba, Calabro, Horan, Chen (b0125) 2003; 24
Gil, Frankowski, Spontak, Hudson (b0170) 2005; 6
Jin, Park, Karageorgiou, Kim, Valluzzi, Cebe (b0185) 2005; 15
Zhang, Wang, Keshav, Wang, Johanas, Leisk (b0115) 2009; 30
Khademhosseini, Langer (b0025) 2007; 28
Gil, Spontak, Hudson (b0240) 2005; 5
Lv, Feng (b0180) 2006; 17
Numata, Cebe, Kaplan (b0265) 2010; 31
Kopecek (b0075) 2007; 28
Brigham, Bick, Lo, Bendali, Burdick, Khademhosseini (b0080) 2009; 15
Freed, Guilak, Guo, Gray, Tranquillo, Holmes (b0260) 2006; 12
Venkataraman, Singh, Pathak, Ghosh, Venkataraman, Krishnamurthy (b0155) 2007; 445
Tomihata, Ikada (b0200) 1996; 2
Levental, Georges, Janmey (b0250) 2007; 3
Hoffman (b0040) 2002; 54
Nagarkar, Nicolai, Chassenieux, Lele (b0135) 2010; 12
Jia, Kiick (b0020) 2009; 9
Aubin, Nichol, Hutson, Bae, Sieminski, Cropek (b0095) 2010; 31
Van Den Bulcke, Bogdanov, De Rooze, Schacht, Cornelissen, Berghmans (b0085) 2000; 1
Gil, Frankowski, Bowman, Gozen, Hudson, Spontak (b0165) 2006; 7
Ifkovits, Burdick (b0220) 2007; 13
Wu, Liu, Li, Wen, Zhang, Long (b0190) 2010; 6
Nichol, Khademhosseini (b0145) 2009; 5
Khademhosseini (10.1016/j.actbio.2011.01.016_b0010) 2009; 300
Mandal (10.1016/j.actbio.2011.01.016_b0245) 2009; 30
He (10.1016/j.actbio.2011.01.016_b0160) 2007; 48
Langer (10.1016/j.actbio.2011.01.016_b0005) 1993; 260
Jin (10.1016/j.actbio.2011.01.016_b0185) 2005; 15
Yang (10.1016/j.actbio.2011.01.016_b0110) 2007; 28
Nazarov (10.1016/j.actbio.2011.01.016_b0235) 2004; 5
Wang (10.1016/j.actbio.2011.01.016_b0130) 2006; 27
Chiono (10.1016/j.actbio.2011.01.016_b0210) 2008; 19
Gil (10.1016/j.actbio.2011.01.016_b0240) 2005; 5
Nagarkar (10.1016/j.actbio.2011.01.016_b0135) 2010; 12
Nichol (10.1016/j.actbio.2011.01.016_b0145) 2009; 5
Gobin (10.1016/j.actbio.2011.01.016_b0150) 2005; 74
Zhang (10.1016/j.actbio.2011.01.016_b0115) 2009; 30
Lv (10.1016/j.actbio.2011.01.016_b0180) 2006; 17
Brigham (10.1016/j.actbio.2011.01.016_b0080) 2009; 15
Aubin (10.1016/j.actbio.2011.01.016_b0095) 2010; 31
Lutolf (10.1016/j.actbio.2011.01.016_b0015) 2003; 100
Hofmann (10.1016/j.actbio.2011.01.016_b0100) 2006; 12
Wu (10.1016/j.actbio.2011.01.016_b0190) 2010; 6
Liu (10.1016/j.actbio.2011.01.016_b0070) 2009; 30
Chen (10.1016/j.actbio.2011.01.016_b0205) 2005; 26
Benton (10.1016/j.actbio.2011.01.016_b0090) 2009; 15
Coutinho (10.1016/j.actbio.2011.01.016_b0050) 2010; 31
Suri (10.1016/j.actbio.2011.01.016_b0065) 2009; 5
Gil (10.1016/j.actbio.2011.01.016_b0170) 2005; 6
Khademhosseini (10.1016/j.actbio.2011.01.016_b0025) 2007; 28
Wang (10.1016/j.actbio.2011.01.016_b0225) 2008; 29
Li (10.1016/j.actbio.2011.01.016_b0270) 2003; 24
Van Den Bulcke (10.1016/j.actbio.2011.01.016_b0085) 2000; 1
Weng (10.1016/j.actbio.2011.01.016_b0060) 2008; 29
Yucel (10.1016/j.actbio.2011.01.016_b0230) 2009; 97
Levental (10.1016/j.actbio.2011.01.016_b0250) 2007; 3
Shin (10.1016/j.actbio.2011.01.016_b0055) 2011; 1
Zhang (10.1016/j.actbio.2011.01.016_b0120) 2009; 61
Venkataraman (10.1016/j.actbio.2011.01.016_b0155) 2007; 445
Moutos (10.1016/j.actbio.2011.01.016_b0255) 2007; 6
Wang (10.1016/j.actbio.2011.01.016_b0140) 2011; 11
Altman (10.1016/j.actbio.2011.01.016_b0125) 2003; 24
Kopecek (10.1016/j.actbio.2011.01.016_b0075) 2007; 28
Ifkovits (10.1016/j.actbio.2011.01.016_b0220) 2007; 13
Du (10.1016/j.actbio.2011.01.016_b0275) 2008; 105
Peppas (10.1016/j.actbio.2011.01.016_b0030) 2006; 18
Hoffman (10.1016/j.actbio.2011.01.016_b0040) 2002; 54
Tomihata (10.1016/j.actbio.2011.01.016_b0200) 1996; 2
Jia (10.1016/j.actbio.2011.01.016_b0020) 2009; 9
Lee (10.1016/j.actbio.2011.01.016_b0035) 2001; 101
Bigi (10.1016/j.actbio.2011.01.016_b0195) 2001; 22
Mandal (10.1016/j.actbio.2011.01.016_b0175) 2009; 37
Nichol (10.1016/j.actbio.2011.01.016_b0045) 2010; 31
Lovett (10.1016/j.actbio.2011.01.016_b0105) 2007; 28
Murtuza (10.1016/j.actbio.2011.01.016_b0215) 2009; 15
Freed (10.1016/j.actbio.2011.01.016_b0260) 2006; 12
Numata (10.1016/j.actbio.2011.01.016_b0265) 2010; 31
Gil (10.1016/j.actbio.2011.01.016_b0165) 2006; 7
References_xml – volume: 15
  start-page: 443
  year: 2009
  end-page: 454
  ident: b0215
  article-title: Micro- and nanoscale control of the cardiac stem cell niche for tissue fabrication
  publication-title: Tissue Eng Part B Rev
– volume: 29
  start-page: 1054
  year: 2008
  end-page: 1064
  ident: b0225
  article-title: Sonication-induced gelation of silk fibroin for cell encapsulation
  publication-title: Biomaterials
– volume: 12
  start-page: 3285
  year: 2006
  end-page: 3305
  ident: b0260
  article-title: Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling
  publication-title: Tissue Eng
– volume: 1
  start-page: 31
  year: 2000
  end-page: 38
  ident: b0085
  article-title: Structural and rheological properties of methacrylamide modified gelatin hydrogels
  publication-title: Biomacromolecules
– volume: 300
  start-page: 64
  year: 2009
  end-page: 71
  ident: b0010
  article-title: Progress in tissue engineering
  publication-title: Sci Am
– volume: 22
  start-page: 763
  year: 2001
  end-page: 768
  ident: b0195
  article-title: Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking
  publication-title: Biomaterials
– volume: 18
  start-page: 1345
  year: 2006
  end-page: 1360
  ident: b0030
  article-title: Hydrogels in biology and medicine: from molecular principles to bionanotechnology
  publication-title: Adv Mater
– volume: 2
  start-page: 307
  year: 1996
  end-page: 313
  ident: b0200
  article-title: Cross-linking of gelatin with carbodiimides
  publication-title: Tissue Eng
– volume: 54
  start-page: 3
  year: 2002
  end-page: 12
  ident: b0040
  article-title: Hydrogels for biomedical applications
  publication-title: Adv Drug Deliv Rev
– volume: 260
  start-page: 920
  year: 1993
  end-page: 926
  ident: b0005
  article-title: Tissue engineering
  publication-title: Science (New York)
– volume: 74
  start-page: 465
  year: 2005
  end-page: 473
  ident: b0150
  article-title: Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration
  publication-title: J Biomed Mater Res
– volume: 11
  start-page: 100
  year: 2011
  end-page: 110
  ident: b0140
  article-title: Functionalization of silk fibroin with neutravidin and biotin
  publication-title: Macromol Biosci
– volume: 3
  start-page: 299
  year: 2007
  end-page: 306
  ident: b0250
  article-title: Soft biological materials and their impact on cell function
  publication-title: Soft Matter
– volume: 12
  start-page: 3834
  year: 2010
  end-page: 3844
  ident: b0135
  article-title: Structure and gelation mechanism of silk hydrogels
  publication-title: Phys Chem Chem Phys
– volume: 12
  start-page: 2729
  year: 2006
  end-page: 2738
  ident: b0100
  article-title: Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells
  publication-title: Tissue Eng
– volume: 27
  start-page: 6064
  year: 2006
  end-page: 6082
  ident: b0130
  article-title: Stem cell-based tissue engineering with silk biomaterials
  publication-title: Biomaterials
– volume: 15
  start-page: 1241
  year: 2005
  end-page: 1247
  ident: b0185
  article-title: Water-stable silk films with reduced β-sheet content
  publication-title: Adv Funct Mater
– volume: 13
  start-page: 2369
  year: 2007
  end-page: 2385
  ident: b0220
  article-title: Review: photopolymerizable and degradable biomaterials for tissue engineering applications
  publication-title: Tissue Eng
– volume: 7
  start-page: 728
  year: 2006
  end-page: 735
  ident: b0165
  article-title: Mixed protein blends composed of gelatin and
  publication-title: Biomacromolecules
– volume: 9
  start-page: 140
  year: 2009
  end-page: 156
  ident: b0020
  article-title: Hybrid multicomponent hydrogels for tissue engineering
  publication-title: Macromol Biosci
– volume: 28
  start-page: 5185
  year: 2007
  end-page: 5192
  ident: b0075
  article-title: Hydrogel biomaterials: a smart future?
  publication-title: Biomaterials
– volume: 1
  start-page: 106
  year: 2011
  end-page: 114
  ident: b0055
  article-title: Cell-adhesive and mechanically tunable glucose-based biodegradable hydrogels
  publication-title: Acta Biomater
– volume: 5
  start-page: 718
  year: 2004
  end-page: 726
  ident: b0235
  article-title: Porous 3-D scaffolds from regenerated silk fibroin
  publication-title: Biomacromolecules
– volume: 5
  start-page: 702
  year: 2005
  end-page: 709
  ident: b0240
  article-title: Effect of beta-sheet crystals on the thermal and rheological behavior of protein-based hydrogels derived from gelatin and silk fibroin
  publication-title: Macromol Biosci
– volume: 100
  start-page: 5413
  year: 2003
  end-page: 5418
  ident: b0015
  article-title: Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics
  publication-title: Proc Natl Acad Sci USA
– volume: 31
  start-page: 2926
  year: 2010
  end-page: 2933
  ident: b0265
  article-title: Mechanism of enzymatic degradation of beta-sheet crystals
  publication-title: Biomaterials
– volume: 24
  start-page: 357
  year: 2003
  end-page: 365
  ident: b0270
  article-title: Enzymatic degradation behavior of porous silk fibroin sheets
  publication-title: Biomaterials
– volume: 26
  start-page: 3911
  year: 2005
  end-page: 3918
  ident: b0205
  article-title: An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material
  publication-title: Biomaterials
– volume: 5
  start-page: 2385
  year: 2009
  end-page: 2397
  ident: b0065
  article-title: Photopatterned collagen–hyaluronic acid interpenetrating polymer network hydrogels
  publication-title: Acta Biomater
– volume: 19
  start-page: 889
  year: 2008
  end-page: 898
  ident: b0210
  article-title: Genipin-crosslinked chitosan/gelatin blends for biomedical applications
  publication-title: J Mater Sci
– volume: 30
  start-page: 196
  year: 2009
  end-page: 207
  ident: b0070
  article-title: Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering
  publication-title: Biomaterials
– volume: 17
  start-page: 1349
  year: 2006
  end-page: 1356
  ident: b0180
  article-title: Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique
  publication-title: J Mater Sci
– volume: 28
  start-page: 5526
  year: 2007
  end-page: 5535
  ident: b0110
  article-title: Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration
  publication-title: Biomaterials
– volume: 97
  start-page: 2044
  year: 2009
  end-page: 2050
  ident: b0230
  article-title: Vortex-induced injectable silk fibroin hydrogels
  publication-title: Biophys J
– volume: 6
  start-page: 3079
  year: 2005
  end-page: 3087
  ident: b0170
  article-title: Swelling behavior and morphological evolution of mixed gelatin/silk fibroin hydrogels
  publication-title: Biomacromolecules
– volume: 28
  start-page: 5087
  year: 2007
  end-page: 5092
  ident: b0025
  article-title: Microengineered hydrogels for tissue engineering
  publication-title: Biomaterials
– volume: 28
  start-page: 5271
  year: 2007
  end-page: 5279
  ident: b0105
  article-title: Silk fibroin microtubes for blood vessel engineering
  publication-title: Biomaterials
– volume: 6
  start-page: 1167
  year: 2010
  end-page: 1177
  ident: b0190
  article-title: Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method
  publication-title: Acta Biomater
– volume: 5
  start-page: 1312
  year: 2009
  end-page: 1319
  ident: b0145
  article-title: Modular tissue engineering: engineering biological tissues from the bottom up
  publication-title: Soft Matter
– volume: 31
  start-page: 5536
  year: 2010
  end-page: 5544
  ident: b0045
  article-title: Cell-laden microengineered gelatin methacrylate hydrogels
  publication-title: Biomaterials
– volume: 31
  start-page: 7494
  year: 2010
  end-page: 7502
  ident: b0050
  article-title: Modified gellan gum hydrogels with tunable physical and mechanical properties
  publication-title: Biomaterials
– volume: 6
  start-page: 162
  year: 2007
  end-page: 167
  ident: b0255
  article-title: A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage
  publication-title: Nat Mater
– volume: 105
  start-page: 9522
  year: 2008
  end-page: 9527
  ident: b0275
  article-title: Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs
  publication-title: Proc Natl Acad Sci USA
– volume: 24
  start-page: 401
  year: 2003
  end-page: 416
  ident: b0125
  article-title: Silk-based biomaterials
  publication-title: Biomaterials
– volume: 48
  start-page: 4578
  year: 2007
  end-page: 4588
  ident: b0160
  article-title: Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures
  publication-title: Polymer
– volume: 101
  start-page: 1869
  year: 2001
  end-page: 1879
  ident: b0035
  article-title: Hydrogels for tissue engineering
  publication-title: Chem Rev
– volume: 30
  start-page: 3213
  year: 2009
  end-page: 3223
  ident: b0115
  article-title: Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts
  publication-title: Biomaterials
– volume: 37
  start-page: 160
  year: 2009
  end-page: 171
  ident: b0175
  article-title: Silk fibroin/gelatin multilayered films as a model system for controlled drug release
  publication-title: Eur J Pharm Sci
– volume: 61
  start-page: 988
  year: 2009
  end-page: 1006
  ident: b0120
  article-title: Electrospun silk biomaterial scaffolds for regenerative medicine
  publication-title: Adv Drug Deliv Rev
– volume: 445
  start-page: 269
  year: 2007
  end-page: 274
  ident: b0155
  article-title: Study on influence of porosity, pore size, spatial and topological distribution of pores on microhardness of as plasma sprayed ceramic coatings
  publication-title: Mater Sci Eng A
– volume: 29
  start-page: 2153
  year: 2008
  end-page: 2163
  ident: b0060
  article-title: Mechanically strong double network photocrosslinked hydrogels from
  publication-title: Biomaterials
– volume: 15
  start-page: 3221
  year: 2009
  end-page: 3230
  ident: b0090
  article-title: Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function
  publication-title: Tissue Eng
– volume: 15
  start-page: 1645
  year: 2009
  end-page: 1653
  ident: b0080
  article-title: Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks
  publication-title: Tissue Eng Part A
– volume: 31
  start-page: 6941
  year: 2010
  end-page: 6951
  ident: b0095
  article-title: Directed 3D cell alignment and elongation in microengineered hydrogels
  publication-title: Biomaterials
– volume: 30
  start-page: 2826
  year: 2009
  end-page: 2836
  ident: b0245
  article-title: Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels for controlled drug release
  publication-title: Biomaterials
– volume: 105
  start-page: 9522
  year: 2008
  ident: 10.1016/j.actbio.2011.01.016_b0275
  article-title: Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0801866105
– volume: 74
  start-page: 465
  year: 2005
  ident: 10.1016/j.actbio.2011.01.016_b0150
  article-title: Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.a.30382
– volume: 5
  start-page: 718
  year: 2004
  ident: 10.1016/j.actbio.2011.01.016_b0235
  article-title: Porous 3-D scaffolds from regenerated silk fibroin
  publication-title: Biomacromolecules
  doi: 10.1021/bm034327e
– volume: 48
  start-page: 4578
  year: 2007
  ident: 10.1016/j.actbio.2011.01.016_b0160
  article-title: Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures
  publication-title: Polymer
  doi: 10.1016/j.polymer.2007.05.048
– volume: 26
  start-page: 3911
  year: 2005
  ident: 10.1016/j.actbio.2011.01.016_b0205
  article-title: An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.09.060
– volume: 22
  start-page: 763
  year: 2001
  ident: 10.1016/j.actbio.2011.01.016_b0195
  article-title: Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(00)00236-2
– volume: 100
  start-page: 5413
  year: 2003
  ident: 10.1016/j.actbio.2011.01.016_b0015
  article-title: Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0737381100
– volume: 1
  start-page: 106
  year: 2011
  ident: 10.1016/j.actbio.2011.01.016_b0055
  article-title: Cell-adhesive and mechanically tunable glucose-based biodegradable hydrogels
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2010.07.014
– volume: 61
  start-page: 988
  year: 2009
  ident: 10.1016/j.actbio.2011.01.016_b0120
  article-title: Electrospun silk biomaterial scaffolds for regenerative medicine
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2009.07.005
– volume: 9
  start-page: 140
  year: 2009
  ident: 10.1016/j.actbio.2011.01.016_b0020
  article-title: Hybrid multicomponent hydrogels for tissue engineering
  publication-title: Macromol Biosci
  doi: 10.1002/mabi.200800284
– volume: 15
  start-page: 1645
  year: 2009
  ident: 10.1016/j.actbio.2011.01.016_b0080
  article-title: Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2008.0441
– volume: 11
  start-page: 100
  year: 2011
  ident: 10.1016/j.actbio.2011.01.016_b0140
  article-title: Functionalization of silk fibroin with neutravidin and biotin
  publication-title: Macromol Biosci
  doi: 10.1002/mabi.201000173
– volume: 29
  start-page: 2153
  year: 2008
  ident: 10.1016/j.actbio.2011.01.016_b0060
  article-title: Mechanically strong double network photocrosslinked hydrogels from N,N-dimethylacrylamide and glycidyl methacrylated hyaluronan
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.01.012
– volume: 28
  start-page: 5087
  year: 2007
  ident: 10.1016/j.actbio.2011.01.016_b0025
  article-title: Microengineered hydrogels for tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.07.021
– volume: 30
  start-page: 2826
  year: 2009
  ident: 10.1016/j.actbio.2011.01.016_b0245
  article-title: Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels for controlled drug release
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.01.040
– volume: 2
  start-page: 307
  year: 1996
  ident: 10.1016/j.actbio.2011.01.016_b0200
  article-title: Cross-linking of gelatin with carbodiimides
  publication-title: Tissue Eng
  doi: 10.1089/ten.1996.2.307
– volume: 29
  start-page: 1054
  year: 2008
  ident: 10.1016/j.actbio.2011.01.016_b0225
  article-title: Sonication-induced gelation of silk fibroin for cell encapsulation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.11.003
– volume: 31
  start-page: 5536
  year: 2010
  ident: 10.1016/j.actbio.2011.01.016_b0045
  article-title: Cell-laden microengineered gelatin methacrylate hydrogels
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.03.064
– volume: 28
  start-page: 5185
  year: 2007
  ident: 10.1016/j.actbio.2011.01.016_b0075
  article-title: Hydrogel biomaterials: a smart future?
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.07.044
– volume: 12
  start-page: 2729
  year: 2006
  ident: 10.1016/j.actbio.2011.01.016_b0100
  article-title: Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells
  publication-title: Tissue Eng
  doi: 10.1089/ten.2006.12.2729
– volume: 31
  start-page: 2926
  year: 2010
  ident: 10.1016/j.actbio.2011.01.016_b0265
  article-title: Mechanism of enzymatic degradation of beta-sheet crystals
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.12.026
– volume: 24
  start-page: 401
  year: 2003
  ident: 10.1016/j.actbio.2011.01.016_b0125
  article-title: Silk-based biomaterials
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00353-8
– volume: 54
  start-page: 3
  year: 2002
  ident: 10.1016/j.actbio.2011.01.016_b0040
  article-title: Hydrogels for biomedical applications
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/S0169-409X(01)00239-3
– volume: 13
  start-page: 2369
  year: 2007
  ident: 10.1016/j.actbio.2011.01.016_b0220
  article-title: Review: photopolymerizable and degradable biomaterials for tissue engineering applications
  publication-title: Tissue Eng
  doi: 10.1089/ten.2007.0093
– volume: 445
  start-page: 269
  year: 2007
  ident: 10.1016/j.actbio.2011.01.016_b0155
  article-title: Study on influence of porosity, pore size, spatial and topological distribution of pores on microhardness of as plasma sprayed ceramic coatings
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2006.09.042
– volume: 30
  start-page: 3213
  year: 2009
  ident: 10.1016/j.actbio.2011.01.016_b0115
  article-title: Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.02.002
– volume: 7
  start-page: 728
  year: 2006
  ident: 10.1016/j.actbio.2011.01.016_b0165
  article-title: Mixed protein blends composed of gelatin and Bombyx mori silk fibroin: effects of solvent-induced crystallization and composition
  publication-title: Biomacromolecules
  doi: 10.1021/bm050622i
– volume: 31
  start-page: 7494
  year: 2010
  ident: 10.1016/j.actbio.2011.01.016_b0050
  article-title: Modified gellan gum hydrogels with tunable physical and mechanical properties
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.06.035
– volume: 12
  start-page: 3285
  year: 2006
  ident: 10.1016/j.actbio.2011.01.016_b0260
  article-title: Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling
  publication-title: Tissue Eng
  doi: 10.1089/ten.2006.12.3285
– volume: 300
  start-page: 64
  year: 2009
  ident: 10.1016/j.actbio.2011.01.016_b0010
  article-title: Progress in tissue engineering
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0509-64
– volume: 6
  start-page: 162
  year: 2007
  ident: 10.1016/j.actbio.2011.01.016_b0255
  article-title: A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage
  publication-title: Nat Mater
  doi: 10.1038/nmat1822
– volume: 97
  start-page: 2044
  year: 2009
  ident: 10.1016/j.actbio.2011.01.016_b0230
  article-title: Vortex-induced injectable silk fibroin hydrogels
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2009.07.028
– volume: 31
  start-page: 6941
  year: 2010
  ident: 10.1016/j.actbio.2011.01.016_b0095
  article-title: Directed 3D cell alignment and elongation in microengineered hydrogels
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.05.056
– volume: 6
  start-page: 1167
  year: 2010
  ident: 10.1016/j.actbio.2011.01.016_b0190
  article-title: Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2009.08.041
– volume: 5
  start-page: 1312
  year: 2009
  ident: 10.1016/j.actbio.2011.01.016_b0145
  article-title: Modular tissue engineering: engineering biological tissues from the bottom up
  publication-title: Soft Matter
  doi: 10.1039/b814285h
– volume: 37
  start-page: 160
  year: 2009
  ident: 10.1016/j.actbio.2011.01.016_b0175
  article-title: Silk fibroin/gelatin multilayered films as a model system for controlled drug release
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2009.02.005
– volume: 28
  start-page: 5526
  year: 2007
  ident: 10.1016/j.actbio.2011.01.016_b0110
  article-title: Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.09.001
– volume: 15
  start-page: 443
  year: 2009
  ident: 10.1016/j.actbio.2011.01.016_b0215
  article-title: Micro- and nanoscale control of the cardiac stem cell niche for tissue fabrication
  publication-title: Tissue Eng Part B Rev
  doi: 10.1089/ten.teb.2009.0006
– volume: 24
  start-page: 357
  year: 2003
  ident: 10.1016/j.actbio.2011.01.016_b0270
  article-title: Enzymatic degradation behavior of porous silk fibroin sheets
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00326-5
– volume: 260
  start-page: 920
  year: 1993
  ident: 10.1016/j.actbio.2011.01.016_b0005
  article-title: Tissue engineering
  publication-title: Science (New York)
  doi: 10.1126/science.8493529
– volume: 101
  start-page: 1869
  year: 2001
  ident: 10.1016/j.actbio.2011.01.016_b0035
  article-title: Hydrogels for tissue engineering
  publication-title: Chem Rev
  doi: 10.1021/cr000108x
– volume: 6
  start-page: 3079
  year: 2005
  ident: 10.1016/j.actbio.2011.01.016_b0170
  article-title: Swelling behavior and morphological evolution of mixed gelatin/silk fibroin hydrogels
  publication-title: Biomacromolecules
  doi: 10.1021/bm050396c
– volume: 17
  start-page: 1349
  year: 2006
  ident: 10.1016/j.actbio.2011.01.016_b0180
  article-title: Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique
  publication-title: J Mater Sci
– volume: 3
  start-page: 299
  year: 2007
  ident: 10.1016/j.actbio.2011.01.016_b0250
  article-title: Soft biological materials and their impact on cell function
  publication-title: Soft Matter
  doi: 10.1039/B610522J
– volume: 18
  start-page: 1345
  year: 2006
  ident: 10.1016/j.actbio.2011.01.016_b0030
  article-title: Hydrogels in biology and medicine: from molecular principles to bionanotechnology
  publication-title: Adv Mater
  doi: 10.1002/adma.200501612
– volume: 28
  start-page: 5271
  year: 2007
  ident: 10.1016/j.actbio.2011.01.016_b0105
  article-title: Silk fibroin microtubes for blood vessel engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.08.008
– volume: 15
  start-page: 1241
  year: 2005
  ident: 10.1016/j.actbio.2011.01.016_b0185
  article-title: Water-stable silk films with reduced β-sheet content
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.200400405
– volume: 1
  start-page: 31
  year: 2000
  ident: 10.1016/j.actbio.2011.01.016_b0085
  article-title: Structural and rheological properties of methacrylamide modified gelatin hydrogels
  publication-title: Biomacromolecules
  doi: 10.1021/bm990017d
– volume: 27
  start-page: 6064
  year: 2006
  ident: 10.1016/j.actbio.2011.01.016_b0130
  article-title: Stem cell-based tissue engineering with silk biomaterials
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.07.008
– volume: 19
  start-page: 889
  year: 2008
  ident: 10.1016/j.actbio.2011.01.016_b0210
  article-title: Genipin-crosslinked chitosan/gelatin blends for biomedical applications
  publication-title: J Mater Sci
– volume: 5
  start-page: 702
  year: 2005
  ident: 10.1016/j.actbio.2011.01.016_b0240
  article-title: Effect of beta-sheet crystals on the thermal and rheological behavior of protein-based hydrogels derived from gelatin and silk fibroin
  publication-title: Macromol Biosci
  doi: 10.1002/mabi.200500076
– volume: 15
  start-page: 3221
  year: 2009
  ident: 10.1016/j.actbio.2011.01.016_b0090
  article-title: Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function
  publication-title: Tissue Eng
  doi: 10.1089/ten.tea.2008.0545
– volume: 12
  start-page: 3834
  year: 2010
  ident: 10.1016/j.actbio.2011.01.016_b0135
  article-title: Structure and gelation mechanism of silk hydrogels
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/b916319k
– volume: 5
  start-page: 2385
  year: 2009
  ident: 10.1016/j.actbio.2011.01.016_b0065
  article-title: Photopatterned collagen–hyaluronic acid interpenetrating polymer network hydrogels
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2009.05.004
– volume: 30
  start-page: 196
  year: 2009
  ident: 10.1016/j.actbio.2011.01.016_b0070
  article-title: Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.09.041
SSID ssj0038128
Score 2.4757447
Snippet To effectively repair or replace damaged tissues, it is necessary to design scaffolds with tunable structural and biomechanical properties that closely mimic...
SourceID pubmedcentral
proquest
pubmed
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2384
SubjectTerms actin
biomechanics
chemistry
Cross-Linking Reagents
Cross-Linking Reagents - chemistry
crosslinking
crystallization
fibroblasts
Fibroins
Fibroins - chemistry
freeze drying
Gelatin
Gelatin - chemistry
hydrocolloids
Hydrogel
Hydrogels
Interpenetrating polymer networks
medicine
Microscopy, Electron, Scanning
Photochemistry
Photocrosslinking
polymerization
polymers
Polymers - chemistry
silk
Silk - chemistry
Silk fibroin
tissue engineering
Title Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels
URI https://dx.doi.org/10.1016/j.actbio.2011.01.016
https://www.ncbi.nlm.nih.gov/pubmed/21295165
https://www.proquest.com/docview/1678563547
https://www.proquest.com/docview/864779948
https://www.proquest.com/docview/918070253
https://pubmed.ncbi.nlm.nih.gov/PMC3085717
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKucAB8W4KVEbiGjbe-JEcq4pqAdHLslJvluPYu4ElWW1Sib30tzOTl7qIVSWknJyx5Pgx88X-5jMhH7LIp8IYG6axj0JufBya3ESh8MwymxrrFCYKf7uSswX_ci2uj8jFkAuDtMre93c-vfXWfcmk783Jpigmc8DSUwXhCEXPUPUFM9i5Qv38j7cjzQMCUnu_KhqHaD2kz7UcL2ObrKh6IU985KHw9MCb6l8g9G8u5Z3gdPmUPOlRJT3vGv6MHLnyOXl8R2vwBfk935UA9uqipqbMqR2Fmrs8TFp5ullVTdW2C491MaeKLluuXNlWqYv1T-rh97qCgqIlK4KjbGV3yyXdVOvdL7elZccrp6tdvq2gev2SLC4_fb-Yhf21C6EVijXgmJlLmbCxdzIBAMEz4bxMhIxNorwVCUNQxo0wirlI2kS4HLdQcuWZyxMWvyLHZVW6E0JFzr2JufUuk9x7keZ-mmZScplFzmVZQOKht7XtNcnxaoy1HshnP3Q3RhrHSEf4yICEY61Np8lxj70aBlLvzS0NYeOemicw7tosweHqxXyK20MRsjKnIiDvh8mgYUXiMYspXXVTawbxHzpLcBUQesAmwfzfNOXJYZOUJeCOpyIOyOtuio0fC3ADgLGENqi9yTcaoGb4_puyWLXa4THeaMDU6X93yRvyqNtWx42ot-S42d64d4DLmuysXXhn5OH556-zqz-aszvS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBb6OGw7DHvXe2rArkYs25LtY1GsSNc2lzRAb4IsS4m7zApiF1j-_Ug_gmZYUGCATzIJyBJFfpbIT4R8ywObcaW0n0U28GNlI18VKvC5ZZrpTGmTYKHw9USMZ_GPW357QM6GWhhMq-x9f-fTW2_dt4z60RytynI0BSwdJhCOkPQMWV8OyTGyU4GxH59eXI4ng0OGmNResYryPioMFXRtmpfSTV66nssTH7EvQh1a5f6FQ_9Op3wQn85fkOc9sKSnXd9fkgNTvSLPHtANvia_p5sK8F5d1lRVBdVbruauFJM6S1cL17i2X3iyi2VVdN6my1WtSl0uf1ILf9gOGso2XxF8Zcu8W83pyi03v8yaVl1qOV1sirUD9foNmZ1_vzkb-_3NC77mCWvANzOTMa4ja0QKGCLOubEi5SJSaWI1TxnislhxlTATCJ1yU-AuSpFYZoqURW_JUeUqc0IoL2Krolhbk4vYWp4VNsxyIWKRB8bkuUeiYbSl7mnJ8XaMpRzyz-5kN0cS50gG-AiP-FutVUfL8Yh8Mkyk3DEvCZHjEc0TmHep5uBz5Wwa4g5RgImZIffI18EYJCxKPGlRlXH3tWQAAWCwwBo9QvfIpFgCnGVxul8kYyl45JBHHnnXmdj2YwFxADYW0Idkx_i2AkgbvvumKhctfXiElxqw5P1_D8kX8mR8c30lry4mlx_I026XHfelPpKjZn1vPgFMa_LP_TL8A0U9PoM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+characterization+of+photocrosslinkable+gelatin+and+silk+fibroin+interpenetrating+polymer+network+hydrogels&rft.jtitle=Acta+biomaterialia&rft.au=Xiao%2C+Wenqian&rft.au=He%2C+Jiankang&rft.au=Nichol%2C+Jason+W&rft.au=Wang%2C+Lianyong&rft.date=2011-06-01&rft.pub=Elsevier+Ltd&rft.issn=1742-7061&rft.eissn=1878-7568&rft.volume=7&rft.issue=6&rft.spage=2384&rft.epage=2393&rft_id=info:doi/10.1016%2Fj.actbio.2011.01.016&rft.externalDocID=US201500108025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon