Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels
To effectively repair or replace damaged tissues, it is necessary to design scaffolds with tunable structural and biomechanical properties that closely mimic the host tissue. In this paper, we describe a newly synthesized photocrosslinkable interpenetrating polymer network (IPN) hydrogel based on ge...
Saved in:
Published in | Acta biomaterialia Vol. 7; no. 6; pp. 2384 - 2393 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 1742-7061 1878-7568 1878-7568 |
DOI | 10.1016/j.actbio.2011.01.016 |
Cover
Loading…
Abstract | To effectively repair or replace damaged tissues, it is necessary to design scaffolds with tunable structural and biomechanical properties that closely mimic the host tissue. In this paper, we describe a newly synthesized photocrosslinkable interpenetrating polymer network (IPN) hydrogel based on gelatin methacrylate (GelMA) and silk fibroin (SF) formed by sequential polymerization, which possesses tunable structural and biological properties. Experimental results revealed that IPNs, where both the GelMA and SF were independently crosslinked in interpenetrating networks, demonstrated a lower swelling ratio, higher compressive modulus and lower degradation rate as compared to the GelMA and semi-IPN hydrogels, where only GelMA was crosslinked. These differences were likely caused by a higher degree of overall crosslinking due to the presence of crystallized SF in the IPN hydrogels. NIH-3T3 fibroblasts readily attached to, spread and proliferated on the surface of IPN hydrogels, as demonstrated by F-actin staining and analysis of mitochondrial activity (MTT). In addition, photolithography combined with lyophilization techniques was used to fabricate three-dimensional micropatterned and porous microscaffolds from GelMA–SF IPN hydrogels, furthering their versatility for use in various microscale tissue engineering applications. Overall, this study introduces a class of photocrosslinkable, mechanically robust and tunable IPN hydrogels that could be useful for various tissue engineering and regenerative medicine applications. |
---|---|
AbstractList | To effectively repair or replace damaged tissues, it is necessary to design scaffolds with tunable structural and biomechanical properties that closely mimic the host tissue. In this paper, we describe a newly synthesized photocrosslinkable interpenetrating polymer network (IPN) hydrogel based on gelatin methacrylate (GelMA) and silk fibroin (SF) formed by sequential polymerization, which possesses tunable structural and biological properties. Experimental results revealed that IPNs, where both the GelMA and SF were independently crosslinked in interpenetrating networks, demonstrated a lower swelling ratio, higher compressive modulus and lower degradation rate as compared to the GelMA and semi-IPN hydrogels, where only GelMA was crosslinked. These differences were likely caused by a higher degree of overall crosslinking due to the presence of crystallized SF in the IPN hydrogels. NIH-3T3 fibroblasts readily attached to, spread and proliferated on the surface of IPN hydrogels, as demonstrated by F-actin staining and analysis of mitochondrial activity (MTT). In addition, photolithography combined with lyophilization techniques was used to fabricate three-dimensional micropatterned and porous microscaffolds from GelMA–SF IPN hydrogels, furthering their versatility for use in various microscale tissue engineering applications. Overall, this study introduces a class of photocrosslinkable, mechanically robust and tunable IPN hydrogels that could be useful for various tissue engineering and regenerative medicine applications. To effectively repair or replace damaged tissues, it is necessary to design scaffolds with tunable structural and biomechanical properties that closely mimic the host tissue. In this paper, we describe a newly synthesized photocrosslinkable interpenetrating polymer network (IPN) hydrogel based on gelatin methacrylate (GelMA) and silk fibroin (SF) formed by sequential polymerization, which possesses tunable structural and biological properties. Experimental results revealed that IPNs, where both the GelMA and SF were independently crosslinked in interpenetrating networks, demonstrated a lower swelling ratio, higher compressive modulus and lower degradation rate as compared to the GelMA and semi-IPN hydrogels, where only GelMA was crosslinked. These differences were likely caused by a higher degree of overall crosslinking due to the presence of crystallized SF in the IPN hydrogels. NIH-3T3 fibroblasts readily attached to, spread, and proliferated on the surface of IPN hydrogels as demonstrated by F-actin staining and analysis of mitochondrial activity (MTT). In addition, photolithography combined with lyophilization techniques was used to fabricate 3D micropatterned and porous micro-scaffolds from GelMA-SF IPN hydrogels, furthering their versatility for use in various microscale tissue engineering applications. Overall, this study introduces a class of photocrosslinkable, mechanically robust and tunable IPN hydrogels that could be useful for various tissue engineering and regenerative medicine applications. To effectively repair or replace damaged tissues, it is necessary to design scaffolds with tunable structural and biomechanical properties that closely mimic the host tissue. In this paper, we describe a newly synthesized photocrosslinkable interpenetrating polymer network (IPN) hydrogel based on gelatin methacrylate (GelMA) and silk fibroin (SF) formed by sequential polymerization, which possesses tunable structural and biological properties. Experimental results revealed that IPNs, where both the GelMA and SF were independently crosslinked in interpenetrating networks, demonstrated a lower swelling ratio, higher compressive modulus and lower degradation rate as compared to the GelMA and semi-IPN hydrogels, where only GelMA was crosslinked. These differences were likely caused by a higher degree of overall crosslinking due to the presence of crystallized SF in the IPN hydrogels. NIH-3T3 fibroblasts readily attached to, spread and proliferated on the surface of IPN hydrogels, as demonstrated by F-actin staining and analysis of mitochondrial activity (MTT). In addition, photolithography combined with lyophilization techniques was used to fabricate three-dimensional micropatterned and porous microscaffolds from GelMA-SF IPN hydrogels, furthering their versatility for use in various microscale tissue engineering applications. Overall, this study introduces a class of photocrosslinkable, mechanically robust and tunable IPN hydrogels that could be useful for various tissue engineering and regenerative medicine applications.To effectively repair or replace damaged tissues, it is necessary to design scaffolds with tunable structural and biomechanical properties that closely mimic the host tissue. In this paper, we describe a newly synthesized photocrosslinkable interpenetrating polymer network (IPN) hydrogel based on gelatin methacrylate (GelMA) and silk fibroin (SF) formed by sequential polymerization, which possesses tunable structural and biological properties. Experimental results revealed that IPNs, where both the GelMA and SF were independently crosslinked in interpenetrating networks, demonstrated a lower swelling ratio, higher compressive modulus and lower degradation rate as compared to the GelMA and semi-IPN hydrogels, where only GelMA was crosslinked. These differences were likely caused by a higher degree of overall crosslinking due to the presence of crystallized SF in the IPN hydrogels. NIH-3T3 fibroblasts readily attached to, spread and proliferated on the surface of IPN hydrogels, as demonstrated by F-actin staining and analysis of mitochondrial activity (MTT). In addition, photolithography combined with lyophilization techniques was used to fabricate three-dimensional micropatterned and porous microscaffolds from GelMA-SF IPN hydrogels, furthering their versatility for use in various microscale tissue engineering applications. Overall, this study introduces a class of photocrosslinkable, mechanically robust and tunable IPN hydrogels that could be useful for various tissue engineering and regenerative medicine applications. |
Author | Nichol, Jason W. He, Jiankang Hutson, Ché B. Du, Yanan Xiao, Wenqian Fan, Hongsong Wang, Ben Khademhosseini, Ali Wang, Lianyong |
AuthorAffiliation | e Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, PR. China d State Key Laboratory of Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shanxi, 710049, PR China b Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA c National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, PR China a Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA |
AuthorAffiliation_xml | – name: d State Key Laboratory of Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shanxi, 710049, PR China – name: e Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, PR. China – name: b Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA – name: c National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, PR China – name: a Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA |
Author_xml | – sequence: 1 givenname: Wenqian surname: Xiao fullname: Xiao, Wenqian organization: Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA – sequence: 2 givenname: Jiankang surname: He fullname: He, Jiankang organization: Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA – sequence: 3 givenname: Jason W. surname: Nichol fullname: Nichol, Jason W. organization: Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA – sequence: 4 givenname: Lianyong surname: Wang fullname: Wang, Lianyong organization: Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA – sequence: 5 givenname: Ché B. surname: Hutson fullname: Hutson, Ché B. organization: Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA – sequence: 6 givenname: Ben surname: Wang fullname: Wang, Ben organization: Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA – sequence: 7 givenname: Yanan surname: Du fullname: Du, Yanan organization: Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA – sequence: 8 givenname: Hongsong surname: Fan fullname: Fan, Hongsong organization: National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People’s Republic of China – sequence: 9 givenname: Ali surname: Khademhosseini fullname: Khademhosseini, Ali email: alik@rics.bwh.harvard.edu, alik@mit.edu organization: Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21295165$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUktv1DAQjlARfcA_QJAbXLJ4kvgRDpVQxUuqxKH0bDnOZONdrx3sbGH59Ti7bQUcWmkkWzPf983zNDty3mGWvQSyAALs3Wqh9NQavygJwILMxp5kJyC4KDhl4ij9eV0WnDA4zk5jXBFSCSjFs-y4hLKhwOhJ9utq56YBo4m5cl2uBxWSLAbzW03Gu9z3-Tj4yevgY7TGrVVrMV-iTWG3p0Rj13lv2uCTw7jEHdHhFGbAMh-93W0w5Mnz04d1Puy64BM9Ps-e9spGfHH7nmXXnz5-v_hSXH77_PXiw2WhKYepSK1iA1RXPbLUWVm3FHsmKKuU4L2mAigQWiuqOCBhWlDsSlLyjveAnYDqLDs_6I7bdoOdRpdKs3IMZqPCTnpl5L8RZwa59DeyIiJVwJPAm1uB4H9sMU5yY6JGa5VDv42yAUE4KWn1KFKwmvOmqUVCvn0QCYzPLdJ6Tv_q7_rvC79bYQK8PwD2KwrYS22m_fJSO8ZKIHK-F7mSh3uR871IMhtL5Po_8p3-I7TXB1qvvFTLYKK8vkoASggQMQ_jfuxp1XhjMMioDTqNnQmoJ9l583CKP3Ed6EY |
CitedBy_id | crossref_primary_10_1039_D0TB02099K crossref_primary_10_1016_j_actbio_2013_01_002 crossref_primary_10_1039_C5TB00129C crossref_primary_10_3390_polym8080269 crossref_primary_10_1002_mabi_202400050 crossref_primary_10_1039_c2jm34737g crossref_primary_10_1371_journal_pone_0213303 crossref_primary_10_1177_08839115221138777 crossref_primary_10_1016_j_jtice_2018_07_024 crossref_primary_10_1016_j_eurpolymj_2016_10_023 crossref_primary_10_1088_1748_6041_10_2_025003 crossref_primary_10_3390_ma12111824 crossref_primary_10_1039_C3LC50884F crossref_primary_10_1007_s42452_024_06043_5 crossref_primary_10_1016_j_heliyon_2024_e39101 crossref_primary_10_1016_j_mtla_2019_100525 crossref_primary_10_3390_mi10120814 crossref_primary_10_1021_acsami_9b22964 crossref_primary_10_1039_C8BM01532E crossref_primary_10_1016_j_msec_2018_07_016 crossref_primary_10_3390_polym11122095 crossref_primary_10_1021_acsbiomaterials_1c01121 crossref_primary_10_1021_acsami_7b13602 crossref_primary_10_1002_mabi_202100442 crossref_primary_10_3390_pharmaceutics16010026 crossref_primary_10_1080_00914037_2022_2032702 crossref_primary_10_1080_09205063_2021_1932070 crossref_primary_10_1016_j_mtbio_2023_100550 crossref_primary_10_1080_09205063_2018_1493022 crossref_primary_10_3390_molecules21060685 crossref_primary_10_1016_j_eurpolymj_2023_112204 crossref_primary_10_2174_0113816128246888230920060802 crossref_primary_10_1002_smll_202106172 crossref_primary_10_1016_j_polymdegradstab_2022_109874 crossref_primary_10_1021_acsomega_1c01806 crossref_primary_10_3390_polym10010011 crossref_primary_10_1002_smll_201906539 crossref_primary_10_1016_j_colsurfb_2020_111361 crossref_primary_10_1039_C9RE00349E crossref_primary_10_1088_1742_6596_1797_1_012060 crossref_primary_10_1021_acs_biomac_0c01671 crossref_primary_10_1177_0885328216659775 crossref_primary_10_1557_opl_2014_69 crossref_primary_10_1021_bm400991k crossref_primary_10_1517_17425247_2014_974871 crossref_primary_10_3390_polym12091930 crossref_primary_10_1186_s12951_024_02462_z crossref_primary_10_1016_j_nantod_2016_10_006 crossref_primary_10_1016_j_actbio_2022_10_038 crossref_primary_10_1088_1748_605X_aa5d5c crossref_primary_10_1088_1758_5090_ab8707 crossref_primary_10_1007_s41745_019_00129_5 crossref_primary_10_1016_j_matlet_2014_04_018 crossref_primary_10_1021_acsbiomaterials_6b00226 crossref_primary_10_1002_jbm_a_35510 crossref_primary_10_1016_j_msec_2020_111143 crossref_primary_10_1016_j_apmt_2020_100859 crossref_primary_10_1088_1758_5082_6_2_025006 crossref_primary_10_1016_j_bioadv_2023_213539 crossref_primary_10_1088_1748_605X_aaf31b crossref_primary_10_1007_s12015_019_09893_4 crossref_primary_10_1021_acsmacrolett_5b00362 crossref_primary_10_1088_1748_605X_abb615 crossref_primary_10_1038_s41598_017_04149_y crossref_primary_10_1080_09506608_2018_1460943 crossref_primary_10_3389_fpls_2020_00122 crossref_primary_10_1016_j_biomaterials_2016_12_026 crossref_primary_10_1016_j_biomaterials_2018_04_023 crossref_primary_10_1039_C8BM00474A crossref_primary_10_1016_j_biomaterials_2015_08_045 crossref_primary_10_1177_0883911512448692 crossref_primary_10_1002_ijch_201900083 crossref_primary_10_1080_21691401_2017_1392970 crossref_primary_10_3390_ma10070826 crossref_primary_10_1016_j_apmt_2018_08_005 crossref_primary_10_1016_j_ijbiomac_2024_130380 crossref_primary_10_1002_adhm_202403583 crossref_primary_10_1039_C6TB00021E crossref_primary_10_1002_adhm_201601122 crossref_primary_10_1021_acs_biomac_9b00907 crossref_primary_10_1002_mame_201300274 crossref_primary_10_1002_adfm_202314500 crossref_primary_10_1021_acsami_9b11644 crossref_primary_10_1016_j_carbpol_2015_09_095 crossref_primary_10_1007_s10856_015_5442_2 crossref_primary_10_3390_polym15224419 crossref_primary_10_1002_mabi_201500305 crossref_primary_10_1016_j_bej_2013_05_006 crossref_primary_10_1039_C4NJ00161C crossref_primary_10_1039_C7BM00765E crossref_primary_10_1002_jbm_a_35268 crossref_primary_10_1007_s10971_015_3662_z crossref_primary_10_1007_s10853_021_06733_0 crossref_primary_10_1002_mame_202200503 crossref_primary_10_1021_acsbiomaterials_8b00886 crossref_primary_10_51753_flsrt_982821 crossref_primary_10_1080_00914037_2024_2330420 crossref_primary_10_2166_wst_2020_502 crossref_primary_10_1016_j_actbio_2017_12_026 crossref_primary_10_1186_s12951_023_01892_5 crossref_primary_10_1039_D0TA09046H crossref_primary_10_1016_j_bbrc_2023_01_097 crossref_primary_10_1177_09544119221125084 crossref_primary_10_1016_j_ijbiomac_2018_09_212 crossref_primary_10_1016_j_iliver_2024_100080 crossref_primary_10_1016_j_colsurfb_2015_12_011 crossref_primary_10_1021_acsbiomaterials_3c00741 crossref_primary_10_1038_s41467_019_10004_7 crossref_primary_10_1002_jbm_a_37310 crossref_primary_10_3390_gels8090535 crossref_primary_10_1002_adfm_201101662 crossref_primary_10_1007_s13346_023_01383_y crossref_primary_10_1016_j_biomaterials_2017_03_021 crossref_primary_10_1088_1758_5090_aa90db crossref_primary_10_1016_j_carbpol_2019_05_027 crossref_primary_10_1080_00914037_2021_2014484 crossref_primary_10_1002_adhm_201300155 crossref_primary_10_1016_j_eurpolymj_2014_07_011 crossref_primary_10_1016_j_jcis_2024_05_209 crossref_primary_10_1021_acsapm_1c01670 crossref_primary_10_26599_NTM_2022_9130005 crossref_primary_10_1080_1539445X_2011_642091 crossref_primary_10_1063_5_0015093 crossref_primary_10_1002_adhm_202200755 crossref_primary_10_1016_j_procbio_2022_12_012 crossref_primary_10_3390_jfb15040105 crossref_primary_10_1016_j_carpta_2023_100301 crossref_primary_10_1002_pi_4429 crossref_primary_10_1016_j_eurpolymj_2014_12_038 crossref_primary_10_1080_1023666X_2020_1737467 crossref_primary_10_3390_polym6102588 crossref_primary_10_1007_s13770_024_00649_x crossref_primary_10_1021_acs_biomac_0c01131 crossref_primary_10_1088_1748_605X_ab3c74 crossref_primary_10_1557_opl_2013_242 crossref_primary_10_1002_adhm_201900506 crossref_primary_10_1088_1748_605X_ab04e0 crossref_primary_10_1039_c2jm31374j crossref_primary_10_1002_adma_201104631 crossref_primary_10_1002_jbm_a_37796 crossref_primary_10_1016_j_actbio_2014_09_023 crossref_primary_10_1002_jbm_a_35930 crossref_primary_10_1016_j_polymer_2013_08_052 crossref_primary_10_1021_acsbiomaterials_6b00076 crossref_primary_10_1039_C9RA00655A crossref_primary_10_1002_btpr_2058 crossref_primary_10_1016_j_eurpolymj_2015_03_056 crossref_primary_10_1155_2012_819464 crossref_primary_10_1007_s10965_020_02219_w crossref_primary_10_1016_j_actbio_2021_02_043 crossref_primary_10_1016_j_msec_2019_01_079 crossref_primary_10_3390_jfb14010039 crossref_primary_10_1039_D1BM00535A crossref_primary_10_3389_fbioe_2018_00099 crossref_primary_10_3390_ijms19113308 crossref_primary_10_1016_j_cis_2025_103413 crossref_primary_10_1080_09205063_2018_1553105 crossref_primary_10_1002_wnan_1160 crossref_primary_10_1007_s10971_019_05187_w crossref_primary_10_1016_j_biomaterials_2019_119720 crossref_primary_10_1002_mabi_202200208 crossref_primary_10_3390_ijms17101697 crossref_primary_10_3390_jfb7030026 crossref_primary_10_1039_C6TB01055E crossref_primary_10_1007_s10856_014_5261_x crossref_primary_10_1039_D0NR05854H crossref_primary_10_1016_j_biomaterials_2013_11_009 crossref_primary_10_1016_S1369_7021_12_70091_3 crossref_primary_10_1016_j_ijbiomac_2020_08_040 crossref_primary_10_1021_acsapm_2c01980 crossref_primary_10_1002_adfm_202207349 crossref_primary_10_1016_j_ijbiomac_2023_124820 crossref_primary_10_4028_www_scientific_net_AMR_750_752_1347 crossref_primary_10_1016_j_ijbiomac_2019_01_112 crossref_primary_10_1016_j_tibtech_2016_01_002 crossref_primary_10_1049_mnl_2016_0301 crossref_primary_10_1016_j_msec_2021_112493 crossref_primary_10_1002_adhm_202302470 crossref_primary_10_1002_adma_201403354 crossref_primary_10_1039_c2sm25536g crossref_primary_10_1007_s40883_022_00277_8 crossref_primary_10_1016_j_apmt_2020_100664 crossref_primary_10_1002_adhm_201500005 crossref_primary_10_1007_s00289_020_03245_w crossref_primary_10_1002_adfm_201501489 crossref_primary_10_1016_j_jddst_2022_103385 crossref_primary_10_1039_C6RA22908E crossref_primary_10_1016_j_bioactmat_2022_03_036 crossref_primary_10_1016_j_jcis_2024_05_075 crossref_primary_10_1002_adhm_202200293 crossref_primary_10_1186_s12951_023_01811_8 crossref_primary_10_1007_s10735_020_09877_6 crossref_primary_10_1016_j_biomaterials_2013_03_076 crossref_primary_10_1021_acsami_7b18821 crossref_primary_10_1016_j_bioadv_2023_213677 crossref_primary_10_1016_j_msec_2014_06_013 crossref_primary_10_1007_s42242_018_0014_1 crossref_primary_10_1515_pac_2014_0713 crossref_primary_10_3390_chemistry3010014 crossref_primary_10_1002_bit_28907 crossref_primary_10_3390_ijms18030237 crossref_primary_10_1016_j_addma_2023_103598 crossref_primary_10_1016_j_ijbiomac_2021_04_019 crossref_primary_10_1021_acsbiomaterials_0c01183 crossref_primary_10_1021_bm501361c crossref_primary_10_1002_jbm_b_33464 crossref_primary_10_1016_j_actbio_2021_09_024 crossref_primary_10_1016_j_matdes_2022_110670 crossref_primary_10_1021_acsbiomaterials_2c01243 crossref_primary_10_1002_adma_202005930 crossref_primary_10_1002_mabi_201500386 crossref_primary_10_1016_j_actbio_2015_11_034 crossref_primary_10_1016_j_bioactmat_2020_08_028 crossref_primary_10_1016_j_matchemphys_2013_11_052 crossref_primary_10_1016_j_actbio_2021_11_003 crossref_primary_10_1016_j_biomaterials_2020_120287 crossref_primary_10_1016_j_matlet_2016_01_079 crossref_primary_10_1080_13697137_2021_1921726 crossref_primary_10_1039_D2MA00568A crossref_primary_10_1021_acsbiomaterials_3c01132 crossref_primary_10_1016_j_mtbio_2020_100046 crossref_primary_10_1007_s10876_024_02739_1 crossref_primary_10_1088_1758_5090_ad0071 crossref_primary_10_1016_j_mtbio_2023_100939 crossref_primary_10_1021_acs_biomac_6b00566 crossref_primary_10_1016_j_carbpol_2017_08_045 crossref_primary_10_1016_j_ijbiomac_2024_131720 crossref_primary_10_1038_srep31036 crossref_primary_10_1016_j_compositesb_2021_109100 crossref_primary_10_1039_D1TB02502C crossref_primary_10_1016_j_matlet_2012_03_051 crossref_primary_10_3103_S0096392518010030 crossref_primary_10_1007_s00396_015_3660_2 crossref_primary_10_1002_adhm_202300395 crossref_primary_10_1080_09205063_2014_950033 crossref_primary_10_1002_adhm_201500236 crossref_primary_10_1111_ijac_13885 crossref_primary_10_1088_1758_5090_aa53bd crossref_primary_10_3390_polym4031554 crossref_primary_10_1038_s41467_018_03759_y crossref_primary_10_1039_C4TB00576G crossref_primary_10_1016_j_biomaterials_2022_121969 crossref_primary_10_1016_j_msec_2020_111744 |
Cites_doi | 10.1073/pnas.0801866105 10.1002/jbm.a.30382 10.1021/bm034327e 10.1016/j.polymer.2007.05.048 10.1016/j.biomaterials.2004.09.060 10.1016/S0142-9612(00)00236-2 10.1073/pnas.0737381100 10.1016/j.actbio.2010.07.014 10.1016/j.addr.2009.07.005 10.1002/mabi.200800284 10.1089/ten.tea.2008.0441 10.1002/mabi.201000173 10.1016/j.biomaterials.2008.01.012 10.1016/j.biomaterials.2007.07.021 10.1016/j.biomaterials.2009.01.040 10.1089/ten.1996.2.307 10.1016/j.biomaterials.2007.11.003 10.1016/j.biomaterials.2010.03.064 10.1016/j.biomaterials.2007.07.044 10.1089/ten.2006.12.2729 10.1016/j.biomaterials.2009.12.026 10.1016/S0142-9612(02)00353-8 10.1016/S0169-409X(01)00239-3 10.1089/ten.2007.0093 10.1016/j.msea.2006.09.042 10.1016/j.biomaterials.2009.02.002 10.1021/bm050622i 10.1016/j.biomaterials.2010.06.035 10.1089/ten.2006.12.3285 10.1038/scientificamerican0509-64 10.1038/nmat1822 10.1016/j.bpj.2009.07.028 10.1016/j.biomaterials.2010.05.056 10.1016/j.actbio.2009.08.041 10.1039/b814285h 10.1016/j.ejps.2009.02.005 10.1016/j.biomaterials.2007.09.001 10.1089/ten.teb.2009.0006 10.1016/S0142-9612(02)00326-5 10.1126/science.8493529 10.1021/cr000108x 10.1021/bm050396c 10.1039/B610522J 10.1002/adma.200501612 10.1016/j.biomaterials.2007.08.008 10.1002/adfm.200400405 10.1021/bm990017d 10.1016/j.biomaterials.2006.07.008 10.1002/mabi.200500076 10.1089/ten.tea.2008.0545 10.1039/b916319k 10.1016/j.actbio.2009.05.004 10.1016/j.biomaterials.2008.09.041 |
ContentType | Journal Article |
Copyright | 2011 Acta Materialia Inc. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2011 Acta Materialia Inc. – notice: Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 7QO 8FD FR3 P64 5PM |
DOI | 10.1016/j.actbio.2011.01.016 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | AGRICOLA Engineering Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Medicine Chemistry |
EISSN | 1878-7568 |
EndPage | 2393 |
ExternalDocumentID | PMC3085717 21295165 10_1016_j_actbio_2011_01_016 US201500108025 S1742706111000171 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: EB007249 – fundername: NIDCR NIH HHS grantid: DE019024 – fundername: NIBIB NIH HHS grantid: R21 EB007249 – fundername: NHLBI NIH HHS grantid: R01 HL092836 – fundername: NHLBI NIH HHS grantid: HL092836 – fundername: NIDCR NIH HHS grantid: RL1 DE019024 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACPRK ACRLP ADBBV ADEWK ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSM SSU SSZ T5K ~G- ABPIF FBQ AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7S9 L.6 7X8 7QO 8FD FR3 P64 5PM |
ID | FETCH-LOGICAL-c571t-101e915c3fe687824b5ef68563a87fc58151054a5a71e06c85ed2027d7f1ed813 |
IEDL.DBID | .~1 |
ISSN | 1742-7061 1878-7568 |
IngestDate | Thu Aug 21 13:50:41 EDT 2025 Fri Jul 11 16:18:47 EDT 2025 Mon Jul 21 11:32:30 EDT 2025 Fri Jul 11 09:59:53 EDT 2025 Mon Jul 21 05:56:30 EDT 2025 Thu Apr 24 23:07:22 EDT 2025 Tue Jul 01 01:16:53 EDT 2025 Wed Dec 27 19:08:44 EST 2023 Fri Feb 23 02:35:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Silk fibroin Hydrogel Interpenetrating polymer networks Gelatin Photocrosslinking |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c571t-101e915c3fe687824b5ef68563a87fc58151054a5a71e06c85ed2027d7f1ed813 |
Notes | http://dx.doi.org/10.1016/j.actbio.2011.01.016 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21295165 |
PQID | 1678563547 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3085717 proquest_miscellaneous_918070253 proquest_miscellaneous_864779948 proquest_miscellaneous_1678563547 pubmed_primary_21295165 crossref_citationtrail_10_1016_j_actbio_2011_01_016 crossref_primary_10_1016_j_actbio_2011_01_016 fao_agris_US201500108025 elsevier_sciencedirect_doi_10_1016_j_actbio_2011_01_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-06-01 |
PublicationDateYYYYMMDD | 2011-06-01 |
PublicationDate_xml | – month: 06 year: 2011 text: 2011-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Acta biomaterialia |
PublicationTitleAlternate | Acta Biomater |
PublicationYear | 2011 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen, Chang, Cheng, Tsai, Yao, Liu (b0205) 2005; 26 Coutinho, Sant, Shin, Oliveira, Gomes, Neves (b0050) 2010; 31 Khademhosseini, Vacanti, Langer (b0010) 2009; 300 Lovett, Cannizzaro, Daheron, Messmer, Vunjak-Novakovic, Kaplan (b0105) 2007; 28 Liu, Chan-Park (b0070) 2009; 30 Benton, DeForest, Vivekanandan, Anseth (b0090) 2009; 15 Mandal, Mann, Kundu (b0175) 2009; 37 Nichol, Koshy, Bae, Hwang, Yamanlar, Khademhosseini (b0045) 2010; 31 Murtuza, Nichol, Khademhosseini (b0215) 2009; 15 Nazarov, Jin, Kaplan (b0235) 2004; 5 Yang, Ding, Wu, Hu, Liu, Liu (b0110) 2007; 28 Yucel, Cebe, Kaplan (b0230) 2009; 97 Hofmann, Knecht, Langer, Kaplan, Vunjak-Novakovic, Merkle (b0100) 2006; 12 Mandal, Kapoor, Kundu (b0245) 2009; 30 Lee, Mooney (b0035) 2001; 101 Moutos, Freed, Guilak (b0255) 2007; 6 Wang, Kluge, Leisk, Kaplan (b0225) 2008; 29 He, Li, Liu, Yao, Lu, Lian (b0160) 2007; 48 Langer, Vacanti (b0005) 1993; 260 Wang, Kaplan (b0140) 2011; 11 Gobin, Froude, Mathur (b0150) 2005; 74 Wang, Kim, Vunjak-Novakovic, Kaplan (b0130) 2006; 27 Shin, Nichol, Khademhosseini (b0055) 2011; 1 Du, Lo, Ali, Khademhosseini (b0275) 2008; 105 Bigi, Cojazzi, Panzavolta, Rubini, Roveri (b0195) 2001; 22 Zhang, Reagan, Kaplan (b0120) 2009; 61 Suri, Schmidt (b0065) 2009; 5 Li, Ogiso, Minoura (b0270) 2003; 24 Peppas, Hilt, Khademhosseini, Langer (b0030) 2006; 18 Weng, Gouldstone, Wu, Chen (b0060) 2008; 29 Chiono, Pulieri, Vozzi, Ciardelli, Ahluwalia, Giusti (b0210) 2008; 19 Lutolf, Lauer-Fields, Schmoekel, Metters, Weber, Fields (b0015) 2003; 100 Altman, Diaz, Jakuba, Calabro, Horan, Chen (b0125) 2003; 24 Gil, Frankowski, Spontak, Hudson (b0170) 2005; 6 Jin, Park, Karageorgiou, Kim, Valluzzi, Cebe (b0185) 2005; 15 Zhang, Wang, Keshav, Wang, Johanas, Leisk (b0115) 2009; 30 Khademhosseini, Langer (b0025) 2007; 28 Gil, Spontak, Hudson (b0240) 2005; 5 Lv, Feng (b0180) 2006; 17 Numata, Cebe, Kaplan (b0265) 2010; 31 Kopecek (b0075) 2007; 28 Brigham, Bick, Lo, Bendali, Burdick, Khademhosseini (b0080) 2009; 15 Freed, Guilak, Guo, Gray, Tranquillo, Holmes (b0260) 2006; 12 Venkataraman, Singh, Pathak, Ghosh, Venkataraman, Krishnamurthy (b0155) 2007; 445 Tomihata, Ikada (b0200) 1996; 2 Levental, Georges, Janmey (b0250) 2007; 3 Hoffman (b0040) 2002; 54 Nagarkar, Nicolai, Chassenieux, Lele (b0135) 2010; 12 Jia, Kiick (b0020) 2009; 9 Aubin, Nichol, Hutson, Bae, Sieminski, Cropek (b0095) 2010; 31 Van Den Bulcke, Bogdanov, De Rooze, Schacht, Cornelissen, Berghmans (b0085) 2000; 1 Gil, Frankowski, Bowman, Gozen, Hudson, Spontak (b0165) 2006; 7 Ifkovits, Burdick (b0220) 2007; 13 Wu, Liu, Li, Wen, Zhang, Long (b0190) 2010; 6 Nichol, Khademhosseini (b0145) 2009; 5 Khademhosseini (10.1016/j.actbio.2011.01.016_b0010) 2009; 300 Mandal (10.1016/j.actbio.2011.01.016_b0245) 2009; 30 He (10.1016/j.actbio.2011.01.016_b0160) 2007; 48 Langer (10.1016/j.actbio.2011.01.016_b0005) 1993; 260 Jin (10.1016/j.actbio.2011.01.016_b0185) 2005; 15 Yang (10.1016/j.actbio.2011.01.016_b0110) 2007; 28 Nazarov (10.1016/j.actbio.2011.01.016_b0235) 2004; 5 Wang (10.1016/j.actbio.2011.01.016_b0130) 2006; 27 Chiono (10.1016/j.actbio.2011.01.016_b0210) 2008; 19 Gil (10.1016/j.actbio.2011.01.016_b0240) 2005; 5 Nagarkar (10.1016/j.actbio.2011.01.016_b0135) 2010; 12 Nichol (10.1016/j.actbio.2011.01.016_b0145) 2009; 5 Gobin (10.1016/j.actbio.2011.01.016_b0150) 2005; 74 Zhang (10.1016/j.actbio.2011.01.016_b0115) 2009; 30 Lv (10.1016/j.actbio.2011.01.016_b0180) 2006; 17 Brigham (10.1016/j.actbio.2011.01.016_b0080) 2009; 15 Aubin (10.1016/j.actbio.2011.01.016_b0095) 2010; 31 Lutolf (10.1016/j.actbio.2011.01.016_b0015) 2003; 100 Hofmann (10.1016/j.actbio.2011.01.016_b0100) 2006; 12 Wu (10.1016/j.actbio.2011.01.016_b0190) 2010; 6 Liu (10.1016/j.actbio.2011.01.016_b0070) 2009; 30 Chen (10.1016/j.actbio.2011.01.016_b0205) 2005; 26 Benton (10.1016/j.actbio.2011.01.016_b0090) 2009; 15 Coutinho (10.1016/j.actbio.2011.01.016_b0050) 2010; 31 Suri (10.1016/j.actbio.2011.01.016_b0065) 2009; 5 Gil (10.1016/j.actbio.2011.01.016_b0170) 2005; 6 Khademhosseini (10.1016/j.actbio.2011.01.016_b0025) 2007; 28 Wang (10.1016/j.actbio.2011.01.016_b0225) 2008; 29 Li (10.1016/j.actbio.2011.01.016_b0270) 2003; 24 Van Den Bulcke (10.1016/j.actbio.2011.01.016_b0085) 2000; 1 Weng (10.1016/j.actbio.2011.01.016_b0060) 2008; 29 Yucel (10.1016/j.actbio.2011.01.016_b0230) 2009; 97 Levental (10.1016/j.actbio.2011.01.016_b0250) 2007; 3 Shin (10.1016/j.actbio.2011.01.016_b0055) 2011; 1 Zhang (10.1016/j.actbio.2011.01.016_b0120) 2009; 61 Venkataraman (10.1016/j.actbio.2011.01.016_b0155) 2007; 445 Moutos (10.1016/j.actbio.2011.01.016_b0255) 2007; 6 Wang (10.1016/j.actbio.2011.01.016_b0140) 2011; 11 Altman (10.1016/j.actbio.2011.01.016_b0125) 2003; 24 Kopecek (10.1016/j.actbio.2011.01.016_b0075) 2007; 28 Ifkovits (10.1016/j.actbio.2011.01.016_b0220) 2007; 13 Du (10.1016/j.actbio.2011.01.016_b0275) 2008; 105 Peppas (10.1016/j.actbio.2011.01.016_b0030) 2006; 18 Hoffman (10.1016/j.actbio.2011.01.016_b0040) 2002; 54 Tomihata (10.1016/j.actbio.2011.01.016_b0200) 1996; 2 Jia (10.1016/j.actbio.2011.01.016_b0020) 2009; 9 Lee (10.1016/j.actbio.2011.01.016_b0035) 2001; 101 Bigi (10.1016/j.actbio.2011.01.016_b0195) 2001; 22 Mandal (10.1016/j.actbio.2011.01.016_b0175) 2009; 37 Nichol (10.1016/j.actbio.2011.01.016_b0045) 2010; 31 Lovett (10.1016/j.actbio.2011.01.016_b0105) 2007; 28 Murtuza (10.1016/j.actbio.2011.01.016_b0215) 2009; 15 Freed (10.1016/j.actbio.2011.01.016_b0260) 2006; 12 Numata (10.1016/j.actbio.2011.01.016_b0265) 2010; 31 Gil (10.1016/j.actbio.2011.01.016_b0165) 2006; 7 |
References_xml | – volume: 15 start-page: 443 year: 2009 end-page: 454 ident: b0215 article-title: Micro- and nanoscale control of the cardiac stem cell niche for tissue fabrication publication-title: Tissue Eng Part B Rev – volume: 29 start-page: 1054 year: 2008 end-page: 1064 ident: b0225 article-title: Sonication-induced gelation of silk fibroin for cell encapsulation publication-title: Biomaterials – volume: 12 start-page: 3285 year: 2006 end-page: 3305 ident: b0260 article-title: Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling publication-title: Tissue Eng – volume: 1 start-page: 31 year: 2000 end-page: 38 ident: b0085 article-title: Structural and rheological properties of methacrylamide modified gelatin hydrogels publication-title: Biomacromolecules – volume: 300 start-page: 64 year: 2009 end-page: 71 ident: b0010 article-title: Progress in tissue engineering publication-title: Sci Am – volume: 22 start-page: 763 year: 2001 end-page: 768 ident: b0195 article-title: Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking publication-title: Biomaterials – volume: 18 start-page: 1345 year: 2006 end-page: 1360 ident: b0030 article-title: Hydrogels in biology and medicine: from molecular principles to bionanotechnology publication-title: Adv Mater – volume: 2 start-page: 307 year: 1996 end-page: 313 ident: b0200 article-title: Cross-linking of gelatin with carbodiimides publication-title: Tissue Eng – volume: 54 start-page: 3 year: 2002 end-page: 12 ident: b0040 article-title: Hydrogels for biomedical applications publication-title: Adv Drug Deliv Rev – volume: 260 start-page: 920 year: 1993 end-page: 926 ident: b0005 article-title: Tissue engineering publication-title: Science (New York) – volume: 74 start-page: 465 year: 2005 end-page: 473 ident: b0150 article-title: Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration publication-title: J Biomed Mater Res – volume: 11 start-page: 100 year: 2011 end-page: 110 ident: b0140 article-title: Functionalization of silk fibroin with neutravidin and biotin publication-title: Macromol Biosci – volume: 3 start-page: 299 year: 2007 end-page: 306 ident: b0250 article-title: Soft biological materials and their impact on cell function publication-title: Soft Matter – volume: 12 start-page: 3834 year: 2010 end-page: 3844 ident: b0135 article-title: Structure and gelation mechanism of silk hydrogels publication-title: Phys Chem Chem Phys – volume: 12 start-page: 2729 year: 2006 end-page: 2738 ident: b0100 article-title: Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells publication-title: Tissue Eng – volume: 27 start-page: 6064 year: 2006 end-page: 6082 ident: b0130 article-title: Stem cell-based tissue engineering with silk biomaterials publication-title: Biomaterials – volume: 15 start-page: 1241 year: 2005 end-page: 1247 ident: b0185 article-title: Water-stable silk films with reduced β-sheet content publication-title: Adv Funct Mater – volume: 13 start-page: 2369 year: 2007 end-page: 2385 ident: b0220 article-title: Review: photopolymerizable and degradable biomaterials for tissue engineering applications publication-title: Tissue Eng – volume: 7 start-page: 728 year: 2006 end-page: 735 ident: b0165 article-title: Mixed protein blends composed of gelatin and publication-title: Biomacromolecules – volume: 9 start-page: 140 year: 2009 end-page: 156 ident: b0020 article-title: Hybrid multicomponent hydrogels for tissue engineering publication-title: Macromol Biosci – volume: 28 start-page: 5185 year: 2007 end-page: 5192 ident: b0075 article-title: Hydrogel biomaterials: a smart future? publication-title: Biomaterials – volume: 1 start-page: 106 year: 2011 end-page: 114 ident: b0055 article-title: Cell-adhesive and mechanically tunable glucose-based biodegradable hydrogels publication-title: Acta Biomater – volume: 5 start-page: 718 year: 2004 end-page: 726 ident: b0235 article-title: Porous 3-D scaffolds from regenerated silk fibroin publication-title: Biomacromolecules – volume: 5 start-page: 702 year: 2005 end-page: 709 ident: b0240 article-title: Effect of beta-sheet crystals on the thermal and rheological behavior of protein-based hydrogels derived from gelatin and silk fibroin publication-title: Macromol Biosci – volume: 100 start-page: 5413 year: 2003 end-page: 5418 ident: b0015 article-title: Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics publication-title: Proc Natl Acad Sci USA – volume: 31 start-page: 2926 year: 2010 end-page: 2933 ident: b0265 article-title: Mechanism of enzymatic degradation of beta-sheet crystals publication-title: Biomaterials – volume: 24 start-page: 357 year: 2003 end-page: 365 ident: b0270 article-title: Enzymatic degradation behavior of porous silk fibroin sheets publication-title: Biomaterials – volume: 26 start-page: 3911 year: 2005 end-page: 3918 ident: b0205 article-title: An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material publication-title: Biomaterials – volume: 5 start-page: 2385 year: 2009 end-page: 2397 ident: b0065 article-title: Photopatterned collagen–hyaluronic acid interpenetrating polymer network hydrogels publication-title: Acta Biomater – volume: 19 start-page: 889 year: 2008 end-page: 898 ident: b0210 article-title: Genipin-crosslinked chitosan/gelatin blends for biomedical applications publication-title: J Mater Sci – volume: 30 start-page: 196 year: 2009 end-page: 207 ident: b0070 article-title: Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering publication-title: Biomaterials – volume: 17 start-page: 1349 year: 2006 end-page: 1356 ident: b0180 article-title: Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique publication-title: J Mater Sci – volume: 28 start-page: 5526 year: 2007 end-page: 5535 ident: b0110 article-title: Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration publication-title: Biomaterials – volume: 97 start-page: 2044 year: 2009 end-page: 2050 ident: b0230 article-title: Vortex-induced injectable silk fibroin hydrogels publication-title: Biophys J – volume: 6 start-page: 3079 year: 2005 end-page: 3087 ident: b0170 article-title: Swelling behavior and morphological evolution of mixed gelatin/silk fibroin hydrogels publication-title: Biomacromolecules – volume: 28 start-page: 5087 year: 2007 end-page: 5092 ident: b0025 article-title: Microengineered hydrogels for tissue engineering publication-title: Biomaterials – volume: 28 start-page: 5271 year: 2007 end-page: 5279 ident: b0105 article-title: Silk fibroin microtubes for blood vessel engineering publication-title: Biomaterials – volume: 6 start-page: 1167 year: 2010 end-page: 1177 ident: b0190 article-title: Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method publication-title: Acta Biomater – volume: 5 start-page: 1312 year: 2009 end-page: 1319 ident: b0145 article-title: Modular tissue engineering: engineering biological tissues from the bottom up publication-title: Soft Matter – volume: 31 start-page: 5536 year: 2010 end-page: 5544 ident: b0045 article-title: Cell-laden microengineered gelatin methacrylate hydrogels publication-title: Biomaterials – volume: 31 start-page: 7494 year: 2010 end-page: 7502 ident: b0050 article-title: Modified gellan gum hydrogels with tunable physical and mechanical properties publication-title: Biomaterials – volume: 6 start-page: 162 year: 2007 end-page: 167 ident: b0255 article-title: A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage publication-title: Nat Mater – volume: 105 start-page: 9522 year: 2008 end-page: 9527 ident: b0275 article-title: Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs publication-title: Proc Natl Acad Sci USA – volume: 24 start-page: 401 year: 2003 end-page: 416 ident: b0125 article-title: Silk-based biomaterials publication-title: Biomaterials – volume: 48 start-page: 4578 year: 2007 end-page: 4588 ident: b0160 article-title: Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures publication-title: Polymer – volume: 101 start-page: 1869 year: 2001 end-page: 1879 ident: b0035 article-title: Hydrogels for tissue engineering publication-title: Chem Rev – volume: 30 start-page: 3213 year: 2009 end-page: 3223 ident: b0115 article-title: Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts publication-title: Biomaterials – volume: 37 start-page: 160 year: 2009 end-page: 171 ident: b0175 article-title: Silk fibroin/gelatin multilayered films as a model system for controlled drug release publication-title: Eur J Pharm Sci – volume: 61 start-page: 988 year: 2009 end-page: 1006 ident: b0120 article-title: Electrospun silk biomaterial scaffolds for regenerative medicine publication-title: Adv Drug Deliv Rev – volume: 445 start-page: 269 year: 2007 end-page: 274 ident: b0155 article-title: Study on influence of porosity, pore size, spatial and topological distribution of pores on microhardness of as plasma sprayed ceramic coatings publication-title: Mater Sci Eng A – volume: 29 start-page: 2153 year: 2008 end-page: 2163 ident: b0060 article-title: Mechanically strong double network photocrosslinked hydrogels from publication-title: Biomaterials – volume: 15 start-page: 3221 year: 2009 end-page: 3230 ident: b0090 article-title: Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function publication-title: Tissue Eng – volume: 15 start-page: 1645 year: 2009 end-page: 1653 ident: b0080 article-title: Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks publication-title: Tissue Eng Part A – volume: 31 start-page: 6941 year: 2010 end-page: 6951 ident: b0095 article-title: Directed 3D cell alignment and elongation in microengineered hydrogels publication-title: Biomaterials – volume: 30 start-page: 2826 year: 2009 end-page: 2836 ident: b0245 article-title: Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels for controlled drug release publication-title: Biomaterials – volume: 105 start-page: 9522 year: 2008 ident: 10.1016/j.actbio.2011.01.016_b0275 article-title: Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0801866105 – volume: 74 start-page: 465 year: 2005 ident: 10.1016/j.actbio.2011.01.016_b0150 article-title: Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration publication-title: J Biomed Mater Res doi: 10.1002/jbm.a.30382 – volume: 5 start-page: 718 year: 2004 ident: 10.1016/j.actbio.2011.01.016_b0235 article-title: Porous 3-D scaffolds from regenerated silk fibroin publication-title: Biomacromolecules doi: 10.1021/bm034327e – volume: 48 start-page: 4578 year: 2007 ident: 10.1016/j.actbio.2011.01.016_b0160 article-title: Fabrication and characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures publication-title: Polymer doi: 10.1016/j.polymer.2007.05.048 – volume: 26 start-page: 3911 year: 2005 ident: 10.1016/j.actbio.2011.01.016_b0205 article-title: An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.09.060 – volume: 22 start-page: 763 year: 2001 ident: 10.1016/j.actbio.2011.01.016_b0195 article-title: Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00236-2 – volume: 100 start-page: 5413 year: 2003 ident: 10.1016/j.actbio.2011.01.016_b0015 article-title: Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0737381100 – volume: 1 start-page: 106 year: 2011 ident: 10.1016/j.actbio.2011.01.016_b0055 article-title: Cell-adhesive and mechanically tunable glucose-based biodegradable hydrogels publication-title: Acta Biomater doi: 10.1016/j.actbio.2010.07.014 – volume: 61 start-page: 988 year: 2009 ident: 10.1016/j.actbio.2011.01.016_b0120 article-title: Electrospun silk biomaterial scaffolds for regenerative medicine publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2009.07.005 – volume: 9 start-page: 140 year: 2009 ident: 10.1016/j.actbio.2011.01.016_b0020 article-title: Hybrid multicomponent hydrogels for tissue engineering publication-title: Macromol Biosci doi: 10.1002/mabi.200800284 – volume: 15 start-page: 1645 year: 2009 ident: 10.1016/j.actbio.2011.01.016_b0080 article-title: Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2008.0441 – volume: 11 start-page: 100 year: 2011 ident: 10.1016/j.actbio.2011.01.016_b0140 article-title: Functionalization of silk fibroin with neutravidin and biotin publication-title: Macromol Biosci doi: 10.1002/mabi.201000173 – volume: 29 start-page: 2153 year: 2008 ident: 10.1016/j.actbio.2011.01.016_b0060 article-title: Mechanically strong double network photocrosslinked hydrogels from N,N-dimethylacrylamide and glycidyl methacrylated hyaluronan publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.01.012 – volume: 28 start-page: 5087 year: 2007 ident: 10.1016/j.actbio.2011.01.016_b0025 article-title: Microengineered hydrogels for tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.07.021 – volume: 30 start-page: 2826 year: 2009 ident: 10.1016/j.actbio.2011.01.016_b0245 article-title: Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels for controlled drug release publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.01.040 – volume: 2 start-page: 307 year: 1996 ident: 10.1016/j.actbio.2011.01.016_b0200 article-title: Cross-linking of gelatin with carbodiimides publication-title: Tissue Eng doi: 10.1089/ten.1996.2.307 – volume: 29 start-page: 1054 year: 2008 ident: 10.1016/j.actbio.2011.01.016_b0225 article-title: Sonication-induced gelation of silk fibroin for cell encapsulation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.11.003 – volume: 31 start-page: 5536 year: 2010 ident: 10.1016/j.actbio.2011.01.016_b0045 article-title: Cell-laden microengineered gelatin methacrylate hydrogels publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.03.064 – volume: 28 start-page: 5185 year: 2007 ident: 10.1016/j.actbio.2011.01.016_b0075 article-title: Hydrogel biomaterials: a smart future? publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.07.044 – volume: 12 start-page: 2729 year: 2006 ident: 10.1016/j.actbio.2011.01.016_b0100 article-title: Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells publication-title: Tissue Eng doi: 10.1089/ten.2006.12.2729 – volume: 31 start-page: 2926 year: 2010 ident: 10.1016/j.actbio.2011.01.016_b0265 article-title: Mechanism of enzymatic degradation of beta-sheet crystals publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.12.026 – volume: 24 start-page: 401 year: 2003 ident: 10.1016/j.actbio.2011.01.016_b0125 article-title: Silk-based biomaterials publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00353-8 – volume: 54 start-page: 3 year: 2002 ident: 10.1016/j.actbio.2011.01.016_b0040 article-title: Hydrogels for biomedical applications publication-title: Adv Drug Deliv Rev doi: 10.1016/S0169-409X(01)00239-3 – volume: 13 start-page: 2369 year: 2007 ident: 10.1016/j.actbio.2011.01.016_b0220 article-title: Review: photopolymerizable and degradable biomaterials for tissue engineering applications publication-title: Tissue Eng doi: 10.1089/ten.2007.0093 – volume: 445 start-page: 269 year: 2007 ident: 10.1016/j.actbio.2011.01.016_b0155 article-title: Study on influence of porosity, pore size, spatial and topological distribution of pores on microhardness of as plasma sprayed ceramic coatings publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2006.09.042 – volume: 30 start-page: 3213 year: 2009 ident: 10.1016/j.actbio.2011.01.016_b0115 article-title: Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.02.002 – volume: 7 start-page: 728 year: 2006 ident: 10.1016/j.actbio.2011.01.016_b0165 article-title: Mixed protein blends composed of gelatin and Bombyx mori silk fibroin: effects of solvent-induced crystallization and composition publication-title: Biomacromolecules doi: 10.1021/bm050622i – volume: 31 start-page: 7494 year: 2010 ident: 10.1016/j.actbio.2011.01.016_b0050 article-title: Modified gellan gum hydrogels with tunable physical and mechanical properties publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.06.035 – volume: 12 start-page: 3285 year: 2006 ident: 10.1016/j.actbio.2011.01.016_b0260 article-title: Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling publication-title: Tissue Eng doi: 10.1089/ten.2006.12.3285 – volume: 300 start-page: 64 year: 2009 ident: 10.1016/j.actbio.2011.01.016_b0010 article-title: Progress in tissue engineering publication-title: Sci Am doi: 10.1038/scientificamerican0509-64 – volume: 6 start-page: 162 year: 2007 ident: 10.1016/j.actbio.2011.01.016_b0255 article-title: A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage publication-title: Nat Mater doi: 10.1038/nmat1822 – volume: 97 start-page: 2044 year: 2009 ident: 10.1016/j.actbio.2011.01.016_b0230 article-title: Vortex-induced injectable silk fibroin hydrogels publication-title: Biophys J doi: 10.1016/j.bpj.2009.07.028 – volume: 31 start-page: 6941 year: 2010 ident: 10.1016/j.actbio.2011.01.016_b0095 article-title: Directed 3D cell alignment and elongation in microengineered hydrogels publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.05.056 – volume: 6 start-page: 1167 year: 2010 ident: 10.1016/j.actbio.2011.01.016_b0190 article-title: Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method publication-title: Acta Biomater doi: 10.1016/j.actbio.2009.08.041 – volume: 5 start-page: 1312 year: 2009 ident: 10.1016/j.actbio.2011.01.016_b0145 article-title: Modular tissue engineering: engineering biological tissues from the bottom up publication-title: Soft Matter doi: 10.1039/b814285h – volume: 37 start-page: 160 year: 2009 ident: 10.1016/j.actbio.2011.01.016_b0175 article-title: Silk fibroin/gelatin multilayered films as a model system for controlled drug release publication-title: Eur J Pharm Sci doi: 10.1016/j.ejps.2009.02.005 – volume: 28 start-page: 5526 year: 2007 ident: 10.1016/j.actbio.2011.01.016_b0110 article-title: Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.09.001 – volume: 15 start-page: 443 year: 2009 ident: 10.1016/j.actbio.2011.01.016_b0215 article-title: Micro- and nanoscale control of the cardiac stem cell niche for tissue fabrication publication-title: Tissue Eng Part B Rev doi: 10.1089/ten.teb.2009.0006 – volume: 24 start-page: 357 year: 2003 ident: 10.1016/j.actbio.2011.01.016_b0270 article-title: Enzymatic degradation behavior of porous silk fibroin sheets publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00326-5 – volume: 260 start-page: 920 year: 1993 ident: 10.1016/j.actbio.2011.01.016_b0005 article-title: Tissue engineering publication-title: Science (New York) doi: 10.1126/science.8493529 – volume: 101 start-page: 1869 year: 2001 ident: 10.1016/j.actbio.2011.01.016_b0035 article-title: Hydrogels for tissue engineering publication-title: Chem Rev doi: 10.1021/cr000108x – volume: 6 start-page: 3079 year: 2005 ident: 10.1016/j.actbio.2011.01.016_b0170 article-title: Swelling behavior and morphological evolution of mixed gelatin/silk fibroin hydrogels publication-title: Biomacromolecules doi: 10.1021/bm050396c – volume: 17 start-page: 1349 year: 2006 ident: 10.1016/j.actbio.2011.01.016_b0180 article-title: Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique publication-title: J Mater Sci – volume: 3 start-page: 299 year: 2007 ident: 10.1016/j.actbio.2011.01.016_b0250 article-title: Soft biological materials and their impact on cell function publication-title: Soft Matter doi: 10.1039/B610522J – volume: 18 start-page: 1345 year: 2006 ident: 10.1016/j.actbio.2011.01.016_b0030 article-title: Hydrogels in biology and medicine: from molecular principles to bionanotechnology publication-title: Adv Mater doi: 10.1002/adma.200501612 – volume: 28 start-page: 5271 year: 2007 ident: 10.1016/j.actbio.2011.01.016_b0105 article-title: Silk fibroin microtubes for blood vessel engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.08.008 – volume: 15 start-page: 1241 year: 2005 ident: 10.1016/j.actbio.2011.01.016_b0185 article-title: Water-stable silk films with reduced β-sheet content publication-title: Adv Funct Mater doi: 10.1002/adfm.200400405 – volume: 1 start-page: 31 year: 2000 ident: 10.1016/j.actbio.2011.01.016_b0085 article-title: Structural and rheological properties of methacrylamide modified gelatin hydrogels publication-title: Biomacromolecules doi: 10.1021/bm990017d – volume: 27 start-page: 6064 year: 2006 ident: 10.1016/j.actbio.2011.01.016_b0130 article-title: Stem cell-based tissue engineering with silk biomaterials publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.07.008 – volume: 19 start-page: 889 year: 2008 ident: 10.1016/j.actbio.2011.01.016_b0210 article-title: Genipin-crosslinked chitosan/gelatin blends for biomedical applications publication-title: J Mater Sci – volume: 5 start-page: 702 year: 2005 ident: 10.1016/j.actbio.2011.01.016_b0240 article-title: Effect of beta-sheet crystals on the thermal and rheological behavior of protein-based hydrogels derived from gelatin and silk fibroin publication-title: Macromol Biosci doi: 10.1002/mabi.200500076 – volume: 15 start-page: 3221 year: 2009 ident: 10.1016/j.actbio.2011.01.016_b0090 article-title: Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function publication-title: Tissue Eng doi: 10.1089/ten.tea.2008.0545 – volume: 12 start-page: 3834 year: 2010 ident: 10.1016/j.actbio.2011.01.016_b0135 article-title: Structure and gelation mechanism of silk hydrogels publication-title: Phys Chem Chem Phys doi: 10.1039/b916319k – volume: 5 start-page: 2385 year: 2009 ident: 10.1016/j.actbio.2011.01.016_b0065 article-title: Photopatterned collagen–hyaluronic acid interpenetrating polymer network hydrogels publication-title: Acta Biomater doi: 10.1016/j.actbio.2009.05.004 – volume: 30 start-page: 196 year: 2009 ident: 10.1016/j.actbio.2011.01.016_b0070 article-title: Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.09.041 |
SSID | ssj0038128 |
Score | 2.4757447 |
Snippet | To effectively repair or replace damaged tissues, it is necessary to design scaffolds with tunable structural and biomechanical properties that closely mimic... |
SourceID | pubmedcentral proquest pubmed crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2384 |
SubjectTerms | actin biomechanics chemistry Cross-Linking Reagents Cross-Linking Reagents - chemistry crosslinking crystallization fibroblasts Fibroins Fibroins - chemistry freeze drying Gelatin Gelatin - chemistry hydrocolloids Hydrogel Hydrogels Interpenetrating polymer networks medicine Microscopy, Electron, Scanning Photochemistry Photocrosslinking polymerization polymers Polymers - chemistry silk Silk - chemistry Silk fibroin tissue engineering |
Title | Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels |
URI | https://dx.doi.org/10.1016/j.actbio.2011.01.016 https://www.ncbi.nlm.nih.gov/pubmed/21295165 https://www.proquest.com/docview/1678563547 https://www.proquest.com/docview/864779948 https://www.proquest.com/docview/918070253 https://pubmed.ncbi.nlm.nih.gov/PMC3085717 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKucAB8W4KVEbiGjbe-JEcq4pqAdHLslJvluPYu4ElWW1Sib30tzOTl7qIVSWknJyx5Pgx88X-5jMhH7LIp8IYG6axj0JufBya3ESh8MwymxrrFCYKf7uSswX_ci2uj8jFkAuDtMre93c-vfXWfcmk783Jpigmc8DSUwXhCEXPUPUFM9i5Qv38j7cjzQMCUnu_KhqHaD2kz7UcL2ObrKh6IU985KHw9MCb6l8g9G8u5Z3gdPmUPOlRJT3vGv6MHLnyOXl8R2vwBfk935UA9uqipqbMqR2Fmrs8TFp5ullVTdW2C491MaeKLluuXNlWqYv1T-rh97qCgqIlK4KjbGV3yyXdVOvdL7elZccrp6tdvq2gev2SLC4_fb-Yhf21C6EVijXgmJlLmbCxdzIBAMEz4bxMhIxNorwVCUNQxo0wirlI2kS4HLdQcuWZyxMWvyLHZVW6E0JFzr2JufUuk9x7keZ-mmZScplFzmVZQOKht7XtNcnxaoy1HshnP3Q3RhrHSEf4yICEY61Np8lxj70aBlLvzS0NYeOemicw7tosweHqxXyK20MRsjKnIiDvh8mgYUXiMYspXXVTawbxHzpLcBUQesAmwfzfNOXJYZOUJeCOpyIOyOtuio0fC3ADgLGENqi9yTcaoGb4_puyWLXa4THeaMDU6X93yRvyqNtWx42ot-S42d64d4DLmuysXXhn5OH556-zqz-aszvS |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBb6OGw7DHvXe2rArkYs25LtY1GsSNc2lzRAb4IsS4m7zApiF1j-_Ug_gmZYUGCATzIJyBJFfpbIT4R8ywObcaW0n0U28GNlI18VKvC5ZZrpTGmTYKHw9USMZ_GPW357QM6GWhhMq-x9f-fTW2_dt4z60RytynI0BSwdJhCOkPQMWV8OyTGyU4GxH59eXI4ng0OGmNResYryPioMFXRtmpfSTV66nssTH7EvQh1a5f6FQ_9Op3wQn85fkOc9sKSnXd9fkgNTvSLPHtANvia_p5sK8F5d1lRVBdVbruauFJM6S1cL17i2X3iyi2VVdN6my1WtSl0uf1ILf9gOGso2XxF8Zcu8W83pyi03v8yaVl1qOV1sirUD9foNmZ1_vzkb-_3NC77mCWvANzOTMa4ja0QKGCLOubEi5SJSaWI1TxnislhxlTATCJ1yU-AuSpFYZoqURW_JUeUqc0IoL2Krolhbk4vYWp4VNsxyIWKRB8bkuUeiYbSl7mnJ8XaMpRzyz-5kN0cS50gG-AiP-FutVUfL8Yh8Mkyk3DEvCZHjEc0TmHep5uBz5Wwa4g5RgImZIffI18EYJCxKPGlRlXH3tWQAAWCwwBo9QvfIpFgCnGVxul8kYyl45JBHHnnXmdj2YwFxADYW0Idkx_i2AkgbvvumKhctfXiElxqw5P1_D8kX8mR8c30lry4mlx_I026XHfelPpKjZn1vPgFMa_LP_TL8A0U9PoM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+characterization+of+photocrosslinkable+gelatin+and+silk+fibroin+interpenetrating+polymer+network+hydrogels&rft.jtitle=Acta+biomaterialia&rft.au=Xiao%2C+Wenqian&rft.au=He%2C+Jiankang&rft.au=Nichol%2C+Jason+W&rft.au=Wang%2C+Lianyong&rft.date=2011-06-01&rft.pub=Elsevier+Ltd&rft.issn=1742-7061&rft.eissn=1878-7568&rft.volume=7&rft.issue=6&rft.spage=2384&rft.epage=2393&rft_id=info:doi/10.1016%2Fj.actbio.2011.01.016&rft.externalDocID=US201500108025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon |