Covalent Triazine Frameworks via a Low‐Temperature Polycondensation Approach

Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large‐scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF‐H...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 56; no. 45; pp. 14149 - 14153
Main Authors Wang, Kewei, Yang, Li‐Ming, Wang, Xi, Guo, Liping, Cheng, Guang, Zhang, Chun, Jin, Shangbin, Tan, Bien, Cooper, Andrew
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 06.11.2017
John Wiley and Sons Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large‐scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF‐HUSTs) via a polycondensation approach, which allows the synthesis of CTFs under mild conditions from a wide array of building blocks. Interestingly, these CTFs display a layered structure. The CTFs synthesized were also readily scaled up to gram quantities. The CTFs are potential candidates for separations, photocatalysis and for energy storage applications. In particular, CTF‐HUSTs are found to be promising photocatalysts for sacrificial photocatalytic hydrogen evolution with a maximum rate of 2647 μmol h−1 g−1 under visible light. We also applied a pyrolyzed form of CTF‐HUST‐4 as an anode material in a sodium‐ion battery achieving an excellent discharge capacity of 467 mAh g−1. Layered allrounder: A novel polycondensation approach enables the construction of covalent triazine frameworks (CTFs) under mild conditions from a wide array of building blocks. The resulting CTFs present a new type of layered material with potential applications in separations, photocatalysis, and energy storage.
AbstractList Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large‐scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF‐HUSTs) via a polycondensation approach, which allows the synthesis of CTFs under mild conditions from a wide array of building blocks. Interestingly, these CTFs display a layered structure. The CTFs synthesized were also readily scaled up to gram quantities. The CTFs are potential candidates for separations, photocatalysis and for energy storage applications. In particular, CTF‐HUSTs are found to be promising photocatalysts for sacrificial photocatalytic hydrogen evolution with a maximum rate of 2647 μmol h −1  g −1 under visible light. We also applied a pyrolyzed form of CTF‐HUST‐4 as an anode material in a sodium‐ion battery achieving an excellent discharge capacity of 467 mAh g −1 .
Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large-scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF-HUSTs) via a polycondensation approach, which allows the synthesis of CTFs under mild conditions from a wide array of building blocks. Interestingly, these CTFs display a layered structure. The CTFs synthesized were also readily scaled up to gram quantities. The CTFs are potential candidates for separations, photocatalysis and for energy storage applications. In particular, CTF-HUSTs are found to be promising photocatalysts for sacrificial photocatalytic hydrogen evolution with a maximum rate of 2647 μmol h  g under visible light. We also applied a pyrolyzed form of CTF-HUST-4 as an anode material in a sodium-ion battery achieving an excellent discharge capacity of 467 mAh g .
Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large-scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF-HUSTs) via a polycondensation approach, which allows the synthesis of CTFs under mild conditions from a wide array of building blocks. Interestingly, these CTFs display a layered structure. The CTFs synthesized were also readily scaled up to gram quantities. The CTFs are potential candidates for separations, photocatalysis and for energy storage applications. In particular, CTF-HUSTs are found to be promising photocatalysts for sacrificial photocatalytic hydrogen evolution with a maximum rate of 2647 μmol h-1  g-1 under visible light. We also applied a pyrolyzed form of CTF-HUST-4 as an anode material in a sodium-ion battery achieving an excellent discharge capacity of 467 mAh g-1 .Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large-scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF-HUSTs) via a polycondensation approach, which allows the synthesis of CTFs under mild conditions from a wide array of building blocks. Interestingly, these CTFs display a layered structure. The CTFs synthesized were also readily scaled up to gram quantities. The CTFs are potential candidates for separations, photocatalysis and for energy storage applications. In particular, CTF-HUSTs are found to be promising photocatalysts for sacrificial photocatalytic hydrogen evolution with a maximum rate of 2647 μmol h-1  g-1 under visible light. We also applied a pyrolyzed form of CTF-HUST-4 as an anode material in a sodium-ion battery achieving an excellent discharge capacity of 467 mAh g-1 .
Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large-scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF-HUSTs) via a polycondensation approach, which allows the synthesis of CTFs under mild conditions from a wide array of building blocks. Interestingly, these CTFs display a layered structure. The CTFs synthesized were also readily scaled up to gram quantities. The CTFs are potential candidates for separations, photocatalysis and for energy storage applications. In particular, CTF-HUSTs are found to be promising photocatalysts for sacrificial photocatalytic hydrogen evolution with a maximum rate of 2647µmolh-1g-1 under visible light. We also applied a pyrolyzed form of CTF-HUST-4 as an anode material in a sodium-ion battery achieving an excellent discharge capacity of 467mAhg-1.
Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large‐scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF‐HUSTs) via a polycondensation approach, which allows the synthesis of CTFs under mild conditions from a wide array of building blocks. Interestingly, these CTFs display a layered structure. The CTFs synthesized were also readily scaled up to gram quantities. The CTFs are potential candidates for separations, photocatalysis and for energy storage applications. In particular, CTF‐HUSTs are found to be promising photocatalysts for sacrificial photocatalytic hydrogen evolution with a maximum rate of 2647 μmol h−1 g−1 under visible light. We also applied a pyrolyzed form of CTF‐HUST‐4 as an anode material in a sodium‐ion battery achieving an excellent discharge capacity of 467 mAh g−1. Layered allrounder: A novel polycondensation approach enables the construction of covalent triazine frameworks (CTFs) under mild conditions from a wide array of building blocks. The resulting CTFs present a new type of layered material with potential applications in separations, photocatalysis, and energy storage.
Author Yang, Li‐Ming
Wang, Kewei
Cheng, Guang
Guo, Liping
Zhang, Chun
Jin, Shangbin
Cooper, Andrew
Tan, Bien
Wang, Xi
AuthorAffiliation 5 Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
1 Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
2 Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science Beijing Jiaotong University No.3 Shangyuancun, Haidian District 100044 Beijing China
4 Department of Chemistry and Materials Innovation Factory University of Liverpool Crown Street Liverpool L69 7ZD UK
3 College of Life Science & Technology Huazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
AuthorAffiliation_xml – name: 4 Department of Chemistry and Materials Innovation Factory University of Liverpool Crown Street Liverpool L69 7ZD UK
– name: 2 Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science Beijing Jiaotong University No.3 Shangyuancun, Haidian District 100044 Beijing China
– name: 3 College of Life Science & Technology Huazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
– name: 1 Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Luoyu Road No. 1037 430074 Wuhan China
– name: 5 Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
Author_xml – sequence: 1
  givenname: Kewei
  surname: Wang
  fullname: Wang, Kewei
  organization: Ministry of Education
– sequence: 2
  givenname: Li‐Ming
  surname: Yang
  fullname: Yang, Li‐Ming
  organization: Ministry of Education
– sequence: 3
  givenname: Xi
  surname: Wang
  fullname: Wang, Xi
  organization: Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 4
  givenname: Liping
  surname: Guo
  fullname: Guo, Liping
  organization: Ministry of Education
– sequence: 5
  givenname: Guang
  surname: Cheng
  fullname: Cheng, Guang
  organization: Ministry of Education
– sequence: 6
  givenname: Chun
  surname: Zhang
  fullname: Zhang, Chun
  organization: Huazhong University of Science and Technology
– sequence: 7
  givenname: Shangbin
  surname: Jin
  fullname: Jin, Shangbin
  email: jinsb@hust.edu.cn
  organization: Ministry of Education
– sequence: 8
  givenname: Bien
  orcidid: 0000-0001-7181-347X
  surname: Tan
  fullname: Tan, Bien
  email: bien.tan@mail.hust.edu.cn
  organization: Ministry of Education
– sequence: 9
  givenname: Andrew
  surname: Cooper
  fullname: Cooper, Andrew
  organization: University of Liverpool
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28926688$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9u1DAQxi1URP_AlSOKxIVLFjvJxM4FabVqodKqcFjO1tSZpS6JHexkV8uJR-AZeRJcti1QCSFZGkvz-z59M3PMDpx3xNhzwWeC8-I1OkuzggvJFVTqETsSUIi8lLI8SP-qLHOpQByy4xivE68Ur5-ww0I1RV0rdcQuFn6DHbkxWwWLX62j7CxgT1sfPsdsYzHDbOm3P759X1E_UMBxCpR98N3OeNeSizha77L5MASP5uope7zGLtKz23rCPp6drhbv8uX7t-eL-TI3IIXKhWxUhRyJm2KtCuRQpcgG1lAToGhM1QKXUtRAtWlQwGUFyNvUb1uBypQn7M3ed5gue2pNGiBgp4dgeww77dHqvzvOXulPfqOhblR6yeDVrUHwXyaKo-5tNNR16MhPUYumErzhisuEvnyAXvspuDReogDSvkFAol78meg-yt2qE1DtARN8jIHW2tjx1_ZSQNtpwfXNRfXNRfX9RZNs9kB25_xPQbMXbG1Hu__Qen5xfvpb-xMy2bVL
CitedBy_id crossref_primary_10_1021_acs_chemmater_4c01699
crossref_primary_10_1016_j_ccr_2024_216359
crossref_primary_10_1016_j_apcatb_2018_09_011
crossref_primary_10_1016_j_seppur_2025_132130
crossref_primary_10_1021_acscatal_1c01794
crossref_primary_10_1039_D2CS00065B
crossref_primary_10_1016_j_xcrp_2021_100653
crossref_primary_10_1002_cctc_201901725
crossref_primary_10_1002_advs_201801116
crossref_primary_10_1021_acscatal_1c03728
crossref_primary_10_1002_anie_202416350
crossref_primary_10_1016_j_aca_2022_340207
crossref_primary_10_1002_smll_202207876
crossref_primary_10_1021_acs_chemmater_9b02825
crossref_primary_10_1021_jacs_3c12539
crossref_primary_10_1002_mame_202300176
crossref_primary_10_1016_j_cclet_2024_110294
crossref_primary_10_1039_D3TA04472F
crossref_primary_10_1002_anie_202419867
crossref_primary_10_1021_jacs_3c11688
crossref_primary_10_1002_chem_201802200
crossref_primary_10_1016_j_jcis_2024_08_021
crossref_primary_10_1016_j_seppur_2025_132485
crossref_primary_10_1016_S1872_2067_20_63603_8
crossref_primary_10_1002_ange_202218252
crossref_primary_10_1002_adfm_202308553
crossref_primary_10_1002_ange_201900046
crossref_primary_10_20517_energymater_2023_133
crossref_primary_10_1002_admi_202100374
crossref_primary_10_3390_nano13182514
crossref_primary_10_1021_acsomega_1c02592
crossref_primary_10_3390_polym11081326
crossref_primary_10_1016_j_apcatb_2024_124950
crossref_primary_10_1016_j_cclet_2022_02_065
crossref_primary_10_1016_j_mtchem_2022_100832
crossref_primary_10_3390_ma14123214
crossref_primary_10_1039_D4TA00618F
crossref_primary_10_1002_ange_202117668
crossref_primary_10_1039_D3EE01360J
crossref_primary_10_1002_anie_202006618
crossref_primary_10_1002_adfm_202312912
crossref_primary_10_1002_ange_201903534
crossref_primary_10_1002_adma_202301190
crossref_primary_10_1039_D0TA05894G
crossref_primary_10_1021_acsami_1c20579
crossref_primary_10_3389_fchem_2018_00592
crossref_primary_10_1039_D4CC04688A
crossref_primary_10_1039_D3CS00908D
crossref_primary_10_1007_s40843_023_2714_x
crossref_primary_10_1016_j_jssc_2024_124819
crossref_primary_10_1039_C9CS00313D
crossref_primary_10_1002_chem_202101956
crossref_primary_10_1002_asia_201901017
crossref_primary_10_1016_j_mtchem_2021_100475
crossref_primary_10_1039_D0CC04351F
crossref_primary_10_1039_D3CC00712J
crossref_primary_10_1002_anie_201905591
crossref_primary_10_1002_chem_201905133
crossref_primary_10_1021_acsami_0c11381
crossref_primary_10_3390_ijms23010347
crossref_primary_10_1246_cl_200834
crossref_primary_10_1007_s10118_020_2394_x
crossref_primary_10_1021_acsapm_4c00816
crossref_primary_10_1002_anie_202403473
crossref_primary_10_1002_ange_202006618
crossref_primary_10_1039_C8PY00025E
crossref_primary_10_1002_ange_202109851
crossref_primary_10_1039_D1CS00976A
crossref_primary_10_1016_j_chroma_2019_460847
crossref_primary_10_1016_j_jcat_2024_115713
crossref_primary_10_1016_j_cclet_2024_110235
crossref_primary_10_1039_D1TC00999K
crossref_primary_10_1039_D0CS00049C
crossref_primary_10_1039_D0CS00278J
crossref_primary_10_1007_s11426_023_1624_7
crossref_primary_10_1016_j_progpolymsci_2020_101288
crossref_primary_10_1002_chem_202001039
crossref_primary_10_1016_j_memsci_2021_120156
crossref_primary_10_1021_acsanm_3c03248
crossref_primary_10_1039_D1TA09684B
crossref_primary_10_1002_anie_201908513
crossref_primary_10_1002_ange_201902543
crossref_primary_10_1002_solr_202000458
crossref_primary_10_1016_j_ccr_2024_215694
crossref_primary_10_1016_j_apcatb_2021_120691
crossref_primary_10_1021_acsaem_0c01153
crossref_primary_10_1016_j_microc_2023_108412
crossref_primary_10_1039_D1PY01145F
crossref_primary_10_1002_chem_202404208
crossref_primary_10_1016_j_apcatb_2020_119174
crossref_primary_10_1016_j_rechem_2022_100719
crossref_primary_10_1016_j_ijhydene_2022_08_060
crossref_primary_10_1016_j_jallcom_2021_159565
crossref_primary_10_1002_ange_201804702
crossref_primary_10_1002_ange_202320137
crossref_primary_10_1007_s12274_024_6483_y
crossref_primary_10_1016_j_mtchem_2024_102324
crossref_primary_10_1016_j_cej_2019_121977
crossref_primary_10_1016_j_jclepro_2021_125822
crossref_primary_10_1039_D0TA12122C
crossref_primary_10_1039_C9QM00633H
crossref_primary_10_1002_anie_202109851
crossref_primary_10_1002_adma_202107480
crossref_primary_10_1021_acsaem_0c02102
crossref_primary_10_1039_D3YA00038A
crossref_primary_10_1039_C9NJ04562G
crossref_primary_10_1002_ange_202403473
crossref_primary_10_1039_D3NR06419K
crossref_primary_10_1016_j_mattod_2020_07_003
crossref_primary_10_1039_C9TA13212K
crossref_primary_10_1007_s12274_020_2723_y
crossref_primary_10_1002_adfm_201901301
crossref_primary_10_1007_s12274_022_5307_1
crossref_primary_10_1039_D3RA03552B
crossref_primary_10_1016_j_cej_2023_146099
crossref_primary_10_1021_acsaem_2c03897
crossref_primary_10_1021_acs_iecr_1c02841
crossref_primary_10_1002_anie_201804702
crossref_primary_10_1021_acssuschemeng_9b07591
crossref_primary_10_1016_j_ccr_2025_216507
crossref_primary_10_1039_D2SC02638D
crossref_primary_10_1039_D0EN01140A
crossref_primary_10_1039_D0SE01504K
crossref_primary_10_1016_j_apcatb_2019_117935
crossref_primary_10_1016_j_cogsc_2018_11_015
crossref_primary_10_1039_D3NJ04479C
crossref_primary_10_1002_anie_202312095
crossref_primary_10_1021_acsaem_2c00017
crossref_primary_10_1002_cssc_201902797
crossref_primary_10_1515_epoly_2022_0063
crossref_primary_10_1007_s10853_020_05637_9
crossref_primary_10_1016_j_clay_2023_106921
crossref_primary_10_1039_C8TC01324A
crossref_primary_10_1039_D4SC06903J
crossref_primary_10_1021_acs_cgd_9b00801
crossref_primary_10_1039_D1CC05619K
crossref_primary_10_1021_acs_iecr_8b02866
crossref_primary_10_1021_acsmaterialslett_2c00336
crossref_primary_10_1039_C7CE02079A
crossref_primary_10_1039_C9CC02966D
crossref_primary_10_1039_C9TC05297F
crossref_primary_10_1002_anie_201903534
crossref_primary_10_3390_colloids6020020
crossref_primary_10_1002_ange_202305500
crossref_primary_10_1016_j_chroma_2020_461470
crossref_primary_10_1016_j_gee_2024_04_007
crossref_primary_10_1038_s41467_022_29781_9
crossref_primary_10_1016_j_scitotenv_2024_173478
crossref_primary_10_1039_D3PY00181D
crossref_primary_10_1021_acsenergylett_0c00394
crossref_primary_10_1038_s41467_024_54959_8
crossref_primary_10_1002_anie_202201482
crossref_primary_10_1002_bit_28718
crossref_primary_10_1007_s11426_020_9763_9
crossref_primary_10_1002_anie_202212015
crossref_primary_10_1021_acsami_3c15536
crossref_primary_10_1002_ange_201901888
crossref_primary_10_1021_acs_macromol_9b01771
crossref_primary_10_1039_D1PY00266J
crossref_primary_10_1002_anie_201914424
crossref_primary_10_1002_chem_202404089
crossref_primary_10_1016_j_apcatb_2025_125147
crossref_primary_10_1039_D3MA01003A
crossref_primary_10_1002_cctc_202401362
crossref_primary_10_1002_ange_202416350
crossref_primary_10_1002_ange_202419867
crossref_primary_10_1002_adfm_202400065
crossref_primary_10_1039_D2TA00896C
crossref_primary_10_1002_anie_201902543
crossref_primary_10_1016_j_apcata_2023_119269
crossref_primary_10_3390_catal11091133
crossref_primary_10_1039_D0CY02094J
crossref_primary_10_1039_C8RA06806B
crossref_primary_10_1039_D0TA00556H
crossref_primary_10_1002_smll_202007576
crossref_primary_10_1016_j_micromeso_2019_109765
crossref_primary_10_1021_acscatal_8b02607
crossref_primary_10_3762_bjnano_11_62
crossref_primary_10_1039_D1TA03951B
crossref_primary_10_1039_D3TA01471A
crossref_primary_10_1002_smll_202200984
crossref_primary_10_1002_cctc_202401355
crossref_primary_10_1039_D2TA04177D
crossref_primary_10_1002_adsu_202100184
crossref_primary_10_1039_C9EE01935A
crossref_primary_10_1007_s11356_022_25021_1
crossref_primary_10_1039_D4MA00205A
crossref_primary_10_1021_jacs_9b03591
crossref_primary_10_1021_acsaem_2c00977
crossref_primary_10_1002_ajoc_202100281
crossref_primary_10_1002_chem_201804496
crossref_primary_10_1002_ejoc_201901737
crossref_primary_10_1002_chem_201900940
crossref_primary_10_1039_C9TA06847C
crossref_primary_10_1007_s10800_023_01964_2
crossref_primary_10_1039_D0TA10875H
crossref_primary_10_1002_cssc_202200901
crossref_primary_10_1039_D3CP03194B
crossref_primary_10_1002_cssc_202101625
crossref_primary_10_1021_acssuschemeng_0c05964
crossref_primary_10_1039_D2CS00465H
crossref_primary_10_1021_jacs_8b07721
crossref_primary_10_3389_fchem_2022_854018
crossref_primary_10_1021_jacs_0c00365
crossref_primary_10_1007_s41061_021_00336_8
crossref_primary_10_1039_D0RA06432G
crossref_primary_10_1002_anie_202202492
crossref_primary_10_1002_cjce_24507
crossref_primary_10_1039_D0TA10195H
crossref_primary_10_1016_j_dyepig_2020_108968
crossref_primary_10_1021_acsami_0c03246
crossref_primary_10_1039_C9SC02601K
crossref_primary_10_1002_anie_202208919
crossref_primary_10_1039_D3RA01336G
crossref_primary_10_1021_acscatal_9b00314
crossref_primary_10_20517_energymater_2024_39
crossref_primary_10_1021_acs_macromol_4c01290
crossref_primary_10_1016_j_chemosphere_2021_129622
crossref_primary_10_1039_C9GC03482J
crossref_primary_10_1002_anie_202113926
crossref_primary_10_1016_j_talanta_2019_04_010
crossref_primary_10_1016_j_nantod_2020_101059
crossref_primary_10_1016_j_cej_2024_152556
crossref_primary_10_1021_acsami_3c00090
crossref_primary_10_1016_j_micromeso_2023_112767
crossref_primary_10_1039_D3TA02189K
crossref_primary_10_1021_acs_chemrev_9b00399
crossref_primary_10_1016_j_apcatb_2022_121488
crossref_primary_10_1016_j_seppur_2024_127408
crossref_primary_10_1039_D1CP03456A
crossref_primary_10_1002_cjoc_202300494
crossref_primary_10_1021_acs_cgd_4c01070
crossref_primary_10_1360_nso_20240024
crossref_primary_10_1021_accountsmr_3c00054
crossref_primary_10_1002_smll_202006043
crossref_primary_10_1002_adma_201907601
crossref_primary_10_1021_acs_chemrev_8b00056
crossref_primary_10_3390_polym11010031
crossref_primary_10_3724_SP_J_1123_2023_08025
crossref_primary_10_1002_anie_201900046
crossref_primary_10_1016_j_jechem_2020_03_022
crossref_primary_10_1016_j_nantod_2021_101247
crossref_primary_10_1002_adfm_202413453
crossref_primary_10_2139_ssrn_4117536
crossref_primary_10_1021_acssuschemeng_8b05463
crossref_primary_10_1039_D2NJ04509E
crossref_primary_10_3390_catal11060754
crossref_primary_10_1002_cctc_202200179
crossref_primary_10_1016_j_jcat_2024_115898
crossref_primary_10_1016_j_cej_2024_149488
crossref_primary_10_1039_C9TA00573K
crossref_primary_10_1016_j_mtchem_2022_101037
crossref_primary_10_2139_ssrn_4056692
crossref_primary_10_1016_j_matt_2020_09_007
crossref_primary_10_1002_aenm_202303346
crossref_primary_10_1016_j_heliyon_2024_e32202
crossref_primary_10_1039_D0QM00216J
crossref_primary_10_1039_D1TC02985A
crossref_primary_10_1039_C9RA02934F
crossref_primary_10_1007_s00604_023_05806_y
crossref_primary_10_1002_cssc_202300759
crossref_primary_10_1002_anie_202109342
crossref_primary_10_1155_2020_7819049
crossref_primary_10_1039_D2TA06479K
crossref_primary_10_1002_adfm_201904781
crossref_primary_10_1002_ajoc_202300308
crossref_primary_10_2139_ssrn_4056688
crossref_primary_10_34133_energymatadv_0078
crossref_primary_10_1039_D0TC00475H
crossref_primary_10_1002_aoc_7980
crossref_primary_10_1016_j_apsusc_2019_143537
crossref_primary_10_1007_s10008_023_05733_1
crossref_primary_10_1007_s12274_022_5050_7
crossref_primary_10_1039_D1TA03098A
crossref_primary_10_1016_S1872_2067_24_60050_1
crossref_primary_10_1002_cssc_202101663
crossref_primary_10_1039_D3CS00782K
crossref_primary_10_1039_C8TA07391K
crossref_primary_10_1016_j_cclet_2022_04_038
crossref_primary_10_1002_smm2_1223
crossref_primary_10_1021_acs_chemmater_0c04348
crossref_primary_10_1002_sus2_220
crossref_primary_10_1016_j_ccr_2024_215700
crossref_primary_10_1002_cptc_201900089
crossref_primary_10_1002_ange_201806664
crossref_primary_10_1038_s41578_020_00254_z
crossref_primary_10_1016_j_cej_2018_08_219
crossref_primary_10_1021_acs_langmuir_4c00310
crossref_primary_10_1016_j_checat_2024_100963
crossref_primary_10_1039_D0TA01200A
crossref_primary_10_1002_admt_202000154
crossref_primary_10_1002_anie_202421251
crossref_primary_10_1016_j_elecom_2023_107477
crossref_primary_10_1016_j_ijhydene_2021_12_197
crossref_primary_10_1002_adma_202107947
crossref_primary_10_1002_ange_202410300
crossref_primary_10_1021_acsanm_8b00983
crossref_primary_10_1039_C9TA14252E
crossref_primary_10_1039_D0RA09619A
crossref_primary_10_1021_acs_est_2c00126
crossref_primary_10_1088_1361_6528_ac68f6
crossref_primary_10_3390_catal12111327
crossref_primary_10_1007_s40843_020_1352_4
crossref_primary_10_1021_acsanm_3c00691
crossref_primary_10_1039_c8pp00511g
crossref_primary_10_1016_j_cej_2024_156552
crossref_primary_10_1039_D2NJ06097C
crossref_primary_10_1021_acscatal_0c00243
crossref_primary_10_1002_sstr_202300495
crossref_primary_10_1016_j_jcat_2019_05_029
crossref_primary_10_1002_adma_202311535
crossref_primary_10_1021_acsapm_0c01070
crossref_primary_10_1021_acs_chemmater_0c03716
crossref_primary_10_1039_D2CY00088A
crossref_primary_10_1002_chem_201900563
crossref_primary_10_1002_cctc_202301205
crossref_primary_10_1002_cssc_202201298
crossref_primary_10_1038_s43586_022_00181_z
crossref_primary_10_1002_anie_202303086
crossref_primary_10_1002_asia_202100357
crossref_primary_10_1007_s40242_022_1468_4
crossref_primary_10_1002_ange_202201482
crossref_primary_10_1016_j_colsurfa_2022_130201
crossref_primary_10_1002_adfm_202301463
crossref_primary_10_1002_mame_202000643
crossref_primary_10_1002_chem_201903926
crossref_primary_10_1007_s40242_022_2007_z
crossref_primary_10_1039_C9MH00856J
crossref_primary_10_1021_acsmacrolett_1c00591
crossref_primary_10_1002_ange_202212015
crossref_primary_10_1021_acscatal_0c01242
crossref_primary_10_3390_polym16233267
crossref_primary_10_1039_C9TA02457C
crossref_primary_10_1002_ange_202303086
crossref_primary_10_1016_j_inoche_2024_112486
crossref_primary_10_1021_acscatal_3c01281
crossref_primary_10_1002_ange_201813075
crossref_primary_10_1039_D1TA00589H
crossref_primary_10_1002_cssc_202000712
crossref_primary_10_1039_D4DT01127A
crossref_primary_10_1016_j_cjche_2022_01_027
crossref_primary_10_1016_j_cej_2021_132401
crossref_primary_10_1016_j_enchem_2023_100116
crossref_primary_10_1016_j_jece_2025_115593
crossref_primary_10_1002_admi_202201413
crossref_primary_10_1002_anie_202006176
crossref_primary_10_1021_acsami_2c01091
crossref_primary_10_1002_ange_201904291
crossref_primary_10_1039_D3NJ03851C
crossref_primary_10_1002_ange_201906350
crossref_primary_10_1021_acs_macromol_3c01911
crossref_primary_10_1002_ange_202312095
crossref_primary_10_1002_smll_202100918
crossref_primary_10_1016_j_jece_2021_105687
crossref_primary_10_1002_ange_202006176
crossref_primary_10_1021_acs_chemrev_9b00201
crossref_primary_10_3390_nano8010015
crossref_primary_10_1021_jacs_9b06219
crossref_primary_10_1021_acs_accounts_4c00729
crossref_primary_10_1007_s11426_022_1475_x
crossref_primary_10_2139_ssrn_3990802
crossref_primary_10_1002_smll_202406375
crossref_primary_10_1021_acs_chemrev_9b00550
crossref_primary_10_1016_j_mtadv_2019_100052
crossref_primary_10_1021_acssuschemeng_3c07186
crossref_primary_10_3724_SP_J_1123_2020_07036
crossref_primary_10_6023_cjoc202212026
crossref_primary_10_1002_cssc_202201219
crossref_primary_10_1002_ange_202303378
crossref_primary_10_1126_sciadv_aaz2310
crossref_primary_10_1002_marc_202100872
crossref_primary_10_1016_j_apcatb_2024_124020
crossref_primary_10_1002_anie_202410300
crossref_primary_10_1016_j_jcis_2022_11_094
crossref_primary_10_1002_ange_201908513
crossref_primary_10_1002_slct_202004115
crossref_primary_10_1080_15685551_2024_2360746
crossref_primary_10_1016_j_jwpe_2022_102874
crossref_primary_10_1002_anie_202320137
crossref_primary_10_1002_adfm_202302874
crossref_primary_10_1002_anie_201901888
crossref_primary_10_1002_smll_202302384
crossref_primary_10_1021_acsanm_9b02011
crossref_primary_10_1016_j_jmst_2022_09_001
crossref_primary_10_1039_D2NR04727F
crossref_primary_10_6023_A24090266
crossref_primary_10_1002_anie_201711155
crossref_primary_10_1002_ange_201905591
crossref_primary_10_1002_adfm_202107442
crossref_primary_10_1021_acsomega_2c06961
crossref_primary_10_1016_j_apcatb_2020_119633
crossref_primary_10_1002_ange_201711155
crossref_primary_10_1038_s41467_020_14851_7
crossref_primary_10_1002_cey2_344
crossref_primary_10_1021_acsami_1c01348
crossref_primary_10_3389_ffuel_2023_1320326
crossref_primary_10_1002_asia_202300196
crossref_primary_10_1002_slct_202203560
crossref_primary_10_1021_acsami_9b16438
crossref_primary_10_1021_acs_macromol_1c00736
crossref_primary_10_1016_S1872_2067_21_63936_0
crossref_primary_10_1016_j_clce_2022_100012
crossref_primary_10_1016_j_mtchem_2018_12_002
crossref_primary_10_1038_s41467_021_26817_4
crossref_primary_10_1039_D5TA00860C
crossref_primary_10_1039_D1RE00214G
crossref_primary_10_1016_j_jssc_2024_124985
crossref_primary_10_1039_C9TA02573A
crossref_primary_10_1021_jacs_8b00571
crossref_primary_10_1002_jhet_4909
crossref_primary_10_1039_C9MH01071H
crossref_primary_10_1039_D3CC02081A
crossref_primary_10_1002_adfm_202003761
crossref_primary_10_1038_s41570_022_00437_y
crossref_primary_10_1016_j_est_2023_107521
crossref_primary_10_1016_S1872_2067_22_64130_5
crossref_primary_10_1002_anie_202303378
crossref_primary_10_1016_j_jcou_2021_101778
crossref_primary_10_1016_j_mtchem_2024_102299
crossref_primary_10_1039_D0TC00942C
crossref_primary_10_1039_C7EE02981K
crossref_primary_10_2139_ssrn_4100964
crossref_primary_10_3724_2097_213X_2024_JFCT_0001
crossref_primary_10_1021_acs_accounts_4c00491
crossref_primary_10_1016_j_jiec_2022_09_015
crossref_primary_10_1021_acs_cgd_2c01494
crossref_primary_10_1002_cctc_202300197
crossref_primary_10_1021_acs_macromol_1c00316
crossref_primary_10_1039_D0SC05889K
crossref_primary_10_1002_solr_201900438
crossref_primary_10_1007_s11356_022_18726_w
crossref_primary_10_1007_s11426_020_9836_x
crossref_primary_10_1016_j_scib_2020_05_033
crossref_primary_10_1002_asia_202100991
crossref_primary_10_1016_j_mser_2024_100771
crossref_primary_10_1039_D4RA07875F
crossref_primary_10_1002_anie_201813075
crossref_primary_10_1002_cssc_202001638
crossref_primary_10_1021_acsnano_8b09634
crossref_primary_10_1002_anie_201806664
crossref_primary_10_1021_acsami_9b15815
crossref_primary_10_1021_jacs_8b03814
crossref_primary_10_1002_anie_202117668
crossref_primary_10_1016_j_apcatb_2019_01_010
crossref_primary_10_1002_anie_201904291
crossref_primary_10_1002_anie_201906350
crossref_primary_10_1002_ange_202421251
crossref_primary_10_1007_s11426_023_1700_9
crossref_primary_10_1002_adfm_202400612
crossref_primary_10_1002_ange_202113926
crossref_primary_10_1021_acs_chemmater_2c01401
crossref_primary_10_1021_jacs_0c02399
crossref_primary_10_6023_A22070303
crossref_primary_10_1021_acsami_8b14743
crossref_primary_10_1021_acsmaterialslett_9b00013
crossref_primary_10_1021_jacs_8b08380
crossref_primary_10_1021_acsaem_2c03322
crossref_primary_10_1021_acs_cgd_3c00379
crossref_primary_10_1002_chem_202402246
crossref_primary_10_1021_acsnano_4c15225
crossref_primary_10_1039_D1CC01102B
crossref_primary_10_1016_j_cej_2021_131613
crossref_primary_10_1039_D0EE02309D
crossref_primary_10_1002_smll_202408395
crossref_primary_10_1039_D1CS00871D
crossref_primary_10_1002_ange_202109342
crossref_primary_10_1016_j_apcatb_2018_08_004
crossref_primary_10_1021_acs_chemmater_1c02622
crossref_primary_10_1021_acsami_1c24713
crossref_primary_10_1002_cctc_202001631
crossref_primary_10_1016_j_jclepro_2023_138556
crossref_primary_10_1016_j_micromeso_2020_110475
crossref_primary_10_1002_ange_201914424
crossref_primary_10_1007_s40242_020_0179_y
crossref_primary_10_1002_aenm_202101530
crossref_primary_10_1002_slct_202102435
crossref_primary_10_1002_adma_201907296
crossref_primary_10_1002_smll_202200129
crossref_primary_10_1007_s11708_021_0767_7
crossref_primary_10_1039_D4NJ04604H
crossref_primary_10_1016_j_colsurfa_2022_129092
crossref_primary_10_1016_j_chroma_2022_463341
crossref_primary_10_1002_anie_202305500
crossref_primary_10_1039_C8TA12442F
crossref_primary_10_1039_D4NJ02750G
crossref_primary_10_1002_anie_202218252
crossref_primary_10_3390_molecules29051103
crossref_primary_10_1002_ange_202202492
crossref_primary_10_1021_acs_macromol_9b02488
crossref_primary_10_1002_ange_202208919
crossref_primary_10_1021_acsami_8b13110
crossref_primary_10_1002_adma_202209475
crossref_primary_10_1002_smll_202204515
crossref_primary_10_1016_j_mattod_2022_08_018
crossref_primary_10_1039_D1GC02319E
crossref_primary_10_1039_D2TA02117J
crossref_primary_10_1016_j_micromeso_2020_110577
crossref_primary_10_1016_j_seppur_2024_129378
crossref_primary_10_1038_s41467_023_43829_4
crossref_primary_10_1038_s41598_023_39899_5
crossref_primary_10_1016_j_micromeso_2021_111623
crossref_primary_10_1016_j_chroma_2022_463474
crossref_primary_10_1002_advs_202001493
crossref_primary_10_1021_acs_macromol_8b02023
crossref_primary_10_1039_D2TA01441F
crossref_primary_10_1016_j_mtchem_2024_102155
crossref_primary_10_1016_j_surfin_2024_104963
crossref_primary_10_1016_j_pmatsci_2024_101352
crossref_primary_10_1039_D2PY01350A
crossref_primary_10_1360_SSC_2024_0266
crossref_primary_10_1002_marc_202200108
crossref_primary_10_1021_acs_chemmater_2c00999
crossref_primary_10_1016_j_jscs_2024_101955
crossref_primary_10_1002_cssc_202301175
crossref_primary_10_1039_D2CY00773H
crossref_primary_10_1016_j_seppur_2023_123401
crossref_primary_10_1002_adma_201807865
crossref_primary_10_1016_j_apcatb_2024_124895
Cites_doi 10.1021/acs.accounts.5b00369
10.1021/ja511552k
10.1002/ange.201107070
10.1021/ja2052396
10.1021/ja411321s
10.1021/ja304879c
10.1021/nl904082k
10.1002/ange.200705710
10.1039/C2CC16986J
10.1126/science.aac8343
10.1039/C5EE02574E
10.1002/ange.201510542
10.1038/ncomms5033
10.1002/anie.201300256
10.1039/C2CS35072F
10.1021/jacs.6b00652
10.1002/ejoc.201200276
10.1039/C6CC03536A
10.1039/C6TA04711D
10.1002/anie.201208514
10.1016/j.ssc.2007.03.052
10.1038/ncomms1405
10.1021/ja4017842
10.1021/ja800906f
10.1021/ja9015765
10.1039/C6TA04390A
10.1021/ja508693y
10.1038/nchem.695
10.1021/cm300407h
10.1002/adma.200903436
10.1002/ange.201300256
10.1021/ja809307s
10.1021/ja5092936
10.1126/science.1120411
10.1039/c2cs35157a
10.1038/ncomms5513
10.1021/cm200411p
10.1039/C4SC00016A
10.1002/ange.201208514
10.1002/anie.200902009
10.1039/c1sc00100k
10.1002/adma.201202447
10.1039/C3CC49176E
10.1021/acs.chemmater.6b01195
10.1002/anie.201107070
10.1126/science.1202747
10.1039/C4TA00523F
10.1002/marc.201500270
10.1039/C7CC01827D
10.1021/acs.jpclett.5b00868
10.1002/anie.200705710
10.1002/ange.200902009
10.1002/adma.201200751
10.1038/nmat4170
10.1351/pac198557040603
10.1039/c3ee42548g
10.1002/anie.201510542
10.1016/j.carbon.2017.02.057
10.1038/nchem.548
10.1002/aenm.201600025
10.1038/ncomms9508
10.1021/ja206846p
ContentType Journal Article
Copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
AAYXX
CITATION
NPM
7TM
K9.
7X8
5PM
DOI 10.1002/anie.201708548
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 14153
ExternalDocumentID PMC5698698
28926688
10_1002_anie_201708548
ANIE201708548
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21474033; 21604028; 21673087; T21474033
– fundername: Minstry of Science and Technology of the People's Republic of China
  funderid: 2016YFE0124400
– fundername: Huahzong University of Science and Technology
  funderid: 2016JCTD104
– fundername: National Natural Science Foundation of China
  grantid: 21474033; 21604028; 21673087; T21474033
– fundername: Minstry of Science and Technology of the People's Republic of China
  grantid: 2016YFE0124400
– fundername: Huahzong University of Science and Technology
  grantid: 2016JCTD104
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7TM
K9.
7X8
5PM
ID FETCH-LOGICAL-c5718-17984a0ae0c2f82a054377c5f56e5a19c4d5077165e6c9a15b45a0d5f5dd1a8c3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Aug 21 18:18:37 EDT 2025
Fri Jul 11 11:56:05 EDT 2025
Sun Jul 13 05:21:27 EDT 2025
Thu Apr 03 07:00:20 EDT 2025
Tue Jul 01 02:26:11 EDT 2025
Thu Apr 24 22:54:09 EDT 2025
Wed Jan 22 16:22:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords gas adsorption
covalent triazine frameworks
layered materials
photocatalysis
energy storage
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5718-17984a0ae0c2f82a054377c5f56e5a19c4d5077165e6c9a15b45a0d5f5dd1a8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7181-347X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201708548
PMID 28926688
PQID 1955521515
PQPubID 946352
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5698698
proquest_miscellaneous_1941090807
proquest_journals_1955521515
pubmed_primary_28926688
crossref_citationtrail_10_1002_anie_201708548
crossref_primary_10_1002_anie_201708548
wiley_primary_10_1002_anie_201708548_ANIE201708548
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 6, 2017
PublicationDateYYYYMMDD 2017-11-06
PublicationDate_xml – month: 11
  year: 2017
  text: November 6, 2017
  day: 06
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2010; 10
2015; 36
2015; 14
2015; 6
2011; 2
2012
2009 2009; 48 121
2005; 310
2007; 143
2013; 42
2016; 52
2015; 349
2009; 131
2008 2008; 47 120
2015; 8
2013; 6
2011; 332
2014; 136
2011; 133
2017; 116
2013 2013; 52 125
2016; 4
2010; 22
2015; 48
2017; 53
2016; 6
2014; 5
2016 2016; 55 128
2012; 134
2014; 2
2015; 137
2012 2012; 51 124
2013; 135
2016; 138
2011; 23
2012; 48
2010; 2
2012; 24
2016; 28
2014; 50
2008; 130
2012; 41
1985; 57
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_22_3
e_1_2_2_49_1
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_20_3
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_62_2
e_1_2_2_41_2
e_1_2_2_43_1
e_1_2_2_64_1
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_45_1
e_1_2_2_66_1
e_1_2_2_26_1
e_1_2_2_60_2
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_38_1
e_1_2_2_59_1
e_1_2_2_11_1
e_1_2_2_30_1
e_1_2_2_51_1
e_1_2_2_19_2
e_1_2_2_53_2
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_55_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_57_2
e_1_2_2_3_2
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_61_2
e_1_2_2_42_1
e_1_2_2_65_1
e_1_2_2_63_2
e_1_2_2_7_2
e_1_2_2_27_3
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_27_2
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_14_1
e_1_2_2_35_3
e_1_2_2_58_3
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_58_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_52_1
e_1_2_2_31_2
e_1_2_2_16_3
e_1_2_2_18_1
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_54_2
e_1_2_2_35_2
e_1_2_2_56_2
e_1_2_2_50_1
References_xml – volume: 131
  start-page: 8875
  year: 2009
  end-page: 8883
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 2789
  year: 2014
  end-page: 2793
  publication-title: Chem. Sci.
– volume: 6
  start-page: 8508
  year: 2015
  publication-title: Nat. Commun.
– volume: 48 121
  start-page: 6909 7042
  year: 2009 2009
  end-page: 6912 7045
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 42
  start-page: 548
  year: 2013
  end-page: 568
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 1173
  year: 2011
  end-page: 1177
  publication-title: Chem. Sci.
– volume: 22
  start-page: 2202
  year: 2010
  end-page: 2205
  publication-title: Adv. Mater.
– volume: 2
  start-page: 8854
  year: 2014
  end-page: 8858
  publication-title: J. Mater. Chem. A
– volume: 41
  start-page: 6010
  year: 2012
  end-page: 6022
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 1600025
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 136
  start-page: 15885
  year: 2014
  end-page: 15888
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 10008
  year: 2016
  end-page: 10011
  publication-title: Chem. Commun.
– volume: 6
  start-page: 3684
  year: 2013
  end-page: 3692
  publication-title: Energy Environ. Sci.
– volume: 137
  start-page: 219
  year: 2015
  end-page: 225
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 5854
  year: 2017
  end-page: 5857
  publication-title: Chem. Commun.
– volume: 332
  start-page: 228
  year: 2011
  end-page: 231
  publication-title: Science
– volume: 52 125
  start-page: 2920 2992
  year: 2013 2013
  end-page: 2924 2996
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 133
  start-page: 19816
  year: 2011
  end-page: 19822
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 2357
  year: 2012
  end-page: 2361
  publication-title: Adv. Mater.
– volume: 51 124
  start-page: 2623 2677
  year: 2012 2012
  end-page: 2627 2681
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– start-page: 3492
  year: 2012
  end-page: 3499
  publication-title: Eur. J. Org. Chem.
– volume: 24
  start-page: 1511
  year: 2012
  end-page: 1517
  publication-title: Chem. Mater.
– volume: 48
  start-page: 3053
  year: 2015
  end-page: 3063
  publication-title: Acc. Chem. Res.
– volume: 6
  start-page: 2305
  year: 2015
  end-page: 2309
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 672
  year: 2010
  end-page: 677
  publication-title: Nat. Chem.
– volume: 23
  start-page: 1650
  year: 2011
  end-page: 1653
  publication-title: Chem. Mater.
– volume: 136
  start-page: 1730
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 537
  year: 2010
  end-page: 541
  publication-title: Nano Lett.
– volume: 52 125
  start-page: 3770 3858
  year: 2013 2013
  end-page: 3774 3862
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48
  start-page: 1141
  year: 2012
  end-page: 1143
  publication-title: Chem. Commun.
– volume: 143
  start-page: 47
  year: 2007
  end-page: 57
  publication-title: Solid State Commun.
– volume: 36
  start-page: 1799
  year: 2015
  end-page: 1805
  publication-title: Macromol. Rapid Commun.
– volume: 57
  start-page: 603
  year: 1985
  end-page: 619
  publication-title: Pure Appl. Chem.
– volume: 4
  start-page: 15302
  year: 2016
  end-page: 15308
  publication-title: J. Mater. Chem. A
– volume: 138
  start-page: 3302
  year: 2016
  end-page: 3305
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 4033
  year: 2014
  publication-title: Nat. Commun.
– volume: 2
  start-page: 235
  year: 2010
  end-page: 238
  publication-title: Nat. Chem.
– volume: 50
  start-page: 3169
  year: 2014
  end-page: 3172
  publication-title: Chem. Commun.
– volume: 310
  start-page: 1166
  year: 2005
  end-page: 1170
  publication-title: Science
– volume: 47 120
  start-page: 3450 3499
  year: 2008 2008
  end-page: 3453 3502
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 10478
  year: 2012
  end-page: 10484
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 271
  year: 2015
  end-page: 279
  publication-title: Nat. Mater.
– volume: 4
  start-page: 12402
  year: 2016
  end-page: 12406
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 3345
  year: 2015
  end-page: 3353
  publication-title: Energy Environ. Sci.
– volume: 24
  start-page: 5703
  year: 2012
  end-page: 5707
  publication-title: Adv. Mater.
– volume: 130
  start-page: 6678
  year: 2008
  end-page: 6679
  publication-title: J. Am. Chem. Soc.
– volume: 55 128
  start-page: 1792 1824
  year: 2016 2016
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 5328
  year: 2013
  end-page: 5331
  publication-title: J. Am. Chem. Soc.
– volume: 349
  start-page: 1208
  year: 2015
  end-page: 1213
  publication-title: Science
– volume: 133
  start-page: 14510
  year: 2011
  end-page: 14513
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 3265
  year: 2015
  end-page: 3270
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 1680
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1
  year: 2014
  publication-title: Nat. Commun.
– volume: 116
  start-page: 686
  year: 2017
  end-page: 694
  publication-title: Carbon
– volume: 28
  start-page: 3469
  year: 2016
  end-page: 3480
  publication-title: Chem. Mater.
– volume: 2
  start-page: 401
  year: 2011
  publication-title: Nat. Commun.
– ident: e_1_2_2_9_2
  doi: 10.1021/acs.accounts.5b00369
– ident: e_1_2_2_39_2
  doi: 10.1021/ja511552k
– ident: e_1_2_2_20_3
  doi: 10.1002/ange.201107070
– ident: e_1_2_2_21_2
  doi: 10.1021/ja2052396
– ident: e_1_2_2_57_2
  doi: 10.1021/ja411321s
– ident: e_1_2_2_32_2
  doi: 10.1021/ja304879c
– ident: e_1_2_2_33_2
  doi: 10.1021/nl904082k
– ident: e_1_2_2_27_3
  doi: 10.1002/ange.200705710
– ident: e_1_2_2_47_2
  doi: 10.1039/C2CC16986J
– ident: e_1_2_2_38_1
– ident: e_1_2_2_24_2
  doi: 10.1126/science.aac8343
– ident: e_1_2_2_37_2
  doi: 10.1039/C5EE02574E
– ident: e_1_2_2_58_3
  doi: 10.1002/ange.201510542
– ident: e_1_2_2_64_1
  doi: 10.1038/ncomms5033
– ident: e_1_2_2_45_1
– ident: e_1_2_2_16_2
  doi: 10.1002/anie.201300256
– ident: e_1_2_2_5_2
  doi: 10.1039/C2CS35072F
– ident: e_1_2_2_10_2
  doi: 10.1021/jacs.6b00652
– ident: e_1_2_2_11_1
– ident: e_1_2_2_42_1
  doi: 10.1002/ejoc.201200276
– ident: e_1_2_2_41_2
  doi: 10.1039/C6CC03536A
– ident: e_1_2_2_55_2
  doi: 10.1039/C6TA04711D
– ident: e_1_2_2_22_2
  doi: 10.1002/anie.201208514
– ident: e_1_2_2_14_1
– ident: e_1_2_2_60_2
  doi: 10.1016/j.ssc.2007.03.052
– ident: e_1_2_2_30_1
– ident: e_1_2_2_49_1
  doi: 10.1038/ncomms1405
– ident: e_1_2_2_6_2
  doi: 10.1021/ja4017842
– ident: e_1_2_2_52_1
– ident: e_1_2_2_29_1
  doi: 10.1021/ja800906f
– ident: e_1_2_2_12_2
  doi: 10.1021/ja9015765
– ident: e_1_2_2_62_2
  doi: 10.1039/C6TA04390A
– ident: e_1_2_2_34_2
  doi: 10.1021/ja508693y
– ident: e_1_2_2_19_2
  doi: 10.1038/nchem.695
– ident: e_1_2_2_48_2
  doi: 10.1021/cm300407h
– ident: e_1_2_2_28_2
  doi: 10.1002/adma.200903436
– ident: e_1_2_2_16_3
  doi: 10.1002/ange.201300256
– ident: e_1_2_2_56_2
  doi: 10.1021/ja809307s
– ident: e_1_2_2_8_2
  doi: 10.1021/ja5092936
– ident: e_1_2_2_2_2
  doi: 10.1126/science.1120411
– ident: e_1_2_2_4_2
  doi: 10.1039/c2cs35157a
– ident: e_1_2_2_7_2
  doi: 10.1038/ncomms5513
– ident: e_1_2_2_46_2
  doi: 10.1021/cm200411p
– ident: e_1_2_2_1_1
– ident: e_1_2_2_23_2
  doi: 10.1039/C4SC00016A
– ident: e_1_2_2_22_3
  doi: 10.1002/ange.201208514
– ident: e_1_2_2_35_2
  doi: 10.1002/anie.200902009
– ident: e_1_2_2_50_1
  doi: 10.1039/c1sc00100k
– ident: e_1_2_2_51_1
  doi: 10.1002/adma.201202447
– ident: e_1_2_2_17_2
  doi: 10.1039/C3CC49176E
– ident: e_1_2_2_40_2
  doi: 10.1021/acs.chemmater.6b01195
– ident: e_1_2_2_20_2
  doi: 10.1002/anie.201107070
– ident: e_1_2_2_3_2
  doi: 10.1126/science.1202747
– ident: e_1_2_2_36_2
  doi: 10.1039/C4TA00523F
– ident: e_1_2_2_54_2
  doi: 10.1002/marc.201500270
– ident: e_1_2_2_18_1
– ident: e_1_2_2_26_1
– ident: e_1_2_2_53_2
  doi: 10.1039/C7CC01827D
– ident: e_1_2_2_61_2
  doi: 10.1021/acs.jpclett.5b00868
– ident: e_1_2_2_27_2
  doi: 10.1002/anie.200705710
– ident: e_1_2_2_35_3
  doi: 10.1002/ange.200902009
– ident: e_1_2_2_31_2
  doi: 10.1002/adma.201200751
– ident: e_1_2_2_59_1
– ident: e_1_2_2_66_1
  doi: 10.1038/nmat4170
– ident: e_1_2_2_43_1
  doi: 10.1351/pac198557040603
– ident: e_1_2_2_44_1
  doi: 10.1039/c3ee42548g
– ident: e_1_2_2_58_2
  doi: 10.1002/anie.201510542
– ident: e_1_2_2_65_1
  doi: 10.1016/j.carbon.2017.02.057
– ident: e_1_2_2_13_2
  doi: 10.1038/nchem.548
– ident: e_1_2_2_63_2
  doi: 10.1002/aenm.201600025
– ident: e_1_2_2_25_2
  doi: 10.1038/ncomms9508
– ident: e_1_2_2_15_2
  doi: 10.1021/ja206846p
SSID ssj0028806
Score 2.671551
Snippet Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14149
SubjectTerms Communication
Communications
covalent triazine frameworks
Energy storage
gas adsorption
Hydrogen evolution
Hydrogen storage
layered materials
Low temperature
Photocatalysis
Rechargeable batteries
Sodium
Synthesis
Triazine
Title Covalent Triazine Frameworks via a Low‐Temperature Polycondensation Approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201708548
https://www.ncbi.nlm.nih.gov/pubmed/28926688
https://www.proquest.com/docview/1955521515
https://www.proquest.com/docview/1941090807
https://pubmed.ncbi.nlm.nih.gov/PMC5698698
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7aXNpLm76dpEGFQk9ObK_kx3FZsiSlXULZQG5m9DANCXbp7rakp_6E_Mb8ks5YtptNKIUWfLDRyNZj5PkkzXwCeItO60rHRRhnllerEEO00oUEhjGtsIix4gX9j7P08ES-P1WnN6L4PT_EsODGI6P9X_MAR73Y_00ayhHY7JqVEWiQHO3LDluMij4N_FEJKacPLxqNQj6FvmdtjJL99ezrVukO1LzrMXkTybamaPoYsK-E90A531st9Z75cYvf8X9quQmPOpwqxl6xnsA9Vz-FB5P-eLhnMJs0pKRUUDEnHWaOajHtHb0W4tsZChQfmu_XP6_mjqC5p24Wx83FJc3A6WfnvYjEuOM0fw4n04P55DDsDmcIjSJ7xrSmucQIXWSSKk-QoN8oy4yqVOoUxoWRlqAmzcaUS02BsdJSYWQp3doYczN6ARt1U7tXIJRCq2xkCW1aaWxGRtPlmc55105XNg4g7DunNB1zOR-gcVF6zuWk5FYqh1YK4N0g_8VzdvxRcqfv67Ibu4syLpRSjIRUAG-GZGpd3krB2jUrlpHs0ZpHWQAvvWoMn6IpLKGenF6erSnNIMCM3usp9dnnltlbpUVOVwBJqxN_KX05nh0dDE9b_5JpGx7yfRtcme7AxvLryr0mlLXUu3A_kce77Xj6Bb5aIog
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VciiX8g-BAkYCcUqbZOP8HDistl3t0u0Koa3UW5jYjqiokordpSonHoFX4VV4BJ6EmTgJLBVCQuoBKZfEjuPYM_Y39vgbgGdo8rzI_dT1Y82rVYgu6tC4BIYxKjD1seAF_YNpNDoMXx3JozX42p6FsfwQ3YIba0Y9XrOC84L0zk_WUD6Czb5ZMaGGMGn8KvfN-RlZbfOX413q4udBMNybDUZuE1jAVZLGYqbkTEL00HgqKJIACbb04ljJQkZGop-qUBNMIktCmkil6Ms8lOhpStfax0T1qNwrcJXDiDNd_-6bjrEqIHWwB5p6PZfj3rc8kV6ws1rf1XnwAri96KP5K3auJ7_hdfjWNpv1eXm_vVzk2-rTb4yS_1W73oDNBoqLvtWdm7BmyluwMWgj4N2G6aAiPaSWETNSU6bhFsPWl20uPh6jQDGpzr5__jIzZH1Ydmrxujo5VxUHFraOUqLf0LbfgcNL-Z27sF5WpbkPQkrUUnuaALUOlY4JF5gkzhPemMwL7TvgttKQqYacnWOEnGSWVjrIuFeyrlcceNHlP7W0JH_MudUKV9YMT_PMT6WUDPakA0-7ZGpd3i3C0lRLzhOy027ixQ7cs7LYfYqsdAJ2CRUer0hpl4FJy1dTyuN3NXm5jNKELgeCWgj_UvusPx3vdXcP_uWlJ7Axmh1Mssl4uv8QrvHz-ixptAXriw9L84hA5SJ_XKuxgLeXLd8_AM--fls
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB4BlYALakuBUNq6UlFPEUnWTpxDD6uFFVvoag-LxC1MYkcgoQSx_IhbH6GP0mfqk3Qmf-0KoUqVkHJJ7DjRjMf-xp75DPAJbZrmqR-7fmR4tQrRRSOtS2AYwxxjH3Ne0P82Dg9P5NdTdboAP9tcmJofoltwY8uoxms28CuT7_0hDeUMbA7Nigg0SN2EVR7Zh3ty2mZfRvuk4d0gGB5MB4duc66AmykaipmRU0v00HpZkOsACbX0oihTuQqtQj_OpCGURI6EsmEWo69SqdAzVG6MjzrrUbuL8IJ3GDmILJCTzsUja6jzmXo9l4-9b2kivWBv_n_np8FH2PZxiObf0Lma-4YvYa0BraJf97JXsGCL17AyaM-KW4fxoKQeS42IKXVoJqwWwzbqaybuLlCgOC7vf33_MbWE02seZzEpLx_IHaeRrw4pEv2G4PwNnDyLRDdgqSgLuwVCKTTKeIagp5GZiWgGtTpKNW_hpbnxHXBbwSVZQ2POp2lcJjUBc5CwoJNO0A587upf1QQeT9bcafWQNIY8S_xYKcWwSDnwsSsm6fK-Cha2vOU6ksNbtRc5sFmrrfsU-bMEgTQ1Hs0ptKvA9N7zJcXFeUXzrcJY0-VAUKn-H3-f9Mejg-5u-39e-gDLk_1hcjwaH72FVX5cJV2GO7B0c31r3xH6uknfVx1ewNlzW9hv7ns8DA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent+Triazine+Frameworks+via+a+Low%E2%80%90Temperature+Polycondensation+Approach&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Kewei&rft.au=Yang%2C+Li%E2%80%90Ming&rft.au=Wang%2C+Xi&rft.au=Guo%2C+Liping&rft.date=2017-11-06&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=56&rft.issue=45&rft.spage=14149&rft.epage=14153&rft_id=info:doi/10.1002%2Fanie.201708548&rft.externalDBID=10.1002%252Fanie.201708548&rft.externalDocID=ANIE201708548
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon