Sterically Shielded Heptamethine Cyanine Dyes for Bioconjugation and High Performance Near‐Infrared Fluorescence Imaging
The near‐infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and negligible background fluorescence. However, dye instability, aggregation, and poor pharmacokinetics are current drawbacks that limit performanc...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 29; pp. 12154 - 12161 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
13.07.2020
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The near‐infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and negligible background fluorescence. However, dye instability, aggregation, and poor pharmacokinetics are current drawbacks that limit performance and the scope of possible applications. All these limitations are simultaneously overcome with a new molecular design strategy that produces a charge balanced and sterically shielded fluorochrome. The key design feature is a meso‐aryl group that simultaneously projects two shielding arms directly over each face of a linear heptamethine polyene. Cell and mouse imaging experiments compared a shielded heptamethine cyanine dye (and several peptide and antibody bioconjugates) to benchmark heptamethine dyes and found that the shielded systems possess an unsurpassed combination of photophysical, physiochemical, and biodistribution properties that greatly enhance bioimaging performance.
It's a bird! It's a plane! Just like a superhero, an ultrastable shielded heptamethine cyanine dye uses its two strong arms to ward off self‐aggregation and non‐specific biological interactions. Yet the arms are short enough to allow dye‐labeled bioconjugates to selectively target cell receptors for high‐contrast and photon‐intense microscopy or tumor imaging in living subjects. |
---|---|
AbstractList | The near‐infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and negligible background fluorescence. However, dye instability, aggregation, and poor pharmacokinetics are current drawbacks that limit performance and the scope of possible applications. All these limitations are simultaneously overcome with a new molecular design strategy that produces a charge balanced and sterically shielded fluorochrome. The key design feature is a
meso
‐aryl group that simultaneously projects two shielding arms directly over each face of a linear heptamethine polyene. Cell and mouse imaging experiments compared a shielded heptamethine cyanine dye (and several peptide and antibody bioconjugates) to benchmark heptamethine dyes and found that the shielded systems possess an unsurpassed combination of photophysical, physiochemical, and biodistribution properties that greatly enhance bioimaging performance. The near‐infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and negligible background fluorescence. However, dye instability, aggregation, and poor pharmacokinetics are current drawbacks that limit performance and the scope of possible applications. All these limitations are simultaneously overcome with a new molecular design strategy that produces a charge balanced and sterically shielded fluorochrome. The key design feature is a meso‐aryl group that simultaneously projects two shielding arms directly over each face of a linear heptamethine polyene. Cell and mouse imaging experiments compared a shielded heptamethine cyanine dye (and several peptide and antibody bioconjugates) to benchmark heptamethine dyes and found that the shielded systems possess an unsurpassed combination of photophysical, physiochemical, and biodistribution properties that greatly enhance bioimaging performance. The near‐infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and negligible background fluorescence. However, dye instability, aggregation, and poor pharmacokinetics are current drawbacks that limit performance and the scope of possible applications. All these limitations are simultaneously overcome with a new molecular design strategy that produces a charge balanced and sterically shielded fluorochrome. The key design feature is a meso‐aryl group that simultaneously projects two shielding arms directly over each face of a linear heptamethine polyene. Cell and mouse imaging experiments compared a shielded heptamethine cyanine dye (and several peptide and antibody bioconjugates) to benchmark heptamethine dyes and found that the shielded systems possess an unsurpassed combination of photophysical, physiochemical, and biodistribution properties that greatly enhance bioimaging performance. It's a bird! It's a plane! Just like a superhero, an ultrastable shielded heptamethine cyanine dye uses its two strong arms to ward off self‐aggregation and non‐specific biological interactions. Yet the arms are short enough to allow dye‐labeled bioconjugates to selectively target cell receptors for high‐contrast and photon‐intense microscopy or tumor imaging in living subjects. The near-infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and negligible background fluorescence. However, dye instability, aggregation, and poor pharmacokinetics are current drawbacks that limit performance and the scope of possible applications. All these limitations are simultaneously overcome with a new molecular design strategy that produces a charge balanced and sterically shielded fluorochrome. The key design feature is a meso-aryl group that simultaneously projects two shielding arms directly over each face of a linear heptamethine polyene. Cell and mouse imaging experiments compared a shielded heptamethine cyanine dye (and several peptide and antibody bioconjugates) to benchmark heptamethine dyes and found that the shielded systems possess an unsurpassed combination of photophysical, physiochemical, and biodistribution properties that greatly enhance bioimaging performance.The near-infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and negligible background fluorescence. However, dye instability, aggregation, and poor pharmacokinetics are current drawbacks that limit performance and the scope of possible applications. All these limitations are simultaneously overcome with a new molecular design strategy that produces a charge balanced and sterically shielded fluorochrome. The key design feature is a meso-aryl group that simultaneously projects two shielding arms directly over each face of a linear heptamethine polyene. Cell and mouse imaging experiments compared a shielded heptamethine cyanine dye (and several peptide and antibody bioconjugates) to benchmark heptamethine dyes and found that the shielded systems possess an unsurpassed combination of photophysical, physiochemical, and biodistribution properties that greatly enhance bioimaging performance. The near-infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and negligible background fluorescence. But dye instability, aggregation, and poor pharmacokinetics are current drawbacks that limit performance and the scope of possible applications. All these limitations are simultaneously overcome with a new molecular design strategy that produces a charge balanced and sterically shielded fluorochrome. The key design feature is a meso-Aryl group that simultaneously projects two shielding arms directly over each face of a linear heptamethine polyene. Cell and mouse imaging experiments compared a shielded heptamethine cyanine dye (and several peptide and antibody bioconjugates) to benchmark heptamethine dyes and found that the shielded systems possess an unsurpassed combination of photophysical, physiochemical and biodistribution properties that greatly enhance bioimaging performance. Just like a superhero, an ultrastable shielded heptamethine cyanine dye uses its two strong arms to ward off self-aggregation and non-specific biological interactions. Yet the arms are short enough to allow dye-labeled bioconjugates to selectively target cell receptors for high-contrast and photon-intense microscopy or tumor imaging in living subjects. |
Author | Smith, Bradley D. Li, Dong‐Hao Schreiber, Cynthia L. |
Author_xml | – sequence: 1 givenname: Dong‐Hao orcidid: 0000-0003-2556-1624 surname: Li fullname: Li, Dong‐Hao organization: University of Notre Dame – sequence: 2 givenname: Cynthia L. orcidid: 0000-0001-9773-3101 surname: Schreiber fullname: Schreiber, Cynthia L. organization: University of Notre Dame – sequence: 3 givenname: Bradley D. orcidid: 0000-0003-4120-3210 surname: Smith fullname: Smith, Bradley D. email: smith.115@nd.edu organization: University of Notre Dame |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32324959$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1DAUhiNURC-wZYkisUFCGY4vmTgbpJK2dKSqIBXWluOczHiU2IOTUIUVj8Az8iQ4zHSASghWx_L5_nM_jg6ssxhFTwnMCAB9pazBGQUKwDnPH0RHJKUkYVnGDsKbM5ZkIiWH0XHXrQMvBMwfRYeMMsrzND-Kvtz06I1WTTPGNyuDTYVVfImbXrXYr4zFuBhDjmDPRuzi2vn4jXHa2fWwVL1xNlY2CMxyFb9HH9ytshrja1T--9dvC1t75UPEi2ZwHjuNk3PRqqWxy8fRw1o1HT7Z2ZPo48X5h-IyuXr3dlGcXiU6zUieYEVZJbK01HPMS0oUaMUAclXrFKqq1KkWgiPO5zTXSDlFkYqqVCnDSivC2En0eht3M5Rt-EPbe9XIjTet8qN0ysg_Pdas5NJ9lhnPGBciBHixC-DdpwG7XrYmtNI0yqIbOklZznPIgJCAPr-Hrt3gbWhPhsqAMCCcB-rZ7xXtS7lbSwBeboFbLF3daTPNbY8BQMoIBxouAGBKKv6fLkz_c2-FG2wfpHwr1d51ncda6p0_TMI0koCczkxOZyb3ZxZks3uyu2x_FeS7Ek2D4z9oeXq9OP-l_QESXuZ2 |
CitedBy_id | crossref_primary_10_1039_D1AN02183D crossref_primary_10_1186_s12951_024_02477_6 crossref_primary_10_1002_agt2_39 crossref_primary_10_1016_j_ijbiomac_2023_126528 crossref_primary_10_1039_D4TB01925C crossref_primary_10_1002_ange_202201308 crossref_primary_10_1021_acssuschemeng_1c08048 crossref_primary_10_1039_D1NA00710F crossref_primary_10_1039_D0MH01186J crossref_primary_10_1002_asia_202200907 crossref_primary_10_1021_acsami_3c00956 crossref_primary_10_1021_cbmi_4c00008 crossref_primary_10_1021_acsnano_3c06290 crossref_primary_10_1016_j_bios_2022_114610 crossref_primary_10_1021_jacs_3c01765 crossref_primary_10_1039_D4RA06207H crossref_primary_10_3390_molecules27175440 crossref_primary_10_1016_j_bioorg_2022_106182 crossref_primary_10_1021_acsomega_4c07083 crossref_primary_10_1016_j_ejmech_2025_117532 crossref_primary_10_1021_acs_joc_0c01084 crossref_primary_10_1002_tcr_202400183 crossref_primary_10_1002_ange_202208574 crossref_primary_10_1002_advs_201903080 crossref_primary_10_1016_j_snb_2025_137475 crossref_primary_10_1021_acsmaterialslett_2c00451 crossref_primary_10_1002_ange_202009599 crossref_primary_10_1021_acs_iecr_2c00285 crossref_primary_10_1016_j_ccr_2022_214792 crossref_primary_10_1002_ange_202315217 crossref_primary_10_1038_s41378_023_00515_1 crossref_primary_10_1021_acs_joc_0c01104 crossref_primary_10_1002_anie_202017349 crossref_primary_10_1021_jacs_2c13489 crossref_primary_10_1039_D1OB00426C crossref_primary_10_1016_j_snb_2021_130217 crossref_primary_10_1021_acs_nanolett_2c03311 crossref_primary_10_1021_acs_analchem_3c00282 crossref_primary_10_1002_cmdc_202200004 crossref_primary_10_1002_ange_202011914 crossref_primary_10_1039_D0OB01962C crossref_primary_10_1021_acs_nanolett_3c01184 crossref_primary_10_1002_ange_202017349 crossref_primary_10_1039_D0BM02098B crossref_primary_10_1016_j_addr_2022_114637 crossref_primary_10_1021_jacsau_4c00343 crossref_primary_10_1039_D4TB01867B crossref_primary_10_1039_D1TB00018G crossref_primary_10_1021_acs_molpharmaceut_4c01232 crossref_primary_10_1039_D2NR02273G crossref_primary_10_3390_molecules25122926 crossref_primary_10_1002_adhm_202001289 crossref_primary_10_3389_fphar_2023_1266288 crossref_primary_10_1002_adhm_202001042 crossref_primary_10_1002_anie_202008075 crossref_primary_10_1002_adma_202106500 crossref_primary_10_1021_acsomega_1c04991 crossref_primary_10_1111_php_13531 crossref_primary_10_1002_anie_202011914 crossref_primary_10_1016_j_cbpa_2024_102439 crossref_primary_10_1021_acsbiomedchemau_2c00053 crossref_primary_10_1039_D4SC04879B crossref_primary_10_1016_j_ccr_2024_215986 crossref_primary_10_1021_jacs_1c09155 crossref_primary_10_1016_j_chempr_2025_102489 crossref_primary_10_1021_acsphotonics_3c00602 crossref_primary_10_1002_anse_202200004 crossref_primary_10_1002_adom_202102514 crossref_primary_10_1016_j_matpr_2021_02_622 crossref_primary_10_1021_acscentsci_4c01570 crossref_primary_10_1021_acs_jpca_1c05772 crossref_primary_10_1016_j_ccr_2021_214134 crossref_primary_10_1038_s41467_024_55445_x crossref_primary_10_1021_acs_joc_2c01229 crossref_primary_10_1007_s44211_025_00735_7 crossref_primary_10_1021_acs_nanolett_3c01484 crossref_primary_10_1016_j_dyepig_2023_111291 crossref_primary_10_1021_jacs_0c07292 crossref_primary_10_1002_ange_202008075 crossref_primary_10_1021_acsaom_3c00144 crossref_primary_10_1021_cbmi_3c00107 crossref_primary_10_1016_j_phrs_2022_106241 crossref_primary_10_1007_s13233_024_00250_0 crossref_primary_10_1002_anie_202315217 crossref_primary_10_6023_cjoc202304019 crossref_primary_10_1002_adfm_202300340 crossref_primary_10_1111_php_13439 crossref_primary_10_1016_j_cclet_2024_110644 crossref_primary_10_1016_j_dyepig_2022_110374 crossref_primary_10_1021_acsnanoscienceau_1c00038 crossref_primary_10_1039_D3QO01159C crossref_primary_10_1002_anie_202211767 crossref_primary_10_1002_anie_202417651 crossref_primary_10_1002_advs_202400700 crossref_primary_10_3390_molecules27249015 crossref_primary_10_1002_anie_202305062 crossref_primary_10_1021_acs_biochem_1c00281 crossref_primary_10_3390_cancers14071619 crossref_primary_10_1039_D1CC00742D crossref_primary_10_1016_j_cclet_2024_109994 crossref_primary_10_1021_jacs_2c05826 crossref_primary_10_1002_anie_202208574 crossref_primary_10_1002_cplu_202100174 crossref_primary_10_3389_fchem_2021_807433 crossref_primary_10_6023_cjoc202401019 crossref_primary_10_1002_ange_202211767 crossref_primary_10_1002_adfm_202316452 crossref_primary_10_1002_ange_202417651 crossref_primary_10_1016_j_cbpa_2023_102335 crossref_primary_10_1021_acsnano_4c15456 crossref_primary_10_1093_bulcsj_uoae055 crossref_primary_10_1002_anie_202009599 crossref_primary_10_1002_anie_202201308 crossref_primary_10_1039_D3NR02845C crossref_primary_10_3390_ijms252413547 crossref_primary_10_1002_ange_202305062 crossref_primary_10_1002_advs_202203474 crossref_primary_10_1002_bkcs_12169 crossref_primary_10_1021_acs_orglett_2c04289 crossref_primary_10_1021_acs_bioconjchem_2c00083 crossref_primary_10_1002_asia_202100282 crossref_primary_10_1021_acs_analchem_4c06185 crossref_primary_10_1039_D3NH00584D crossref_primary_10_1016_j_tetlet_2021_153211 crossref_primary_10_1021_acs_analchem_1c00276 crossref_primary_10_1039_D4TB01281J |
Cites_doi | 10.1021/acs.bioconjchem.5b00492 10.1021/acschembio.9b00122 10.1002/chem.201700026 10.1039/b802728e 10.1016/j.bpj.2017.12.011 10.1039/C5OB00788G 10.1021/acs.accounts.6b00239 10.1158/1078-0432.CCR-16-0437 10.1117/1.JBO.19.3.036006 10.1016/j.bmcl.2018.02.040 10.1002/anie.201801226 10.1017/S0033583510000247 10.1039/c0cc02366c 10.1039/C5SC00348B 10.1007/s00259-016-3372-y 10.1002/anie.201102459 10.1002/chem.201605847 10.21037/qims.2019.09.04 10.1021/bc000015m 10.1021/acs.molpharmaceut.6b01091 10.1016/j.bmcl.2017.12.001 10.7150/thno.27995 10.1016/j.dyepig.2016.03.054 10.1021/jacs.7b07272 10.1016/j.dyepig.2018.01.029 10.1021/acs.accounts.9b00221 10.1007/s11307-011-0534-y 10.1021/acs.jmedchem.5b00253 10.1073/pnas.1617990114 10.1021/jacs.9b02537 10.1162/153535002321093963 10.1002/ange.201507868 10.1021/acs.bioconjchem.6b00093 10.1021/acs.chemrev.6b00001 10.1021/acs.bioconjchem.9b00750 10.1007/s11307-015-0870-4 10.1002/anie.201510620 10.1039/C4RA11225C 10.1002/chem.201604473 10.1002/ejoc.201900715 10.1021/bi2000966 10.1002/cmmi.1484 10.1021/acs.accounts.8b00384 10.1039/C5SC02396C 10.1162/15353500200505127 10.1002/anie.201507868 10.7150/thno.33595 10.18632/oncotarget.15486 10.1039/C4CC08814J 10.1117/1.JBO.21.8.080901 10.1038/nbt.2468 10.3389/fphar.2019.00510 10.1039/C8MD00190A 10.1021/jo061284u 10.1021/jo00043a009 10.1002/adma.201802546 10.1021/acs.bioconjchem.5b00097 10.1039/C8SC00900G 10.1002/ange.201510620 10.1021/acs.molpharmaceut.6b01053 10.1002/chem.201801825 10.1117/1.JBO.24.6.066012 10.1021/acs.molpharmaceut.5b00472 10.1117/1.JBO.21.5.050901 10.1177/002215540305101214 10.1021/acs.bioconjchem.9b00707 10.1002/ange.201801226 10.1021/ja500962u 10.1016/S1470-2045(19)30317-1 10.1002/ange.201102459 10.1039/c8sc00900g 10.1039/c5sc00348b 10.1039/c4cc08814j 10.1039/c8md00190a 10.1039/c5ob00788g 10.1039/c5sc02396c 10.1039/c4ra11225c |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION 17B 1KM AOWDO BLEPL DTL EGQ CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 5PM |
DOI | 10.1002/anie.202004449 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2020 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Web of Science MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) Web of Science MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 12161 |
ExternalDocumentID | PMC7473488 32324959 000531402100001 10_1002_anie_202004449 ANIE202004449 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of General Medical Sciences funderid: R01GM059078; T32GM075762; R35GM136212 – fundername: Berry Family Foundation fellowship from the University of Notre Dame – fundername: US NIH; United States Department of Health & Human Services; National Institutes of Health (NIH) - USA grantid: R01GM059078; R35GM136212; T32GM075762 – fundername: NIGMS NIH HHS grantid: R01 GM059078 – fundername: NIGMS NIH HHS grantid: R35 GM136212 – fundername: NIGMS NIH HHS grantid: T32 GM075762 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_WEB_OF_SCIENCE CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5719-ed23d875bc6e9b21a0ca3009afc50ddbc5c884ee6629ce242e858dba53edca133 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 126 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000531402100001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Aug 21 18:04:10 EDT 2025 Thu Jul 10 22:10:47 EDT 2025 Fri Jul 25 12:00:48 EDT 2025 Thu Apr 03 07:13:26 EDT 2025 Wed Jul 09 20:34:09 EDT 2025 Fri Aug 29 16:25:53 EDT 2025 Tue Jul 01 01:17:38 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Wed Jan 22 16:34:42 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | pigments FLUOROPHORES TRACERS imaging agents PHOTOPHYSICAL PROPERTIES dyes fluorescent probes CONJUGATION IMPACT antibodies cyanines BINDING PROBE dyes/pigments |
Language | English |
License | 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c5719-ed23d875bc6e9b21a0ca3009afc50ddbc5c884ee6629ce242e858dba53edca133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2556-1624 0000-0001-9773-3101 0000-0003-4120-3210 |
OpenAccessLink | https://figshare.com/articles/journal_contribution/Sterically_Shielded_Heptamethine_Cyanine_Dyes_for_Bioconjugation_and_High_Performance_Near-Infrared_Fluorescence_Imaging/24817005 |
PMID | 32324959 |
PQID | 2420130144 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | pubmed_primary_32324959 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7473488 webofscience_primary_000531402100001 crossref_citationtrail_10_1002_anie_202004449 crossref_primary_10_1002_anie_202004449 wiley_primary_10_1002_anie_202004449_ANIE202004449 webofscience_primary_000531402100001CitationCount proquest_miscellaneous_2394907011 proquest_journals_2420130144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 13, 2020 |
PublicationDateYYYYMMDD | 2020-07-13 |
PublicationDate_xml | – month: 07 year: 2020 text: July 13, 2020 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2006; 71 2017; 8 2019; 52 2019; 10 2019; 14 1992; 57 2012; 14 2003; 51 2017; 114 2014; 136 2018; 9 2018; 8 2014; 4 2019; 20 2019; 24 2018 2018; 57 130 2000; 11 2016; 43 2015 2015; 54 127 2018; 30 2016; 116 2014; 19 2016; 49 2015; 13 2015; 12 2018; 28 2015; 58 2019; 9 2015; 6 2015; 51 2017; 23 2002; 1 2008 2016; 18 2019; 141 2017; 139 2018; 24 2018; 152 2015; 26 2016 2016; 55 128 2010; 46 2020; 31 2017; 14 2013; 31 2011; 50 2018; 114 2016; 21 2019 2005; 4 2011; 44 2016; 132 2018; 51 2011 2011; 50 123 2012; 7 2016; 27 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_76_1 e_1_2_6_53_2 e_1_2_6_70_1 e_1_2_6_30_2 e_1_2_6_72_1 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_1 e_1_2_6_32_2 e_1_2_6_17_1 e_1_2_6_38_3 e_1_2_6_78_1 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_62_1 e_1_2_6_83_2 e_1_2_6_64_1 e_1_2_6_20_2 e_1_2_6_81_1 e_1_2_6_41_2 e_1_2_6_60_1 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_43_2 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_47_1 e_1_2_6_50_2 e_1_2_6_73_1 e_1_2_6_52_2 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_31_2 e_1_2_6_71_1 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_14_1 e_1_2_6_10_2 e_1_2_6_33_1 e_1_2_6_16_2 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_79_1 e_1_2_6_61_2 e_1_2_6_84_2 e_1_2_6_63_1 e_1_2_6_42_2 e_1_2_6_65_1 e_1_2_6_84_3 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_29_2 e_1_2_6_4_1 e_1_2_6_6_2 e_1_2_6_23_3 e_1_2_6_25_1 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_44_1 e_1_2_6_27_2 e_1_2_6_67_1 e_1_2_6_46_2 Cilliers, C (WOS:000400633300029) 2017; 14 Lamberts, LE (WOS:000402537800021) 2017; 23 Gruber, HJ (WOS:000089558300012) 2000; 11 Konig, SG (WOS:000405284900014) 2017; 23 Handgraaf, HJM (WOS:000397642400046) 2017; 8 Zhu, SJ (WOS:000442206400024) 2018; 30 Yang, Z (WOS:000448343300016) 2018; 9 Li, B. (000531402100001.34) 2018; 130 Sato, K (WOS:000361086800020) 2015; 12 Berezin, MY (WOS:000288970800034) 2011; 50 Ji, CD (WOS:000482534600022) 2019; 52 DSouza, AV (WOS:000388212300003) 2016; 21 Sato, K (WOS:000370582600015) 2016; 27 Bunschoten, A (WOS:000376331700011) 2016; 27 Arjona-Esteban, A (000531402100001.2) 2016; 128 Gorka, AP (WOS:000358243200001) 2015; 13 Ji, YY (WOS:000488450700007) 2019; 9 (000531402100001.65) 2015; 127 Ohnishi, S (WOS:000208265400003) 2005; 4 Stackova, L (WOS:000466987900047) 2019; 141 Yau, CMS (WOS:000256924500016) 2008 STREKOWSKI, L (WOS:A1992JJ66800009) 1992; 57 Lim, SY (WOS:000336078400046) 2014; 136 Debie, P (WOS:000398426100016) 2017; 14 Zaheer, Atif (MEDLINE:12926231) 2002; 1 Wu, ZY (WOS:000338333400019) 2014; 19 Du, BJ (WOS:000515196200009) 2020; 31 Ruttger, F (WOS:000477375200001) 2019; 2019 He, LW (WOS:000357931700016) 2015; 6 Szabo, A (WOS:000425895600022) 2018; 114 Ma, XZ (WOS:000424285600051) 2018; 28 Levitus, M (WOS:000287341700003) 2011; 44 Hyun, H (WOS:000372261700006) 2016; 18 Spa, SJ (WOS:000428008700003) 2018; 152 Choi, H. S. (000531402100001.8) 2015; 58 KleinJan, GH (WOS:000380700100012) 2016; 43 Choi, HS (WOS:000292642600007) 2011; 50 Michie, MS (WOS:000411043900019) 2017; 139 Shaw, SK (WOS:000445447300022) 2018; 24 Cha, J (WOS:000443150500020) 2018; 28 Owens, EA (WOS:000384038600015) 2016; 49 Li, BH (WOS:000434949200036) 2018; 57 (000531402100001.9) 2011; 123 Arjona-Esteban, A (WOS:000369970500030) 2016; 55 Gorka, AP (WOS:000454183300028) 2018; 51 Samanta, A (WOS:000282218200036) 2010; 46 Nani, RR (WOS:000362977000066) 2015; 6 Zhu, SJ (WOS:000440377100010) 2018; 8 Su, DD (WOS:000350212600007) 2015; 51 Berlier, JE (WOS:000186878400014) 2003; 51 Choi, HS (WOS:000315322100026) 2013; 31 Tichauer, KM (WOS:000308819300008) 2012; 14 Thavornpradit, S (WOS:000467276900010) 2019; 9 Yazaki, P. J. (000531402100001.64) 2019; 24 Sun, W (WOS:000380730100002) 2016; 116 van der Wal, S (WOS:000378456200002) 2016; 132 Hernot, S (WOS:000473253800016) 2019; 20 Lee, H (WOS:000240677900048) 2006; 71 Schreiber, CL (WOS:000515196200006) 2020; 31 Al-Karmi, S (WOS:000393618700006) 2017; 23 Zhu, SJ (WOS:000393196300063) 2017; 114 Kuhne, C. (000531402100001.30) 2017; 23 Luciano, MP (WOS:000468696600012) 2019; 14 Hyun, H (WOS:000308940900006) 2012; 7 Shi, CH (WOS:000379334200004) 2016; 21 Debie, P (WOS:000468004100001) 2019; 10 Yu, MX (WOS:000368058500017) 2015; 54 Wycisk, V (WOS:000353177300019) 2015; 26 Mellanby, RJ (WOS:000448406600014) 2018; 9 Hyun, H (WOS:000345460800085) 2014; 4 |
References_xml | – volume: 11 start-page: 696 year: 2000 end-page: 704 publication-title: Bioconjugate Chem. – volume: 19 year: 2014 publication-title: J. Biomed. Opt. – volume: 139 start-page: 12406 year: 2017 end-page: 12409 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 7018 year: 2014 end-page: 7025 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 6556 year: 2015 end-page: 6563 publication-title: Chem. Sci. – volume: 51 start-page: 3226 year: 2018 end-page: 3235 publication-title: Acc. Chem. Res. – volume: 49 start-page: 1731 year: 2016 end-page: 1740 publication-title: Acc. Chem. Res. – volume: 26 start-page: 773 year: 2015 end-page: 781 publication-title: Bioconjugate Chem. – volume: 28 start-page: 2741 year: 2018 end-page: 2745 publication-title: Bioorg. Med. Chem. Lett. – volume: 46 start-page: 7406 year: 2010 end-page: 7408 publication-title: Chem. Commun. – volume: 4 start-page: 172 year: 2005 end-page: 181 publication-title: Mol. Imaging – volume: 58 start-page: 2845 year: 2015 end-page: 2854 publication-title: J. Med. Chem. – volume: 55 128 start-page: 2470 2516 year: 2016 2016 end-page: 2473 2519 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 510 year: 2019 publication-title: Front. Pharmacol. – volume: 14 start-page: 934 year: 2019 end-page: 940 publication-title: ACS Chem. Biol. – volume: 7 start-page: 516 year: 2012 end-page: 524 publication-title: Contrast Media Mol. Imaging – volume: 23 start-page: 4849 year: 2017 end-page: 4862 publication-title: Chem. Eur. J. – volume: 9 start-page: 2856 year: 2019 end-page: 2867 publication-title: Theranostics – start-page: 4791 year: 2019 end-page: 4796 publication-title: Eur. J. Org. Chem. – volume: 44 start-page: 123 year: 2011 end-page: 151 publication-title: Q. Rev. Biophys. – volume: 114 start-page: 688 year: 2018 end-page: 700 publication-title: Biophys. J. – volume: 50 start-page: 2691 year: 2011 end-page: 2700 publication-title: Biochemistry – volume: 27 start-page: 1253 year: 2016 end-page: 1258 publication-title: Bioconjugate Chem. – volume: 50 123 start-page: 6258 6382 year: 2011 2011 end-page: 6263 6387 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 28 start-page: 509 year: 2018 end-page: 514 publication-title: Bioorg. Med. Chem. Lett. – volume: 23 start-page: 9306 year: 2017 end-page: 9312 publication-title: Chem. Eur. J. – volume: 52 start-page: 2266 year: 2019 end-page: 2277 publication-title: Acc. Chem. Res. – volume: 57 130 start-page: 7483 7605 year: 2018 2018 end-page: 7487 7609 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: e354 year: 2019 end-page: e367 publication-title: Lancet Oncol. – volume: 43 start-page: 1857 year: 2016 end-page: 1867 publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 9 start-page: 7261 year: 2018 end-page: 7270 publication-title: Chem. Sci. – volume: 141 start-page: 7155 year: 2019 end-page: 7162 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 254 year: 2017 end-page: 258 publication-title: Chem. Eur. J. – start-page: 2897 year: 2008 end-page: 2899 publication-title: Chem. Commun. – volume: 4 start-page: 58762 year: 2014 end-page: 58768 publication-title: RSC Adv. – volume: 54 127 start-page: 15434 15654 year: 2015 2015 end-page: 15438 15658 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 18 start-page: 52 year: 2016 end-page: 61 publication-title: Mol. Imaging Biol. – volume: 13 start-page: 7584 year: 2015 end-page: 7598 publication-title: Org. Biomol. Chem. – volume: 31 start-page: 148 year: 2013 end-page: 153 publication-title: Nat. Biotechnol. – volume: 71 start-page: 7862 year: 2006 end-page: 7865 publication-title: J. Org. Chem. – volume: 23 start-page: 2730 year: 2017 end-page: 2742 publication-title: Clin. Cancer Res. – volume: 14 start-page: 1145 year: 2017 end-page: 1153 publication-title: Mol. Pharm. – volume: 14 start-page: 584 year: 2012 end-page: 592 publication-title: Mol. Imaging Biol. – volume: 6 start-page: 4530 year: 2015 end-page: 4536 publication-title: Chem. Sci. – volume: 14 start-page: 1623 year: 2017 end-page: 1633 publication-title: Mol. Pharm. – volume: 152 start-page: 19 year: 2018 end-page: 28 publication-title: Dyes Pigm. – volume: 24 year: 2019 publication-title: J. Biomed. Opt. – volume: 9 start-page: 1754 year: 2018 end-page: 1760 publication-title: MedChemComm – volume: 1 start-page: 354 year: 2002 end-page: 364 publication-title: Mol. Imaging – volume: 116 start-page: 7768 year: 2016 end-page: 7817 publication-title: Chem. Rev. – volume: 9 start-page: 1548 year: 2019 end-page: 1555 publication-title: Quant. Imaging Med. Surg. – volume: 24 start-page: 13821 year: 2018 end-page: 13829 publication-title: Chem. Eur. J. – volume: 8 start-page: 21054 year: 2017 end-page: 21066 publication-title: Oncotarget – volume: 51 start-page: 3989 year: 2015 end-page: 3992 publication-title: Chem. Commun. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 31 start-page: 214 year: 2020 end-page: 223 publication-title: Bioconjugate Chem. – volume: 114 start-page: 962 year: 2017 end-page: 967 publication-title: Proc. Natl. Acad. Sci. USA – volume: 57 start-page: 4578 year: 1992 end-page: 4580 publication-title: J. Org. Chem. – volume: 31 start-page: 241 year: 2020 end-page: 247 publication-title: Bioconjugate Chem. – volume: 132 start-page: 7 year: 2016 end-page: 19 publication-title: Dyes Pigm. – volume: 8 start-page: 4141 year: 2018 end-page: 4151 publication-title: Theranostics – volume: 12 start-page: 3303 year: 2015 end-page: 3311 publication-title: Mol. Pharm. – volume: 27 start-page: 404 year: 2016 end-page: 413 publication-title: Bioconjugate Chem. – volume: 51 start-page: 1699 year: 2003 end-page: 1712 publication-title: J. Histochem. Cytochem. – volume: 21 year: 2016 publication-title: J. Biomed. Opt. – ident: e_1_2_6_20_2 doi: 10.1021/acs.bioconjchem.5b00492 – ident: e_1_2_6_29_2 doi: 10.1021/acschembio.9b00122 – ident: e_1_2_6_70_1 doi: 10.1002/chem.201700026 – ident: e_1_2_6_40_1 – ident: e_1_2_6_59_2 doi: 10.1039/b802728e – ident: e_1_2_6_72_1 doi: 10.1016/j.bpj.2017.12.011 – ident: e_1_2_6_13_2 doi: 10.1039/C5OB00788G – ident: e_1_2_6_21_2 doi: 10.1021/acs.accounts.6b00239 – ident: e_1_2_6_14_1 – ident: e_1_2_6_75_1 doi: 10.1158/1078-0432.CCR-16-0437 – ident: e_1_2_6_28_1 – ident: e_1_2_6_42_2 doi: 10.1117/1.JBO.19.3.036006 – ident: e_1_2_6_39_1 doi: 10.1016/j.bmcl.2018.02.040 – ident: e_1_2_6_84_2 doi: 10.1002/anie.201801226 – ident: e_1_2_6_67_1 – ident: e_1_2_6_63_1 – ident: e_1_2_6_7_2 doi: 10.1017/S0033583510000247 – ident: e_1_2_6_4_1 – ident: e_1_2_6_31_2 doi: 10.1039/c0cc02366c – ident: e_1_2_6_53_2 doi: 10.1039/C5SC00348B – ident: e_1_2_6_74_1 doi: 10.1007/s00259-016-3372-y – ident: e_1_2_6_38_2 doi: 10.1002/anie.201102459 – ident: e_1_2_6_56_2 doi: 10.1002/chem.201605847 – ident: e_1_2_6_48_2 doi: 10.21037/qims.2019.09.04 – ident: e_1_2_6_50_2 doi: 10.1021/bc000015m – ident: e_1_2_6_19_2 doi: 10.1021/acs.molpharmaceut.6b01091 – ident: e_1_2_6_15_2 doi: 10.1016/j.bmcl.2017.12.001 – ident: e_1_2_6_44_1 – ident: e_1_2_6_9_2 doi: 10.7150/thno.27995 – ident: e_1_2_6_45_2 doi: 10.1016/j.dyepig.2016.03.054 – ident: e_1_2_6_83_2 doi: 10.1021/jacs.7b07272 – ident: e_1_2_6_47_1 – ident: e_1_2_6_49_2 doi: 10.1016/j.dyepig.2018.01.029 – ident: e_1_2_6_55_2 doi: 10.1021/acs.accounts.9b00221 – ident: e_1_2_6_80_1 doi: 10.1007/s11307-011-0534-y – ident: e_1_2_6_36_2 doi: 10.1021/acs.jmedchem.5b00253 – ident: e_1_2_6_57_2 doi: 10.1073/pnas.1617990114 – ident: e_1_2_6_62_1 doi: 10.1021/jacs.9b02537 – ident: e_1_2_6_27_2 doi: 10.1162/153535002321093963 – ident: e_1_2_6_23_3 doi: 10.1002/ange.201507868 – ident: e_1_2_6_22_2 doi: 10.1021/acs.bioconjchem.6b00093 – ident: e_1_2_6_2_2 doi: 10.1021/acs.chemrev.6b00001 – ident: e_1_2_6_65_1 – ident: e_1_2_6_1_1 – ident: e_1_2_6_51_1 – ident: e_1_2_6_78_1 doi: 10.1021/acs.bioconjchem.9b00750 – ident: e_1_2_6_35_2 doi: 10.1007/s11307-015-0870-4 – ident: e_1_2_6_61_1 doi: 10.1002/anie.201510620 – ident: e_1_2_6_46_2 doi: 10.1039/C4RA11225C – ident: e_1_2_6_52_2 doi: 10.1002/chem.201604473 – ident: e_1_2_6_64_1 doi: 10.1002/ejoc.201900715 – ident: e_1_2_6_71_1 doi: 10.1021/bi2000966 – ident: e_1_2_6_82_1 – ident: e_1_2_6_11_1 – ident: e_1_2_6_68_2 doi: 10.1002/cmmi.1484 – ident: e_1_2_6_12_2 doi: 10.1021/acs.accounts.8b00384 – ident: e_1_2_6_30_2 doi: 10.1039/C5SC02396C – ident: e_1_2_6_69_2 doi: 10.1162/15353500200505127 – ident: e_1_2_6_23_2 doi: 10.1002/anie.201507868 – ident: e_1_2_6_60_1 doi: 10.7150/thno.33595 – ident: e_1_2_6_79_1 doi: 10.18632/oncotarget.15486 – ident: e_1_2_6_41_2 doi: 10.1039/C4CC08814J – ident: e_1_2_6_66_1 doi: 10.1117/1.JBO.21.8.080901 – ident: e_1_2_6_37_2 doi: 10.1038/nbt.2468 – ident: e_1_2_6_17_1 – ident: e_1_2_6_25_1 – ident: e_1_2_6_33_1 – ident: e_1_2_6_6_2 doi: 10.3389/fphar.2019.00510 – ident: e_1_2_6_34_2 doi: 10.1039/C8MD00190A – ident: e_1_2_6_43_2 doi: 10.1021/jo061284u – ident: e_1_2_6_16_2 doi: 10.1021/jo00043a009 – ident: e_1_2_6_10_2 doi: 10.1002/adma.201802546 – ident: e_1_2_6_58_2 doi: 10.1021/acs.bioconjchem.5b00097 – ident: e_1_2_6_32_2 doi: 10.1039/C8SC00900G – ident: e_1_2_6_61_2 doi: 10.1002/ange.201510620 – ident: e_1_2_6_18_2 doi: 10.1021/acs.molpharmaceut.6b01053 – ident: e_1_2_6_77_1 doi: 10.1002/chem.201801825 – ident: e_1_2_6_81_1 doi: 10.1117/1.JBO.24.6.066012 – ident: e_1_2_6_8_1 – ident: e_1_2_6_24_2 doi: 10.1021/acs.molpharmaceut.5b00472 – ident: e_1_2_6_3_2 doi: 10.1117/1.JBO.21.5.050901 – ident: e_1_2_6_73_1 doi: 10.1177/002215540305101214 – ident: e_1_2_6_76_1 doi: 10.1021/acs.bioconjchem.9b00707 – ident: e_1_2_6_54_1 – ident: e_1_2_6_84_3 doi: 10.1002/ange.201801226 – ident: e_1_2_6_26_2 doi: 10.1021/ja500962u – ident: e_1_2_6_5_2 doi: 10.1016/S1470-2045(19)30317-1 – ident: e_1_2_6_38_3 doi: 10.1002/ange.201102459 – volume: 21 start-page: ARTN 050901 year: 2016 ident: WOS:000379334200004 article-title: Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy publication-title: JOURNAL OF BIOMEDICAL OPTICS doi: 10.1117/1.JBO.21.5.050901 – volume: 21 start-page: ARTN 080901 year: 2016 ident: WOS:000388212300003 article-title: Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging publication-title: JOURNAL OF BIOMEDICAL OPTICS doi: 10.1117/1.JBO.21.8.080901 – volume: 152 start-page: 19 year: 2018 ident: WOS:000428008700003 article-title: The influence of systematic structure alterations on the photophysical properties and conjugation characteristics of asymmetric cyanine 5 dyes publication-title: DYES AND PIGMENTS doi: 10.1016/j.dyepig.2018.01.029 – volume: 20 start-page: E354 year: 2019 ident: WOS:000473253800016 article-title: Latest developments in molecular tracers for fluorescence image-guided cancer surgery publication-title: LANCET ONCOLOGY – volume: 23 start-page: 9306 year: 2017 ident: WOS:000405284900014 article-title: Accessing Structurally Diverse Near-Infrared Cyanine Dyes for Folate Receptor-Targeted Cancer Cell Staining publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201700026 – volume: 28 start-page: 2741 year: 2018 ident: WOS:000443150500020 article-title: A chemically stable fluorescent marker of the ureter publication-title: BIOORGANIC & MEDICINAL CHEMISTRY LETTERS doi: 10.1016/j.bmcl.2018.02.040 – volume: 31 start-page: 241 year: 2020 ident: WOS:000515196200009 article-title: Tailoring Kidney Transport of Organic Dyes with Low-Molecular-Weight PEGylation publication-title: BIOCONJUGATE CHEMISTRY doi: 10.1021/acs.bioconjchem.9b00707 – volume: 9 start-page: 7261 year: 2018 ident: WOS:000448406600014 article-title: Tricarbocyanine N-triazoles: the scaffold-of-choice for long-term near-infrared imaging of immune cells in vivo publication-title: CHEMICAL SCIENCE doi: 10.1039/c8sc00900g – volume: 52 start-page: 2266 year: 2019 ident: WOS:000482534600022 article-title: From Dyestuff Chemistry to Cancer Theranostics: The Rise of Rylenecarboximides publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.9b00221 – volume: 1 start-page: 354 year: 2002 ident: MEDLINE:12926231 article-title: IRDye78 conjugates for near-infrared fluorescence imaging. publication-title: Molecular imaging – volume: 57 start-page: 4578 year: 1992 ident: WOS:A1992JJ66800009 article-title: SUBSTITUTION-REACTIONS OF A NUCLEOFUGAL GROUP IN HEPTAMETHINE CYANINE DYES - SYNTHESIS OF AN ISOTHIOCYANATO DERIVATIVE FOR LABELING OF PROTEINS WITH A NEAR-INFRARED CHROMOPHORE publication-title: JOURNAL OF ORGANIC CHEMISTRY – volume: 55 start-page: 2470 year: 2016 ident: WOS:000369970500030 article-title: Conformational Switching of pi-Conjugated Junctions from Merocyanine to Cyanine States by Solvent Polarity publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201510620 – volume: 114 start-page: 962 year: 2017 ident: WOS:000393196300063 article-title: Molecular imaging of biological systems with a clickable dye in the broad 800-to 1,700-nm near-infrared window publication-title: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA doi: 10.1073/pnas.1617990114 – volume: 23 start-page: 2730 year: 2017 ident: WOS:000402537800021 article-title: Tumor-Specific Uptake of Fluorescent Bevacizumab-IRDye800CW Microdosing in Patients with Primary Breast Cancer: A Phase I Feasibility Study publication-title: CLINICAL CANCER RESEARCH doi: 10.1158/1078-0432.CCR-16-0437 – volume: 11 start-page: 696 year: 2000 ident: WOS:000089558300012 article-title: Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin publication-title: BIOCONJUGATE CHEMISTRY doi: 10.1021/bc000015m – volume: 9 start-page: 1548 year: 2019 ident: WOS:000488450700007 article-title: Targeted molecular imaging of TLR4 in hepatocellular carcinoma using zwitterionic near-infrared fluorophores publication-title: QUANTITATIVE IMAGING IN MEDICINE AND SURGERY doi: 10.21037/qims.2019.09.04 – volume: 51 start-page: 1699 year: 2003 ident: WOS:000186878400014 article-title: Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: Fluorescence of the dyes and their bioconjugates publication-title: JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY – start-page: 2897 year: 2008 ident: WOS:000256924500016 article-title: Stabilisation of a heptamethine cyanine dye by rotaxane encapsulation publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/b802728e – volume: 2019 start-page: 4791 year: 2019 ident: WOS:000477375200001 article-title: Isomerization and Dimerization of Indocyanine Green and a Related Heptamethine Dye publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY doi: 10.1002/ejoc.201900715 – volume: 50 start-page: 2691 year: 2011 ident: WOS:000288970800034 article-title: Rational Approach To Select Small Peptide Molecular Probes Labeled with Fluorescent Cyanine Dyes for in Vivo Optical Imaging publication-title: BIOCHEMISTRY doi: 10.1021/bi2000966 – volume: 57 start-page: 7483 year: 2018 ident: WOS:000434949200036 article-title: An Efficient 1064 nm NIR-II Excitation Fluorescent Molecular Dye for Deep-Tissue High-Resolution Dynamic Bioimaging publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201801226 – volume: 7 start-page: 516 year: 2012 ident: WOS:000308940900006 article-title: cGMP-Compatible preparative scale synthesis of near-infrared fluorophores publication-title: CONTRAST MEDIA & MOLECULAR IMAGING doi: 10.1002/cmmi.1484 – volume: 30 start-page: ARTN 1802546 year: 2018 ident: WOS:000442206400024 article-title: Repurposing Cyanine NIR-I Dyes Accelerates Clinical Translation of Near-Infrared-II (NIR-II) Bioimaging publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201802546 – volume: 123 start-page: 6382 year: 2011 ident: 000531402100001.9 publication-title: Angew. Chem. – volume: 23 start-page: 4849 year: 2017 ident: 000531402100001.30 publication-title: Chem. Eur. J. – volume: 26 start-page: 773 year: 2015 ident: WOS:000353177300019 article-title: Glycerol-Based Contrast Agents: A Novel Series of Dendronized Pentamethine Dyes publication-title: BIOCONJUGATE CHEMISTRY doi: 10.1021/acs.bioconjchem.5b00097 – volume: 31 start-page: 148 year: 2013 ident: WOS:000315322100026 article-title: Targeted zwitterionic near-infrared fluorophores for improved optical imaging publication-title: NATURE BIOTECHNOLOGY doi: 10.1038/nbt.2468 – volume: 12 start-page: 3303 year: 2015 ident: WOS:000361086800020 article-title: Impact of C4'-O-Alkyl Linker on in Vivo Pharmacokinetics of Near-Infrared Cyanine/Monoclonal Antibody Conjugates publication-title: MOLECULAR PHARMACEUTICS doi: 10.1021/acs.molpharmaceut.5b00472 – volume: 10 start-page: ARTN 510 year: 2019 ident: WOS:000468004100001 article-title: Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making publication-title: FRONTIERS IN PHARMACOLOGY doi: 10.3389/fphar.2019.00510 – volume: 31 start-page: 214 year: 2020 ident: WOS:000515196200006 article-title: Paired Agent Fluorescence Imaging of Cancer in a Living Mouse Using Preassembled Squaraine Molecular Probes with Emission Wavelengths of 690 and 830 nm publication-title: BIOCONJUGATE CHEMISTRY doi: 10.1021/acs.bioconjchem.9b00750 – volume: 58 start-page: 2845 year: 2015 ident: 000531402100001.8 publication-title: J. Med. Chem. – volume: 6 start-page: 4530 year: 2015 ident: WOS:000357931700016 article-title: A simple and effective "capping" approach to readily tune the fluorescence of near-infrared cyanines publication-title: CHEMICAL SCIENCE doi: 10.1039/c5sc00348b – volume: 27 start-page: 404 year: 2016 ident: WOS:000370582600015 article-title: Role of Fluorophore Charge on the In Vivo Optical Imaging Properties of Near-Infrared Cyanine Dye/Monoclonal Antibody Conjugates publication-title: BIOCONJUGATE CHEMISTRY doi: 10.1021/acs.bioconjchem.5b00492 – volume: 14 start-page: 584 year: 2012 ident: WOS:000308819300008 article-title: In Vivo Quantification of Tumor Receptor Binding Potential with Dual-Reporter Molecular Imaging publication-title: MOLECULAR IMAGING AND BIOLOGY doi: 10.1007/s11307-011-0534-y – volume: 116 start-page: 7768 year: 2016 ident: WOS:000380730100002 article-title: Recent Development of Chemosensors Based on Cyanine Platforms publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.6b00001 – volume: 51 start-page: 3989 year: 2015 ident: WOS:000350212600007 article-title: The development of a highly photostable and chemically stable zwitterionic near-infrared dye for imaging applications publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c4cc08814j – volume: 43 start-page: 1857 year: 2016 ident: WOS:000380700100012 article-title: Fluorescence guided surgery and tracer-dose, fact or fiction? publication-title: EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING doi: 10.1007/s00259-016-3372-y – volume: 28 start-page: 509 year: 2018 ident: WOS:000424285600051 article-title: Synthesis, optical properties and cytotoxicity of meso-heteroatom substituted IR-786 analogs publication-title: BIOORGANIC & MEDICINAL CHEMISTRY LETTERS doi: 10.1016/j.bmcl.2017.12.001 – volume: 24 start-page: 13821 year: 2018 ident: WOS:000445447300022 article-title: Non-Covalently Pre-Assembled High-Performance Near-Infrared Fluorescent Molecular Probes for Cancer Imaging publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201801825 – volume: 114 start-page: 688 year: 2018 ident: WOS:000425895600022 article-title: The Effect of Fluorophore Conjugation on Antibody Affinity and the Photophysical Properties of Dyes publication-title: BIOPHYSICAL JOURNAL doi: 10.1016/j.bpj.2017.12.011 – volume: 46 start-page: 7406 year: 2010 ident: WOS:000282218200036 article-title: Development of photostable near-infrared cyanine dyes publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c0cc02366c – volume: 8 start-page: 4141 year: 2018 ident: WOS:000440377100010 article-title: Near-Infrared-II (NIR-II) Bioimaging via Off-Peak NIR-I Fluorescence Emission publication-title: THERANOSTICS doi: 10.7150/thno.27995 – volume: 24 year: 2019 ident: 000531402100001.64 publication-title: J. Biomed. Opt. – volume: 50 start-page: 6258 year: 2011 ident: WOS:000292642600007 article-title: Synthesis and In Vivo Fate of Zwitterionic Near-Infrared Fluorophores publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201102459 – volume: 14 start-page: 934 year: 2019 ident: WOS:000468696600012 article-title: A Nonaggregating Heptamethine Cyanine for Building Brighter Labeled Biomolecules publication-title: ACS CHEMICAL BIOLOGY doi: 10.1021/acschembio.9b00122 – volume: 19 start-page: ARTN 036006 year: 2014 ident: WOS:000338333400019 article-title: Targeted zwitterionic near infrared fluorescent probe for improved imaging of type 2 cannabinoid receptors publication-title: JOURNAL OF BIOMEDICAL OPTICS doi: 10.1117/1.JBO.19.3.036006 – volume: 127 start-page: 15654 year: 2015 ident: 000531402100001.65 publication-title: Angew. Chem. – volume: 9 start-page: 1754 year: 2018 ident: WOS:000448343300016 article-title: A zwitterionic near-infrared dye linked TrkC targeting agent for imaging metastatic breast cancer publication-title: MEDCHEMCOMM doi: 10.1039/c8md00190a – volume: 4 start-page: 172 year: 2005 ident: WOS:000208265400003 article-title: Organic Alternatives to Quantum Dots for Intraoperative Near-Infrared Fluorescent Sentinel Lymph Node Mapping publication-title: MOLECULAR IMAGING – volume: 54 start-page: 15434 year: 2015 ident: WOS:000368058500017 article-title: High-contrast Noninvasive Imaging of Kidney Clearance Kinetics Enabled by Renal Clearable Nanofluorophores publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201507868 – volume: 71 start-page: 7862 year: 2006 ident: WOS:000240677900048 article-title: Heptamethine cyanine dyes with a robust C-C bond at the central position of the chromophore publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo061284u – volume: 130 start-page: 7605 year: 2018 ident: 000531402100001.34 article-title: An Efficient 1064 nm NIR-II Excitation Fluorescent Molecular Dye for Deep-Tissue High-Resolution Dynamic Bioimaging publication-title: Angew. Chem. – volume: 9 start-page: 2856 year: 2019 ident: WOS:000467276900010 article-title: QuatCy: A Heptamethine Cyanine Modification With Improved Characteristics publication-title: THERANOSTICS doi: 10.7150/thno.33595 – volume: 49 start-page: 1731 year: 2016 ident: WOS:000384038600015 article-title: Tissue-Specific Near-Infrared Fluorescence Imaging publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.6b00239 – volume: 13 start-page: 7584 year: 2015 ident: WOS:000358243200001 article-title: Cyanine polyene reactivity: scope and biomedical applications publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY doi: 10.1039/c5ob00788g – volume: 44 start-page: 123 year: 2011 ident: WOS:000287341700003 article-title: Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments publication-title: QUARTERLY REVIEWS OF BIOPHYSICS doi: 10.1017/S0033583510000247 – volume: 51 start-page: 3226 year: 2018 ident: WOS:000454183300028 article-title: Harnessing Cyanine Reactivity for Optical Imaging and Drug Delivery publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.8b00384 – volume: 14 start-page: 1145 year: 2017 ident: WOS:000398426100016 article-title: Effect of Dye and Conjugation Chemistry on the Biodistribution Profile of Near-Infrared-Labeled Nanobodies as Tracers for Image-Guided Surgery publication-title: MOLECULAR PHARMACEUTICS doi: 10.1021/acs.molpharmaceut.6b01053 – volume: 27 start-page: 1253 year: 2016 ident: WOS:000376331700011 article-title: Tailoring Fluorescent Dyes To Optimize a Hybrid RGD-Tracer publication-title: BIOCONJUGATE CHEMISTRY doi: 10.1021/acs.bioconjchem.6b00093 – volume: 18 start-page: 52 year: 2016 ident: WOS:000372261700006 article-title: 700-nm Zwitterionic Near-Infrared Fluorophores for Dual-Channel Image-Guided Surgery publication-title: MOLECULAR IMAGING AND BIOLOGY doi: 10.1007/s11307-015-0870-4 – volume: 6 start-page: 6556 year: 2015 ident: WOS:000362977000066 article-title: Reactive species involved in the regioselective photooxidation of heptamethine cyanines publication-title: CHEMICAL SCIENCE doi: 10.1039/c5sc02396c – volume: 14 start-page: 1623 year: 2017 ident: WOS:000400633300029 article-title: Tracking Antibody Distribution with Near-Infrared Fluorescent Dyes: Impact of Dye Structure and Degree of Labeling on Plasma Clearance publication-title: MOLECULAR PHARMACEUTICS doi: 10.1021/acs.molpharmaceut.6b01091 – volume: 4 start-page: 58762 year: 2014 ident: WOS:000345460800085 article-title: Central C-C bonding increases optical and chemical stability of NIR fluorophores publication-title: RSC ADVANCES doi: 10.1039/c4ra11225c – volume: 136 start-page: 7018 year: 2014 ident: WOS:000336078400046 article-title: Tunable Heptamethine-Azo Dye Conjugate as an NIR Fluorescent Probe for the Selective Detection of Mitochondria! Glutathione over Cysteine and Homocysteine publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja500962u – volume: 132 start-page: 7 year: 2016 ident: WOS:000378456200002 article-title: Synthesis and systematic evaluation of symmetric sulfonated centrally C-C bonded cyanine near-infrared dyes for protein labelling publication-title: DYES AND PIGMENTS doi: 10.1016/j.dyepig.2016.03.054 – volume: 128 start-page: 2516 year: 2016 ident: 000531402100001.2 article-title: Conformational switching of π-conjugated junctions from merocyanine to cyanine states by solvent polarity publication-title: Angew. Chem. – volume: 141 start-page: 7155 year: 2019 ident: WOS:000466987900047 article-title: Approach to a Substituted Heptamethine Cyanine Chain by the Ring Opening of Zincke Salts publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b02537 – volume: 8 start-page: 21054 year: 2017 ident: WOS:000397642400046 article-title: Real-time near-infrared fluorescence imaging using cRGDZW800-1 for intraoperative visualization of multiple cancer types publication-title: ONCOTARGET doi: 10.18632/oncotarget.15486 – volume: 23 start-page: 254 year: 2017 ident: WOS:000393618700006 article-title: Preparation of an F-18-Labeled Hydrocyanine Dye as a Multimodal Probe for Reactive Oxygen Species publication-title: CHEMISTRY-A EUROPEAN JOURNAL doi: 10.1002/chem.201604473 – volume: 139 start-page: 12406 year: 2017 ident: WOS:000411043900019 article-title: Cyanine Conformational Restraint in the Far-Red Range publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b07272 |
SSID | ssj0028806 |
Score | 2.6272337 |
Snippet | The near‐infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and... The near-infrared window of fluorescent heptamethine cyanine dyes greatly facilitates biological imaging because there is deep penetration of the light and... |
Source | Web of Science |
SourceID | pubmedcentral proquest pubmed webofscience crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12154 |
SubjectTerms | Animals Antibodies Antifungal agents Aromatic compounds Carbocyanines - chemical synthesis Carbocyanines - chemistry Cell Line, Tumor Chemistry Chemistry, Multidisciplinary Cyanine dyes cyanines Dye penetrants Dyes dyes/pigments Fluorescence Fluorescent Dyes - chemistry fluorescent probes imaging agents Infrared imaging Infrared windows Medical imaging Mice Molecular Imaging Molecular Structure Optical Imaging Pharmacokinetics Physical Sciences Physiochemistry Science & Technology Shielding Spectroscopy, Near-Infrared Tissue Distribution |
Title | Sterically Shielded Heptamethine Cyanine Dyes for Bioconjugation and High Performance Near‐Infrared Fluorescence Imaging |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202004449 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000531402100001 https://www.ncbi.nlm.nih.gov/pubmed/32324959 https://www.proquest.com/docview/2420130144 https://www.proquest.com/docview/2394907011 https://pubmed.ncbi.nlm.nih.gov/PMC7473488 |
Volume | 59 |
WOS | 000531402100001 |
WOSCitedRecordID | wos000531402100001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3Dh_QgUZKRKnNImcZzHsSxd7SKxQkCl3iK_0i6EbLWbHLYnfgK_kV_CjJO4DQ-B4JSNPE429ow9n-35hpA9QP6l4IL7munUj0WgfSmk9EsWJolkichyjEZ-s0hmx_HrE35yJYq_44dwC25oGXa8RgMXcnNwSRqKEdiA7yLLeIYRfHhgC72id44_KgLl7MKLGPMxC_3A2hhEB-Pq41npJ1fz1ycm3Sw1dmztzDS9RcTwTd2BlE_7bSP31cUPdI__89G3yc3ebaWHnZ7dIddMfZdcnwzZ4u6Ri_eN3fqpqi3F_NqVNprOzHkjMEc1vJdOtvBYuL7amg0FV5m-XK4AjH9sT61yUFFDheXpGX17GctAF2CI3758ndflGk_K02nVrtaWgQoK559tiqX75Hh69GEy8_u8Dr7iaZj7RkdMA06SKjG5jEIRKMHA1xOl4oHWUnGVZbExSRLlyoAPYTKeaSk4gw4QAKofkJ16VZtHhKZpqFJciUlLGeepzg3Ax8AYZCnSXCiP-EO_FqonPcfcG1XR0TVHBbZo4VrUIy-c_HlH9_Fbyd1BTYre7DcF_FfcCQaQ6pHnrhh6AndhRG1WLciwPM5hoA1DjzzstMq9iqF_m3N4eDrSNyeAZODjknp5ZknBARYyGIw9sndVM11FG3QNYDrq9nM8Ev6N2KRvMuRHaDwSWdX8Q8MUh4v5kbt7_C-VnpAb-BuX0EO2S3aadWuegu_XyGfWvr8DrclTow |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQLb0pKASNV4pQ2iTevY1m62oV2haCVuEV-pV1Is9U2e9ie-An8Rn4JM86jhIdAcIo2Hicbe8aez_Z8A7CNyD8XoQhdzXXsDoSnXSmkdHPuR5HkkUhSikY-nEbj48HrD2F7mpBiYWp-iG7BjSzDjtdk4LQgvXvFGkoh2AjwAkt5ll6HG5TW26Kqdx2DVIDqWQcYce5SHvqWt9ELdvv1-_PST87mr89MdvNU37W1c9PoNsj2q-ojKZ92lpXcUZc_ED7-12ffgVuN58r2alW7C9dMeQ_Wh23CuPtw-b6yuz9FsWKUYrvQRrOxOa8EpanGF7PhCh-L11crc8HQW2YvZ3PE4x-XJ1Y_mCixwuzklL29CmdgU7TFr5-_TMp8QYfl2ahYzheWhAoLJ2c2y9IDOB7tHw3HbpPawVVh7Keu0QHXCJWkikwqA194SnB090SuQk9rqUKVJANjoihIlUE3wiRhoqUIOfaAQFz9ENbKeWkeAYtjX8W0GBPncpDGOjWIID1jiKhIh0I54LYdm6mG95zSbxRZzdgcZNSiWdeiDrzo5M9rxo_fSm61epI1ln-R4X-lzWDEqQ4874qxJ2gjRpRmvkQZng5SHGt934GNWq26V3FycdMQHx73FK4TID7wfkk5O7W84IgMOY7HDmx_r5pdRRt3jXg6qLd0HPD_RmzYNBlRJFQOBFY3_9Aw2d50st_92vyXSs9gfXx0eJAdTKZvHsNNuk8r6j7fgrVqsTRP0BWs5FNr7N8At_FXvg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BkYAX7iNQwEiVeEqbxHGOx7Lb1S7HqgIq9S3ylXZpml1tsw_bJ34Cv5Ffwtg52nAIBE_RxuNkY8_Y89mebwC2EPnnnHHmKqpiN-SecgUXws2pH0WCRjxJTTTy-2k0PgjfHLLDS1H8NT9Et-BmLMOO18bAFyrfuSANNRHYiO8Cy3iWXoVrYeQlRq-HHzoCqQC1s44votQ1aehb2kYv2OnX709LP_mavz4y2U1Tfc_WTk2j28Dbj6pPpJxsryqxLc9_4Hv8n6--A7cav5Xs1op2F67o8h7cGLTp4u7D-cfK7v0UxZqYBNuF0oqM9aLiJkk1vpcM1vhYvA7X-oygr0xez-aIxj-vjqx2EF5ihdnRMdm_CGYgU7TEb1--Tsp8aY7Kk1Gxmi8tBRUWTk5tjqUHcDDa-zQYu01iB1ey2E9drQKqECgJGelUBD73JKfo7PFcMk8pIZlMklDrKApSqdGJ0AlLlOCMYgdwRNUPYaOcl_oxkDj2ZWyWYuJchGmsUo340dPa0BQpxqUDbtuvmWxYz03yjSKr-ZqDzLRo1rWoA686-UXN9_Fbyc1WTbLG7s8y_K9mKxhRqgMvu2LsCbMNw0s9X6EMTcMUR1rfd-BRrVXdq6hxcFOGD497-tYJGDbwfkk5O7as4IgLKY7GDmxd1syuoo26RjQd1Bs6Dvh_IzZomswQJFQOBFY1_9Aw2e50stf9evIvlV7A9f3hKHs3mb59CjfNbbOc7tNN2KiWK_0M_cBKPLem_h2PwlZ2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sterically+Shielded+Heptamethine+Cyanine+Dyes+for+Bioconjugation+and+High+Performance+Near%E2%80%90Infrared+Fluorescence+Imaging&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Li%2C+Dong%E2%80%90Hao&rft.au=Schreiber%2C+Cynthia+L.&rft.au=Smith%2C+Bradley+D.&rft.date=2020-07-13&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=29&rft.spage=12154&rft.epage=12161&rft_id=info:doi/10.1002%2Fanie.202004449&rft.externalDBID=10.1002%252Fanie.202004449&rft.externalDocID=ANIE202004449 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |