Well‐Defined Poly(Ester Amide)‐Based Homo‐ and Block Copolymers by One‐Pot Organocatalytic Anionic Ring‐Opening Copolymerization of N‐Sulfonyl Aziridines and Cyclic Anhydrides

We report a new synthetic methodology for poly(ester amide)s by anionic ring‐opening copolymerization of N‐sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly‐active, controlled, and selective alternating copolymerization in the absence of any...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 13; pp. 6949 - 6954
Main Authors Xu, Jiaxi, Hadjichristidis, Nikos
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 22.03.2021
John Wiley and Sons Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report a new synthetic methodology for poly(ester amide)s by anionic ring‐opening copolymerization of N‐sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly‐active, controlled, and selective alternating copolymerization in the absence of any competitive side reaction (zwitterionic mechanism and exchange transacylations). Mechanistic studies have shown first‐order dependence of the copolymerization rate in N‐sulfonyl aziridines and phosphazenes, and zero‐order in cyclic anhydrides. This one‐pot methodology leads not only to homopolymers but also to poly(ester amide)‐based block copolymers. Two catalytic cycles involving ring‐opening alternating copolymerization of N‐sulfonyl aziridines with cyclic anhydrides and ring‐opening polymerization of N‐sulfonyl aziridines have been proposed to explain the one pot synthesis of poly(ester amide)‐based homo‐ and block copolymers. Phosphazene organocatalysts have been found to promote a highly‐active, controlled, and selective alternating ring‐opening copolymerization of N‐sulfonyl aziridines and cyclic anhydrides. This one‐pot methodology leads not only to homopolymers but also to poly(ester amide)‐based block copolymers.
AbstractList We report a new synthetic methodology for poly(ester amide)s by anionic ring-opening copolymerization of N-sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly-active, controlled, and selective alternating copolymerization in the absence of any competitive side reaction (zwitterionic mechanism and exchange transacylations). Mechanistic studies have shown first-order dependence of the copolymerization rate in N-sulfonyl aziridines and phosphazenes, and zero-order in cyclic anhydrides. This one-pot methodology leads not only to homopolymers but also to poly(ester amide)-based block copolymers. Two catalytic cycles involving ring-opening alternating copolymerization of N-sulfonyl aziridines with cyclic anhydrides and ring-opening polymerization of N-sulfonyl aziridines have been proposed to explain the one pot synthesis of poly(ester amide)-based homo- and block copolymers.
We report a new synthetic methodology for poly(ester amide)s by anionic ring‐opening copolymerization of N ‐sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly‐active, controlled, and selective alternating copolymerization in the absence of any competitive side reaction (zwitterionic mechanism and exchange transacylations). Mechanistic studies have shown first‐order dependence of the copolymerization rate in N ‐sulfonyl aziridines and phosphazenes, and zero‐order in cyclic anhydrides. This one‐pot methodology leads not only to homopolymers but also to poly(ester amide)‐based block copolymers. Two catalytic cycles involving ring‐opening alternating copolymerization of N ‐sulfonyl aziridines with cyclic anhydrides and ring‐opening polymerization of N ‐sulfonyl aziridines have been proposed to explain the one pot synthesis of poly(ester amide)‐based homo‐ and block copolymers. Phosphazene organocatalysts have been found to promote a highly‐active, controlled, and selective alternating ring‐opening copolymerization of N ‐sulfonyl aziridines and cyclic anhydrides. This one‐pot methodology leads not only to homopolymers but also to poly(ester amide)‐based block copolymers.
We report a new synthetic methodology for poly(ester amide)s by anionic ring‐opening copolymerization of N ‐sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly‐active, controlled, and selective alternating copolymerization in the absence of any competitive side reaction (zwitterionic mechanism and exchange transacylations). Mechanistic studies have shown first‐order dependence of the copolymerization rate in N ‐sulfonyl aziridines and phosphazenes, and zero‐order in cyclic anhydrides. This one‐pot methodology leads not only to homopolymers but also to poly(ester amide)‐based block copolymers. Two catalytic cycles involving ring‐opening alternating copolymerization of N ‐sulfonyl aziridines with cyclic anhydrides and ring‐opening polymerization of N ‐sulfonyl aziridines have been proposed to explain the one pot synthesis of poly(ester amide)‐based homo‐ and block copolymers.
We report a new synthetic methodology for poly(ester amide)s by anionic ring‐opening copolymerization of N‐sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly‐active, controlled, and selective alternating copolymerization in the absence of any competitive side reaction (zwitterionic mechanism and exchange transacylations). Mechanistic studies have shown first‐order dependence of the copolymerization rate in N‐sulfonyl aziridines and phosphazenes, and zero‐order in cyclic anhydrides. This one‐pot methodology leads not only to homopolymers but also to poly(ester amide)‐based block copolymers. Two catalytic cycles involving ring‐opening alternating copolymerization of N‐sulfonyl aziridines with cyclic anhydrides and ring‐opening polymerization of N‐sulfonyl aziridines have been proposed to explain the one pot synthesis of poly(ester amide)‐based homo‐ and block copolymers. Phosphazene organocatalysts have been found to promote a highly‐active, controlled, and selective alternating ring‐opening copolymerization of N‐sulfonyl aziridines and cyclic anhydrides. This one‐pot methodology leads not only to homopolymers but also to poly(ester amide)‐based block copolymers.
We report a new synthetic methodology for poly(ester amide)s by anionic ring-opening copolymerization of N-sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly-active, controlled, and selective alternating copolymerization in the absence of any competitive side reaction (zwitterionic mechanism and exchange transacylations). Mechanistic studies have shown first-order dependence of the copolymerization rate in N-sulfonyl aziridines and phosphazenes, and zero-order in cyclic anhydrides. This one-pot methodology leads not only to homopolymers but also to poly(ester amide)-based block copolymers. Two catalytic cycles involving ring-opening alternating copolymerization of N-sulfonyl aziridines with cyclic anhydrides and ring-opening polymerization of N-sulfonyl aziridines have been proposed to explain the one pot synthesis of poly(ester amide)-based homo- and block copolymers.We report a new synthetic methodology for poly(ester amide)s by anionic ring-opening copolymerization of N-sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly-active, controlled, and selective alternating copolymerization in the absence of any competitive side reaction (zwitterionic mechanism and exchange transacylations). Mechanistic studies have shown first-order dependence of the copolymerization rate in N-sulfonyl aziridines and phosphazenes, and zero-order in cyclic anhydrides. This one-pot methodology leads not only to homopolymers but also to poly(ester amide)-based block copolymers. Two catalytic cycles involving ring-opening alternating copolymerization of N-sulfonyl aziridines with cyclic anhydrides and ring-opening polymerization of N-sulfonyl aziridines have been proposed to explain the one pot synthesis of poly(ester amide)-based homo- and block copolymers.
Author Xu, Jiaxi
Hadjichristidis, Nikos
AuthorAffiliation 1 King Abdullah University of Science and Technology (KAUST) Physical Sciences and Engineering Division KAUST Catalysis Center Polymer Synthesis Laboratory Thuwal 23955 Saudi Arabia
AuthorAffiliation_xml – name: 1 King Abdullah University of Science and Technology (KAUST) Physical Sciences and Engineering Division KAUST Catalysis Center Polymer Synthesis Laboratory Thuwal 23955 Saudi Arabia
Author_xml – sequence: 1
  givenname: Jiaxi
  orcidid: 0000-0003-0366-020X
  surname: Xu
  fullname: Xu, Jiaxi
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Nikos
  orcidid: 0000-0003-1442-1714
  surname: Hadjichristidis
  fullname: Hadjichristidis, Nikos
  email: Nikolaos.Hadjichristidis@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33351198$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhkeoiF5gyxJZYlMWCb6MY88GaRoCrVQ1FRextDweT-risdPxBDRd8Qi8D2_Dk3CalBQqIVa-_N9_fM7x2c92Qgw2y54SPCYY05c6ODummGLCGSseZHuEUzJiQrAd2OeMjYTkZDfbT-kSeCnx5FG2yxjjhBRyL_vxyXr_89v317ZxwdboPPrhcJZ626GydbV9AdqRTqAcxzbCAelQoyMfzWc0jUugW9slVA1oHizI57FH826hQzS6137onUFlcDHA-s6FBSDzpQ2wu7O7a90DgWKDzkB_v_JNDINH5bXrXA1ppfWj08H4dbSLoYZ7mx5nDxvtk31yux5kH9_MPkyPR6fztyfT8nRkuCDFyDDOiCzynBaFaWhdYUYqqq3EVS4MK3hlJG4mBvpRSSNyrrUgOSeUWEJpY9hB9moTd7mqWlsbG_pOe7XsXKu7QUXt1N9KcBdqEb8oiXPJcQ4BDm8DdPFqZVOvWpcMNF4HG1dJ0VxQQogQFNDn99DLuOoClKcox0QKIYsJUM_-zGibyu9_BWC8AUwXU-pss0UIVjeDo24GR20HBwz5PYNx_fpboCLn_20rNravztvhP4-o8uxkduf9BUvO4F4
CitedBy_id crossref_primary_10_1021_acs_orglett_2c00558
crossref_primary_10_1021_acs_macromol_4c00432
crossref_primary_10_1021_acs_macromol_3c01891
crossref_primary_10_1002_ange_202115189
crossref_primary_10_1016_j_eurpolymj_2022_111135
crossref_primary_10_1002_anie_202218891
crossref_primary_10_1002_marc_202200140
crossref_primary_10_1016_j_eurpolymj_2021_110961
crossref_primary_10_1016_j_eurpolymj_2022_111731
crossref_primary_10_1021_acs_macromol_3c00106
crossref_primary_10_1002_anie_202217418
crossref_primary_10_1021_acs_macromol_1c02303
crossref_primary_10_1002_anie_202104495
crossref_primary_10_1021_acs_macromol_3c00813
crossref_primary_10_1021_acs_macromol_1c00767
crossref_primary_10_1021_acs_macromol_4c00965
crossref_primary_10_1038_s41467_021_27830_3
crossref_primary_10_1039_D2PY00683A
crossref_primary_10_1021_jacs_2c06860
crossref_primary_10_1002_anie_202115189
crossref_primary_10_1002_asia_202201147
crossref_primary_10_1016_j_xcrp_2023_101510
crossref_primary_10_3390_polym14163253
crossref_primary_10_1038_s41467_021_27377_3
crossref_primary_10_1002_ange_202218891
crossref_primary_10_1021_acs_macromol_3c01305
crossref_primary_10_1039_D4SC05047A
crossref_primary_10_1021_acs_macromol_2c01748
crossref_primary_10_1039_D1NJ00782C
crossref_primary_10_1021_acs_macromol_1c01885
crossref_primary_10_1039_D3CY00301A
crossref_primary_10_1002_ange_202104495
crossref_primary_10_1039_D3PY00620D
crossref_primary_10_32604_jrm_2022_019339
crossref_primary_10_1016_j_eurpolymj_2024_112808
crossref_primary_10_1039_D3RA03478J
crossref_primary_10_1002_ange_202217418
Cites_doi 10.1021/ja074131c
10.1002/anie.201601092
10.1002/(SICI)1521-3927(19990201)20:2<88::AID-MARC88>3.0.CO;2-B
10.1021/acsmacrolett.6b00538
10.1016/j.progpolymsci.2013.11.007
10.1021/ma901169r
10.1016/j.progpolymsci.2011.05.005
10.1016/j.eurpolymj.2020.109900
10.1021/acs.chemrev.6b00553
10.1080/00222337708061276
10.1016/j.progpolymsci.2018.08.002
10.1021/acs.macromol.8b00159
10.1016/j.polymdegradstab.2020.109323
10.1002/macp.1995.021961114
10.1021/acs.macromol.0c00940
10.1021/ma070316s
10.1002/macp.1975.020011975103
10.1021/acs.macromol.8b02498
10.1002/ange.201810083
10.1007/BF00264242
10.1021/acs.macromol.7b02125
10.1021/ma500260e
10.1002/ange.201601092
10.1016/j.eurpolymj.2017.01.002
10.1002/(SICI)1521-3935(19990601)200:6<1506::AID-MACP1506>3.0.CO;2-T
10.1002/(SICI)1521-3935(19980501)199:5<835::AID-MACP835>3.0.CO;2-S
10.1016/0014-3057(94)00204-5
10.1002/anie.201810083
10.1021/ja0554357
10.1021/acsmacrolett.7b00654
ContentType Journal Article
Copyright 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
– notice: 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7TM
K9.
7X8
5PM
DOI 10.1002/anie.202015339
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed

ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 6954
ExternalDocumentID PMC8048504
33351198
10_1002_anie_202015339
ANIE202015339
Genre shortCommunication
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
5PM
ID FETCH-LOGICAL-c5719-c35318944299cf2db031b2ae80b47c395bc80f6c198b8c745aa7145121e122fc3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Aug 21 13:43:17 EDT 2025
Fri Jul 11 02:37:48 EDT 2025
Fri Jul 25 11:55:39 EDT 2025
Thu Apr 03 06:59:16 EDT 2025
Thu Apr 24 22:54:09 EDT 2025
Tue Jul 01 01:17:53 EDT 2025
Wed Jan 22 16:29:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords N-sulfonyl aziridines
anhydrides
poly(ester amide)s
phosphazenes
anionic copolymerization
Language English
License Attribution
2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5719-c35318944299cf2db031b2ae80b47c395bc80f6c198b8c745aa7145121e122fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0366-020X
0000-0003-1442-1714
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202015339
PMID 33351198
PQID 2501877896
PQPubID 946352
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8048504
proquest_miscellaneous_2472111772
proquest_journals_2501877896
pubmed_primary_33351198
crossref_primary_10_1002_anie_202015339
crossref_citationtrail_10_1002_anie_202015339
wiley_primary_10_1002_anie_202015339_ANIE202015339
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 22, 2021
PublicationDateYYYYMMDD 2021-03-22
PublicationDate_xml – month: 03
  year: 2021
  text: March 22, 2021
  day: 22
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 1995; 31
2017; 6
2007; 129
2009; 42
2019; 52
2017; 88
2020; 181
2014; 47
1999; 20
1999; 200
2011; 36
1998; 199
2018; 87
1995; 196
2016; 5
2016 2016; 55 128
2020; 53
2018 2018; 57 130
2005; 127
1975; 1
1977; 11
2016; 116
2018; 51
2007; 40
2014; 39
2020; 136
1985; 13
e_1_2_2_3_2
e_1_2_2_4_1
e_1_2_2_25_1
e_1_2_2_5_1
e_1_2_2_23_2
e_1_2_2_24_1
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_20_1
e_1_2_2_2_2
e_1_2_2_29_3
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_9_1
e_1_2_2_28_1
e_1_2_2_27_1
e_1_2_2_26_1
e_1_2_2_13_2
e_1_2_2_11_2
e_1_2_2_12_1
e_1_2_2_10_2
e_1_2_2_30_2
e_1_2_2_17_3
e_1_2_2_19_1
e_1_2_2_31_2
e_1_2_2_17_2
e_1_2_2_18_1
e_1_2_2_32_2
e_1_2_2_33_1
e_1_2_2_16_2
e_1_2_2_34_1
e_1_2_2_35_1
e_1_2_2_14_2
e_1_2_2_15_1
References_xml – volume: 40
  start-page: 4154
  year: 2007
  end-page: 4158
  publication-title: Macromolecules
– volume: 181
  year: 2020
  publication-title: Polym. Degrad. Stab.
– volume: 31
  start-page: 547
  year: 1995
  end-page: 553
  publication-title: Eur. Polym. J.
– volume: 87
  start-page: 228
  year: 2018
  end-page: 246
  publication-title: Prog. Polym. Sci.
– volume: 57 130
  start-page: 16888 17130
  year: 2018 2018
  end-page: 16892 17134
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 52
  start-page: 4260
  year: 2019
  end-page: 4269
  publication-title: Macromolecules
– volume: 55 128
  start-page: 4188 4260
  year: 2016 2016
  end-page: 4193 4265
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 88
  year: 1999
  end-page: 90
  publication-title: Macromol. Rapid Commun.
– volume: 53
  start-page: 6598
  year: 2020
  end-page: 6607
  publication-title: Macromolecules
– volume: 88
  start-page: 433
  year: 2017
  end-page: 447
  publication-title: Eur. Polym. J.
– volume: 136
  year: 2020
  publication-title: Eur. Polym. J.
– volume: 200
  start-page: 1506
  year: 1999
  end-page: 1514
  publication-title: Macromol. Chem. Phys.
– volume: 13
  start-page: 103
  year: 1985
  end-page: 107
  publication-title: Polym. Bull.
– volume: 47
  start-page: 2471
  year: 2014
  end-page: 2478
  publication-title: Macromolecules
– volume: 129
  start-page: 12610
  year: 2007
  end-page: 12611
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 2247
  year: 2018
  end-page: 2257
  publication-title: Macromolecules
– volume: 196
  start-page: 3605
  year: 1995
  end-page: 3613
  publication-title: Macromol. Chem. Phys.
– volume: 5
  start-page: 1137
  year: 2016
  end-page: 1140
  publication-title: ACS Macro Lett.
– volume: 116
  start-page: 15167
  year: 2016
  end-page: 15197
  publication-title: Chem. Rev.
– volume: 127
  start-page: 17616
  year: 2005
  end-page: 17617
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 1291
  year: 2014
  end-page: 1311
  publication-title: Prog. Polym. Sci.
– volume: 199
  start-page: 835
  year: 1998
  end-page: 843
  publication-title: Macromol. Chem. Phys.
– volume: 36
  start-page: 1132
  year: 2011
  end-page: 1151
  publication-title: Prog. Polym. Sci.
– volume: 1
  start-page: 23
  year: 1975
  end-page: 53
  publication-title: Makromol. Chem. Suppl.
– volume: 11
  start-page: 411
  year: 1977
  end-page: 420
  publication-title: J. Macromol. Sci. Chem.
– volume: 42
  start-page: 6671
  year: 2009
  end-page: 6681
  publication-title: Macromolecules
– volume: 51
  start-page: 977
  year: 2018
  end-page: 983
  publication-title: Macromolecules
– volume: 6
  start-page: 1094
  year: 2017
  end-page: 1098
  publication-title: ACS Macro Lett.
– ident: e_1_2_2_31_2
  doi: 10.1021/ja074131c
– ident: e_1_2_2_29_2
  doi: 10.1002/anie.201601092
– ident: e_1_2_2_6_2
  doi: 10.1002/(SICI)1521-3927(19990201)20:2<88::AID-MARC88>3.0.CO;2-B
– ident: e_1_2_2_26_1
  doi: 10.1021/acsmacrolett.6b00538
– ident: e_1_2_2_1_1
– ident: e_1_2_2_2_2
  doi: 10.1016/j.progpolymsci.2013.11.007
– ident: e_1_2_2_13_2
  doi: 10.1021/ma901169r
– ident: e_1_2_2_27_1
  doi: 10.1016/j.progpolymsci.2011.05.005
– ident: e_1_2_2_12_1
– ident: e_1_2_2_24_1
  doi: 10.1016/j.eurpolymj.2020.109900
– ident: e_1_2_2_16_2
  doi: 10.1021/acs.chemrev.6b00553
– ident: e_1_2_2_19_1
  doi: 10.1080/00222337708061276
– ident: e_1_2_2_18_1
  doi: 10.1016/j.progpolymsci.2018.08.002
– ident: e_1_2_2_35_1
  doi: 10.1021/acs.macromol.8b00159
– ident: e_1_2_2_3_2
  doi: 10.1016/j.polymdegradstab.2020.109323
– ident: e_1_2_2_22_2
  doi: 10.1002/macp.1995.021961114
– ident: e_1_2_2_11_2
  doi: 10.1021/acs.macromol.0c00940
– ident: e_1_2_2_32_2
  doi: 10.1021/ma070316s
– ident: e_1_2_2_20_1
– ident: e_1_2_2_4_1
  doi: 10.1002/macp.1975.020011975103
– ident: e_1_2_2_15_1
– ident: e_1_2_2_10_2
  doi: 10.1021/acs.macromol.8b02498
– ident: e_1_2_2_17_3
  doi: 10.1002/ange.201810083
– ident: e_1_2_2_21_2
  doi: 10.1007/BF00264242
– ident: e_1_2_2_33_1
  doi: 10.1021/acs.macromol.7b02125
– ident: e_1_2_2_28_1
– ident: e_1_2_2_14_2
  doi: 10.1021/ma500260e
– ident: e_1_2_2_29_3
  doi: 10.1002/ange.201601092
– ident: e_1_2_2_34_1
  doi: 10.1016/j.eurpolymj.2017.01.002
– ident: e_1_2_2_7_2
  doi: 10.1002/(SICI)1521-3935(19990601)200:6<1506::AID-MACP1506>3.0.CO;2-T
– ident: e_1_2_2_8_2
  doi: 10.1002/(SICI)1521-3935(19980501)199:5<835::AID-MACP835>3.0.CO;2-S
– ident: e_1_2_2_23_2
  doi: 10.1016/0014-3057(94)00204-5
– ident: e_1_2_2_5_1
– ident: e_1_2_2_9_1
– ident: e_1_2_2_17_2
  doi: 10.1002/anie.201810083
– ident: e_1_2_2_25_1
  doi: 10.1021/ja0554357
– ident: e_1_2_2_30_2
  doi: 10.1021/acsmacrolett.7b00654
SSID ssj0028806
Score 2.5056136
Snippet We report a new synthetic methodology for poly(ester amide)s by anionic ring‐opening copolymerization of N‐sulfonyl aziridines and cyclic anhydrides....
We report a new synthetic methodology for poly(ester amide)s by anionic ring‐opening copolymerization of N ‐sulfonyl aziridines and cyclic anhydrides....
We report a new synthetic methodology for poly(ester amide)s by anionic ring-opening copolymerization of N-sulfonyl aziridines and cyclic anhydrides....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6949
SubjectTerms Active control
Anhydrides
anionic copolymerization
Block copolymers
Communication
Communications
Copolymerization
Copolymers
N-sulfonyl aziridines
phosphazenes
poly(ester amide)s
Polyesteramides
Ring opening polymerization
Title Well‐Defined Poly(Ester Amide)‐Based Homo‐ and Block Copolymers by One‐Pot Organocatalytic Anionic Ring‐Opening Copolymerization of N‐Sulfonyl Aziridines and Cyclic Anhydrides
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202015339
https://www.ncbi.nlm.nih.gov/pubmed/33351198
https://www.proquest.com/docview/2501877896
https://www.proquest.com/docview/2472111772
https://pubmed.ncbi.nlm.nih.gov/PMC8048504
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagF7jwhqYtlZGQgIPbxHk5x3TZakFiWRUqeotix1ZXTRPU3T2kJ34C_4d_wy9hxnm0S4WQ4JZoxnEij-fhzHxDyMsIrWBScFYERrCAK8MkFxHzJRZeG7BRNtv9wzSaHAfvT8KTa1X8LT7EcOCGO8Pqa9zguVzsX4GGYgU2xHdgwMBjwQo-TNhCr-howI_iIJxteZHvM-xC36M2unx_ffi6Vbrhat7MmLzuyVpTdHif5P1HtBkoZ3urpdxTl7_hO_7PVz4g9zo_laatYD0kt3T1iNwZ9e3hHpMfX3RZ_vz2_a02MElBZ3XZvB4j7AJNz-eFfgO0AzCRBZ3U5zXc0Lwq6AHYzjM6ws4MDZ6YU9nQj5UG8qxeUlsYWtsTpQbmpWmFp8WKHoF9BRZMfoGrq-FdDSmtDZ0C_dOqNJhoT9PL-cW8wIR-O-moUaV92mmDzeT14gk5Phx_Hk1Y1wmCqTD2EqZ8UBUiCdB4KsMLCapI8lwLVwax8pNQKuGaSHmJkELFQZjnMbYg5p72ODfKf0o2qrrSm4QKCLDcAsI4EcsAy5JjA1EVhONcQ2QYaoewXhIy1cGkY7eOMmsBnnmGS5INS-KQVwP_1xYg5I-cO71gZZ2iWGQcARXjWCSRQ14MZFhK_G-TV7peAU-AYboHcZBDnrVyOEzl-_ZPsHBIvCahAwPCh69TqvmphREXoLxDN3AItwL4l7fP0um78XC39S-DtsldjhlBrs843yEby4uVfg4u3VLukts8mO3azfsLVlJKvw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcigX_n8MBRYJBBzcOms7Xh84pEmqlLahKq3am8mu12pU10ZNIuSeeARehTNvwSPwJMysf0qoEBJSD9xsz9prr2d2ZnZnvgF43iYtGMbcjr1E2B5XiS25aNuupMTrBHWUiXbfHrYH-97bQ_9wAb7WuTAlPkSz4EaSYeZrEnBakF49Rw2lFGx08FCDockSVnGVm7r4hF7b5M1GD3_xC87X-3vdgV0VFrCVH7RCW7nIeSL0aC5WCY8lcrbkIy0c6QXKDX2phJO0FTrkUqjA80ejgCra8pZucZ4oF597Ba5SGXGC6-_tNohVHMWhTGhyXZvq3tc4kQ5fnX_feT14wbi9GKP5q-1slN_6DfheD1sZ83K8MpvKFXX2G6LkfzWuN-F6ZYqzTik7t2BBZ7dhqVtXwLsD3w50mv74_KWnE_yqmO3kafGqT8gSrHMyjvVrpK2hFRCzQX6S4wkbZTFbQ_PgmHWp-ERBmwJMFuxdppG8k0-ZyX3NzaJZgf2yTkYL4ortogmBTSi-B4_Ob6_SZFmesCHS38_ShHIJWOdsfDqOKWfBdNotVGqedlTEeF1P7sL-pYzdPVjM8kw_ACbQh3Ri9FRFID3KvA4SdBx9tJ01Or--tsCuWS9SFRI8FSRJoxLDmkfEAlHDAha8bNp_LDFQ_thyuebkqJoLJxEnzMggEGHbgmcNGX8lbU2NMp3PsI1HKxEtdPUsuF8yftOV65rNbmFBMCcSTQNCSJ-nZOMjg5QuUD_5jmcBNxz_l7ePOsONfnP28F9uegpLg73trWhrY7j5CK5xCoByXJvzZVicns70Y7Rgp_KJmTMYfLhsYfoJtDOlYw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgGXijcuBRYJBBysOms7Xh84uHkooRAioKI3E6931QjXrppEyJz4CfwU7vwbfgkz60eJKoSE1JutGXstz8zOfrvzAHjSJS8YptxOPS1sj0ttJ1x0bTehxGuNPspEu7-ZdEcH3qtD_3ADfjS5MFV9iHbDjSzDzNdk4Cep3j0rGkoZ2Ijv0IHhiiWswyr3VfkFQdvi5biPEn7K-XDwoTey674CtvSDTmhLFxVPhB5NxVLzNEHFTvhMCSfxAumGfiKFo7sS8XgiZOD5s1lADW15R3U419LF916Cy3TCSEFk3Ju2EA-tocpncl2b2t43ZSIdvrv-vetu8Nza9nyI5p9LZ-P7htdhq160sqjSshuwofKbcLXX9Iq7BT8_qiz79e17X2n8rymbFln5fEA1GFh0PE_VC6Ttob9M2ag4LvCGzfKU7aEj_cx61KahpO1zlpTsba6QPC2WzGSJFmZ7qcRxWZTT1rFk79DZIgtFwuDV2eN1QikrNJsg_f0q0xR1z6Kv89N5StH9ZtBeKTPztqOSOsurxW04uBDx3YHNvMjVPWAC0ZaTIqYTQeJRjnKgEWIhNucKYaKvLLAbKcWyrplOrTuyuKr2zGOSatxK1YJnLf9JVS3kr5w7jdDjetZYxJyqKwaBCLsWPG7JKEo6xJnlqlghj0eYvYOgyIK7lY60Q7muORYWFgRr2tMyUC3xdUo-PzI1xQXO5L7jWcCNnv3j6-NoMh60d9v_89AjuDLtD-PX48n-fbjGKVLIcW3Od2BzebpSD3Cpt0weGuti8Omizfk3xVJjgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Well%E2%80%90Defined+Poly%28Ester+Amide%29%E2%80%90Based+Homo%E2%80%90+and+Block+Copolymers+by+One%E2%80%90Pot+Organocatalytic+Anionic+Ring%E2%80%90Opening+Copolymerization+of+N%E2%80%90Sulfonyl+Aziridines+and+Cyclic+Anhydrides&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xu%2C+Jiaxi&rft.au=Hadjichristidis%2C+Nikos&rft.date=2021-03-22&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=13&rft.spage=6949&rft.epage=6954&rft_id=info:doi/10.1002%2Fanie.202015339&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon