Covalent Triazine Frameworks via a Low‐Temperature Polycondensation Approach
Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large‐scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF‐H...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 56; no. 45; pp. 14149 - 14153 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
06.11.2017
John Wiley and Sons Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large‐scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF‐HUSTs) via a polycondensation approach, which allows the synthesis of CTFs under mild conditions from a wide array of building blocks. Interestingly, these CTFs display a layered structure. The CTFs synthesized were also readily scaled up to gram quantities. The CTFs are potential candidates for separations, photocatalysis and for energy storage applications. In particular, CTF‐HUSTs are found to be promising photocatalysts for sacrificial photocatalytic hydrogen evolution with a maximum rate of 2647 μmol h−1 g−1 under visible light. We also applied a pyrolyzed form of CTF‐HUST‐4 as an anode material in a sodium‐ion battery achieving an excellent discharge capacity of 467 mAh g−1.
Layered allrounder: A novel polycondensation approach enables the construction of covalent triazine frameworks (CTFs) under mild conditions from a wide array of building blocks. The resulting CTFs present a new type of layered material with potential applications in separations, photocatalysis, and energy storage. |
---|---|
AbstractList | Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large‐scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF‐HUSTs) via a polycondensation approach, which allows the synthesis of CTFs under mild conditions from a wide array of building blocks. Interestingly, these CTFs display a layered structure. The CTFs synthesized were also readily scaled up to gram quantities. The CTFs are potential candidates for separations, photocatalysis and for energy storage applications. In particular, CTF‐HUSTs are found to be promising photocatalysts for sacrificial photocatalytic hydrogen evolution with a maximum rate of 2647 μmol h
−1
g
−1
under visible light. We also applied a pyrolyzed form of CTF‐HUST‐4 as an anode material in a sodium‐ion battery achieving an excellent discharge capacity of 467 mAh g
−1
. Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large-scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF-HUSTs) via a polycondensation approach, which allows the synthesis of CTFs under mild conditions from a wide array of building blocks. Interestingly, these CTFs display a layered structure. The CTFs synthesized were also readily scaled up to gram quantities. The CTFs are potential candidates for separations, photocatalysis and for energy storage applications. In particular, CTF-HUSTs are found to be promising photocatalysts for sacrificial photocatalytic hydrogen evolution with a maximum rate of 2647 μmol h g under visible light. We also applied a pyrolyzed form of CTF-HUST-4 as an anode material in a sodium-ion battery achieving an excellent discharge capacity of 467 mAh g . Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large-scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF-HUSTs) via a polycondensation approach, which allows the synthesis of CTFs under mild conditions from a wide array of building blocks. Interestingly, these CTFs display a layered structure. The CTFs synthesized were also readily scaled up to gram quantities. The CTFs are potential candidates for separations, photocatalysis and for energy storage applications. In particular, CTF-HUSTs are found to be promising photocatalysts for sacrificial photocatalytic hydrogen evolution with a maximum rate of 2647 μmol h-1 g-1 under visible light. We also applied a pyrolyzed form of CTF-HUST-4 as an anode material in a sodium-ion battery achieving an excellent discharge capacity of 467 mAh g-1 .Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large-scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF-HUSTs) via a polycondensation approach, which allows the synthesis of CTFs under mild conditions from a wide array of building blocks. Interestingly, these CTFs display a layered structure. The CTFs synthesized were also readily scaled up to gram quantities. The CTFs are potential candidates for separations, photocatalysis and for energy storage applications. In particular, CTF-HUSTs are found to be promising photocatalysts for sacrificial photocatalytic hydrogen evolution with a maximum rate of 2647 μmol h-1 g-1 under visible light. We also applied a pyrolyzed form of CTF-HUST-4 as an anode material in a sodium-ion battery achieving an excellent discharge capacity of 467 mAh g-1 . Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large-scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF-HUSTs) via a polycondensation approach, which allows the synthesis of CTFs under mild conditions from a wide array of building blocks. Interestingly, these CTFs display a layered structure. The CTFs synthesized were also readily scaled up to gram quantities. The CTFs are potential candidates for separations, photocatalysis and for energy storage applications. In particular, CTF-HUSTs are found to be promising photocatalysts for sacrificial photocatalytic hydrogen evolution with a maximum rate of 2647µmolh-1g-1 under visible light. We also applied a pyrolyzed form of CTF-HUST-4 as an anode material in a sodium-ion battery achieving an excellent discharge capacity of 467mAhg-1. Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large‐scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF‐HUSTs) via a polycondensation approach, which allows the synthesis of CTFs under mild conditions from a wide array of building blocks. Interestingly, these CTFs display a layered structure. The CTFs synthesized were also readily scaled up to gram quantities. The CTFs are potential candidates for separations, photocatalysis and for energy storage applications. In particular, CTF‐HUSTs are found to be promising photocatalysts for sacrificial photocatalytic hydrogen evolution with a maximum rate of 2647 μmol h−1 g−1 under visible light. We also applied a pyrolyzed form of CTF‐HUST‐4 as an anode material in a sodium‐ion battery achieving an excellent discharge capacity of 467 mAh g−1. Layered allrounder: A novel polycondensation approach enables the construction of covalent triazine frameworks (CTFs) under mild conditions from a wide array of building blocks. The resulting CTFs present a new type of layered material with potential applications in separations, photocatalysis, and energy storage. |
Author | Yang, Li‐Ming Wang, Kewei Cheng, Guang Guo, Liping Zhang, Chun Jin, Shangbin Cooper, Andrew Tan, Bien Wang, Xi |
AuthorAffiliation | 5 Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China 1 Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China 2 Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science Beijing Jiaotong University No.3 Shangyuancun, Haidian District 100044 Beijing China 4 Department of Chemistry and Materials Innovation Factory University of Liverpool Crown Street Liverpool L69 7ZD UK 3 College of Life Science & Technology Huazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China |
AuthorAffiliation_xml | – name: 4 Department of Chemistry and Materials Innovation Factory University of Liverpool Crown Street Liverpool L69 7ZD UK – name: 2 Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science Beijing Jiaotong University No.3 Shangyuancun, Haidian District 100044 Beijing China – name: 3 College of Life Science & Technology Huazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China – name: 1 Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China – name: 5 Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China |
Author_xml | – sequence: 1 givenname: Kewei surname: Wang fullname: Wang, Kewei organization: Ministry of Education – sequence: 2 givenname: Li‐Ming surname: Yang fullname: Yang, Li‐Ming organization: Ministry of Education – sequence: 3 givenname: Xi surname: Wang fullname: Wang, Xi organization: Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 4 givenname: Liping surname: Guo fullname: Guo, Liping organization: Ministry of Education – sequence: 5 givenname: Guang surname: Cheng fullname: Cheng, Guang organization: Ministry of Education – sequence: 6 givenname: Chun surname: Zhang fullname: Zhang, Chun organization: Huazhong University of Science and Technology – sequence: 7 givenname: Shangbin surname: Jin fullname: Jin, Shangbin email: jinsb@hust.edu.cn organization: Ministry of Education – sequence: 8 givenname: Bien orcidid: 0000-0001-7181-347X surname: Tan fullname: Tan, Bien email: bien.tan@mail.hust.edu.cn organization: Ministry of Education – sequence: 9 givenname: Andrew surname: Cooper fullname: Cooper, Andrew organization: University of Liverpool |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28926688$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9u1DAQxi1URP_AlSOKxIVLFjvJxM4FabVqodKqcFjO1tSZpS6JHexkV8uJR-AZeRJcti1QCSFZGkvz-z59M3PMDpx3xNhzwWeC8-I1OkuzggvJFVTqETsSUIi8lLI8SP-qLHOpQByy4xivE68Ur5-ww0I1RV0rdcQuFn6DHbkxWwWLX62j7CxgT1sfPsdsYzHDbOm3P759X1E_UMBxCpR98N3OeNeSizha77L5MASP5uope7zGLtKz23rCPp6drhbv8uX7t-eL-TI3IIXKhWxUhRyJm2KtCuRQpcgG1lAToGhM1QKXUtRAtWlQwGUFyNvUb1uBypQn7M3ed5gue2pNGiBgp4dgeww77dHqvzvOXulPfqOhblR6yeDVrUHwXyaKo-5tNNR16MhPUYumErzhisuEvnyAXvspuDReogDSvkFAol78meg-yt2qE1DtARN8jIHW2tjx1_ZSQNtpwfXNRfXNRfX9RZNs9kB25_xPQbMXbG1Hu__Qen5xfvpb-xMy2bVL |
CitedBy_id | crossref_primary_10_1021_acs_chemmater_4c01699 crossref_primary_10_1016_j_ccr_2024_216359 crossref_primary_10_1016_j_apcatb_2018_09_011 crossref_primary_10_1016_j_seppur_2025_132130 crossref_primary_10_1021_acscatal_1c01794 crossref_primary_10_1039_D2CS00065B crossref_primary_10_1016_j_xcrp_2021_100653 crossref_primary_10_1002_cctc_201901725 crossref_primary_10_1002_advs_201801116 crossref_primary_10_1021_acscatal_1c03728 crossref_primary_10_1002_anie_202416350 crossref_primary_10_1016_j_aca_2022_340207 crossref_primary_10_1002_smll_202207876 crossref_primary_10_1021_acs_chemmater_9b02825 crossref_primary_10_1021_jacs_3c12539 crossref_primary_10_1002_mame_202300176 crossref_primary_10_1016_j_cclet_2024_110294 crossref_primary_10_1039_D3TA04472F crossref_primary_10_1002_anie_202419867 crossref_primary_10_1021_jacs_3c11688 crossref_primary_10_1002_chem_201802200 crossref_primary_10_1016_j_jcis_2024_08_021 crossref_primary_10_1016_j_seppur_2025_132485 crossref_primary_10_1016_S1872_2067_20_63603_8 crossref_primary_10_1002_ange_202218252 crossref_primary_10_1002_adfm_202308553 crossref_primary_10_1002_ange_201900046 crossref_primary_10_20517_energymater_2023_133 crossref_primary_10_1002_admi_202100374 crossref_primary_10_3390_nano13182514 crossref_primary_10_1021_acsomega_1c02592 crossref_primary_10_3390_polym11081326 crossref_primary_10_1016_j_apcatb_2024_124950 crossref_primary_10_1016_j_cclet_2022_02_065 crossref_primary_10_1016_j_mtchem_2022_100832 crossref_primary_10_3390_ma14123214 crossref_primary_10_1039_D4TA00618F crossref_primary_10_1002_ange_202117668 crossref_primary_10_1039_D3EE01360J crossref_primary_10_1002_anie_202006618 crossref_primary_10_1002_adfm_202312912 crossref_primary_10_1002_ange_201903534 crossref_primary_10_1002_adma_202301190 crossref_primary_10_1039_D0TA05894G crossref_primary_10_1021_acsami_1c20579 crossref_primary_10_3389_fchem_2018_00592 crossref_primary_10_1039_D4CC04688A crossref_primary_10_1039_D3CS00908D crossref_primary_10_1007_s40843_023_2714_x crossref_primary_10_1016_j_jssc_2024_124819 crossref_primary_10_1039_C9CS00313D crossref_primary_10_1002_chem_202101956 crossref_primary_10_1002_asia_201901017 crossref_primary_10_1016_j_mtchem_2021_100475 crossref_primary_10_1039_D0CC04351F crossref_primary_10_1039_D3CC00712J crossref_primary_10_1002_anie_201905591 crossref_primary_10_1002_chem_201905133 crossref_primary_10_1021_acsami_0c11381 crossref_primary_10_3390_ijms23010347 crossref_primary_10_1246_cl_200834 crossref_primary_10_1007_s10118_020_2394_x crossref_primary_10_1021_acsapm_4c00816 crossref_primary_10_1002_anie_202403473 crossref_primary_10_1002_ange_202006618 crossref_primary_10_1039_C8PY00025E crossref_primary_10_1002_ange_202109851 crossref_primary_10_1039_D1CS00976A crossref_primary_10_1016_j_chroma_2019_460847 crossref_primary_10_1016_j_jcat_2024_115713 crossref_primary_10_1016_j_cclet_2024_110235 crossref_primary_10_1039_D1TC00999K crossref_primary_10_1039_D0CS00049C crossref_primary_10_1039_D0CS00278J crossref_primary_10_1007_s11426_023_1624_7 crossref_primary_10_1016_j_progpolymsci_2020_101288 crossref_primary_10_1002_chem_202001039 crossref_primary_10_1016_j_memsci_2021_120156 crossref_primary_10_1021_acsanm_3c03248 crossref_primary_10_1039_D1TA09684B crossref_primary_10_1002_anie_201908513 crossref_primary_10_1002_ange_201902543 crossref_primary_10_1002_solr_202000458 crossref_primary_10_1016_j_ccr_2024_215694 crossref_primary_10_1016_j_apcatb_2021_120691 crossref_primary_10_1021_acsaem_0c01153 crossref_primary_10_1016_j_microc_2023_108412 crossref_primary_10_1039_D1PY01145F crossref_primary_10_1002_chem_202404208 crossref_primary_10_1016_j_apcatb_2020_119174 crossref_primary_10_1016_j_rechem_2022_100719 crossref_primary_10_1016_j_ijhydene_2022_08_060 crossref_primary_10_1016_j_jallcom_2021_159565 crossref_primary_10_1002_ange_201804702 crossref_primary_10_1002_ange_202320137 crossref_primary_10_1007_s12274_024_6483_y crossref_primary_10_1016_j_mtchem_2024_102324 crossref_primary_10_1016_j_cej_2019_121977 crossref_primary_10_1016_j_jclepro_2021_125822 crossref_primary_10_1039_D0TA12122C crossref_primary_10_1039_C9QM00633H crossref_primary_10_1002_anie_202109851 crossref_primary_10_1002_adma_202107480 crossref_primary_10_1021_acsaem_0c02102 crossref_primary_10_1039_D3YA00038A crossref_primary_10_1039_C9NJ04562G crossref_primary_10_1002_ange_202403473 crossref_primary_10_1039_D3NR06419K crossref_primary_10_1016_j_mattod_2020_07_003 crossref_primary_10_1039_C9TA13212K crossref_primary_10_1007_s12274_020_2723_y crossref_primary_10_1002_adfm_201901301 crossref_primary_10_1007_s12274_022_5307_1 crossref_primary_10_1039_D3RA03552B crossref_primary_10_1016_j_cej_2023_146099 crossref_primary_10_1021_acsaem_2c03897 crossref_primary_10_1021_acs_iecr_1c02841 crossref_primary_10_1002_anie_201804702 crossref_primary_10_1021_acssuschemeng_9b07591 crossref_primary_10_1016_j_ccr_2025_216507 crossref_primary_10_1039_D2SC02638D crossref_primary_10_1039_D0EN01140A crossref_primary_10_1039_D0SE01504K crossref_primary_10_1016_j_apcatb_2019_117935 crossref_primary_10_1016_j_cogsc_2018_11_015 crossref_primary_10_1039_D3NJ04479C crossref_primary_10_1002_anie_202312095 crossref_primary_10_1021_acsaem_2c00017 crossref_primary_10_1002_cssc_201902797 crossref_primary_10_1515_epoly_2022_0063 crossref_primary_10_1007_s10853_020_05637_9 crossref_primary_10_1016_j_clay_2023_106921 crossref_primary_10_1039_C8TC01324A crossref_primary_10_1039_D4SC06903J crossref_primary_10_1021_acs_cgd_9b00801 crossref_primary_10_1039_D1CC05619K crossref_primary_10_1021_acs_iecr_8b02866 crossref_primary_10_1021_acsmaterialslett_2c00336 crossref_primary_10_1039_C7CE02079A crossref_primary_10_1039_C9CC02966D crossref_primary_10_1039_C9TC05297F crossref_primary_10_1002_anie_201903534 crossref_primary_10_3390_colloids6020020 crossref_primary_10_1002_ange_202305500 crossref_primary_10_1016_j_chroma_2020_461470 crossref_primary_10_1016_j_gee_2024_04_007 crossref_primary_10_1038_s41467_022_29781_9 crossref_primary_10_1016_j_scitotenv_2024_173478 crossref_primary_10_1039_D3PY00181D crossref_primary_10_1021_acsenergylett_0c00394 crossref_primary_10_1038_s41467_024_54959_8 crossref_primary_10_1002_anie_202201482 crossref_primary_10_1002_bit_28718 crossref_primary_10_1007_s11426_020_9763_9 crossref_primary_10_1002_anie_202212015 crossref_primary_10_1021_acsami_3c15536 crossref_primary_10_1002_ange_201901888 crossref_primary_10_1021_acs_macromol_9b01771 crossref_primary_10_1039_D1PY00266J crossref_primary_10_1002_anie_201914424 crossref_primary_10_1002_chem_202404089 crossref_primary_10_1016_j_apcatb_2025_125147 crossref_primary_10_1039_D3MA01003A crossref_primary_10_1002_cctc_202401362 crossref_primary_10_1002_ange_202416350 crossref_primary_10_1002_ange_202419867 crossref_primary_10_1002_adfm_202400065 crossref_primary_10_1039_D2TA00896C crossref_primary_10_1002_anie_201902543 crossref_primary_10_1016_j_apcata_2023_119269 crossref_primary_10_3390_catal11091133 crossref_primary_10_1039_D0CY02094J crossref_primary_10_1039_C8RA06806B crossref_primary_10_1039_D0TA00556H crossref_primary_10_1002_smll_202007576 crossref_primary_10_1016_j_micromeso_2019_109765 crossref_primary_10_1021_acscatal_8b02607 crossref_primary_10_3762_bjnano_11_62 crossref_primary_10_1039_D1TA03951B crossref_primary_10_1039_D3TA01471A crossref_primary_10_1002_smll_202200984 crossref_primary_10_1002_cctc_202401355 crossref_primary_10_1039_D2TA04177D crossref_primary_10_1002_adsu_202100184 crossref_primary_10_1039_C9EE01935A crossref_primary_10_1007_s11356_022_25021_1 crossref_primary_10_1039_D4MA00205A crossref_primary_10_1021_jacs_9b03591 crossref_primary_10_1021_acsaem_2c00977 crossref_primary_10_1002_ajoc_202100281 crossref_primary_10_1002_chem_201804496 crossref_primary_10_1002_ejoc_201901737 crossref_primary_10_1002_chem_201900940 crossref_primary_10_1039_C9TA06847C crossref_primary_10_1007_s10800_023_01964_2 crossref_primary_10_1039_D0TA10875H crossref_primary_10_1002_cssc_202200901 crossref_primary_10_1039_D3CP03194B crossref_primary_10_1002_cssc_202101625 crossref_primary_10_1021_acssuschemeng_0c05964 crossref_primary_10_1039_D2CS00465H crossref_primary_10_1021_jacs_8b07721 crossref_primary_10_3389_fchem_2022_854018 crossref_primary_10_1021_jacs_0c00365 crossref_primary_10_1007_s41061_021_00336_8 crossref_primary_10_1039_D0RA06432G crossref_primary_10_1002_anie_202202492 crossref_primary_10_1002_cjce_24507 crossref_primary_10_1039_D0TA10195H crossref_primary_10_1016_j_dyepig_2020_108968 crossref_primary_10_1021_acsami_0c03246 crossref_primary_10_1039_C9SC02601K crossref_primary_10_1002_anie_202208919 crossref_primary_10_1039_D3RA01336G crossref_primary_10_1021_acscatal_9b00314 crossref_primary_10_20517_energymater_2024_39 crossref_primary_10_1021_acs_macromol_4c01290 crossref_primary_10_1016_j_chemosphere_2021_129622 crossref_primary_10_1039_C9GC03482J crossref_primary_10_1002_anie_202113926 crossref_primary_10_1016_j_talanta_2019_04_010 crossref_primary_10_1016_j_nantod_2020_101059 crossref_primary_10_1016_j_cej_2024_152556 crossref_primary_10_1021_acsami_3c00090 crossref_primary_10_1016_j_micromeso_2023_112767 crossref_primary_10_1039_D3TA02189K crossref_primary_10_1021_acs_chemrev_9b00399 crossref_primary_10_1016_j_apcatb_2022_121488 crossref_primary_10_1016_j_seppur_2024_127408 crossref_primary_10_1039_D1CP03456A crossref_primary_10_1002_cjoc_202300494 crossref_primary_10_1021_acs_cgd_4c01070 crossref_primary_10_1360_nso_20240024 crossref_primary_10_1021_accountsmr_3c00054 crossref_primary_10_1002_smll_202006043 crossref_primary_10_1002_adma_201907601 crossref_primary_10_1021_acs_chemrev_8b00056 crossref_primary_10_3390_polym11010031 crossref_primary_10_3724_SP_J_1123_2023_08025 crossref_primary_10_1002_anie_201900046 crossref_primary_10_1016_j_jechem_2020_03_022 crossref_primary_10_1016_j_nantod_2021_101247 crossref_primary_10_1002_adfm_202413453 crossref_primary_10_2139_ssrn_4117536 crossref_primary_10_1021_acssuschemeng_8b05463 crossref_primary_10_1039_D2NJ04509E crossref_primary_10_3390_catal11060754 crossref_primary_10_1002_cctc_202200179 crossref_primary_10_1016_j_jcat_2024_115898 crossref_primary_10_1016_j_cej_2024_149488 crossref_primary_10_1039_C9TA00573K crossref_primary_10_1016_j_mtchem_2022_101037 crossref_primary_10_2139_ssrn_4056692 crossref_primary_10_1016_j_matt_2020_09_007 crossref_primary_10_1002_aenm_202303346 crossref_primary_10_1016_j_heliyon_2024_e32202 crossref_primary_10_1039_D0QM00216J crossref_primary_10_1039_D1TC02985A crossref_primary_10_1039_C9RA02934F crossref_primary_10_1007_s00604_023_05806_y crossref_primary_10_1002_cssc_202300759 crossref_primary_10_1002_anie_202109342 crossref_primary_10_1155_2020_7819049 crossref_primary_10_1039_D2TA06479K crossref_primary_10_1002_adfm_201904781 crossref_primary_10_1002_ajoc_202300308 crossref_primary_10_2139_ssrn_4056688 crossref_primary_10_34133_energymatadv_0078 crossref_primary_10_1039_D0TC00475H crossref_primary_10_1002_aoc_7980 crossref_primary_10_1016_j_apsusc_2019_143537 crossref_primary_10_1007_s10008_023_05733_1 crossref_primary_10_1007_s12274_022_5050_7 crossref_primary_10_1039_D1TA03098A crossref_primary_10_1016_S1872_2067_24_60050_1 crossref_primary_10_1002_cssc_202101663 crossref_primary_10_1039_D3CS00782K crossref_primary_10_1039_C8TA07391K crossref_primary_10_1016_j_cclet_2022_04_038 crossref_primary_10_1002_smm2_1223 crossref_primary_10_1021_acs_chemmater_0c04348 crossref_primary_10_1002_sus2_220 crossref_primary_10_1016_j_ccr_2024_215700 crossref_primary_10_1002_cptc_201900089 crossref_primary_10_1002_ange_201806664 crossref_primary_10_1038_s41578_020_00254_z crossref_primary_10_1016_j_cej_2018_08_219 crossref_primary_10_1021_acs_langmuir_4c00310 crossref_primary_10_1016_j_checat_2024_100963 crossref_primary_10_1039_D0TA01200A crossref_primary_10_1002_admt_202000154 crossref_primary_10_1002_anie_202421251 crossref_primary_10_1016_j_elecom_2023_107477 crossref_primary_10_1016_j_ijhydene_2021_12_197 crossref_primary_10_1002_adma_202107947 crossref_primary_10_1002_ange_202410300 crossref_primary_10_1021_acsanm_8b00983 crossref_primary_10_1039_C9TA14252E crossref_primary_10_1039_D0RA09619A crossref_primary_10_1021_acs_est_2c00126 crossref_primary_10_1088_1361_6528_ac68f6 crossref_primary_10_3390_catal12111327 crossref_primary_10_1007_s40843_020_1352_4 crossref_primary_10_1021_acsanm_3c00691 crossref_primary_10_1039_c8pp00511g crossref_primary_10_1016_j_cej_2024_156552 crossref_primary_10_1039_D2NJ06097C crossref_primary_10_1021_acscatal_0c00243 crossref_primary_10_1002_sstr_202300495 crossref_primary_10_1016_j_jcat_2019_05_029 crossref_primary_10_1002_adma_202311535 crossref_primary_10_1021_acsapm_0c01070 crossref_primary_10_1021_acs_chemmater_0c03716 crossref_primary_10_1039_D2CY00088A crossref_primary_10_1002_chem_201900563 crossref_primary_10_1002_cctc_202301205 crossref_primary_10_1002_cssc_202201298 crossref_primary_10_1038_s43586_022_00181_z crossref_primary_10_1002_anie_202303086 crossref_primary_10_1002_asia_202100357 crossref_primary_10_1007_s40242_022_1468_4 crossref_primary_10_1002_ange_202201482 crossref_primary_10_1016_j_colsurfa_2022_130201 crossref_primary_10_1002_adfm_202301463 crossref_primary_10_1002_mame_202000643 crossref_primary_10_1002_chem_201903926 crossref_primary_10_1007_s40242_022_2007_z crossref_primary_10_1039_C9MH00856J crossref_primary_10_1021_acsmacrolett_1c00591 crossref_primary_10_1002_ange_202212015 crossref_primary_10_1021_acscatal_0c01242 crossref_primary_10_3390_polym16233267 crossref_primary_10_1039_C9TA02457C crossref_primary_10_1002_ange_202303086 crossref_primary_10_1016_j_inoche_2024_112486 crossref_primary_10_1021_acscatal_3c01281 crossref_primary_10_1002_ange_201813075 crossref_primary_10_1039_D1TA00589H crossref_primary_10_1002_cssc_202000712 crossref_primary_10_1039_D4DT01127A crossref_primary_10_1016_j_cjche_2022_01_027 crossref_primary_10_1016_j_cej_2021_132401 crossref_primary_10_1016_j_enchem_2023_100116 crossref_primary_10_1016_j_jece_2025_115593 crossref_primary_10_1002_admi_202201413 crossref_primary_10_1002_anie_202006176 crossref_primary_10_1021_acsami_2c01091 crossref_primary_10_1002_ange_201904291 crossref_primary_10_1039_D3NJ03851C crossref_primary_10_1002_ange_201906350 crossref_primary_10_1021_acs_macromol_3c01911 crossref_primary_10_1002_ange_202312095 crossref_primary_10_1002_smll_202100918 crossref_primary_10_1016_j_jece_2021_105687 crossref_primary_10_1002_ange_202006176 crossref_primary_10_1021_acs_chemrev_9b00201 crossref_primary_10_3390_nano8010015 crossref_primary_10_1021_jacs_9b06219 crossref_primary_10_1021_acs_accounts_4c00729 crossref_primary_10_1007_s11426_022_1475_x crossref_primary_10_2139_ssrn_3990802 crossref_primary_10_1002_smll_202406375 crossref_primary_10_1021_acs_chemrev_9b00550 crossref_primary_10_1016_j_mtadv_2019_100052 crossref_primary_10_1021_acssuschemeng_3c07186 crossref_primary_10_3724_SP_J_1123_2020_07036 crossref_primary_10_6023_cjoc202212026 crossref_primary_10_1002_cssc_202201219 crossref_primary_10_1002_ange_202303378 crossref_primary_10_1126_sciadv_aaz2310 crossref_primary_10_1002_marc_202100872 crossref_primary_10_1016_j_apcatb_2024_124020 crossref_primary_10_1002_anie_202410300 crossref_primary_10_1016_j_jcis_2022_11_094 crossref_primary_10_1002_ange_201908513 crossref_primary_10_1002_slct_202004115 crossref_primary_10_1080_15685551_2024_2360746 crossref_primary_10_1016_j_jwpe_2022_102874 crossref_primary_10_1002_anie_202320137 crossref_primary_10_1002_adfm_202302874 crossref_primary_10_1002_anie_201901888 crossref_primary_10_1002_smll_202302384 crossref_primary_10_1021_acsanm_9b02011 crossref_primary_10_1016_j_jmst_2022_09_001 crossref_primary_10_1039_D2NR04727F crossref_primary_10_6023_A24090266 crossref_primary_10_1002_anie_201711155 crossref_primary_10_1002_ange_201905591 crossref_primary_10_1002_adfm_202107442 crossref_primary_10_1021_acsomega_2c06961 crossref_primary_10_1016_j_apcatb_2020_119633 crossref_primary_10_1002_ange_201711155 crossref_primary_10_1038_s41467_020_14851_7 crossref_primary_10_1002_cey2_344 crossref_primary_10_1021_acsami_1c01348 crossref_primary_10_3389_ffuel_2023_1320326 crossref_primary_10_1002_asia_202300196 crossref_primary_10_1002_slct_202203560 crossref_primary_10_1021_acsami_9b16438 crossref_primary_10_1021_acs_macromol_1c00736 crossref_primary_10_1016_S1872_2067_21_63936_0 crossref_primary_10_1016_j_clce_2022_100012 crossref_primary_10_1016_j_mtchem_2018_12_002 crossref_primary_10_1038_s41467_021_26817_4 crossref_primary_10_1039_D5TA00860C crossref_primary_10_1039_D1RE00214G crossref_primary_10_1016_j_jssc_2024_124985 crossref_primary_10_1039_C9TA02573A crossref_primary_10_1021_jacs_8b00571 crossref_primary_10_1002_jhet_4909 crossref_primary_10_1039_C9MH01071H crossref_primary_10_1039_D3CC02081A crossref_primary_10_1002_adfm_202003761 crossref_primary_10_1038_s41570_022_00437_y crossref_primary_10_1016_j_est_2023_107521 crossref_primary_10_1016_S1872_2067_22_64130_5 crossref_primary_10_1002_anie_202303378 crossref_primary_10_1016_j_jcou_2021_101778 crossref_primary_10_1016_j_mtchem_2024_102299 crossref_primary_10_1039_D0TC00942C crossref_primary_10_1039_C7EE02981K crossref_primary_10_2139_ssrn_4100964 crossref_primary_10_3724_2097_213X_2024_JFCT_0001 crossref_primary_10_1021_acs_accounts_4c00491 crossref_primary_10_1016_j_jiec_2022_09_015 crossref_primary_10_1021_acs_cgd_2c01494 crossref_primary_10_1002_cctc_202300197 crossref_primary_10_1021_acs_macromol_1c00316 crossref_primary_10_1039_D0SC05889K crossref_primary_10_1002_solr_201900438 crossref_primary_10_1007_s11356_022_18726_w crossref_primary_10_1007_s11426_020_9836_x crossref_primary_10_1016_j_scib_2020_05_033 crossref_primary_10_1002_asia_202100991 crossref_primary_10_1016_j_mser_2024_100771 crossref_primary_10_1039_D4RA07875F crossref_primary_10_1002_anie_201813075 crossref_primary_10_1002_cssc_202001638 crossref_primary_10_1021_acsnano_8b09634 crossref_primary_10_1002_anie_201806664 crossref_primary_10_1021_acsami_9b15815 crossref_primary_10_1021_jacs_8b03814 crossref_primary_10_1002_anie_202117668 crossref_primary_10_1016_j_apcatb_2019_01_010 crossref_primary_10_1002_anie_201904291 crossref_primary_10_1002_anie_201906350 crossref_primary_10_1002_ange_202421251 crossref_primary_10_1007_s11426_023_1700_9 crossref_primary_10_1002_adfm_202400612 crossref_primary_10_1002_ange_202113926 crossref_primary_10_1021_acs_chemmater_2c01401 crossref_primary_10_1021_jacs_0c02399 crossref_primary_10_6023_A22070303 crossref_primary_10_1021_acsami_8b14743 crossref_primary_10_1021_acsmaterialslett_9b00013 crossref_primary_10_1021_jacs_8b08380 crossref_primary_10_1021_acsaem_2c03322 crossref_primary_10_1021_acs_cgd_3c00379 crossref_primary_10_1002_chem_202402246 crossref_primary_10_1021_acsnano_4c15225 crossref_primary_10_1039_D1CC01102B crossref_primary_10_1016_j_cej_2021_131613 crossref_primary_10_1039_D0EE02309D crossref_primary_10_1002_smll_202408395 crossref_primary_10_1039_D1CS00871D crossref_primary_10_1002_ange_202109342 crossref_primary_10_1016_j_apcatb_2018_08_004 crossref_primary_10_1021_acs_chemmater_1c02622 crossref_primary_10_1021_acsami_1c24713 crossref_primary_10_1002_cctc_202001631 crossref_primary_10_1016_j_jclepro_2023_138556 crossref_primary_10_1016_j_micromeso_2020_110475 crossref_primary_10_1002_ange_201914424 crossref_primary_10_1007_s40242_020_0179_y crossref_primary_10_1002_aenm_202101530 crossref_primary_10_1002_slct_202102435 crossref_primary_10_1002_adma_201907296 crossref_primary_10_1002_smll_202200129 crossref_primary_10_1007_s11708_021_0767_7 crossref_primary_10_1039_D4NJ04604H crossref_primary_10_1016_j_colsurfa_2022_129092 crossref_primary_10_1016_j_chroma_2022_463341 crossref_primary_10_1002_anie_202305500 crossref_primary_10_1039_C8TA12442F crossref_primary_10_1039_D4NJ02750G crossref_primary_10_1002_anie_202218252 crossref_primary_10_3390_molecules29051103 crossref_primary_10_1002_ange_202202492 crossref_primary_10_1021_acs_macromol_9b02488 crossref_primary_10_1002_ange_202208919 crossref_primary_10_1021_acsami_8b13110 crossref_primary_10_1002_adma_202209475 crossref_primary_10_1002_smll_202204515 crossref_primary_10_1016_j_mattod_2022_08_018 crossref_primary_10_1039_D1GC02319E crossref_primary_10_1039_D2TA02117J crossref_primary_10_1016_j_micromeso_2020_110577 crossref_primary_10_1016_j_seppur_2024_129378 crossref_primary_10_1038_s41467_023_43829_4 crossref_primary_10_1038_s41598_023_39899_5 crossref_primary_10_1016_j_micromeso_2021_111623 crossref_primary_10_1016_j_chroma_2022_463474 crossref_primary_10_1002_advs_202001493 crossref_primary_10_1021_acs_macromol_8b02023 crossref_primary_10_1039_D2TA01441F crossref_primary_10_1016_j_mtchem_2024_102155 crossref_primary_10_1016_j_surfin_2024_104963 crossref_primary_10_1016_j_pmatsci_2024_101352 crossref_primary_10_1039_D2PY01350A crossref_primary_10_1360_SSC_2024_0266 crossref_primary_10_1002_marc_202200108 crossref_primary_10_1021_acs_chemmater_2c00999 crossref_primary_10_1016_j_jscs_2024_101955 crossref_primary_10_1002_cssc_202301175 crossref_primary_10_1039_D2CY00773H crossref_primary_10_1016_j_seppur_2023_123401 crossref_primary_10_1002_adma_201807865 crossref_primary_10_1016_j_apcatb_2024_124895 |
Cites_doi | 10.1021/acs.accounts.5b00369 10.1021/ja511552k 10.1002/ange.201107070 10.1021/ja2052396 10.1021/ja411321s 10.1021/ja304879c 10.1021/nl904082k 10.1002/ange.200705710 10.1039/C2CC16986J 10.1126/science.aac8343 10.1039/C5EE02574E 10.1002/ange.201510542 10.1038/ncomms5033 10.1002/anie.201300256 10.1039/C2CS35072F 10.1021/jacs.6b00652 10.1002/ejoc.201200276 10.1039/C6CC03536A 10.1039/C6TA04711D 10.1002/anie.201208514 10.1016/j.ssc.2007.03.052 10.1038/ncomms1405 10.1021/ja4017842 10.1021/ja800906f 10.1021/ja9015765 10.1039/C6TA04390A 10.1021/ja508693y 10.1038/nchem.695 10.1021/cm300407h 10.1002/adma.200903436 10.1002/ange.201300256 10.1021/ja809307s 10.1021/ja5092936 10.1126/science.1120411 10.1039/c2cs35157a 10.1038/ncomms5513 10.1021/cm200411p 10.1039/C4SC00016A 10.1002/ange.201208514 10.1002/anie.200902009 10.1039/c1sc00100k 10.1002/adma.201202447 10.1039/C3CC49176E 10.1021/acs.chemmater.6b01195 10.1002/anie.201107070 10.1126/science.1202747 10.1039/C4TA00523F 10.1002/marc.201500270 10.1039/C7CC01827D 10.1021/acs.jpclett.5b00868 10.1002/anie.200705710 10.1002/ange.200902009 10.1002/adma.201200751 10.1038/nmat4170 10.1351/pac198557040603 10.1039/c3ee42548g 10.1002/anie.201510542 10.1016/j.carbon.2017.02.057 10.1038/nchem.548 10.1002/aenm.201600025 10.1038/ncomms9508 10.1021/ja206846p |
ContentType | Journal Article |
Copyright | 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 24P AAYXX CITATION NPM 7TM K9. 7X8 5PM |
DOI | 10.1002/anie.201708548 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 14153 |
ExternalDocumentID | PMC5698698 28926688 10_1002_anie_201708548 ANIE201708548 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21474033; 21604028; 21673087; T21474033 – fundername: Minstry of Science and Technology of the People's Republic of China funderid: 2016YFE0124400 – fundername: Huahzong University of Science and Technology funderid: 2016JCTD104 – fundername: National Natural Science Foundation of China grantid: 21474033; 21604028; 21673087; T21474033 – fundername: Minstry of Science and Technology of the People's Republic of China grantid: 2016YFE0124400 – fundername: Huahzong University of Science and Technology grantid: 2016JCTD104 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AETEA AEYWJ AGHNM AGYGG CITATION NPM 7TM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c5718-17984a0ae0c2f82a054377c5f56e5a19c4d5077165e6c9a15b45a0d5f5dd1a8c3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Aug 21 18:18:37 EDT 2025 Fri Jul 11 11:56:05 EDT 2025 Sun Jul 13 05:21:27 EDT 2025 Thu Apr 03 07:00:20 EDT 2025 Tue Jul 01 02:26:11 EDT 2025 Thu Apr 24 22:54:09 EDT 2025 Wed Jan 22 16:22:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Keywords | gas adsorption covalent triazine frameworks layered materials photocatalysis energy storage |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5718-17984a0ae0c2f82a054377c5f56e5a19c4d5077165e6c9a15b45a0d5f5dd1a8c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7181-347X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201708548 |
PMID | 28926688 |
PQID | 1955521515 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5698698 proquest_miscellaneous_1941090807 proquest_journals_1955521515 pubmed_primary_28926688 crossref_citationtrail_10_1002_anie_201708548 crossref_primary_10_1002_anie_201708548 wiley_primary_10_1002_anie_201708548_ANIE201708548 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 6, 2017 |
PublicationDateYYYYMMDD | 2017-11-06 |
PublicationDate_xml | – month: 11 year: 2017 text: November 6, 2017 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2010; 10 2015; 36 2015; 14 2015; 6 2011; 2 2012 2009 2009; 48 121 2005; 310 2007; 143 2013; 42 2016; 52 2015; 349 2009; 131 2008 2008; 47 120 2015; 8 2013; 6 2011; 332 2014; 136 2011; 133 2017; 116 2013 2013; 52 125 2016; 4 2010; 22 2015; 48 2017; 53 2016; 6 2014; 5 2016 2016; 55 128 2012; 134 2014; 2 2015; 137 2012 2012; 51 124 2013; 135 2016; 138 2011; 23 2012; 48 2010; 2 2012; 24 2016; 28 2014; 50 2008; 130 2012; 41 1985; 57 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_22_3 e_1_2_2_49_1 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_20_3 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_62_2 e_1_2_2_41_2 e_1_2_2_43_1 e_1_2_2_64_1 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_45_1 e_1_2_2_66_1 e_1_2_2_26_1 e_1_2_2_60_2 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_38_1 e_1_2_2_59_1 e_1_2_2_11_1 e_1_2_2_30_1 e_1_2_2_51_1 e_1_2_2_19_2 e_1_2_2_53_2 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_55_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_57_2 e_1_2_2_3_2 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_2 e_1_2_2_61_2 e_1_2_2_42_1 e_1_2_2_65_1 e_1_2_2_63_2 e_1_2_2_7_2 e_1_2_2_27_3 e_1_2_2_29_1 e_1_2_2_44_1 e_1_2_2_27_2 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_14_1 e_1_2_2_35_3 e_1_2_2_58_3 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_58_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_52_1 e_1_2_2_31_2 e_1_2_2_16_3 e_1_2_2_18_1 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_54_2 e_1_2_2_35_2 e_1_2_2_56_2 e_1_2_2_50_1 |
References_xml | – volume: 131 start-page: 8875 year: 2009 end-page: 8883 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 2789 year: 2014 end-page: 2793 publication-title: Chem. Sci. – volume: 6 start-page: 8508 year: 2015 publication-title: Nat. Commun. – volume: 48 121 start-page: 6909 7042 year: 2009 2009 end-page: 6912 7045 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 42 start-page: 548 year: 2013 end-page: 568 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 1173 year: 2011 end-page: 1177 publication-title: Chem. Sci. – volume: 22 start-page: 2202 year: 2010 end-page: 2205 publication-title: Adv. Mater. – volume: 2 start-page: 8854 year: 2014 end-page: 8858 publication-title: J. Mater. Chem. A – volume: 41 start-page: 6010 year: 2012 end-page: 6022 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 1600025 year: 2016 publication-title: Adv. Energy Mater. – volume: 136 start-page: 15885 year: 2014 end-page: 15888 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 10008 year: 2016 end-page: 10011 publication-title: Chem. Commun. – volume: 6 start-page: 3684 year: 2013 end-page: 3692 publication-title: Energy Environ. Sci. – volume: 137 start-page: 219 year: 2015 end-page: 225 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 5854 year: 2017 end-page: 5857 publication-title: Chem. Commun. – volume: 332 start-page: 228 year: 2011 end-page: 231 publication-title: Science – volume: 52 125 start-page: 2920 2992 year: 2013 2013 end-page: 2924 2996 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 133 start-page: 19816 year: 2011 end-page: 19822 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 2357 year: 2012 end-page: 2361 publication-title: Adv. Mater. – volume: 51 124 start-page: 2623 2677 year: 2012 2012 end-page: 2627 2681 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – start-page: 3492 year: 2012 end-page: 3499 publication-title: Eur. J. Org. Chem. – volume: 24 start-page: 1511 year: 2012 end-page: 1517 publication-title: Chem. Mater. – volume: 48 start-page: 3053 year: 2015 end-page: 3063 publication-title: Acc. Chem. Res. – volume: 6 start-page: 2305 year: 2015 end-page: 2309 publication-title: J. Phys. Chem. Lett. – volume: 2 start-page: 672 year: 2010 end-page: 677 publication-title: Nat. Chem. – volume: 23 start-page: 1650 year: 2011 end-page: 1653 publication-title: Chem. Mater. – volume: 136 start-page: 1730 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 537 year: 2010 end-page: 541 publication-title: Nano Lett. – volume: 52 125 start-page: 3770 3858 year: 2013 2013 end-page: 3774 3862 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 start-page: 1141 year: 2012 end-page: 1143 publication-title: Chem. Commun. – volume: 143 start-page: 47 year: 2007 end-page: 57 publication-title: Solid State Commun. – volume: 36 start-page: 1799 year: 2015 end-page: 1805 publication-title: Macromol. Rapid Commun. – volume: 57 start-page: 603 year: 1985 end-page: 619 publication-title: Pure Appl. Chem. – volume: 4 start-page: 15302 year: 2016 end-page: 15308 publication-title: J. Mater. Chem. A – volume: 138 start-page: 3302 year: 2016 end-page: 3305 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 4033 year: 2014 publication-title: Nat. Commun. – volume: 2 start-page: 235 year: 2010 end-page: 238 publication-title: Nat. Chem. – volume: 50 start-page: 3169 year: 2014 end-page: 3172 publication-title: Chem. Commun. – volume: 310 start-page: 1166 year: 2005 end-page: 1170 publication-title: Science – volume: 47 120 start-page: 3450 3499 year: 2008 2008 end-page: 3453 3502 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 10478 year: 2012 end-page: 10484 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 271 year: 2015 end-page: 279 publication-title: Nat. Mater. – volume: 4 start-page: 12402 year: 2016 end-page: 12406 publication-title: J. Mater. Chem. A – volume: 8 start-page: 3345 year: 2015 end-page: 3353 publication-title: Energy Environ. Sci. – volume: 24 start-page: 5703 year: 2012 end-page: 5707 publication-title: Adv. Mater. – volume: 130 start-page: 6678 year: 2008 end-page: 6679 publication-title: J. Am. Chem. Soc. – volume: 55 128 start-page: 1792 1824 year: 2016 2016 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 135 start-page: 5328 year: 2013 end-page: 5331 publication-title: J. Am. Chem. Soc. – volume: 349 start-page: 1208 year: 2015 end-page: 1213 publication-title: Science – volume: 133 start-page: 14510 year: 2011 end-page: 14513 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 3265 year: 2015 end-page: 3270 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 1680 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1 year: 2014 publication-title: Nat. Commun. – volume: 116 start-page: 686 year: 2017 end-page: 694 publication-title: Carbon – volume: 28 start-page: 3469 year: 2016 end-page: 3480 publication-title: Chem. Mater. – volume: 2 start-page: 401 year: 2011 publication-title: Nat. Commun. – ident: e_1_2_2_9_2 doi: 10.1021/acs.accounts.5b00369 – ident: e_1_2_2_39_2 doi: 10.1021/ja511552k – ident: e_1_2_2_20_3 doi: 10.1002/ange.201107070 – ident: e_1_2_2_21_2 doi: 10.1021/ja2052396 – ident: e_1_2_2_57_2 doi: 10.1021/ja411321s – ident: e_1_2_2_32_2 doi: 10.1021/ja304879c – ident: e_1_2_2_33_2 doi: 10.1021/nl904082k – ident: e_1_2_2_27_3 doi: 10.1002/ange.200705710 – ident: e_1_2_2_47_2 doi: 10.1039/C2CC16986J – ident: e_1_2_2_38_1 – ident: e_1_2_2_24_2 doi: 10.1126/science.aac8343 – ident: e_1_2_2_37_2 doi: 10.1039/C5EE02574E – ident: e_1_2_2_58_3 doi: 10.1002/ange.201510542 – ident: e_1_2_2_64_1 doi: 10.1038/ncomms5033 – ident: e_1_2_2_45_1 – ident: e_1_2_2_16_2 doi: 10.1002/anie.201300256 – ident: e_1_2_2_5_2 doi: 10.1039/C2CS35072F – ident: e_1_2_2_10_2 doi: 10.1021/jacs.6b00652 – ident: e_1_2_2_11_1 – ident: e_1_2_2_42_1 doi: 10.1002/ejoc.201200276 – ident: e_1_2_2_41_2 doi: 10.1039/C6CC03536A – ident: e_1_2_2_55_2 doi: 10.1039/C6TA04711D – ident: e_1_2_2_22_2 doi: 10.1002/anie.201208514 – ident: e_1_2_2_14_1 – ident: e_1_2_2_60_2 doi: 10.1016/j.ssc.2007.03.052 – ident: e_1_2_2_30_1 – ident: e_1_2_2_49_1 doi: 10.1038/ncomms1405 – ident: e_1_2_2_6_2 doi: 10.1021/ja4017842 – ident: e_1_2_2_52_1 – ident: e_1_2_2_29_1 doi: 10.1021/ja800906f – ident: e_1_2_2_12_2 doi: 10.1021/ja9015765 – ident: e_1_2_2_62_2 doi: 10.1039/C6TA04390A – ident: e_1_2_2_34_2 doi: 10.1021/ja508693y – ident: e_1_2_2_19_2 doi: 10.1038/nchem.695 – ident: e_1_2_2_48_2 doi: 10.1021/cm300407h – ident: e_1_2_2_28_2 doi: 10.1002/adma.200903436 – ident: e_1_2_2_16_3 doi: 10.1002/ange.201300256 – ident: e_1_2_2_56_2 doi: 10.1021/ja809307s – ident: e_1_2_2_8_2 doi: 10.1021/ja5092936 – ident: e_1_2_2_2_2 doi: 10.1126/science.1120411 – ident: e_1_2_2_4_2 doi: 10.1039/c2cs35157a – ident: e_1_2_2_7_2 doi: 10.1038/ncomms5513 – ident: e_1_2_2_46_2 doi: 10.1021/cm200411p – ident: e_1_2_2_1_1 – ident: e_1_2_2_23_2 doi: 10.1039/C4SC00016A – ident: e_1_2_2_22_3 doi: 10.1002/ange.201208514 – ident: e_1_2_2_35_2 doi: 10.1002/anie.200902009 – ident: e_1_2_2_50_1 doi: 10.1039/c1sc00100k – ident: e_1_2_2_51_1 doi: 10.1002/adma.201202447 – ident: e_1_2_2_17_2 doi: 10.1039/C3CC49176E – ident: e_1_2_2_40_2 doi: 10.1021/acs.chemmater.6b01195 – ident: e_1_2_2_20_2 doi: 10.1002/anie.201107070 – ident: e_1_2_2_3_2 doi: 10.1126/science.1202747 – ident: e_1_2_2_36_2 doi: 10.1039/C4TA00523F – ident: e_1_2_2_54_2 doi: 10.1002/marc.201500270 – ident: e_1_2_2_18_1 – ident: e_1_2_2_26_1 – ident: e_1_2_2_53_2 doi: 10.1039/C7CC01827D – ident: e_1_2_2_61_2 doi: 10.1021/acs.jpclett.5b00868 – ident: e_1_2_2_27_2 doi: 10.1002/anie.200705710 – ident: e_1_2_2_35_3 doi: 10.1002/ange.200902009 – ident: e_1_2_2_31_2 doi: 10.1002/adma.201200751 – ident: e_1_2_2_59_1 – ident: e_1_2_2_66_1 doi: 10.1038/nmat4170 – ident: e_1_2_2_43_1 doi: 10.1351/pac198557040603 – ident: e_1_2_2_44_1 doi: 10.1039/c3ee42548g – ident: e_1_2_2_58_2 doi: 10.1002/anie.201510542 – ident: e_1_2_2_65_1 doi: 10.1016/j.carbon.2017.02.057 – ident: e_1_2_2_13_2 doi: 10.1038/nchem.548 – ident: e_1_2_2_63_2 doi: 10.1002/aenm.201600025 – ident: e_1_2_2_25_2 doi: 10.1038/ncomms9508 – ident: e_1_2_2_15_2 doi: 10.1021/ja206846p |
SSID | ssj0028806 |
Score | 2.671551 |
Snippet | Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14149 |
SubjectTerms | Communication Communications covalent triazine frameworks Energy storage gas adsorption Hydrogen evolution Hydrogen storage layered materials Low temperature Photocatalysis Rechargeable batteries Sodium Synthesis Triazine |
Title | Covalent Triazine Frameworks via a Low‐Temperature Polycondensation Approach |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201708548 https://www.ncbi.nlm.nih.gov/pubmed/28926688 https://www.proquest.com/docview/1955521515 https://www.proquest.com/docview/1941090807 https://pubmed.ncbi.nlm.nih.gov/PMC5698698 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7aXNpLm76dpEGFQk9ObK_kx3FZsiSlXULZQG5m9DANCXbp7rakp_6E_Mb8ks5YtptNKIUWfLDRyNZj5PkkzXwCeItO60rHRRhnllerEEO00oUEhjGtsIix4gX9j7P08ES-P1WnN6L4PT_EsODGI6P9X_MAR73Y_00ayhHY7JqVEWiQHO3LDluMij4N_FEJKacPLxqNQj6FvmdtjJL99ezrVukO1LzrMXkTybamaPoYsK-E90A531st9Z75cYvf8X9quQmPOpwqxl6xnsA9Vz-FB5P-eLhnMJs0pKRUUDEnHWaOajHtHb0W4tsZChQfmu_XP6_mjqC5p24Wx83FJc3A6WfnvYjEuOM0fw4n04P55DDsDmcIjSJ7xrSmucQIXWSSKk-QoN8oy4yqVOoUxoWRlqAmzcaUS02BsdJSYWQp3doYczN6ARt1U7tXIJRCq2xkCW1aaWxGRtPlmc55105XNg4g7DunNB1zOR-gcVF6zuWk5FYqh1YK4N0g_8VzdvxRcqfv67Ibu4syLpRSjIRUAG-GZGpd3krB2jUrlpHs0ZpHWQAvvWoMn6IpLKGenF6erSnNIMCM3usp9dnnltlbpUVOVwBJqxN_KX05nh0dDE9b_5JpGx7yfRtcme7AxvLryr0mlLXUu3A_kce77Xj6Bb5aIog |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VciiX8g-BAkYCcUqbZOP8HDistl3t0u0Koa3UW5jYjqiokordpSonHoFX4VV4BJ6EmTgJLBVCQuoBKZfEjuPYM_Y39vgbgGdo8rzI_dT1Y82rVYgu6tC4BIYxKjD1seAF_YNpNDoMXx3JozX42p6FsfwQ3YIba0Y9XrOC84L0zk_WUD6Czb5ZMaGGMGn8KvfN-RlZbfOX413q4udBMNybDUZuE1jAVZLGYqbkTEL00HgqKJIACbb04ljJQkZGop-qUBNMIktCmkil6Ms8lOhpStfax0T1qNwrcJXDiDNd_-6bjrEqIHWwB5p6PZfj3rc8kV6ws1rf1XnwAri96KP5K3auJ7_hdfjWNpv1eXm_vVzk2-rTb4yS_1W73oDNBoqLvtWdm7BmyluwMWgj4N2G6aAiPaSWETNSU6bhFsPWl20uPh6jQDGpzr5__jIzZH1Ydmrxujo5VxUHFraOUqLf0LbfgcNL-Z27sF5WpbkPQkrUUnuaALUOlY4JF5gkzhPemMwL7TvgttKQqYacnWOEnGSWVjrIuFeyrlcceNHlP7W0JH_MudUKV9YMT_PMT6WUDPakA0-7ZGpd3i3C0lRLzhOy027ixQ7cs7LYfYqsdAJ2CRUer0hpl4FJy1dTyuN3NXm5jNKELgeCWgj_UvusPx3vdXcP_uWlJ7Axmh1Mssl4uv8QrvHz-ixptAXriw9L84hA5SJ_XKuxgLeXLd8_AM--fls |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB4BlYALakuBUNq6UlFPEUnWTpxDD6uFFVvoag-LxC1MYkcgoQSx_IhbH6GP0mfqk3Qmf-0KoUqVkHJJ7DjRjMf-xp75DPAJbZrmqR-7fmR4tQrRRSOtS2AYwxxjH3Ne0P82Dg9P5NdTdboAP9tcmJofoltwY8uoxms28CuT7_0hDeUMbA7Nigg0SN2EVR7Zh3ty2mZfRvuk4d0gGB5MB4duc66AmykaipmRU0v00HpZkOsACbX0oihTuQqtQj_OpCGURI6EsmEWo69SqdAzVG6MjzrrUbuL8IJ3GDmILJCTzsUja6jzmXo9l4-9b2kivWBv_n_np8FH2PZxiObf0Lma-4YvYa0BraJf97JXsGCL17AyaM-KW4fxoKQeS42IKXVoJqwWwzbqaybuLlCgOC7vf33_MbWE02seZzEpLx_IHaeRrw4pEv2G4PwNnDyLRDdgqSgLuwVCKTTKeIagp5GZiWgGtTpKNW_hpbnxHXBbwSVZQ2POp2lcJjUBc5CwoJNO0A587upf1QQeT9bcafWQNIY8S_xYKcWwSDnwsSsm6fK-Cha2vOU6ksNbtRc5sFmrrfsU-bMEgTQ1Hs0ptKvA9N7zJcXFeUXzrcJY0-VAUKn-H3-f9Mejg-5u-39e-gDLk_1hcjwaH72FVX5cJV2GO7B0c31r3xH6uknfVx1ewNlzW9hv7ns8DA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+Triazine+Frameworks+via+a+Low%E2%80%90Temperature+Polycondensation+Approach&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Kewei&rft.au=Yang%2C+Li%E2%80%90Ming&rft.au=Wang%2C+Xi&rft.au=Guo%2C+Liping&rft.date=2017-11-06&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=56&rft.issue=45&rft.spage=14149&rft.epage=14153&rft_id=info:doi/10.1002%2Fanie.201708548&rft.externalDBID=10.1002%252Fanie.201708548&rft.externalDocID=ANIE201708548 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |