Well‐Defined Poly(Ester Amide)‐Based Homo‐ and Block Copolymers by One‐Pot Organocatalytic Anionic Ring‐Opening Copolymerization of N‐Sulfonyl Aziridines and Cyclic Anhydrides
We report a new synthetic methodology for poly(ester amide)s by anionic ring‐opening copolymerization of N‐sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly‐active, controlled, and selective alternating copolymerization in the absence of any...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 13; pp. 6949 - 6954 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
22.03.2021
John Wiley and Sons Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report a new synthetic methodology for poly(ester amide)s by anionic ring‐opening copolymerization of N‐sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly‐active, controlled, and selective alternating copolymerization in the absence of any competitive side reaction (zwitterionic mechanism and exchange transacylations). Mechanistic studies have shown first‐order dependence of the copolymerization rate in N‐sulfonyl aziridines and phosphazenes, and zero‐order in cyclic anhydrides. This one‐pot methodology leads not only to homopolymers but also to poly(ester amide)‐based block copolymers. Two catalytic cycles involving ring‐opening alternating copolymerization of N‐sulfonyl aziridines with cyclic anhydrides and ring‐opening polymerization of N‐sulfonyl aziridines have been proposed to explain the one pot synthesis of poly(ester amide)‐based homo‐ and block copolymers.
Phosphazene organocatalysts have been found to promote a highly‐active, controlled, and selective alternating ring‐opening copolymerization of N‐sulfonyl aziridines and cyclic anhydrides. This one‐pot methodology leads not only to homopolymers but also to poly(ester amide)‐based block copolymers. |
---|---|
AbstractList | We report a new synthetic methodology for poly(ester amide)s by anionic ring-opening copolymerization of N-sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly-active, controlled, and selective alternating copolymerization in the absence of any competitive side reaction (zwitterionic mechanism and exchange transacylations). Mechanistic studies have shown first-order dependence of the copolymerization rate in N-sulfonyl aziridines and phosphazenes, and zero-order in cyclic anhydrides. This one-pot methodology leads not only to homopolymers but also to poly(ester amide)-based block copolymers. Two catalytic cycles involving ring-opening alternating copolymerization of N-sulfonyl aziridines with cyclic anhydrides and ring-opening polymerization of N-sulfonyl aziridines have been proposed to explain the one pot synthesis of poly(ester amide)-based homo- and block copolymers. We report a new synthetic methodology for poly(ester amide)s by anionic ring‐opening copolymerization of N ‐sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly‐active, controlled, and selective alternating copolymerization in the absence of any competitive side reaction (zwitterionic mechanism and exchange transacylations). Mechanistic studies have shown first‐order dependence of the copolymerization rate in N ‐sulfonyl aziridines and phosphazenes, and zero‐order in cyclic anhydrides. This one‐pot methodology leads not only to homopolymers but also to poly(ester amide)‐based block copolymers. Two catalytic cycles involving ring‐opening alternating copolymerization of N ‐sulfonyl aziridines with cyclic anhydrides and ring‐opening polymerization of N ‐sulfonyl aziridines have been proposed to explain the one pot synthesis of poly(ester amide)‐based homo‐ and block copolymers. Phosphazene organocatalysts have been found to promote a highly‐active, controlled, and selective alternating ring‐opening copolymerization of N ‐sulfonyl aziridines and cyclic anhydrides. This one‐pot methodology leads not only to homopolymers but also to poly(ester amide)‐based block copolymers. We report a new synthetic methodology for poly(ester amide)s by anionic ring‐opening copolymerization of N ‐sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly‐active, controlled, and selective alternating copolymerization in the absence of any competitive side reaction (zwitterionic mechanism and exchange transacylations). Mechanistic studies have shown first‐order dependence of the copolymerization rate in N ‐sulfonyl aziridines and phosphazenes, and zero‐order in cyclic anhydrides. This one‐pot methodology leads not only to homopolymers but also to poly(ester amide)‐based block copolymers. Two catalytic cycles involving ring‐opening alternating copolymerization of N ‐sulfonyl aziridines with cyclic anhydrides and ring‐opening polymerization of N ‐sulfonyl aziridines have been proposed to explain the one pot synthesis of poly(ester amide)‐based homo‐ and block copolymers. We report a new synthetic methodology for poly(ester amide)s by anionic ring‐opening copolymerization of N‐sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly‐active, controlled, and selective alternating copolymerization in the absence of any competitive side reaction (zwitterionic mechanism and exchange transacylations). Mechanistic studies have shown first‐order dependence of the copolymerization rate in N‐sulfonyl aziridines and phosphazenes, and zero‐order in cyclic anhydrides. This one‐pot methodology leads not only to homopolymers but also to poly(ester amide)‐based block copolymers. Two catalytic cycles involving ring‐opening alternating copolymerization of N‐sulfonyl aziridines with cyclic anhydrides and ring‐opening polymerization of N‐sulfonyl aziridines have been proposed to explain the one pot synthesis of poly(ester amide)‐based homo‐ and block copolymers. Phosphazene organocatalysts have been found to promote a highly‐active, controlled, and selective alternating ring‐opening copolymerization of N‐sulfonyl aziridines and cyclic anhydrides. This one‐pot methodology leads not only to homopolymers but also to poly(ester amide)‐based block copolymers. We report a new synthetic methodology for poly(ester amide)s by anionic ring-opening copolymerization of N-sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly-active, controlled, and selective alternating copolymerization in the absence of any competitive side reaction (zwitterionic mechanism and exchange transacylations). Mechanistic studies have shown first-order dependence of the copolymerization rate in N-sulfonyl aziridines and phosphazenes, and zero-order in cyclic anhydrides. This one-pot methodology leads not only to homopolymers but also to poly(ester amide)-based block copolymers. Two catalytic cycles involving ring-opening alternating copolymerization of N-sulfonyl aziridines with cyclic anhydrides and ring-opening polymerization of N-sulfonyl aziridines have been proposed to explain the one pot synthesis of poly(ester amide)-based homo- and block copolymers.We report a new synthetic methodology for poly(ester amide)s by anionic ring-opening copolymerization of N-sulfonyl aziridines and cyclic anhydrides. Phosphazenes organocatalysts have been found to promote a highly-active, controlled, and selective alternating copolymerization in the absence of any competitive side reaction (zwitterionic mechanism and exchange transacylations). Mechanistic studies have shown first-order dependence of the copolymerization rate in N-sulfonyl aziridines and phosphazenes, and zero-order in cyclic anhydrides. This one-pot methodology leads not only to homopolymers but also to poly(ester amide)-based block copolymers. Two catalytic cycles involving ring-opening alternating copolymerization of N-sulfonyl aziridines with cyclic anhydrides and ring-opening polymerization of N-sulfonyl aziridines have been proposed to explain the one pot synthesis of poly(ester amide)-based homo- and block copolymers. |
Author | Xu, Jiaxi Hadjichristidis, Nikos |
AuthorAffiliation | 1 King Abdullah University of Science and Technology (KAUST) Physical Sciences and Engineering Division KAUST Catalysis Center Polymer Synthesis Laboratory Thuwal 23955 Saudi Arabia |
AuthorAffiliation_xml | – name: 1 King Abdullah University of Science and Technology (KAUST) Physical Sciences and Engineering Division KAUST Catalysis Center Polymer Synthesis Laboratory Thuwal 23955 Saudi Arabia |
Author_xml | – sequence: 1 givenname: Jiaxi orcidid: 0000-0003-0366-020X surname: Xu fullname: Xu, Jiaxi organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Nikos orcidid: 0000-0003-1442-1714 surname: Hadjichristidis fullname: Hadjichristidis, Nikos email: Nikolaos.Hadjichristidis@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33351198$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuEzEUhkeoiF5gyxJZYlMWCb6MY88GaRoCrVQ1FRextDweT-risdPxBDRd8Qi8D2_Dk3CalBQqIVa-_N9_fM7x2c92Qgw2y54SPCYY05c6ODummGLCGSseZHuEUzJiQrAd2OeMjYTkZDfbT-kSeCnx5FG2yxjjhBRyL_vxyXr_89v317ZxwdboPPrhcJZ626GydbV9AdqRTqAcxzbCAelQoyMfzWc0jUugW9slVA1oHizI57FH826hQzS6137onUFlcDHA-s6FBSDzpQ2wu7O7a90DgWKDzkB_v_JNDINH5bXrXA1ppfWj08H4dbSLoYZ7mx5nDxvtk31yux5kH9_MPkyPR6fztyfT8nRkuCDFyDDOiCzynBaFaWhdYUYqqq3EVS4MK3hlJG4mBvpRSSNyrrUgOSeUWEJpY9hB9moTd7mqWlsbG_pOe7XsXKu7QUXt1N9KcBdqEb8oiXPJcQ4BDm8DdPFqZVOvWpcMNF4HG1dJ0VxQQogQFNDn99DLuOoClKcox0QKIYsJUM_-zGibyu9_BWC8AUwXU-pss0UIVjeDo24GR20HBwz5PYNx_fpboCLn_20rNravztvhP4-o8uxkduf9BUvO4F4 |
CitedBy_id | crossref_primary_10_1021_acs_orglett_2c00558 crossref_primary_10_1021_acs_macromol_4c00432 crossref_primary_10_1021_acs_macromol_3c01891 crossref_primary_10_1002_ange_202115189 crossref_primary_10_1016_j_eurpolymj_2022_111135 crossref_primary_10_1002_anie_202218891 crossref_primary_10_1002_marc_202200140 crossref_primary_10_1016_j_eurpolymj_2021_110961 crossref_primary_10_1016_j_eurpolymj_2022_111731 crossref_primary_10_1021_acs_macromol_3c00106 crossref_primary_10_1002_anie_202217418 crossref_primary_10_1021_acs_macromol_1c02303 crossref_primary_10_1002_anie_202104495 crossref_primary_10_1021_acs_macromol_3c00813 crossref_primary_10_1021_acs_macromol_1c00767 crossref_primary_10_1021_acs_macromol_4c00965 crossref_primary_10_1038_s41467_021_27830_3 crossref_primary_10_1039_D2PY00683A crossref_primary_10_1021_jacs_2c06860 crossref_primary_10_1002_anie_202115189 crossref_primary_10_1002_asia_202201147 crossref_primary_10_1016_j_xcrp_2023_101510 crossref_primary_10_3390_polym14163253 crossref_primary_10_1038_s41467_021_27377_3 crossref_primary_10_1002_ange_202218891 crossref_primary_10_1021_acs_macromol_3c01305 crossref_primary_10_1039_D4SC05047A crossref_primary_10_1021_acs_macromol_2c01748 crossref_primary_10_1039_D1NJ00782C crossref_primary_10_1021_acs_macromol_1c01885 crossref_primary_10_1039_D3CY00301A crossref_primary_10_1002_ange_202104495 crossref_primary_10_1039_D3PY00620D crossref_primary_10_32604_jrm_2022_019339 crossref_primary_10_1016_j_eurpolymj_2024_112808 crossref_primary_10_1039_D3RA03478J crossref_primary_10_1002_ange_202217418 |
Cites_doi | 10.1021/ja074131c 10.1002/anie.201601092 10.1002/(SICI)1521-3927(19990201)20:2<88::AID-MARC88>3.0.CO;2-B 10.1021/acsmacrolett.6b00538 10.1016/j.progpolymsci.2013.11.007 10.1021/ma901169r 10.1016/j.progpolymsci.2011.05.005 10.1016/j.eurpolymj.2020.109900 10.1021/acs.chemrev.6b00553 10.1080/00222337708061276 10.1016/j.progpolymsci.2018.08.002 10.1021/acs.macromol.8b00159 10.1016/j.polymdegradstab.2020.109323 10.1002/macp.1995.021961114 10.1021/acs.macromol.0c00940 10.1021/ma070316s 10.1002/macp.1975.020011975103 10.1021/acs.macromol.8b02498 10.1002/ange.201810083 10.1007/BF00264242 10.1021/acs.macromol.7b02125 10.1021/ma500260e 10.1002/ange.201601092 10.1016/j.eurpolymj.2017.01.002 10.1002/(SICI)1521-3935(19990601)200:6<1506::AID-MACP1506>3.0.CO;2-T 10.1002/(SICI)1521-3935(19980501)199:5<835::AID-MACP835>3.0.CO;2-S 10.1016/0014-3057(94)00204-5 10.1002/anie.201810083 10.1021/ja0554357 10.1021/acsmacrolett.7b00654 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH – notice: 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7TM K9. 7X8 5PM |
DOI | 10.1002/anie.202015339 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 6954 |
ExternalDocumentID | PMC8048504 33351198 10_1002_anie_202015339 ANIE202015339 |
Genre | shortCommunication Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5719-c35318944299cf2db031b2ae80b47c395bc80f6c198b8c745aa7145121e122fc3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Aug 21 13:43:17 EDT 2025 Fri Jul 11 02:37:48 EDT 2025 Fri Jul 25 11:55:39 EDT 2025 Thu Apr 03 06:59:16 EDT 2025 Thu Apr 24 22:54:09 EDT 2025 Tue Jul 01 01:17:53 EDT 2025 Wed Jan 22 16:29:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | N-sulfonyl aziridines anhydrides poly(ester amide)s phosphazenes anionic copolymerization |
Language | English |
License | Attribution 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5719-c35318944299cf2db031b2ae80b47c395bc80f6c198b8c745aa7145121e122fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0366-020X 0000-0003-1442-1714 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202015339 |
PMID | 33351198 |
PQID | 2501877896 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8048504 proquest_miscellaneous_2472111772 proquest_journals_2501877896 pubmed_primary_33351198 crossref_primary_10_1002_anie_202015339 crossref_citationtrail_10_1002_anie_202015339 wiley_primary_10_1002_anie_202015339_ANIE202015339 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 22, 2021 |
PublicationDateYYYYMMDD | 2021-03-22 |
PublicationDate_xml | – month: 03 year: 2021 text: March 22, 2021 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 1995; 31 2017; 6 2007; 129 2009; 42 2019; 52 2017; 88 2020; 181 2014; 47 1999; 20 1999; 200 2011; 36 1998; 199 2018; 87 1995; 196 2016; 5 2016 2016; 55 128 2020; 53 2018 2018; 57 130 2005; 127 1975; 1 1977; 11 2016; 116 2018; 51 2007; 40 2014; 39 2020; 136 1985; 13 e_1_2_2_3_2 e_1_2_2_4_1 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_23_2 e_1_2_2_24_1 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_20_1 e_1_2_2_2_2 e_1_2_2_29_3 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_9_1 e_1_2_2_28_1 e_1_2_2_27_1 e_1_2_2_26_1 e_1_2_2_13_2 e_1_2_2_11_2 e_1_2_2_12_1 e_1_2_2_10_2 e_1_2_2_30_2 e_1_2_2_17_3 e_1_2_2_19_1 e_1_2_2_31_2 e_1_2_2_17_2 e_1_2_2_18_1 e_1_2_2_32_2 e_1_2_2_33_1 e_1_2_2_16_2 e_1_2_2_34_1 e_1_2_2_35_1 e_1_2_2_14_2 e_1_2_2_15_1 |
References_xml | – volume: 40 start-page: 4154 year: 2007 end-page: 4158 publication-title: Macromolecules – volume: 181 year: 2020 publication-title: Polym. Degrad. Stab. – volume: 31 start-page: 547 year: 1995 end-page: 553 publication-title: Eur. Polym. J. – volume: 87 start-page: 228 year: 2018 end-page: 246 publication-title: Prog. Polym. Sci. – volume: 57 130 start-page: 16888 17130 year: 2018 2018 end-page: 16892 17134 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 52 start-page: 4260 year: 2019 end-page: 4269 publication-title: Macromolecules – volume: 55 128 start-page: 4188 4260 year: 2016 2016 end-page: 4193 4265 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 88 year: 1999 end-page: 90 publication-title: Macromol. Rapid Commun. – volume: 53 start-page: 6598 year: 2020 end-page: 6607 publication-title: Macromolecules – volume: 88 start-page: 433 year: 2017 end-page: 447 publication-title: Eur. Polym. J. – volume: 136 year: 2020 publication-title: Eur. Polym. J. – volume: 200 start-page: 1506 year: 1999 end-page: 1514 publication-title: Macromol. Chem. Phys. – volume: 13 start-page: 103 year: 1985 end-page: 107 publication-title: Polym. Bull. – volume: 47 start-page: 2471 year: 2014 end-page: 2478 publication-title: Macromolecules – volume: 129 start-page: 12610 year: 2007 end-page: 12611 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 2247 year: 2018 end-page: 2257 publication-title: Macromolecules – volume: 196 start-page: 3605 year: 1995 end-page: 3613 publication-title: Macromol. Chem. Phys. – volume: 5 start-page: 1137 year: 2016 end-page: 1140 publication-title: ACS Macro Lett. – volume: 116 start-page: 15167 year: 2016 end-page: 15197 publication-title: Chem. Rev. – volume: 127 start-page: 17616 year: 2005 end-page: 17617 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 1291 year: 2014 end-page: 1311 publication-title: Prog. Polym. Sci. – volume: 199 start-page: 835 year: 1998 end-page: 843 publication-title: Macromol. Chem. Phys. – volume: 36 start-page: 1132 year: 2011 end-page: 1151 publication-title: Prog. Polym. Sci. – volume: 1 start-page: 23 year: 1975 end-page: 53 publication-title: Makromol. Chem. Suppl. – volume: 11 start-page: 411 year: 1977 end-page: 420 publication-title: J. Macromol. Sci. Chem. – volume: 42 start-page: 6671 year: 2009 end-page: 6681 publication-title: Macromolecules – volume: 51 start-page: 977 year: 2018 end-page: 983 publication-title: Macromolecules – volume: 6 start-page: 1094 year: 2017 end-page: 1098 publication-title: ACS Macro Lett. – ident: e_1_2_2_31_2 doi: 10.1021/ja074131c – ident: e_1_2_2_29_2 doi: 10.1002/anie.201601092 – ident: e_1_2_2_6_2 doi: 10.1002/(SICI)1521-3927(19990201)20:2<88::AID-MARC88>3.0.CO;2-B – ident: e_1_2_2_26_1 doi: 10.1021/acsmacrolett.6b00538 – ident: e_1_2_2_1_1 – ident: e_1_2_2_2_2 doi: 10.1016/j.progpolymsci.2013.11.007 – ident: e_1_2_2_13_2 doi: 10.1021/ma901169r – ident: e_1_2_2_27_1 doi: 10.1016/j.progpolymsci.2011.05.005 – ident: e_1_2_2_12_1 – ident: e_1_2_2_24_1 doi: 10.1016/j.eurpolymj.2020.109900 – ident: e_1_2_2_16_2 doi: 10.1021/acs.chemrev.6b00553 – ident: e_1_2_2_19_1 doi: 10.1080/00222337708061276 – ident: e_1_2_2_18_1 doi: 10.1016/j.progpolymsci.2018.08.002 – ident: e_1_2_2_35_1 doi: 10.1021/acs.macromol.8b00159 – ident: e_1_2_2_3_2 doi: 10.1016/j.polymdegradstab.2020.109323 – ident: e_1_2_2_22_2 doi: 10.1002/macp.1995.021961114 – ident: e_1_2_2_11_2 doi: 10.1021/acs.macromol.0c00940 – ident: e_1_2_2_32_2 doi: 10.1021/ma070316s – ident: e_1_2_2_20_1 – ident: e_1_2_2_4_1 doi: 10.1002/macp.1975.020011975103 – ident: e_1_2_2_15_1 – ident: e_1_2_2_10_2 doi: 10.1021/acs.macromol.8b02498 – ident: e_1_2_2_17_3 doi: 10.1002/ange.201810083 – ident: e_1_2_2_21_2 doi: 10.1007/BF00264242 – ident: e_1_2_2_33_1 doi: 10.1021/acs.macromol.7b02125 – ident: e_1_2_2_28_1 – ident: e_1_2_2_14_2 doi: 10.1021/ma500260e – ident: e_1_2_2_29_3 doi: 10.1002/ange.201601092 – ident: e_1_2_2_34_1 doi: 10.1016/j.eurpolymj.2017.01.002 – ident: e_1_2_2_7_2 doi: 10.1002/(SICI)1521-3935(19990601)200:6<1506::AID-MACP1506>3.0.CO;2-T – ident: e_1_2_2_8_2 doi: 10.1002/(SICI)1521-3935(19980501)199:5<835::AID-MACP835>3.0.CO;2-S – ident: e_1_2_2_23_2 doi: 10.1016/0014-3057(94)00204-5 – ident: e_1_2_2_5_1 – ident: e_1_2_2_9_1 – ident: e_1_2_2_17_2 doi: 10.1002/anie.201810083 – ident: e_1_2_2_25_1 doi: 10.1021/ja0554357 – ident: e_1_2_2_30_2 doi: 10.1021/acsmacrolett.7b00654 |
SSID | ssj0028806 |
Score | 2.5056136 |
Snippet | We report a new synthetic methodology for poly(ester amide)s by anionic ring‐opening copolymerization of N‐sulfonyl aziridines and cyclic anhydrides.... We report a new synthetic methodology for poly(ester amide)s by anionic ring‐opening copolymerization of N ‐sulfonyl aziridines and cyclic anhydrides.... We report a new synthetic methodology for poly(ester amide)s by anionic ring-opening copolymerization of N-sulfonyl aziridines and cyclic anhydrides.... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6949 |
SubjectTerms | Active control Anhydrides anionic copolymerization Block copolymers Communication Communications Copolymerization Copolymers N-sulfonyl aziridines phosphazenes poly(ester amide)s Polyesteramides Ring opening polymerization |
Title | Well‐Defined Poly(Ester Amide)‐Based Homo‐ and Block Copolymers by One‐Pot Organocatalytic Anionic Ring‐Opening Copolymerization of N‐Sulfonyl Aziridines and Cyclic Anhydrides |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202015339 https://www.ncbi.nlm.nih.gov/pubmed/33351198 https://www.proquest.com/docview/2501877896 https://www.proquest.com/docview/2472111772 https://pubmed.ncbi.nlm.nih.gov/PMC8048504 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagF7jwhqYtlZGQgIPbxHk5x3TZakFiWRUqeotix1ZXTRPU3T2kJ34C_4d_wy9hxnm0S4WQ4JZoxnEij-fhzHxDyMsIrWBScFYERrCAK8MkFxHzJRZeG7BRNtv9wzSaHAfvT8KTa1X8LT7EcOCGO8Pqa9zguVzsX4GGYgU2xHdgwMBjwQo-TNhCr-howI_iIJxteZHvM-xC36M2unx_ffi6Vbrhat7MmLzuyVpTdHif5P1HtBkoZ3urpdxTl7_hO_7PVz4g9zo_laatYD0kt3T1iNwZ9e3hHpMfX3RZ_vz2_a02MElBZ3XZvB4j7AJNz-eFfgO0AzCRBZ3U5zXc0Lwq6AHYzjM6ws4MDZ6YU9nQj5UG8qxeUlsYWtsTpQbmpWmFp8WKHoF9BRZMfoGrq-FdDSmtDZ0C_dOqNJhoT9PL-cW8wIR-O-moUaV92mmDzeT14gk5Phx_Hk1Y1wmCqTD2EqZ8UBUiCdB4KsMLCapI8lwLVwax8pNQKuGaSHmJkELFQZjnMbYg5p72ODfKf0o2qrrSm4QKCLDcAsI4EcsAy5JjA1EVhONcQ2QYaoewXhIy1cGkY7eOMmsBnnmGS5INS-KQVwP_1xYg5I-cO71gZZ2iWGQcARXjWCSRQ14MZFhK_G-TV7peAU-AYboHcZBDnrVyOEzl-_ZPsHBIvCahAwPCh69TqvmphREXoLxDN3AItwL4l7fP0um78XC39S-DtsldjhlBrs843yEby4uVfg4u3VLukts8mO3azfsLVlJKvw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcigX_n8MBRYJBBzcOms7Xh84pEmqlLahKq3am8mu12pU10ZNIuSeeARehTNvwSPwJMysf0qoEBJSD9xsz9prr2d2ZnZnvgF43iYtGMbcjr1E2B5XiS25aNuupMTrBHWUiXbfHrYH-97bQ_9wAb7WuTAlPkSz4EaSYeZrEnBakF49Rw2lFGx08FCDockSVnGVm7r4hF7b5M1GD3_xC87X-3vdgV0VFrCVH7RCW7nIeSL0aC5WCY8lcrbkIy0c6QXKDX2phJO0FTrkUqjA80ejgCra8pZucZ4oF597Ba5SGXGC6-_tNohVHMWhTGhyXZvq3tc4kQ5fnX_feT14wbi9GKP5q-1slN_6DfheD1sZ83K8MpvKFXX2G6LkfzWuN-F6ZYqzTik7t2BBZ7dhqVtXwLsD3w50mv74_KWnE_yqmO3kafGqT8gSrHMyjvVrpK2hFRCzQX6S4wkbZTFbQ_PgmHWp-ERBmwJMFuxdppG8k0-ZyX3NzaJZgf2yTkYL4ortogmBTSi-B4_Ob6_SZFmesCHS38_ShHIJWOdsfDqOKWfBdNotVGqedlTEeF1P7sL-pYzdPVjM8kw_ACbQh3Ri9FRFID3KvA4SdBx9tJ01Or--tsCuWS9SFRI8FSRJoxLDmkfEAlHDAha8bNp_LDFQ_thyuebkqJoLJxEnzMggEGHbgmcNGX8lbU2NMp3PsI1HKxEtdPUsuF8yftOV65rNbmFBMCcSTQNCSJ-nZOMjg5QuUD_5jmcBNxz_l7ePOsONfnP28F9uegpLg73trWhrY7j5CK5xCoByXJvzZVicns70Y7Rgp_KJmTMYfLhsYfoJtDOlYw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgGXijcuBRYJBBysOms7Xh84uHkooRAioKI3E6931QjXrppEyJz4CfwU7vwbfgkz60eJKoSE1JutGXstz8zOfrvzAHjSJS8YptxOPS1sj0ttJ1x0bTehxGuNPspEu7-ZdEcH3qtD_3ADfjS5MFV9iHbDjSzDzNdk4Cep3j0rGkoZ2Ijv0IHhiiWswyr3VfkFQdvi5biPEn7K-XDwoTey674CtvSDTmhLFxVPhB5NxVLzNEHFTvhMCSfxAumGfiKFo7sS8XgiZOD5s1lADW15R3U419LF916Cy3TCSEFk3Ju2EA-tocpncl2b2t43ZSIdvrv-vetu8Nza9nyI5p9LZ-P7htdhq160sqjSshuwofKbcLXX9Iq7BT8_qiz79e17X2n8rymbFln5fEA1GFh0PE_VC6Ttob9M2ag4LvCGzfKU7aEj_cx61KahpO1zlpTsba6QPC2WzGSJFmZ7qcRxWZTT1rFk79DZIgtFwuDV2eN1QikrNJsg_f0q0xR1z6Kv89N5StH9ZtBeKTPztqOSOsurxW04uBDx3YHNvMjVPWAC0ZaTIqYTQeJRjnKgEWIhNucKYaKvLLAbKcWyrplOrTuyuKr2zGOSatxK1YJnLf9JVS3kr5w7jdDjetZYxJyqKwaBCLsWPG7JKEo6xJnlqlghj0eYvYOgyIK7lY60Q7muORYWFgRr2tMyUC3xdUo-PzI1xQXO5L7jWcCNnv3j6-NoMh60d9v_89AjuDLtD-PX48n-fbjGKVLIcW3Od2BzebpSD3Cpt0weGuti8Omizfk3xVJjgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Well%E2%80%90Defined+Poly%28Ester+Amide%29%E2%80%90Based+Homo%E2%80%90+and+Block+Copolymers+by+One%E2%80%90Pot+Organocatalytic+Anionic+Ring%E2%80%90Opening+Copolymerization+of+N%E2%80%90Sulfonyl+Aziridines+and+Cyclic+Anhydrides&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xu%2C+Jiaxi&rft.au=Hadjichristidis%2C+Nikos&rft.date=2021-03-22&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=13&rft.spage=6949&rft.epage=6954&rft_id=info:doi/10.1002%2Fanie.202015339&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |