Acid‐Activatable Transmorphic Peptide‐Based Nanomaterials for Photodynamic Therapy
Inspired by the dynamic morphology control of molecular assemblies in biological systems, we have developed pH‐responsive transformable peptide‐based nanoparticles for photodynamic therapy (PDT) with prolonged tumor retention times. The self‐assembled peptide–porphyrin nanoparticles transformed into...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 46; pp. 20582 - 20588 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Wiley
09.11.2020
Wiley Subscription Services, Inc John Wiley and Sons Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inspired by the dynamic morphology control of molecular assemblies in biological systems, we have developed pH‐responsive transformable peptide‐based nanoparticles for photodynamic therapy (PDT) with prolonged tumor retention times. The self‐assembled peptide–porphyrin nanoparticles transformed into nanofibers when exposed to the acidic tumor microenvironment, which was mainly driven by enhanced intermolecular hydrogen bond formation between the protonated molecules. The nanoparticle transformation into fibrils improved their singlet oxygen generation ability and enabled high accumulation and long‐term retention at tumor sites. Strong fluorescent signals of these nanomaterials were detected in tumor tissue up to 7 days after administration. Moreover, the peptide assemblies exhibited excellent anti‐tumor efficacy via PDT in vivo. This in situ fibrillar transformation strategy could be utilized to design effective stimuli‐responsive biomaterials for long‐term imaging and therapy.
Fibrillar‐transformable peptide‐porphyrin (PWG) nanoparticles activated by the acidic inter‐ and intracellular tumor microenvironment were developed for photodynamic therapy (PDT). The transformation of nanoparticles into nanofibers improved their singlet oxygen generation ability and enabled high accumulation and long‐term retention at tumor sites, resulting in excellent anti‐tumor efficacy via PDT in vivo. |
---|---|
AbstractList | Inspired by the dynamic morphology control of molecular assemblies in biological systems, we have developed pH-responsive transformable peptide-based nanoparticles for photodynamic therapy (PDT) with prolonged tumor retention times. The self-assembled peptide-porphyrin nanoparticles transformed into nanofibers when exposed to the acidic tumor microenvironment, which was mainly driven by enhanced intermolecular hydrogen bond formation between the protonated molecules. The nanoparticle transformation into fibrils improved their singlet oxygen generation ability and enabled high accumulation and long-term retention at tumor sites. Strong fluorescent signals of these nanomaterials were detected in tumor tissue up to 7 days after administration. Moreover, the peptide assemblies exhibited excellent anti-tumor efficacy via PDT in vivo. This in situ fibrillar transformation strategy could be utilized to design effective stimuli-responsive biomaterials for long-term imaging and therapy.Inspired by the dynamic morphology control of molecular assemblies in biological systems, we have developed pH-responsive transformable peptide-based nanoparticles for photodynamic therapy (PDT) with prolonged tumor retention times. The self-assembled peptide-porphyrin nanoparticles transformed into nanofibers when exposed to the acidic tumor microenvironment, which was mainly driven by enhanced intermolecular hydrogen bond formation between the protonated molecules. The nanoparticle transformation into fibrils improved their singlet oxygen generation ability and enabled high accumulation and long-term retention at tumor sites. Strong fluorescent signals of these nanomaterials were detected in tumor tissue up to 7 days after administration. Moreover, the peptide assemblies exhibited excellent anti-tumor efficacy via PDT in vivo. This in situ fibrillar transformation strategy could be utilized to design effective stimuli-responsive biomaterials for long-term imaging and therapy. Inspired by the dynamic morphology control of molecular assemblies in biological systems, we have developed pH‐responsive transformable peptide‐based nanoparticles for photodynamic therapy (PDT) with prolonged tumor retention times. The self‐assembled peptide–porphyrin nanoparticles transformed into nanofibers when exposed to the acidic tumor microenvironment, which was mainly driven by enhanced intermolecular hydrogen bond formation between the protonated molecules. The nanoparticle transformation into fibrils improved their singlet oxygen generation ability and enabled high accumulation and long‐term retention at tumor sites. Strong fluorescent signals of these nanomaterials were detected in tumor tissue up to 7 days after administration. Moreover, the peptide assemblies exhibited excellent anti‐tumor efficacy via PDT in vivo. This in situ fibrillar transformation strategy could be utilized to design effective stimuli‐responsive biomaterials for long‐term imaging and therapy. Fibrillar‐transformable peptide‐porphyrin (PWG) nanoparticles activated by the acidic inter‐ and intracellular tumor microenvironment were developed for photodynamic therapy (PDT). The transformation of nanoparticles into nanofibers improved their singlet oxygen generation ability and enabled high accumulation and long‐term retention at tumor sites, resulting in excellent anti‐tumor efficacy via PDT in vivo. Inspired by the dynamic morphology control of molecular assemblies in biological systems, we have developed pH-responsive transformable peptide-based nanoparticles for photodynamic therapy (PDT) with prolonged tumor retention times. The self-assembled peptide-porphyrin nanoparticles transformed into nanofibers when exposed to the acidic tumor microenvironment, which was mainly driven by enhanced intermolecular hydrogen bond formation between the protonated molecules. The nanoparticle transformation into fibrils improved their singlet oxygen generation ability and enabled high accumulation and long-term retention at tumor sites. Strong fluorescent signals of these nanomaterials were detected in tumor tissue up to 7 days after administration. Moreover, the peptide assemblies exhibited excellent anti-tumor efficacy via PDT in vivo. This in situ fibrillar transformation strategy could be utilized to design effective stimuli-responsive biomaterials for long-term imaging and therapy. |
Author | Yan, Xuehai Cao, Shoupeng Sun, Bingbing Chang, Rui Yuan, Chengqian Zhao, Luyang Yang, Haowen Li, Junbai Hest, Jan C. M. |
AuthorAffiliation | 4 Laboratory of Immunoengineering Department of Biomedical Engineering Institute for Complex Molecular Systems Eindhoven University of Technology 5600 MB Eindhoven The Netherlands 1 Bio-Organic Chemistry Institute of Complex Molecular Systems Department of Biomedical Engineering Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands 2 State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China 3 Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China |
AuthorAffiliation_xml | – name: 1 Bio-Organic Chemistry Institute of Complex Molecular Systems Department of Biomedical Engineering Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands – name: 2 State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China – name: 4 Laboratory of Immunoengineering Department of Biomedical Engineering Institute for Complex Molecular Systems Eindhoven University of Technology 5600 MB Eindhoven The Netherlands – name: 3 Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China |
Author_xml | – sequence: 1 givenname: Bingbing orcidid: 0000-0002-9934-1248 surname: Sun fullname: Sun, Bingbing organization: Eindhoven University of Technology – sequence: 2 givenname: Rui surname: Chang fullname: Chang, Rui organization: Chinese Academy of Sciences – sequence: 3 givenname: Shoupeng surname: Cao fullname: Cao, Shoupeng organization: Eindhoven University of Technology – sequence: 4 givenname: Chengqian surname: Yuan fullname: Yuan, Chengqian organization: Chinese Academy of Sciences – sequence: 5 givenname: Luyang surname: Zhao fullname: Zhao, Luyang organization: Chinese Academy of Sciences – sequence: 6 givenname: Haowen orcidid: 0000-0002-3196-8917 surname: Yang fullname: Yang, Haowen organization: Eindhoven University of Technology – sequence: 7 givenname: Junbai orcidid: 0000-0001-9575-3125 surname: Li fullname: Li, Junbai organization: Chinese Academy of Sciences – sequence: 8 givenname: Xuehai orcidid: 0000-0002-0890-0340 surname: Yan fullname: Yan, Xuehai email: yanxh@ipe.ac.cn organization: Chinese Academy of Sciences – sequence: 9 givenname: Jan C. M. orcidid: 0000-0001-7973-2404 surname: Hest fullname: Hest, Jan C. M. email: J.C.M.v.Hest@tue.nl organization: Eindhoven University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32687653$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksFu1DAQhi1URNuFK0cUiQtSlcV2bMe5IC2rApWq0sPC1XKcCesqsYOdFO2NR-gz8iR4tdsFKiE4eaT5_t__jOYUHTnvAKHnBM8JxvS1dhbmFFOMZYnlI3RCOCV5UZbFUapZUeSl5OQYncZ4k3gpsXiCjgsqZCl4cYI-L4xtfny_W5jR3upR1x1kq6Bd7H0Y1tZk1zCMtoGEvNURmuxKO9_rEYLVXcxaH7LrtR99s3G6T_hqDUEPm6focZv68Gz_ztCnd-er5Yf88uP7i-XiMje8JDJnWFe8bYWoBQFJNW91JWouWS0pZ1QaYNBURSWAU8ZwDaQSVUMbWmPgJdPFDL3Z-Q5T3UNjwI1Bd2oIttdho7y26s-Os2v1xd-qUlQFkSIZvNobBP91gjiq3kYDXacd-CkqyiiXldjiM_TyAXrjp-DSeIniopCEYZqoF78nOkS5X3kCznbAN6h9G40FZ-CAYYy5EIziKlWYJFr-P720ox6td0s_uTFJ2U5qgo8xQKvMvp82YTtFsNqekNqekDqcUJLNH8juf_uroNpHtB1s_kGrxdXF-S_tT5rl2WU |
CitedBy_id | crossref_primary_10_1039_D1TB00704A crossref_primary_10_1002_advs_202309131 crossref_primary_10_1002_ange_202423348 crossref_primary_10_1002_smll_202103712 crossref_primary_10_1016_j_bioactmat_2021_04_030 crossref_primary_10_1016_j_isci_2023_106279 crossref_primary_10_1039_D1MH01273H crossref_primary_10_1039_D1TB02814F crossref_primary_10_1039_D2CS00675H crossref_primary_10_1002_ange_202208732 crossref_primary_10_1016_j_jconrel_2024_06_040 crossref_primary_10_1080_10717544_2022_2075987 crossref_primary_10_1002_adhm_202102017 crossref_primary_10_1002_anie_202015340 crossref_primary_10_3390_pharmaceutics16020218 crossref_primary_10_1002_anie_202111839 crossref_primary_10_1016_j_jcis_2023_04_088 crossref_primary_10_1002_cmdc_202300599 crossref_primary_10_1039_D2SC02025D crossref_primary_10_1021_acsnano_3c01452 crossref_primary_10_1016_j_gce_2022_07_010 crossref_primary_10_1002_ange_202411514 crossref_primary_10_1016_j_pmatsci_2022_100974 crossref_primary_10_1039_D1CC02102H crossref_primary_10_1016_j_biomaterials_2021_120945 crossref_primary_10_1002_ange_202404703 crossref_primary_10_1002_adma_202100595 crossref_primary_10_1002_ange_202309786 crossref_primary_10_1016_j_dyepig_2023_111490 crossref_primary_10_1039_D2NR06621A crossref_primary_10_1039_D2DT02040H crossref_primary_10_1002_advs_202101101 crossref_primary_10_1039_D2TB01660E crossref_primary_10_1016_j_actbio_2022_06_012 crossref_primary_10_1080_17425247_2022_2093855 crossref_primary_10_1063_5_0061530 crossref_primary_10_1002_adhm_202202307 crossref_primary_10_1021_acs_cgd_3c00677 crossref_primary_10_1021_acsanm_2c03250 crossref_primary_10_1021_acs_molpharmaceut_1c00565 crossref_primary_10_1039_D3MH00867C crossref_primary_10_1016_j_partic_2021_05_007 crossref_primary_10_1002_anie_202309786 crossref_primary_10_1002_adhm_202202043 crossref_primary_10_1007_s11426_024_2519_8 crossref_primary_10_1007_s12274_024_6960_3 crossref_primary_10_1002_anse_202200067 crossref_primary_10_1038_s41428_024_00961_2 crossref_primary_10_1186_s40580_021_00282_7 crossref_primary_10_1088_1748_605X_abfa6e crossref_primary_10_1016_j_cclet_2021_06_041 crossref_primary_10_1002_smll_202301096 crossref_primary_10_1021_acs_biomac_4c00141 crossref_primary_10_1016_j_ccr_2024_216251 crossref_primary_10_1002_ange_202502559 crossref_primary_10_1016_j_cej_2022_135240 crossref_primary_10_1016_j_jconrel_2022_10_046 crossref_primary_10_1142_S1088424621300056 crossref_primary_10_1016_j_cocis_2021_101454 crossref_primary_10_1021_acsabm_1c00892 crossref_primary_10_1039_D3SC05041F crossref_primary_10_1002_adfm_202206300 crossref_primary_10_1002_anie_202302146 crossref_primary_10_1016_j_ijbiomac_2023_128452 crossref_primary_10_1016_j_bioactmat_2023_09_006 crossref_primary_10_1002_anie_202502559 crossref_primary_10_3390_molecules28052250 crossref_primary_10_1002_cbic_202200582 crossref_primary_10_1039_D3RA04074G crossref_primary_10_1016_j_bioactmat_2022_08_020 crossref_primary_10_1002_mog2_27 crossref_primary_10_2139_ssrn_4118497 crossref_primary_10_1002_adfm_202422347 crossref_primary_10_1002_slct_202401405 crossref_primary_10_1016_j_cej_2022_138087 crossref_primary_10_1002_cmdc_202100254 crossref_primary_10_1016_j_progpolymsci_2023_101769 crossref_primary_10_1021_acs_bioconjchem_3c00432 crossref_primary_10_1021_acsnano_2c07895 crossref_primary_10_3389_fchem_2023_1078840 crossref_primary_10_1002_advs_202100228 crossref_primary_10_1002_ange_202302146 crossref_primary_10_1002_adfm_202208354 crossref_primary_10_1002_smll_202205787 crossref_primary_10_1016_j_bioactmat_2024_01_023 crossref_primary_10_1002_asia_202200386 crossref_primary_10_1016_j_ccr_2024_215863 crossref_primary_10_1002_syst_202400068 crossref_primary_10_1039_D1SC05589E crossref_primary_10_1021_jacs_2c13189 crossref_primary_10_1021_acs_accounts_4c00796 crossref_primary_10_1002_anie_202207532 crossref_primary_10_1002_smll_202407221 crossref_primary_10_1016_j_ajps_2023_100829 crossref_primary_10_1039_D3MH00592E crossref_primary_10_1002_cjoc_202300642 crossref_primary_10_1002_chem_202004957 crossref_primary_10_1002_ange_202308019 crossref_primary_10_1039_D1NR00179E crossref_primary_10_1002_adma_202106654 crossref_primary_10_1124_jpet_123_001698 crossref_primary_10_1039_D1NA00427A crossref_primary_10_1021_acsnano_3c09011 crossref_primary_10_1021_acsapm_1c01743 crossref_primary_10_1039_D1QM00141H crossref_primary_10_1002_adhm_202303175 crossref_primary_10_1002_ange_202015340 crossref_primary_10_1002_smtd_202201708 crossref_primary_10_1021_acs_nanolett_3c01814 crossref_primary_10_1016_j_cej_2022_135312 crossref_primary_10_1002_ange_202102097 crossref_primary_10_1002_smtd_202301551 crossref_primary_10_1016_j_biomaterials_2022_121700 crossref_primary_10_1039_D0QM00827C crossref_primary_10_1002_anie_202404703 crossref_primary_10_1016_j_nantod_2021_101198 crossref_primary_10_1039_D4DT02673J crossref_primary_10_3390_molecules26030693 crossref_primary_10_1002_mabi_202400523 crossref_primary_10_1002_adhm_202400512 crossref_primary_10_1002_anie_202308019 crossref_primary_10_1002_cbic_202200497 crossref_primary_10_1016_j_ccr_2023_215600 crossref_primary_10_1007_s11426_024_2411_7 crossref_primary_10_1039_D3OB01887C crossref_primary_10_1515_nanoph_2021_0275 crossref_primary_10_3389_fchbi_2023_1346465 crossref_primary_10_1021_jacs_1c07479 crossref_primary_10_3390_molecules26154587 crossref_primary_10_1002_anie_202411514 crossref_primary_10_1002_ange_202111839 crossref_primary_10_1016_j_addr_2021_113954 crossref_primary_10_1021_jacsau_4c01108 crossref_primary_10_1007_s10118_024_3155_z crossref_primary_10_1002_cmdc_202100201 crossref_primary_10_1002_smtd_202101359 crossref_primary_10_1016_j_cclet_2024_109631 crossref_primary_10_1016_j_dyepig_2022_110813 crossref_primary_10_1007_s11426_024_2082_6 crossref_primary_10_1002_adhm_202402381 crossref_primary_10_1021_acs_nanolett_1c04154 crossref_primary_10_1002_anie_202102097 crossref_primary_10_1016_j_jconrel_2022_04_006 crossref_primary_10_1021_acs_biomac_2c00361 crossref_primary_10_1002_adtp_202300329 crossref_primary_10_1021_acsabm_1c01262 crossref_primary_10_1039_D2TB00720G crossref_primary_10_1002_adma_202106797 crossref_primary_10_1016_j_poly_2021_115624 crossref_primary_10_1021_acsabm_4c01696 crossref_primary_10_1016_j_colsurfa_2021_126255 crossref_primary_10_1016_j_nxmate_2024_100230 crossref_primary_10_3390_ijms23073594 crossref_primary_10_1002_anie_202423348 crossref_primary_10_1021_acsami_2c05814 crossref_primary_10_1002_ange_202207532 crossref_primary_10_1002_anie_202208732 crossref_primary_10_1124_jpet_123_001845 crossref_primary_10_1016_j_mattod_2022_08_011 crossref_primary_10_1186_s12951_022_01531_5 crossref_primary_10_1016_j_nantod_2022_101392 crossref_primary_10_1002_smll_202008114 |
Cites_doi | 10.1021/jp910034z 10.1002/anie.200603182 10.1002/anie.201906288 10.1002/anie.201802497 10.1111/j.1751-1097.2005.tb01453.x 10.1007/s12094-008-0172-2 10.1021/acs.accounts.8b00398 10.1002/ange.201808811 10.1002/ange.201509810 10.3390/molecules21030342 10.1021/acsnano.9b00494 10.1039/c1cc14445f 10.1038/ncomms5712 10.1021/acs.biomac.7b00780 10.1016/j.msec.2010.11.027 10.1021/jacs.6b11382 10.1016/j.msec.2019.110401 10.1016/j.cej.2018.07.126 10.1002/anie.201509810 10.1038/nrc1894 10.1021/jm040074b 10.1021/acsami.9b04351 10.1002/adma.201905091 10.1002/ijch.201500026 10.1039/B915149B 10.1021/ja047392k 10.1038/s41467-018-07966-5 10.1021/cr5004198 10.1016/j.addr.2016.06.015 10.1039/C9CS00085B 10.1002/adfm.201806877 10.1039/C6ME00012F 10.1039/D0SC01171A 10.1021/nn402201w 10.1002/ange.201906288 10.1021/jacs.8b04912 10.1002/adma.200600779 10.1039/C4RA15107K 10.1038/s41565-019-0626-4 10.1016/j.addr.2010.03.011 10.1002/ange.200603182 10.1007/s10059-011-0051-5 10.1002/ange.201802497 10.1002/polb.1994.090320802 10.1002/marc.201500281 10.1038/s41467-020-15730-x 10.1002/anie.201808811 10.1021/acs.biomac.7b00064 10.1038/s41467-018-04763-y 10.1007/s10103-008-0539-1 10.1016/j.addr.2010.04.009 10.3322/caac.20114 10.1021/jacs.7b05559 10.1021/ja963416e 10.1039/c6me00012f 10.1039/b915149b 10.1038/s41467-020-17018-6 10.1039/d0sc01171a 10.1039/c9cs00085b 10.1039/c4ra15107k |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by Wiley-VCH GmbH 2020 The Authors. Published by Wiley-VCH GmbH. 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. Published by Wiley-VCH GmbH – notice: 2020 The Authors. Published by Wiley-VCH GmbH. – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 17B 1KM AOWDO BLEPL DTL EGQ CGR CUY CVF ECM EIF NPM 7TM K9. 7X8 5PM |
DOI | 10.1002/anie.202008708 |
DatabaseName | Wiley Online Library Open Access CrossRef Web of Knowledge Index Chemicus Web of Science - Science Citation Index Expanded - 2020 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Web of Science MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Web of Science ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 1KM name: Index Chemicus url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.IC sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 20588 |
ExternalDocumentID | PMC7693186 32687653 000566420900001 10_1002_anie_202008708 ANIE202008708 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: H2020 Marie Skłodowska-Curie Actions funderid: the Eurotech Postdoc Programme, under the Marie Skłodowska-Curie grant agreement No 754462 – fundername: Innovation Research Community Science Fund of National Natural Science Foundation of China funderid: 21821005 – fundername: National Natural Science Fund China funderid: BRICS STI Framework Programme of China (No. 51861145304) – fundername: Key Research Program of Frontier Sciences of the Chinese Academy of Sciences funderid: Grant No. QYZDB-SSW-JSC034 – fundername: Ministerie van Onderwijs, Cultuur en Wetenschap funderid: Gravitation program 024.001.035 – fundername: National Natural Science Fund BRICS STI Framework Programme of China grantid: 51861145304 – fundername: Dutch Ministry of Education, Culture and Science grantid: 024.001.035 – fundername: Eurotech Postdoc Programme, under the Marie Skodowska-Curie grant grantid: 754462 – fundername: Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (CAS) grantid: QYZDB-SSW-JSC034 – fundername: Innovation Research Community Science Fund of National Natural Science Foundation of China; National Natural Science Foundation of China (NSFC) grantid: 21821005 – fundername: National Natural Science Fund China grantid: BRICS STI Framework Programme of China (No. 51861145304) – fundername: Innovation Research Community Science Fund of National Natural Science Foundation of China grantid: 21821005 – fundername: ; grantid: Gravitation program 024.001.035 – fundername: ; grantid: the Eurotech Postdoc Programme, under the Marie Skłodowska-Curie grant agreement No 754462 – fundername: Key Research Program of Frontier Sciences of the Chinese Academy of Sciences grantid: Grant No. QYZDB-SSW-JSC034 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 17B 1KM BLEPL DTL GROUPED_WOS_WEB_OF_SCIENCE CGR CUY CVF ECM EIF NPM YIN 7TM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5718-40a95ff66b61e82a5fa96b584b825428ce4ed9396e52440be1969d2d2b0e574a3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 175 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000566420900001 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Aug 21 14:10:37 EDT 2025 Fri Jul 11 05:28:22 EDT 2025 Fri Jul 25 10:14:58 EDT 2025 Wed Feb 19 02:28:20 EST 2025 Fri Aug 29 15:50:34 EDT 2025 Wed Jul 09 10:21:18 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Tue Jul 01 01:17:44 EDT 2025 Wed Jan 22 16:32:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Keywords | self-assembly NANOPARTICLES fibrillar transformation photodynamic therapy RETENTION PH peptides photosensitizers PI-PI-STACKING ELECTROSTATIC REPULSION COMBINATION CANCER |
Language | English |
License | Attribution-NonCommercial 2020 The Authors. Published by Wiley-VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c5718-40a95ff66b61e82a5fa96b584b825428ce4ed9396e52440be1969d2d2b0e574a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9575-3125 0000-0002-0890-0340 0000-0002-9934-1248 0000-0001-7973-2404 0000-0002-3196-8917 0000-0002-5856-2407 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202008708 |
PMID | 32687653 |
PQID | 2456381402 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2425896769 pubmed_primary_32687653 webofscience_primary_000566420900001CitationCount webofscience_primary_000566420900001 crossref_citationtrail_10_1002_anie_202008708 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7693186 wiley_primary_10_1002_anie_202008708_ANIE202008708 proquest_journals_2456381402 crossref_primary_10_1002_anie_202008708 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 9, 2020 |
PublicationDateYYYYMMDD | 2020-11-09 |
PublicationDate_xml | – month: 11 year: 2020 text: November 9, 2020 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2007; 19 2009; 24 2015; 36 2004; 126 2015; 5 2018; 140 1997; 119 2019; 31 2019; 52 2019; 11 2019; 10 2004; 47 2019; 13 2011; 40 2011; 61 2011; 31 2020; 15 2006; 6 2008; 10 2005; 81 2020; 11 2017; 110 2013; 7 2020; 108 2019 2019; 58 131 2017; 139 2016; 56 2006 2006; 45 118 2018; 353 2018; 9 2014; 5 2016 2016; 55 128 2016; 1 2015; 115 2020 2018 2018; 57 130 2010; 114 2019; 48 2016; 21 2011; 63 2019; 29 2017; 18 2011; 47 1994; 32 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_30_2 e_1_2_6_17_3 e_1_2_6_19_1 e_1_2_6_13_2 e_1_2_6_59_2 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_55_2 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_62_2 e_1_2_6_43_1 e_1_2_6_20_2 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_1 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_47_1 e_1_2_6_50_2 e_1_2_6_52_1 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_18_3 e_1_2_6_58_2 e_1_2_6_35_1 e_1_2_6_10_2 e_1_2_6_10_3 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_54_2 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_16_1 e_1_2_6_61_2 e_1_2_6_42_1 e_1_2_6_40_1 e_1_2_6_8_2 e_1_2_6_8_3 e_1_2_6_4_2 e_1_2_6_6_1 e_1_2_6_48_1 e_1_2_6_2_2 e_1_2_6_23_1 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_25_2 e_1_2_6_46_2 Sun, BB (WOS:000415391900006) 2017; 18 Li, JC (WOS:000479529800001) 2019; 58 Plaetzer, K (WOS:000263673700022) 2009; 24 Mohamed, MG (WOS:000348987700035) 2015; 5 Detty, MR (WOS:000222856800001) 2004; 47 Jeong, HG (WOS:000371987400002) 2016; 56 Overchuk, M (WOS:000466052900081) 2019; 13 Kim, J (WOS:000408074800014) 2017; 139 Qi, SJ (WOS:000544484900011) 2020; 11 Yang, YZ (WOS:000510956400038) 2020; 108 Juarranz, A (WOS:000256945300005) 2008; 10 Bae, KH (WOS:000289986100001) 2011; 31 Sun, BB (WOS:000480621900001) 2019; 48 WANG, FC (WOS:A1994NM08100002) 1994; 32 Zheng, N (WOS:000469288300016) 2019; 11 Zhang, L (WOS:000509655700006) 2020; 15 Li, JC (000566420900001.23) 2019; 131 Liu, JH (WOS:000295483800042) 2011; 47 Kneipp, J (WOS:000276889300031) 2010; 114 Wang, Y (WOS:000403054600009) 2017; 110 Castano, AP (WOS:000239200200015) 2006; 6 Wash, PL (WOS:A1997WV76800020) 1997; 119 Lucky, SS (WOS:000350192900007) 2015; 115 He, PP (WOS:000459642900010) 2019; 52 Agostinis, P (WOS:000292783500006) 2011; 61 Fang, J (WOS:000289929200003) 2011; 63 Ethirajan, M (WOS:000285390900025) 2011; 40 Li, JC (WOS:000488165400001) 2019; 31 Torchilin, V (WOS:000289929200002) 2011; 63 Shah, A (WOS:000441527900056) 2018; 353 Jin, JG (WOS:000453346300016) 2018; 57 Liu, XS (WOS:000322417400071) 2013; 7 Zou, QL (WOS:000393848400041) 2017; 139 Cao, H. (000566420900001.5) 2018; 130 Calixto, GMF (WOS:000373802200017) 2016; 21 Escudero, C. (000566420900001.10) 2006; 118 Cao, HQ (WOS:000435766800030) 2018; 57 Zhou, M (WOS:000548926500004) 2020; 11 Pille, J (WOS:000399061100025) 2017; 18 Jin, J. (000566420900001.17) 2018; 130 Pandeeswar, M (WOS:000386623700007) 2016; 1 Fan, Z (WOS:000437252300005) 2018; 9 Chen, J (WOS:000223921800025) 2004; 126 Laor, D (WOS:000455102900001) 2019; 10 Mitra, S (WOS:000231367600017) 2005; 81 Zhao, LY (WOS:000456216900007) 2019; 29 Li, YP (WOS:000341079100001) 2014; 5 Barnaby, SN (WOS:000288045600018) 2011; 31 Liu, K (WOS:000370656200008) 2016; 55 Song, B (WOS:000244217800016) 2007; 19 Zhu, ZG (WOS:000359793200010) 2015; 36 Li, SK (WOS:000443654400027) 2018; 140 Escudero, C (WOS:000242781200036) 2006; 45 |
References_xml | – volume: 47 start-page: 11321 year: 2011 end-page: 11323 publication-title: Chem. Commun. – volume: 40 start-page: 340 year: 2011 end-page: 362 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 4560 year: 2019 end-page: 4571 publication-title: ACS Nano – volume: 21 start-page: 342 year: 2016 publication-title: Molecules – volume: 119 start-page: 3802 year: 1997 end-page: 3806 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 10794 year: 2018 end-page: 10802 publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 1315 year: 1994 end-page: 1320 publication-title: J. Polym. Sci. Part B – year: 2020 publication-title: Chem. Sci. – volume: 58 131 start-page: 12680 12810 year: 2019 2019 end-page: 12687 12817 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 535 year: 2006 end-page: 545 publication-title: Nat. Rev. Cancer – volume: 110 start-page: 112 year: 2017 end-page: 126 publication-title: Adv. Drug Delivery Rev. – volume: 5 start-page: 12763 year: 2015 end-page: 12772 publication-title: RSC Adv. – volume: 18 start-page: 3506 year: 2017 end-page: 3513 publication-title: Biomacromolecules – volume: 31 start-page: 620 year: 2011 end-page: 628 publication-title: Mater. Sci. Eng. C – volume: 114 start-page: 7421 year: 2010 end-page: 7426 publication-title: J. Phys. Chem. C – volume: 11 start-page: 1857 year: 2020 publication-title: Nat. Commun. – volume: 10 start-page: 62 year: 2019 publication-title: Nat. Commun. – volume: 353 start-page: 559 year: 2018 end-page: 583 publication-title: Chem. Eng. J. – volume: 11 start-page: 18224 year: 2019 end-page: 18232 publication-title: ACS Appl. Mater. Interfaces – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 115 start-page: 1990 year: 2015 end-page: 2042 publication-title: Chem. Rev. – volume: 47 start-page: 3897 year: 2004 end-page: 3915 publication-title: J. Med. Chem. – volume: 56 start-page: 110 year: 2016 end-page: 118 publication-title: Isr. J. Chem. – volume: 57 130 start-page: 7759 7885 year: 2018 2018 end-page: 7763 7889 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 63 start-page: 131 year: 2011 end-page: 135 publication-title: Adv. Drug Delivery Rev. – volume: 36 start-page: 1521 year: 2015 end-page: 1527 publication-title: Macromol. Rapid Commun. – volume: 10 start-page: 148 year: 2008 end-page: 154 publication-title: Clin. Transl. Oncol. – volume: 55 128 start-page: 3036 3088 year: 2016 2016 end-page: 3039 3091 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 19 start-page: 416 year: 2007 end-page: 420 publication-title: Adv. Mater. – volume: 9 start-page: 2605 year: 2018 publication-title: Nat. Commun. – volume: 108 year: 2020 publication-title: Mater. Sci. Eng. C – volume: 18 start-page: 1302 year: 2017 end-page: 1310 publication-title: Biomacromolecules – volume: 1 start-page: 202 year: 2016 end-page: 207 publication-title: Mol. Syst. Des. Eng. – volume: 7 start-page: 6244 year: 2013 end-page: 6257 publication-title: ACS Nano – volume: 52 start-page: 367 year: 2019 end-page: 378 publication-title: Acc. Chem. Res. – volume: 61 start-page: 250 year: 2011 end-page: 281 publication-title: Ca-Cancer J. Clin. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 57 130 start-page: 16354 16592 year: 2018 2018 end-page: 16358 16596 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 10992 year: 2017 end-page: 10995 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 1921 year: 2017 end-page: 1927 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 145 year: 2020 end-page: 153 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 4712 year: 2014 publication-title: Nat. Commun. – volume: 126 start-page: 11450 year: 2004 end-page: 11451 publication-title: J. Am. Chem. Soc. – volume: 45 118 start-page: 8032 8200 year: 2006 2006 end-page: 8035 8203 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 start-page: 295 year: 2011 end-page: 302 publication-title: Mol. Cells – volume: 63 start-page: 136 year: 2011 end-page: 151 publication-title: Adv. Drug Delivery Rev. – volume: 24 start-page: 259 year: 2009 end-page: 268 publication-title: Lasers Med. Sci. – volume: 48 start-page: 4387 year: 2019 end-page: 4400 publication-title: Chem. Soc. Rev. – volume: 81 start-page: 849 year: 2005 end-page: 859 publication-title: Photochem. Photobiol. – ident: e_1_2_6_23_1 – ident: e_1_2_6_40_1 doi: 10.1021/jp910034z – ident: e_1_2_6_18_2 doi: 10.1002/anie.200603182 – ident: e_1_2_6_10_2 doi: 10.1002/anie.201906288 – ident: e_1_2_6_11_1 doi: 10.1002/anie.201802497 – ident: e_1_2_6_46_2 doi: 10.1111/j.1751-1097.2005.tb01453.x – ident: e_1_2_6_14_2 doi: 10.1007/s12094-008-0172-2 – ident: e_1_2_6_29_1 – ident: e_1_2_6_25_2 doi: 10.1021/acs.accounts.8b00398 – ident: e_1_2_6_53_1 – ident: e_1_2_6_17_3 doi: 10.1002/ange.201808811 – ident: e_1_2_6_8_3 doi: 10.1002/ange.201509810 – ident: e_1_2_6_24_2 doi: 10.3390/molecules21030342 – ident: e_1_2_6_37_2 doi: 10.1021/acsnano.9b00494 – ident: e_1_2_6_54_2 doi: 10.1039/c1cc14445f – ident: e_1_2_6_21_2 doi: 10.1038/ncomms5712 – ident: e_1_2_6_34_1 doi: 10.1021/acs.biomac.7b00780 – ident: e_1_2_6_51_1 doi: 10.1016/j.msec.2010.11.027 – ident: e_1_2_6_44_1 – ident: e_1_2_6_27_1 doi: 10.1021/jacs.6b11382 – ident: e_1_2_6_43_1 doi: 10.1016/j.msec.2019.110401 – ident: e_1_2_6_33_1 doi: 10.1016/j.cej.2018.07.126 – ident: e_1_2_6_8_2 doi: 10.1002/anie.201509810 – ident: e_1_2_6_6_1 – ident: e_1_2_6_3_2 doi: 10.1038/nrc1894 – ident: e_1_2_6_13_2 doi: 10.1021/jm040074b – ident: e_1_2_6_38_1 doi: 10.1021/acsami.9b04351 – ident: e_1_2_6_5_2 doi: 10.1002/adma.201905091 – ident: e_1_2_6_45_2 doi: 10.1002/ijch.201500026 – ident: e_1_2_6_12_1 – ident: e_1_2_6_9_2 doi: 10.1039/B915149B – ident: e_1_2_6_36_2 doi: 10.1021/ja047392k – ident: e_1_2_6_32_2 doi: 10.1038/s41467-018-07966-5 – ident: e_1_2_6_20_2 doi: 10.1021/cr5004198 – ident: e_1_2_6_1_1 – ident: e_1_2_6_31_2 doi: 10.1016/j.addr.2016.06.015 – ident: e_1_2_6_48_1 – ident: e_1_2_6_30_2 doi: 10.1039/C9CS00085B – ident: e_1_2_6_47_1 doi: 10.1002/adfm.201806877 – ident: e_1_2_6_50_2 doi: 10.1039/C6ME00012F – ident: e_1_2_6_60_1 – ident: e_1_2_6_7_2 doi: 10.1039/D0SC01171A – ident: e_1_2_6_49_2 doi: 10.1021/nn402201w – ident: e_1_2_6_10_3 doi: 10.1002/ange.201906288 – ident: e_1_2_6_28_1 doi: 10.1021/jacs.8b04912 – ident: e_1_2_6_56_1 doi: 10.1002/adma.200600779 – ident: e_1_2_6_58_2 doi: 10.1039/C4RA15107K – ident: e_1_2_6_39_1 doi: 10.1038/s41565-019-0626-4 – ident: e_1_2_6_62_2 doi: 10.1016/j.addr.2010.03.011 – ident: e_1_2_6_18_3 doi: 10.1002/ange.200603182 – ident: e_1_2_6_19_1 – ident: e_1_2_6_42_1 doi: 10.1007/s10059-011-0051-5 – ident: e_1_2_6_11_2 doi: 10.1002/ange.201802497 – ident: e_1_2_6_59_2 doi: 10.1002/polb.1994.090320802 – ident: e_1_2_6_55_2 doi: 10.1002/marc.201500281 – ident: e_1_2_6_4_2 doi: 10.1038/s41467-020-15730-x – ident: e_1_2_6_16_1 – ident: e_1_2_6_17_2 doi: 10.1002/anie.201808811 – ident: e_1_2_6_26_2 doi: 10.1021/acs.biomac.7b00064 – ident: e_1_2_6_41_1 doi: 10.1038/s41467-018-04763-y – ident: e_1_2_6_15_2 doi: 10.1007/s10103-008-0539-1 – ident: e_1_2_6_35_1 – ident: e_1_2_6_61_2 doi: 10.1016/j.addr.2010.04.009 – ident: e_1_2_6_2_2 doi: 10.3322/caac.20114 – ident: e_1_2_6_57_1 – ident: e_1_2_6_22_2 doi: 10.1021/jacs.7b05559 – ident: e_1_2_6_52_1 doi: 10.1021/ja963416e – volume: 52 start-page: 367 year: 2019 ident: WOS:000459642900010 article-title: Bispyrene-Based Self-Assembled Nanomaterials: In Vivo Self-Assembly, Transformation, and Biomedical Effects publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/acs.accounts.8b00398 – volume: 139 start-page: 1921 year: 2017 ident: WOS:000393848400041 article-title: Biological Photothermal Nanodots Based on Self-Assembly of Peptide Porphyrin Conjugates for Antitumor Therapy publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.6b11382 – volume: 1 start-page: 202 year: 2016 ident: WOS:000386623700007 article-title: Engineering molecular self-assembly of perylene diimide through pH-responsive chiroptical switching publication-title: MOLECULAR SYSTEMS DESIGN & ENGINEERING doi: 10.1039/c6me00012f – volume: 126 start-page: 11450 year: 2004 ident: WOS:000223921800025 article-title: Protease-triggered photosensitizing beacon based on singlet oxygen quenching and activation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja047392k – volume: 40 start-page: 340 year: 2011 ident: WOS:000285390900025 article-title: The role of porphyrin chemistry in tumor imaging and photodynamic therapy publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/b915149b – volume: 11 start-page: 18224 year: 2019 ident: WOS:000469288300016 article-title: Poly(photosensitizer) Nanoparticles for Enhanced in Vivo Photodynamic Therapy by Interrupting the pi-pi Stacking and Extending Circulation Time publication-title: ACS APPLIED MATERIALS & INTERFACES doi: 10.1021/acsami.9b04351 – volume: 353 start-page: 559 year: 2018 ident: WOS:000441527900056 article-title: Stimuli-responsive peptide-based biomaterials as drug delivery systems publication-title: CHEMICAL ENGINEERING JOURNAL doi: 10.1016/j.cej.2018.07.126 – volume: 81 start-page: 849 year: 2005 ident: WOS:000231367600017 article-title: Photophysical parameters, photosensitizer retention and tissue optical properties completely account for the higher photodynamic efficacy of meso-tetra-hydroxyphenyl-chlorin vs Photofrin publication-title: PHOTOCHEMISTRY AND PHOTOBIOLOGY – volume: 36 start-page: 1521 year: 2015 ident: WOS:000359793200010 article-title: Construction and Self-Assembly of Single-Chain Polymer Nanoparticles via Coordination Association and Electrostatic Repulsion in Water publication-title: MACROMOLECULAR RAPID COMMUNICATIONS doi: 10.1002/marc.201500281 – volume: 11 start-page: ARTN 3188 year: 2020 ident: WOS:000548926500004 article-title: Single-atom Ni-N-4 provides a robust cellular NO sensor publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-020-17018-6 – volume: 10 start-page: ARTN 62 year: 2019 ident: WOS:000455102900001 article-title: Fibril formation and therapeutic targeting of amyloid-like structures in a yeast model of adenine accumulation publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-018-07966-5 – volume: 10 start-page: 148 year: 2008 ident: WOS:000256945300005 article-title: Photodynamic therapy of cancer. Basic principles and applications publication-title: CLINICAL & TRANSLATIONAL ONCOLOGY doi: 10.1007/s12094-008-0172-2 – volume: 57 start-page: 7759 year: 2018 ident: WOS:000435766800030 article-title: An Assembled Nanocomplex for Improving both Therapeutic Efficiency and Treatment Depth in Photodynamic Therapy publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201802497 – volume: 29 start-page: ARTN 1806877 year: 2019 ident: WOS:000456216900007 article-title: Supramolecular Photothermal Nanomaterials as an Emerging Paradigm toward Precision Cancer Therapy publication-title: ADVANCED FUNCTIONAL MATERIALS doi: 10.1002/adfm.201806877 – volume: 114 start-page: 7421 year: 2010 ident: WOS:000276889300031 article-title: Following the Dynamics of pH in Endosomes of Live Cells with SERS Nanosensors publication-title: JOURNAL OF PHYSICAL CHEMISTRY C doi: 10.1021/jp910034z – volume: 45 start-page: 8032 year: 2006 ident: WOS:000242781200036 article-title: Folding and hydrodynamic forces in J-aggregates of 5-phenyl-10,15,20-tris(4-sulfophenyl)porphyrin publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200603182 – volume: 58 start-page: 12680 year: 2019 ident: WOS:000479529800001 article-title: Organic Semiconducting Pro-nanostimulants for Near-Infrared Photoactivatable Cancer Immunotherapy publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201906288 – volume: 56 start-page: 110 year: 2016 ident: WOS:000371987400002 article-title: Design and Properties of Porphyrin-based Singlet Oxygen Generator publication-title: ISRAEL JOURNAL OF CHEMISTRY doi: 10.1002/ijch.201500026 – volume: 47 start-page: 11321 year: 2011 ident: WOS:000295483800042 article-title: Combination of pi-pi stacking and electrostatic repulsion between carboxylic carbon nanoparticles and fluorescent oligonucleotides for rapid and sensitive detection of thrombin publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c1cc14445f – volume: 11 start-page: 6479 year: 2020 ident: WOS:000544484900011 article-title: Fine-tuning the electronic structure of heavy-atom-freeBODIPYphotosensitizers for fluorescence imaging and mitochondria-targeted photodynamic therapy publication-title: CHEMICAL SCIENCE doi: 10.1039/d0sc01171a – volume: 19 start-page: 416 year: 2007 ident: WOS:000244217800016 article-title: Supramolecular nanoribers by self-organization of bola-amphiphiles through a combination of hydrogen bonding and pi-pi stacking interactions publication-title: ADVANCED MATERIALS doi: 10.1002/adma.200600779 – volume: 63 start-page: 136 year: 2011 ident: WOS:000289929200003 article-title: The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect publication-title: ADVANCED DRUG DELIVERY REVIEWS doi: 10.1016/j.addr.2010.04.009 – volume: 48 start-page: 4387 year: 2019 ident: WOS:000480621900001 article-title: Photoactive properties of supramolecular assembled short peptides publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/c9cs00085b – volume: 119 start-page: 3802 year: 1997 ident: WOS:A1997WV76800020 article-title: Acid-amide intermolecular hydrogen bonding publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY – volume: 130 start-page: 7885 year: 2018 ident: 000566420900001.5 article-title: An assembled nanocomplex for improving both therapeutic efficiency and treatment depth in photodynamic therapy publication-title: Angew. Chem. – volume: 13 start-page: 4560 year: 2019 ident: WOS:000466052900081 article-title: Tailoring Porphyrin Conjugation for Nanoassembly-Driven Phototheranostic Properties publication-title: ACS NANO doi: 10.1021/acsnano.9b00494 – volume: 110 start-page: 112 year: 2017 ident: WOS:000403054600009 article-title: Peptide-drug conjugates as effective prodrug strategies for targeted delivery publication-title: ADVANCED DRUG DELIVERY REVIEWS doi: 10.1016/j.addr.2016.06.015 – volume: 24 start-page: 259 year: 2009 ident: WOS:000263673700022 article-title: Photophysics and photochemistry of photodynamic therapy: fundamental aspects publication-title: LASERS IN MEDICAL SCIENCE doi: 10.1007/s10103-008-0539-1 – volume: 31 start-page: ARTN 1905091 year: 2019 ident: WOS:000488165400001 article-title: Near-Infrared Photoactivatable Semiconducting Polymer Nanoblockaders for Metastasis-Inhibited Combination Cancer Therapy publication-title: ADVANCED MATERIALS doi: 10.1002/adma.201905091 – volume: 130 start-page: 16592 year: 2018 ident: 000566420900001.17 article-title: Enhancing the Efficacy of Photodynamic Therapy through a Porphyrin/POSS Alternating Copolymer publication-title: Angew. Chem. – volume: 5 start-page: 12763 year: 2015 ident: WOS:000348987700035 article-title: Supramolecular functionalized polybenzoxazines from azobenzene carboxylic acid/azobenzene pyridine complexes: synthesis, surface properties, and specific interactions publication-title: RSC ADVANCES doi: 10.1039/c4ra15107k – volume: 32 start-page: 1315 year: 1994 ident: WOS:A1994NM08100002 article-title: FTIR ANALYSIS OF HYDROGEN-BONDING IN AMORPHOUS LINEAR AROMATIC POLYURETHANES .2. INFLUENCE OF STYRENE SOLVENT publication-title: JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS – volume: 140 start-page: 10794 year: 2018 ident: WOS:000443654400027 article-title: Smart Peptide-Based Supramolecular Photodynamic Metallo-Nanodrugs Designed by Multicomponent Coordination Self-Assembly publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.8b04912 – volume: 31 start-page: 295 year: 2011 ident: WOS:000289986100001 article-title: Nanomaterials for cancer therapy and imaging publication-title: MOLECULES AND CELLS doi: 10.1007/s10059-011-0051-5 – volume: 15 start-page: 145 year: 2020 ident: WOS:000509655700006 article-title: Transformable peptide nanoparticles arrest HER2 signalling and cause cancer cell death in vivo publication-title: NATURE NANOTECHNOLOGY doi: 10.1038/s41565-019-0626-4 – volume: 139 start-page: 10992 year: 2017 ident: WOS:000408074800014 article-title: Continuous O-2-Evolving MnFe2O4 Nanoparticle-Anchored Mesoporous Silica Nanoparticles for Efficient Photodynamic Therapy in Hypoxic Cancer publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b05559 – volume: 5 start-page: ARTN 4712 year: 2014 ident: WOS:000341079100001 article-title: A smart and versatile theranostic nanomedicine platform based on nanoporphyrin publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms5712 – volume: 9 start-page: ARTN 2605 year: 2018 ident: WOS:000437252300005 article-title: Near infrared fluorescent peptide nanoparticles for enhancing esophageal cancer therapeutic efficacy publication-title: NATURE COMMUNICATIONS doi: 10.1038/s41467-018-04763-y – volume: 21 start-page: ARTN 342 year: 2016 ident: WOS:000373802200017 article-title: Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review publication-title: MOLECULES doi: 10.3390/molecules21030342 – volume: 55 start-page: 3036 year: 2016 ident: WOS:000370656200008 article-title: Simple Peptide-Tuned Self-Assembly of Photosensitizers towards Anticancer Photodynamic Therapy publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201509810 – volume: 63 start-page: 131 year: 2011 ident: WOS:000289929200002 article-title: Tumor delivery of macromolecular drugs based on the EPR effect publication-title: ADVANCED DRUG DELIVERY REVIEWS doi: 10.1016/j.addr.2010.03.011 – volume: 18 start-page: 1302 year: 2017 ident: WOS:000399061100025 article-title: Self-Assembling VHH-Elastin-Like Peptides for Photodynamic Nanomedicine publication-title: BIOMACROMOLECULES doi: 10.1021/acs.biomac.7b00064 – volume: 115 start-page: 1990 year: 2015 ident: WOS:000350192900007 article-title: Nanoparticles in Photodynamic Therapy publication-title: CHEMICAL REVIEWS doi: 10.1021/cr5004198 – volume: 131 start-page: 12810 year: 2019 ident: 000566420900001.23 article-title: Organic semiconducting pro-nanostimulants for near-infrared photoactivatable cancer immunotherapy publication-title: Angew Chem Int Ed. – volume: 7 start-page: 6244 year: 2013 ident: WOS:000322417400071 article-title: Enhanced Retention and Cellular Uptake of Nanoparticles in Tumors by Controlling Their Aggregation Behavior publication-title: ACS NANO doi: 10.1021/nn402201w – volume: 61 start-page: 250 year: 2011 ident: WOS:000292783500006 article-title: Photodynamic Therapy of Cancer: An Update publication-title: CA-A CANCER JOURNAL FOR CLINICIANS doi: 10.3322/caac.20114 – volume: 6 start-page: 535 year: 2006 ident: WOS:000239200200015 article-title: Photodynamic therapy and anti-tumour immunity publication-title: NATURE REVIEWS CANCER doi: 10.1038/nrc1894 – volume: 108 start-page: ARTN 110401 year: 2020 ident: WOS:000510956400038 article-title: pH-induced aggregation of hydrophilic carbon dots for fluorescence detection of acidic amino acid and intracellular pH imaging publication-title: MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS doi: 10.1016/j.msec.2019.110401 – volume: 31 start-page: 620 year: 2011 ident: WOS:000288045600018 article-title: Biomimetic fabrication of gold nanoparticles on templated indole-3-acetic acid based nanofibers publication-title: MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS doi: 10.1016/j.msec.2010.11.027 – volume: 18 start-page: 3506 year: 2017 ident: WOS:000415391900006 article-title: Bis(pyrene)-Doped Cationic Dipeptide Nanoparticles for Two-Photon-Activated Photodynamic Therapy publication-title: BIOMACROMOLECULES doi: 10.1021/acs.biomac.7b00780 – volume: 118 start-page: 8200 year: 2006 ident: 000566420900001.10 article-title: Folding and Hydrodynamic Forces in J-Aggregates of 5-Phenyl-10,15,20-tris(4-sulfophenyl)porphyrin publication-title: Angew. Chem., Int. Ed. – volume: 47 start-page: 3897 year: 2004 ident: WOS:000222856800001 article-title: Current clinical and preclinical photosensitizers for use in photodynamic therapy publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/jm040074b – volume: 57 start-page: 16354 year: 2018 ident: WOS:000453346300016 article-title: Enhancing the Efficacy of Photodynamic Therapy through a Porphyrin/POSS Alternating Copolymer publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201808811 |
SSID | ssj0028806 |
Score | 2.656268 |
Snippet | Inspired by the dynamic morphology control of molecular assemblies in biological systems, we have developed pH‐responsive transformable peptide‐based... Inspired by the dynamic morphology control of molecular assemblies in biological systems, we have developed pH-responsive transformable peptide-based... |
Source | Web of Science |
SourceID | pubmedcentral proquest pubmed webofscience crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20582 |
SubjectTerms | Acids - chemistry Assemblies Biomaterials Biomedical materials Chemistry Chemistry, Multidisciplinary fibrillar transformation Fibrils Fluorescence Humans Hydrogen bonds Hydrogen-Ion Concentration Morphology Nanofibers Nanomaterials Nanoparticles Nanostructures - chemistry Nanotechnology Peptides Peptides - chemistry Photochemotherapy - methods Photodynamic therapy photosensitizers Photosensitizing Agents - chemistry Physical Sciences Porphyrins Porphyrins - chemistry Retention Science & Technology self-assembly Singlet oxygen Spectrum Analysis - methods Tumor Microenvironment Tumors |
Title | Acid‐Activatable Transmorphic Peptide‐Based Nanomaterials for Photodynamic Therapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202008708 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000566420900001 https://www.ncbi.nlm.nih.gov/pubmed/32687653 https://www.proquest.com/docview/2456381402 https://www.proquest.com/docview/2425896769 https://pubmed.ncbi.nlm.nih.gov/PMC7693186 |
Volume | 59 |
WOS | 000566420900001 |
WOSCitedRecordID | wos000566420900001 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB4VLu2F_lPTFLkSEidDsvau7WMaBdFKRVEFiJu1u96ICGJXxTnQUx-hz9gn6cyuvcUtqBXNKZFnlXg8s_NNduYbgJ1MMWOSOI1wCyyjJOMiUviKpCR2K55qlVPv8McjcXiSfDjjZze6-B0_hP_DjTzD7tfk4FJd7f8iDaUObMzv6Pw-td2-VLBFqOiT549iaJyuvSiOI5pC37E2Dtl-f3k_Kv0BNW-vmPRRqg9sbWQ6eAyyuydXkHKxt2rUnv76G93j_9z0E9hoYWs4dnb2FB6Y6hk8nHTT4p7D6Vgvyh_fvo-1nZdGDVmhjYPLGp_kQoczKp8pDYq8w8BZhrit14iWnQOECJ3D2Xnd1OV1JZcofuzYDl7AycH0eHIYtTMbIs0xzGE6KnM-nwuhxMhkTPK5zIVClKMoFWWZNokp8zgXhiOwGCpD9DwlK5kaGp4mMn4J61VdmVcQYnjVHOGU0gmCJKUx19JGI_ziMZtLmQUQdc-s0C2hOc3VuCwcFTMrSFuF11YAu17-s6PyuFNy0JlA0br0VUEnxDHxg7EA3vrLqGU6YZGVqVckw_AXU9VwAJvOYvxXIU7GyMPjANKeLXkBIvruX6kW55bwm-ZVjjIRwM5Nq_MLCXcLzCOHuT2rCWD0L2KTVmXEfdAEwKzZ_UUxxfjo_dR_2rrPotfwiN7bds58AOvNl5V5g7iuUduwxpLZtvXgn2aQRy0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcigXKP8uBYxUxMmts_b659BDSFsltI0qlKLe3N31Ro2gNmodoXLiEXgVXoVH4EmYWdsL5kcgpB7IzfHYcWbn1zvzDcBaIpnWYRB7aAJzL0x45En8eEIQuhWPlUypd3h_HA0PwxdH_GgBPrW9MDU-hH3hRpph7DUpOL2Q3viGGkot2Jjg0QZ-7CdNXeWuvniHWdv55mgLl_gpYzvbk8HQawYLeIqjLcacSaR8Oo0iGfV0wgSfijSS6Iol5UssUTrUeRqkkebo_XypCUMmZzmTvuZxKAK87xW4SmPECa5_66VFrGKoDnVDUxB4NPe-xYn02Ub3ebt-8Kfg9tc1mtYvdkNp4wt3bsDnlot1Cczr9Xkl19X7HwAm_ys2L8P1JjJ3-7Uq3YQFXdyCpUE7EO82vOqrWf7lw8e-MiPhqOfMNa7-tERhnSn3gCqEco0kzzE2yF30XCUmBLWOu5gduAcnZVXmF4U4RfJJDehwBw4v5W_dhcWiLPR9cDGCUBwjRqlCjAOlwnRSaYURJg_YVIjEAa8Vkkw1mO00OuRNVqNNs4xWJ7Or48AzS_-2Riv5LeVqK3NZY7XOM9oEDwgCjTnwxJ5GLtMmkih0OScahk9MhdEO3KtF1P4UpgLoXHngQNwRXktAWObdM8XsxGCa00jOXhI5sPa9mNsLKbWIMFX2U7Md5UDvb8gGDcsI3qFygBk5_wNjsv54tG2PVv7losewNJzs72V7o_HuA7hG35vu1XQVFquzuX6IYWwlHxnD4cLxZavQV1Agor4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VIgEXxG8xFDBSESerztq7tg8cQtqooRDl0KLezP5ZjUTtiqZCvfEIPArPxJMws7YXLEAgpOaWeJxYszs732RmvgHYyhWzNk2yCI9AE6U5F5HCVyQlsVvxTKuCeoffzsXeYfr6iB-twde-F6blh_B_uJFluPOaDPzUVNs_SEOpAxvjO8rfZ3HelVXu24tPGLSdvZzt4Ao_Z2y6ezDZi7q5ApHmeBRjyCQLXlVCKDGyOZO8koVQ6IkVhUss1za1pkgKYTk6v1hZopAxzDAVW56lMsHvvQJXKcNIRWQsXfgQD62h7WdKkojG3vc0kTHbHj7v0A3-gm1_X6Lp3eIQSTtXOL0FNzsMG47bTXcb1mx9B65P-tFxd-HdWC_Nt89fxtoNT6PurNA5xZMGl3WpwwXV0hiLIq_Qi5oQz_gGoXNrDSHi6HBx3Kwac1HLExQ_aKkP7sHhpSj6PqzXTW0fQIi-VnPEVkqniJiUxsBLW41YjCeskjIPIOr1WeqO3ZyGbHwoW15mVpL-S6__AF54-dOW1-OPkpv98pSdfZ-VlC5OiCyMBfDMX0YtU7pF1rY5JxmGT0wlxAFstKvpfwpBM7ohngSQDdbZCxDr9_BKvTx27N80vHKUiwC2ft4R_kYC4QKDyrhwiZsARv8iNulURkQIqwCY211_UUw5ns92_buH_3PTU7i22JmWb2bz_Udwgz52bZ7FJqyvPp7bx4j3VuqJM7EQ3l-2TX8HqZ1gjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acid-Activatable+Transmorphic+Peptide-Based+Nanomaterials+for+Photodynamic+Therapy&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Sun%2C+Bingbing&rft.au=Chang%2C+Rui&rft.au=Cao%2C+Shoupeng&rft.au=Yuan%2C+Chengqian&rft.date=2020-11-09&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=46&rft.spage=20582&rft_id=info:doi/10.1002%2Fanie.202008708&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |