Partial preferential chromosome pairing is genotype dependent in tetraploid rose

Summary It has long been recognised that polyploid species do not always neatly fall into the categories of auto‐ or allopolyploid, leading to the term ‘segmental allopolyploid’ to describe everything in between. The meiotic behaviour of such intermediate species is not fully understood, nor is ther...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 90; no. 2; pp. 330 - 343
Main Authors Bourke, Peter M., Arens, Paul, Voorrips, Roeland E., Esselink, G. Danny, Koning‐Boucoiran, Carole F. S., van't Westende, Wendy P. C., Santos Leonardo, Tiago, Wissink, Patrick, Zheng, Chaozhi, Geest, Geert, Visser, Richard G. F., Krens, Frans. A., Smulders, Marinus J. M., Maliepaard, Chris
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary It has long been recognised that polyploid species do not always neatly fall into the categories of auto‐ or allopolyploid, leading to the term ‘segmental allopolyploid’ to describe everything in between. The meiotic behaviour of such intermediate species is not fully understood, nor is there consensus as to how to model their inheritance patterns. In this study we used a tetraploid cut rose (Rosa hybrida) population, genotyped using the 68K WagRhSNP array, to construct an ultra‐high‐density linkage map of all homologous chromosomes using methods previously developed for autotetraploids. Using the predicted bivalent configurations in this population we quantified differences in pairing behaviour among and along homologous chromosomes, leading us to correct our estimates of recombination frequency to account for this behaviour. This resulted in the re‐mapping of 25 695 SNP markers across all homologues of the seven rose chromosomes, tailored to the pairing behaviour of each chromosome in each parent. We confirmed the inferred differences in pairing behaviour among chromosomes by examining repulsion‐phase linkage estimates, which also carry information about preferential pairing and recombination. Currently, the closest sequenced relative to rose is Fragaria vesca. Aligning the integrated ultra‐dense rose map with the strawberry genome sequence provided a detailed picture of the synteny, confirming overall co‐linearity but also revealing new genomic rearrangements. Our results suggest that pairing affinities may vary along chromosome arms, which broadens our current understanding of segmental allopolyploidy. Significance Statement In polyploid species, variable pairing affinities among homologous chromosomes have been theorised but rarely experimentally observed. In this study, we have uncovered evidence for partial preferential pairing (also termed segmental allopolyploidy) in a tetraploid rose population (Rosa hybrida), and in doing so, have developed a meiotically‐tailored ultra‐high density linkage map of this important genus, carrying 25 695 SNP markers.
AbstractList It has long been recognised that polyploid species do not always neatly fall into the categories of auto- or allopolyploid, leading to the term ‘segmental allopolyploid’ to describe everything in between. The meiotic behaviour of such intermediate species is not fully understood, nor is there consensus as to how to model their inheritance patterns. In this study we used a tetraploid cut rose (Rosa hybrida) population, genotyped using the 68K WagRhSNP array, to construct an ultra-high-density linkage map of all homologous chromosomes using methods previously developed for autotetraploids. Using the predicted bivalent configurations in this population we quantified differences in pairing behaviour among and along homologous chromosomes, leading us to correct our estimates of recombination frequency to account for this behaviour. This resulted in the re-mapping of 25 695 SNP markers across all homologues of the seven rose chromosomes, tailored to the pairing behaviour of each chromosome in each parent. We confirmed the inferred differences in pairing behaviour among chromosomes by examining repulsion-phase linkage estimates, which also carry information about preferential pairing and recombination. Currently, the closest sequenced relative to rose is Fragaria vesca. Aligning the integrated ultra-dense rose map with the strawberry genome sequence provided a detailed picture of the synteny, confirming overall co-linearity but also revealing new genomic rearrangements. Our results suggest that pairing affinities may vary along chromosome arms, which broadens our current understanding of segmental allopolyploidy.
It has long been recognised that polyploid species do not always neatly fall into the categories of auto- or allopolyploid, leading to the term 'segmental allopolyploid' to describe everything in between. The meiotic behaviour of such intermediate species is not fully understood, nor is there consensus as to how to model their inheritance patterns. In this study we used a tetraploid cut rose (Rosa hybrida) population, genotyped using the 68K WagRhSNP array, to construct an ultra-high-density linkage map of all homologous chromosomes using methods previously developed for autotetraploids. Using the predicted bivalent configurations in this population we quantified differences in pairing behaviour among and along homologous chromosomes, leading us to correct our estimates of recombination frequency to account for this behaviour. This resulted in the re-mapping of 25 695 SNP markers across all homologues of the seven rose chromosomes, tailored to the pairing behaviour of each chromosome in each parent. We confirmed the inferred differences in pairing behaviour among chromosomes by examining repulsion-phase linkage estimates, which also carry information about preferential pairing and recombination. Currently, the closest sequenced relative to rose is Fragaria vesca. Aligning the integrated ultra-dense rose map with the strawberry genome sequence provided a detailed picture of the synteny, confirming overall co-linearity but also revealing new genomic rearrangements. Our results suggest that pairing affinities may vary along chromosome arms, which broadens our current understanding of segmental allopolyploidy. Significance Statement In polyploid species, variable pairing affinities among homologous chromosomes have been theorised but rarely experimentally observed. In this study, we have uncovered evidence for partial preferential pairing (also termed segmental allopolyploidy) in a tetraploid rose population (Rosa hybrida), and in doing so, have developed a meiotically-tailored ultra-high density linkage map of this important genus, carrying 25 695 SNP markers.
It has long been recognised that polyploid species do not always neatly fall into the categories of auto- or allopolyploid, leading to the term 'segmental allopolyploid' to describe everything in between. The meiotic behaviour of such intermediate species is not fully understood, nor is there consensus as to how to model their inheritance patterns. In this study we used a tetraploid cut rose (Rosa hybrida) population, genotyped using the 68K WagRhSNP array, to construct an ultra-high-density linkage map of all homologous chromosomes using methods previously developed for autotetraploids. Using the predicted bivalent configurations in this population we quantified differences in pairing behaviour among and along homologous chromosomes, leading us to correct our estimates of recombination frequency to account for this behaviour. This resulted in the re-mapping of 25 695 SNP markers across all homologues of the seven rose chromosomes, tailored to the pairing behaviour of each chromosome in each parent. We confirmed the inferred differences in pairing behaviour among chromosomes by examining repulsion-phase linkage estimates, which also carry information about preferential pairing and recombination. Currently, the closest sequenced relative to rose is Fragaria vesca. Aligning the integrated ultra-dense rose map with the strawberry genome sequence provided a detailed picture of the synteny, confirming overall co-linearity but also revealing new genomic rearrangements. Our results suggest that pairing affinities may vary along chromosome arms, which broadens our current understanding of segmental allopolyploidy.
Summary It has long been recognised that polyploid species do not always neatly fall into the categories of auto‐ or allopolyploid, leading to the term ‘segmental allopolyploid’ to describe everything in between. The meiotic behaviour of such intermediate species is not fully understood, nor is there consensus as to how to model their inheritance patterns. In this study we used a tetraploid cut rose (Rosa hybrida) population, genotyped using the 68K WagRhSNP array, to construct an ultra‐high‐density linkage map of all homologous chromosomes using methods previously developed for autotetraploids. Using the predicted bivalent configurations in this population we quantified differences in pairing behaviour among and along homologous chromosomes, leading us to correct our estimates of recombination frequency to account for this behaviour. This resulted in the re‐mapping of 25 695 SNP markers across all homologues of the seven rose chromosomes, tailored to the pairing behaviour of each chromosome in each parent. We confirmed the inferred differences in pairing behaviour among chromosomes by examining repulsion‐phase linkage estimates, which also carry information about preferential pairing and recombination. Currently, the closest sequenced relative to rose is Fragaria vesca. Aligning the integrated ultra‐dense rose map with the strawberry genome sequence provided a detailed picture of the synteny, confirming overall co‐linearity but also revealing new genomic rearrangements. Our results suggest that pairing affinities may vary along chromosome arms, which broadens our current understanding of segmental allopolyploidy. Significance Statement In polyploid species, variable pairing affinities among homologous chromosomes have been theorised but rarely experimentally observed. In this study, we have uncovered evidence for partial preferential pairing (also termed segmental allopolyploidy) in a tetraploid rose population (Rosa hybrida), and in doing so, have developed a meiotically‐tailored ultra‐high density linkage map of this important genus, carrying 25 695 SNP markers.
It has long been recognised that polyploid species do not always neatly fall into the categories of auto‐ or allopolyploid, leading to the term ‘segmental allopolyploid’ to describe everything in between. The meiotic behaviour of such intermediate species is not fully understood, nor is there consensus as to how to model their inheritance patterns. In this study we used a tetraploid cut rose ( Rosa hybrida ) population, genotyped using the 68K WagRh SNP array, to construct an ultra‐high‐density linkage map of all homologous chromosomes using methods previously developed for autotetraploids. Using the predicted bivalent configurations in this population we quantified differences in pairing behaviour among and along homologous chromosomes, leading us to correct our estimates of recombination frequency to account for this behaviour. This resulted in the re‐mapping of 25 695 SNP markers across all homologues of the seven rose chromosomes, tailored to the pairing behaviour of each chromosome in each parent. We confirmed the inferred differences in pairing behaviour among chromosomes by examining repulsion‐phase linkage estimates, which also carry information about preferential pairing and recombination. Currently, the closest sequenced relative to rose is Fragaria vesca . Aligning the integrated ultra‐dense rose map with the strawberry genome sequence provided a detailed picture of the synteny, confirming overall co‐linearity but also revealing new genomic rearrangements. Our results suggest that pairing affinities may vary along chromosome arms, which broadens our current understanding of segmental allopolyploidy. In polyploid species, variable pairing affinities among homologous chromosomes have been theorised but rarely experimentally observed. In this study, we have uncovered evidence for partial preferential pairing (also termed segmental allopolyploidy) in a tetraploid rose population ( Rosa hybrida ), and in doing so, have developed a meiotically‐tailored ultra‐high density linkage map of this important genus, carrying 25 695 SNP markers.
Summary It has long been recognised that polyploid species do not always neatly fall into the categories of auto- or allopolyploid, leading to the term 'segmental allopolyploid' to describe everything in between. The meiotic behaviour of such intermediate species is not fully understood, nor is there consensus as to how to model their inheritance patterns. In this study we used a tetraploid cut rose (Rosa hybrida) population, genotyped using the 68K WagRhSNP array, to construct an ultra-high-density linkage map of all homologous chromosomes using methods previously developed for autotetraploids. Using the predicted bivalent configurations in this population we quantified differences in pairing behaviour among and along homologous chromosomes, leading us to correct our estimates of recombination frequency to account for this behaviour. This resulted in the re-mapping of 25 695 SNP markers across all homologues of the seven rose chromosomes, tailored to the pairing behaviour of each chromosome in each parent. We confirmed the inferred differences in pairing behaviour among chromosomes by examining repulsion-phase linkage estimates, which also carry information about preferential pairing and recombination. Currently, the closest sequenced relative to rose is Fragaria vesca. Aligning the integrated ultra-dense rose map with the strawberry genome sequence provided a detailed picture of the synteny, confirming overall co-linearity but also revealing new genomic rearrangements. Our results suggest that pairing affinities may vary along chromosome arms, which broadens our current understanding of segmental allopolyploidy. Significance Statement In polyploid species, variable pairing affinities among homologous chromosomes have been theorised but rarely experimentally observed. In this study, we have uncovered evidence for partial preferential pairing (also termed segmental allopolyploidy) in a tetraploid rose population (Rosa hybrida), and in doing so, have developed a meiotically-tailored ultra-high density linkage map of this important genus, carrying 25 695 SNP markers.
Author Wissink, Patrick
Krens, Frans. A.
Arens, Paul
Voorrips, Roeland E.
Bourke, Peter M.
Esselink, G. Danny
Geest, Geert
Koning‐Boucoiran, Carole F. S.
Zheng, Chaozhi
Smulders, Marinus J. M.
Visser, Richard G. F.
van't Westende, Wendy P. C.
Maliepaard, Chris
Santos Leonardo, Tiago
Author_xml – sequence: 1
  givenname: Peter M.
  orcidid: 0000-0002-0665-6508
  surname: Bourke
  fullname: Bourke, Peter M.
  organization: Wageningen University & Research
– sequence: 2
  givenname: Paul
  surname: Arens
  fullname: Arens, Paul
  organization: Wageningen University & Research
– sequence: 3
  givenname: Roeland E.
  surname: Voorrips
  fullname: Voorrips, Roeland E.
  organization: Wageningen University & Research
– sequence: 4
  givenname: G. Danny
  surname: Esselink
  fullname: Esselink, G. Danny
  organization: Wageningen University & Research
– sequence: 5
  givenname: Carole F. S.
  surname: Koning‐Boucoiran
  fullname: Koning‐Boucoiran, Carole F. S.
  organization: Wageningen University & Research
– sequence: 6
  givenname: Wendy P. C.
  surname: van't Westende
  fullname: van't Westende, Wendy P. C.
  organization: Wageningen University & Research
– sequence: 7
  givenname: Tiago
  surname: Santos Leonardo
  fullname: Santos Leonardo, Tiago
  organization: Wageningen University & Research
– sequence: 8
  givenname: Patrick
  surname: Wissink
  fullname: Wissink, Patrick
  organization: Wageningen University & Research
– sequence: 9
  givenname: Chaozhi
  surname: Zheng
  fullname: Zheng, Chaozhi
  organization: Wageningen University & Research
– sequence: 10
  givenname: Geert
  surname: Geest
  fullname: Geest, Geert
  organization: Wageningen University & Research
– sequence: 11
  givenname: Richard G. F.
  surname: Visser
  fullname: Visser, Richard G. F.
  organization: Wageningen University & Research
– sequence: 12
  givenname: Frans. A.
  surname: Krens
  fullname: Krens, Frans. A.
  organization: Wageningen University & Research
– sequence: 13
  givenname: Marinus J. M.
  surname: Smulders
  fullname: Smulders, Marinus J. M.
  email: rene.smulders@wur.nl
  organization: Wageningen University & Research
– sequence: 14
  givenname: Chris
  surname: Maliepaard
  fullname: Maliepaard, Chris
  email: chris.maliepaard@wur.nl
  organization: Wageningen University & Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28142191$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1r3DAQhkVJaDZpD_0DxdBLe3CisWTJ6q2E9CMEuocUehOyPE612JIr2Sz776PNpj0E-jGXQfC8w2je95Qc-eCRkFdAzyHXxTxtzoFxJZ6RFTBRlwzY9yOyokrQUnKoTshpShtKQTLBn5OTqgFegYIVWa9NnJ0ZiilijxH9w8P-iGEMKYxYTMZF5-8Kl4o79GHeTVh0OKHvMls4X8w4RzMNwXVFDAlfkOPeDAlfPvYz8u3j1e3l5_Lm66cvlx9uSltLEKUyfaVsnUtWhjUUVIs9UEDeUyuYBdv3rOY1qo73PW1lJ7kwrKqp4krSjp2R94e5W5P3yhui195E65IOxunBtdHEnd4uUfth36alTboGJRuexW8P4imGnwumWY8uWRwG4zEsSVeUUs4lZ-qfKDQKGik4iP9ABZNAK04z-uYJuglL9PlgmWo4B6B1k6nXj9TSjtjpKbpx_6lf9mXg3QGw-fQpO_gbAar30dA5GvohGpm9eMJaN5vZBZ_9c8PfFFs34O7Po_Xt-vqguAd1dsni
CitedBy_id crossref_primary_10_1038_s41477_024_01820_x
crossref_primary_10_1016_j_molp_2022_06_009
crossref_primary_10_1002_ajb2_1112
crossref_primary_10_1080_14620316_2021_1894078
crossref_primary_10_3389_fpls_2018_01730
crossref_primary_10_1038_s41598_018_30918_4
crossref_primary_10_3389_fpls_2021_682305
crossref_primary_10_1111_nph_16413
crossref_primary_10_1016_S2095_3119_20_63416_5
crossref_primary_10_1016_j_indcrop_2022_114984
crossref_primary_10_1093_bioinformatics_btab574
crossref_primary_10_1186_s12864_017_4003_0
crossref_primary_10_1534_g3_118_200942
crossref_primary_10_3389_fpls_2022_916231
crossref_primary_10_3389_fpls_2018_00513
crossref_primary_10_1016_j_hpj_2024_05_009
crossref_primary_10_1111_nph_18428
crossref_primary_10_1038_s41438_019_0156_0
crossref_primary_10_17660_ActaHortic_2023_1362_22
crossref_primary_10_1038_s41437_020_0328_6
crossref_primary_10_1270_jsbbs_17080
crossref_primary_10_1038_s41438_021_00623_x
crossref_primary_10_1007_s11248_021_00251_0
crossref_primary_10_3389_fpls_2020_00939
crossref_primary_10_1038_s41598_020_68092_1
crossref_primary_10_1038_s41438_020_00398_7
crossref_primary_10_1016_j_jtbi_2018_11_031
crossref_primary_10_1007_s13562_023_00851_3
crossref_primary_10_1534_genetics_118_301468
crossref_primary_10_3389_fpls_2023_1209445
crossref_primary_10_17660_ActaHortic_2020_1283_8
crossref_primary_10_1038_s41438_018_0021_6
crossref_primary_10_1186_s12870_018_1322_5
crossref_primary_10_1111_tpj_14203
crossref_primary_10_1038_s41438_021_00689_7
crossref_primary_10_1038_s41477_018_0166_1
crossref_primary_10_3390_pathogens11060660
crossref_primary_10_1007_s00122_020_03574_4
crossref_primary_10_17660_ActaHortic_2019_1232_1
crossref_primary_10_1007_s00122_018_3132_4
crossref_primary_10_1371_journal_pone_0299825
crossref_primary_10_1038_s41598_019_42428_y
crossref_primary_10_1088_1755_1315_591_1_012003
crossref_primary_10_17660_ActaHortic_2019_1232_21
crossref_primary_10_3390_pathogens9110967
crossref_primary_10_1093_bioinformatics_bty371
crossref_primary_10_1038_s41588_018_0110_3
crossref_primary_10_1007_s00122_025_04816_z
crossref_primary_10_1111_tpj_13843
crossref_primary_10_1038_s41588_018_0141_9
crossref_primary_10_1007_s00122_017_2974_5
crossref_primary_10_3389_fpls_2023_1327872
crossref_primary_10_1038_s41438_019_0193_8
crossref_primary_10_1016_j_plaphy_2018_03_015
crossref_primary_10_3390_plants10122634
Cites_doi 10.1016/j.pbi.2007.01.010
10.1007/s00122-002-1122-y
10.1534/genetics.115.185579
10.1371/journal.pone.0095793
10.1111/j.1469-8137.2009.03084.x
10.1093/genetics/164.2.645
10.1101/gr.092759.109
10.1093/jhered/esv015
10.1111/2041-210X.12343
10.1186/s12863-014-0146-z
10.1007/s00122-010-1463-x
10.1038/hortres.2016.52
10.1146/annurev-arplant-050213-035811
10.1007/978-3-642-21201-7_12
10.1073/pnas.94.26.14261
10.1186/s13059-015-0814-y
10.1007/s11032-015-0365-7
10.1111/nph.13499
10.1016/S0065-2660(08)60490-3
10.1371/journal.pone.0063939
10.1007/s10658-005-5995-x
10.1105/tpc.108.062273
10.1371/journal.pone.0020463
10.1111/j.1469-8137.2009.03142.x
10.1139/g94-149
10.1534/genetics.115.174607
10.1007/s11032-016-0565-9
10.1007/BF00224524
10.3732/ajb.1500501
10.1139/g71-035
10.3732/ajb.93.3.412
10.1007/BF00224274
10.1093/aob/mcw217
10.1007/s001220100647
10.3389/fpls.2015.00249
10.1139/g83-036
10.1080/07352680903035481
10.1146/annurev.ecolsys.29.1.467
10.1093/genetics/53.4.747
10.1038/182713a0
10.1534/genetics.115.181008
10.1111/mec.13078
10.1080/14620316.2013.11512940
10.1600/036364407781179653
10.1139/g93-103
10.1093/jxb/erw269
10.1186/1471-2105-12-172
10.1093/genetics/145.4.1083
10.1007/s00122-016-2768-1
10.1016/j.tplants.2010.11.005
10.1007/BF00283241
10.1007/s00122-014-2347-2
10.1111/nph.13150
10.3389/fpls.2016.01635
10.1038/sj.hdy.6800173
10.1006/tpbi.2002.1608
10.3732/ajb.95.3.353
10.1139/g96-148
10.1007/s00122-012-1855-1
10.1017/CBO9781139003889
10.1093/aob/mcu245
10.1111/j.2517-6161.1995.tb02031.x
10.1101/gr.1596604
10.1007/s00122-016-2761-8
10.1111/j.1095-8339.2005.00368.x
10.3389/fpls.2016.01798
10.1111/nph.14276
10.1111/j.1469-8137.2009.03118.x
ContentType Journal Article
Copyright 2017 The Authors The published by John Wiley & Sons Ltd and Society for Experimental Biology.
2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Copyright © 2017 John Wiley & Sons Ltd and the Society for Experimental Biology
Wageningen University & Research
Copyright_xml – notice: 2017 The Authors The published by John Wiley & Sons Ltd and Society for Experimental Biology.
– notice: 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
– notice: Copyright © 2017 John Wiley & Sons Ltd and the Society for Experimental Biology
– notice: Wageningen University & Research
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
QVL
DOI 10.1111/tpj.13496
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
Genetics Abstracts
MEDLINE

CrossRef
Genetics Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 343
ExternalDocumentID oai_library_wur_nl_wurpubs_519784
4321466359
28142191
10_1111_tpj_13496
TPJ13496
Genre article
Journal Article
GrantInformation_xml – fundername: TKI polyploids project
  funderid: BO‐26.03‐002‐001
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
M7N
P64
RC3
7X8
7S9
L.6
-
08R
0R
1AW
31
3N
ABFLS
ABHUG
ABPTK
ABWRO
ACXME
ADACO
ADAWD
ADDAD
AFVGU
AGJLS
DZ
GA
HZ
IA
KM
NF
P4A
PQEST
QVL
RIG
WT
Y3
ID FETCH-LOGICAL-c5716-9af29c555572a38019bef101e4f0c63c1cff3545e9d4ff0b7d746a325094970d3
IEDL.DBID DR2
ISSN 0960-7412
IngestDate Thu Jul 22 20:32:20 EDT 2021
Fri Jul 11 18:32:03 EDT 2025
Thu Jul 10 18:23:08 EDT 2025
Thu Jul 10 18:57:12 EDT 2025
Fri Jul 25 10:19:34 EDT 2025
Wed Feb 19 02:34:39 EST 2025
Thu Apr 24 22:51:41 EDT 2025
Tue Jul 01 03:57:23 EDT 2025
Wed Jan 22 16:44:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords segmental allopolyploid
meiotic chromosomal pairing behaviour
polyploid genetic linkage map
Rosa hybrida
high-density integrated map
Language English
License Attribution
2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5716-9af29c555572a38019bef101e4f0c63c1cff3545e9d4ff0b7d746a325094970d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0665-6508
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.13496
PMID 28142191
PQID 1884411058
PQPubID 31702
PageCount 14
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_519784
proquest_miscellaneous_2000447439
proquest_miscellaneous_1891876416
proquest_miscellaneous_1863710240
proquest_journals_1884411058
pubmed_primary_28142191
crossref_primary_10_1111_tpj_13496
crossref_citationtrail_10_1111_tpj_13496
wiley_primary_10_1111_tpj_13496_TPJ13496
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate April 2017
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: April 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2015; 35
1996; 39
2010; 186
2011; 12
2015; 106
2016; 103
2012; 125
2007; 32
2011; 16
2013; 8
1975; 50
2016; 36
2001; 103
1966; 53
2014; 65
1993; 36
2014; 127
1997; 94
2003; 90
1971; 13
2005; 147
1997; 145
2017; 34
2014; 15
1994; 37
2014; 9
2009; 19
1983; 25
2011; 122
1992; 83
2003; 164
2006; 93
1998; 29
2015; 6
2015; 16
2009; 21
1953; 16
2013; 88
2011
2015; 201
2016; 129
1995; 57
1947; 1
1994; 89
2015; 208
2015; 206
2016; 203
2007; 10
2008; 95
2011; 6
2017; 213
1957; 5
2006; 114
2009; 28
1958; 182
2015; 24
2016; 7
2003; 106
2016; 3
2015; 115
2002; 62
2004; 14
2015; 199
1993; 53
2016
2014
2013
2016; 67
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Okamoto M. (e_1_2_7_48_1) 1957; 5
Al‐Janabi S.M. (e_1_2_7_2_1) 1994; 89
R Core Team (e_1_2_7_52_1) 2016
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
Swaminathan M.S. (e_1_2_7_62_1) 1953; 16
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
Wolfram Research Inc (e_1_2_7_70_1) 2014
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
Xiang Y. (e_1_2_7_73_1) 2017; 34
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
Brzustowicz L. (e_1_2_7_15_1) 1993; 53
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
30762942 - Plant J. 2019 Feb;97(3):616
References_xml – volume: 182
  start-page: 713
  year: 1958
  end-page: 715
  article-title: Genetic control of the cytologically diploid behaviour of hexaploid wheat
  publication-title: Nature
– volume: 13
  start-page: 195
  year: 1971
  end-page: 202
  article-title: Chromosome pairing, fertility, and crossing behavior of haploids of tetraploid alfalfa, L
  publication-title: Can. J. Genet. Cytol.
– volume: 21
  start-page: 373
  year: 2009
  end-page: 385
  article-title: Genetic regulation of meiotic cross‐overs between related genomes in haploids and hybrids
  publication-title: Plant Cell
– volume: 7
  start-page: 1798
  year: 2016
  article-title: Genome‐wide association analysis of the anthocyanin and carotenoid contents of rose petals
  publication-title: Front. Plant Sci.
– volume: 62
  start-page: 129
  year: 2002
  end-page: 151
  article-title: A bivalent polyploid model for linkage analysis in outcrossing tetraploids
  publication-title: Theor. Popul. Biol.
– volume: 206
  start-page: 1283
  year: 2015
  end-page: 1296
  article-title: High‐resolution genetic maps of improve genome assembly
  publication-title: New Phytol.
– volume: 12
  start-page: 172
  year: 2011
  article-title: Genotype calling in tetraploid species from bi‐allelic marker data using mixture models
  publication-title: BMC Bioinformatics
– volume: 93
  start-page: 412
  year: 2006
  end-page: 425
  article-title: Polyploid and hybrid evolution in roses east of the Rocky Mountains
  publication-title: Am. J. Bot.
– volume: 88
  start-page: 85
  year: 2013
  end-page: 92
  article-title: The diploid origins of allopolyploid rose species studied using single nucleotide polymorphism haplotypes flanking a microsatellite repeat
  publication-title: J. Hortic. Sci. Biotechnol.
– volume: 145
  start-page: 1083
  year: 1997
  end-page: 1092
  article-title: Secondary tetrasomic segregation of and preferential pairing of homeologues in rainbow trout
  publication-title: Genetics
– volume: 186
  start-page: 73
  year: 2010
  end-page: 85
  article-title: Dating the origins of polyploidy events
  publication-title: New Phytol.
– volume: 114
  start-page: 301
  year: 2006
  end-page: 308
  article-title: Assessment of partial resistance to powdery mildew ( ) in a tetraploid rose population using a spore‐suspension inoculation method
  publication-title: Eur. J. Plant Pathol.
– volume: 106
  start-page: 217
  year: 2015
  end-page: 227
  article-title: Effects of crossovers between homeologs on inheritance and population genomics in polyploid‐derived salmonid fishes
  publication-title: J. Hered.
– volume: 129
  start-page: 2211
  year: 2016
  end-page: 2226
  article-title: Integrating haplotype‐specific linkage maps in tetraploid species using SNP markers
  publication-title: Theor. Appl. Genet.
– start-page: mcw217
  year: 2016
  article-title: Multiple and asymmetrical origin of polyploid dog rose hybrids ( L. sect. (DC.) Ser.) involving unreduced gametes
  publication-title: Ann. Bot.
– volume: 129
  start-page: 2117
  year: 2016
  end-page: 2132
  article-title: A rapid marker ordering approach for high‐density genetic linkage maps in experimental autotetraploid populations using multidimensional scaling
  publication-title: Theor. Appl. Genet.
– volume: 15
  start-page: 1
  year: 2014
  article-title: Genetic variation, heritability and genotype by environment interaction of morphological traits in a tetraploid rose population
  publication-title: BMC Genet.
– volume: 164
  start-page: 645
  year: 2003
  end-page: 653
  article-title: , a major gene controlling homeologous pairing in oilseed rape ( ) haploids
  publication-title: Genetics
– year: 2014
– volume: 32
  start-page: 366
  year: 2007
  end-page: 378
  article-title: Phylogenetic relationships in the genus : new evidence from chloroplast DNA sequences and an appraisal of current knowledge
  publication-title: Syst. Bot.
– volume: 25
  start-page: 222
  year: 1983
  end-page: 232
  article-title: An assessment of preferential chromosome pairing at meiosis in
  publication-title: Can. J. Genet. Cytol.
– volume: 39
  start-page: 1176
  year: 1996
  end-page: 1184
  article-title: Chromosome pairing affinity and quadrivalent formation in polyploids: do segmental allopolyploids exist?
  publication-title: Genome
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Series B (Methodological)
– volume: 67
  start-page: 4711
  year: 2016
  end-page: 4725
  article-title: Nineteenth century French rose ( sp.) germplasm shows a shift over time from a European to an Asian genetic background
  publication-title: J. Exp. Bot.
– volume: 5
  start-page: 6
  year: 1957
  article-title: Asynaptic effect of chromosome V
  publication-title: Wheat Inf. Serv.
– volume: 35
  start-page: 1
  year: 2015
  end-page: 11
  article-title: QTL analysis for stomatal functioning in tetraploid grown at high relative air humidity and its implications on postharvest longevity
  publication-title: Mol. Breeding
– volume: 89
  start-page: 959
  year: 1994
  end-page: 963
  article-title: Chromosome assortment in Saccharum
  publication-title: Theor. Appl. Genet.
– volume: 213
  start-page: 487
  year: 2017
  end-page: 493
  article-title: Double trouble: taxonomy and definitions of polyploidy
  publication-title: New Phytol.
– volume: 53
  start-page: 1137
  year: 1993
  end-page: 1145
  article-title: Molecular and statistical approaches to the detection and correction of errors in genotype databases
  publication-title: Am. J. Hum. Genet.
– volume: 36
  start-page: 143
  year: 2016
  article-title: Inheritance and QTL analysis of the determinants of flower color in tetraploid cut roses
  publication-title: Mol. Breeding
– volume: 203
  start-page: 119
  year: 2016
  end-page: 131
  article-title: Probabilistic Multilocus Haplotype reconstruction in outcrossing Tetraploids
  publication-title: Genetics
– volume: 115
  start-page: 275
  year: 2015
  end-page: 291
  article-title: Phylogeny and biogeography of wild roses with specific attention to polyploids
  publication-title: Ann. Bot.
– volume: 10
  start-page: 176
  year: 2007
  end-page: 181
  article-title: Patterns in grass genome evolution
  publication-title: Curr. Opin. Plant Biol.
– volume: 186
  start-page: 29
  year: 2010
  end-page: 36
  article-title: Genetic regulation of meiosis in polyploid species: new insights into an old question
  publication-title: New Phytol.
– volume: 6
  start-page: 938
  year: 2015
  end-page: 948
  article-title: Flexible methods for estimating genetic distances from single nucleotide polymorphisms
  publication-title: Methods Ecol. Evol.
– volume: 16
  start-page: 1
  year: 1953
  end-page: 192
  article-title: Cytology and genetics of the potato ( ) and related species
  publication-title: Bibliogr. Genet.
– volume: 37
  start-page: 1045
  year: 1994
  end-page: 1055
  article-title: Preferential pairing estimates from multivalent frequencies in tetraploids
  publication-title: Genome
– volume: 1
  start-page: 403
  year: 1947
  end-page: 429
  article-title: Types of polyploids: their classification and significance
  publication-title: Adv. Genet.
– volume: 208
  start-page: 306
  year: 2015
  end-page: 323
  article-title: Meiosis evolves: adaptation to external and internal environments
  publication-title: New Phytol.
– volume: 24
  start-page: 1047
  year: 2015
  end-page: 1059
  article-title: Inferring the mode of origin of polyploid species from next‐generation sequence data
  publication-title: Mol. Ecol.
– start-page: 243
  year: 2011
  end-page: 275
– volume: 34
  start-page: 262
  year: 2017
  end-page: 281
  article-title: Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication
  publication-title: Mol. Biol. Evol.
– volume: 65
  start-page: 505
  year: 2014
  end-page: 530
  article-title: The contributions of transposable elements to the structure, function, and evolution of plant genomes
  publication-title: Annu. Rev. Plant Biol.
– volume: 199
  start-page: 1093
  year: 2015
  end-page: 1105
  article-title: Tetrasomic recombination is surprisingly frequent in allotetraploid
  publication-title: Genetics
– volume: 106
  start-page: 277
  year: 2003
  end-page: 286
  article-title: Identification of cut rose ( ) and rootstock varieties using robust sequence tagged microsatellite site markers
  publication-title: Theor. Appl. Genet.
– volume: 103
  start-page: 1146
  year: 2016
  end-page: 1166
  article-title: Polyploidy: pitfalls and paths to a paradigm
  publication-title: Am. J. Bot.
– volume: 186
  start-page: 5
  year: 2010
  end-page: 17
  article-title: Evolutionary consequences of autopolyploidy
  publication-title: New Phytol.
– volume: 122
  start-page: 489
  year: 2011
  end-page: 500
  article-title: Towards a unified genetic map for diploid roses
  publication-title: Theor. Appl. Genet.
– volume: 6
  start-page: e20463
  year: 2011
  article-title: An autotetraploid linkage map of rose ( ) validated using the strawberry ( ) genome sequence
  publication-title: PLoS ONE
– volume: 36
  start-page: 782
  year: 1993
  end-page: 791
  article-title: RFLP linkage map and genome analysis of
  publication-title: Genome
– volume: 95
  start-page: 353
  year: 2008
  end-page: 366
  article-title: AFLP markers as a tool to reconstruct complex relationships in the genus ( )
  publication-title: Am. J. Bot.
– volume: 16
  start-page: 108
  year: 2011
  end-page: 116
  article-title: Cabbage family affairs: the evolutionary history of Brassicaceae
  publication-title: Trends Plant Sci.
– volume: 29
  start-page: 467
  year: 1998
  end-page: 501
  article-title: Pathways, mechanisms, and rates of polyploid formation in flowering plants
  publication-title: Annu. Rev. Ecol. Syst.
– year: 2016
– volume: 6
  start-page: 249
  year: 2015
  article-title: Using RNA‐Seq to assemble a rose transcriptome with more than 13,000 full‐length expressed genes and to develop the WagRhSNP 68k Axiom SNP array for rose (Rosa L.)
  publication-title: Front. Plant Sci.
– volume: 53
  start-page: 747
  year: 1966
  article-title: Telomere attachment of chromosomes. Some genetical and cytological consequences
  publication-title: Genetics
– volume: 83
  start-page: 294
  year: 1992
  end-page: 300
  article-title: The detection and estimation of linkage in polyploids using single‐dose restriction fragments
  publication-title: Theor. Appl. Genet.
– volume: 127
  start-page: 1885
  year: 2014
  end-page: 1904
  article-title: QTL mapping in autotetraploids using SNP dosage information
  publication-title: Theor. Appl. Genet.
– volume: 147
  start-page: 275
  year: 2005
  end-page: 290
  article-title: The genus Rosa (Rosoideae, Rosaceae) revisited: molecular analysis of nrITS‐1 and atpB‐rbcL intergenic spacer (IGS) versus conventional taxonomy
  publication-title: Bot. J. Linn. Soc.
– volume: 103
  start-page: 136
  year: 2001
  end-page: 143
  article-title: Detecting and mapping repulsion‐phase linkage in polyploids with polysomic inheritance
  publication-title: Theor. Appl. Genet.
– volume: 50
  start-page: 211
  year: 1975
  end-page: 222
  article-title: The quantitative analysis of chromosome pairing and chiasma formation based on the relative frequencies of MI configurations
  publication-title: Chromosoma
– volume: 201
  start-page: 853
  year: 2015
  end-page: 863
  article-title: The double reduction landscape in tetraploid potato as revealed by a high‐density linkage map
  publication-title: Genetics
– volume: 14
  start-page: 459
  year: 2004
  end-page: 462
  article-title: Correct estimation of preferential chromosome pairing in autotetraploids
  publication-title: Genome Res.
– volume: 94
  start-page: 14261
  year: 1997
  end-page: 14266
  article-title: Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 7
  start-page: 123
  year: 2016
  end-page: 345
  article-title: Evidence of genomic exchanges between homeologous chromosomes in a cross of peanut with newly synthetized allotetraploid hybrids
  publication-title: Front. Plant Sci.
– volume: 19
  start-page: 1639
  year: 2009
  end-page: 1653
  article-title: Circos: an information aesthetic for comparative genomics
  publication-title: Genome Res.
– volume: 16
  start-page: 262
  year: 2015
  article-title: Understanding Brassicaceae evolution through ancestral genome reconstruction
  publication-title: Genome Biol.
– volume: 90
  start-page: 33
  year: 2003
  end-page: 38
  article-title: Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps
  publication-title: Heredity
– volume: 9
  start-page: e95793
  year: 2014
  article-title: Anchoring linkage groups of the genetic map to physical chromosomes with Tyramide‐FISH and EST‐SNP markers
  publication-title: PLoS ONE
– volume: 3
  start-page: 16052
  year: 2016
  article-title: High‐density SNP‐based genetic maps for the parents of an outcrossed and a selfed tetraploid garden rose cross, inferred from admixed progeny using the 68k rose SNP array
  publication-title: Hortic. Res.
– volume: 28
  start-page: 267
  year: 2009
  end-page: 280
  article-title: Exploring complex ornamental genomes: the rose as a model plant
  publication-title: Crit. Rev. Plant Sci.
– volume: 8
  start-page: e63939
  year: 2013
  article-title: Linkage analysis and QTL mapping using SNP dosage data in a tetraploid potato mapping population
  publication-title: PLoS ONE
– volume: 125
  start-page: 591
  year: 2012
  end-page: 607
  article-title: The mode of inheritance in tetraploid cut roses
  publication-title: Theor. Appl. Genet.
– year: 2013
– ident: e_1_2_7_8_1
  doi: 10.1016/j.pbi.2007.01.010
– ident: e_1_2_7_23_1
  doi: 10.1007/s00122-002-1122-y
– ident: e_1_2_7_76_1
  doi: 10.1534/genetics.115.185579
– ident: e_1_2_7_37_1
  doi: 10.1371/journal.pone.0095793
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1469-8137.2009.03084.x
– ident: e_1_2_7_34_1
  doi: 10.1093/genetics/164.2.645
– ident: e_1_2_7_41_1
  doi: 10.1101/gr.092759.109
– ident: e_1_2_7_4_1
  doi: 10.1093/jhered/esv015
– ident: e_1_2_7_36_1
  doi: 10.1111/2041-210X.12343
– ident: e_1_2_7_27_1
  doi: 10.1186/s12863-014-0146-z
– volume-title: Mathematica Version 10.0
  year: 2014
  ident: e_1_2_7_70_1
– ident: e_1_2_7_59_1
  doi: 10.1007/s00122-010-1463-x
– ident: e_1_2_7_68_1
  doi: 10.1038/hortres.2016.52
– ident: e_1_2_7_9_1
  doi: 10.1146/annurev-arplant-050213-035811
– ident: e_1_2_7_57_1
  doi: 10.1007/978-3-642-21201-7_12
– ident: e_1_2_7_29_1
  doi: 10.1073/pnas.94.26.14261
– ident: e_1_2_7_45_1
  doi: 10.1186/s13059-015-0814-y
– volume: 34
  start-page: 262
  year: 2017
  ident: e_1_2_7_73_1
  article-title: Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication
  publication-title: Mol. Biol. Evol.
– ident: e_1_2_7_17_1
  doi: 10.1007/s11032-015-0365-7
– ident: e_1_2_7_11_1
  doi: 10.1111/nph.13499
– ident: e_1_2_7_60_1
  doi: 10.1016/S0065-2660(08)60490-3
– ident: e_1_2_7_31_1
  doi: 10.1371/journal.pone.0063939
– ident: e_1_2_7_74_1
  doi: 10.1007/s10658-005-5995-x
– ident: e_1_2_7_47_1
  doi: 10.1105/tpc.108.062273
– ident: e_1_2_7_26_1
  doi: 10.1371/journal.pone.0020463
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1469-8137.2009.03142.x
– ident: e_1_2_7_64_1
  doi: 10.1139/g94-149
– volume: 53
  start-page: 1137
  year: 1993
  ident: e_1_2_7_15_1
  article-title: Molecular and statistical approaches to the detection and correction of errors in genotype databases
  publication-title: Am. J. Hum. Genet.
– ident: e_1_2_7_42_1
  doi: 10.1534/genetics.115.174607
– ident: e_1_2_7_28_1
  doi: 10.1007/s11032-016-0565-9
– volume: 89
  start-page: 959
  year: 1994
  ident: e_1_2_7_2_1
  article-title: Chromosome assortment in Saccharum
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/BF00224524
– ident: e_1_2_7_58_1
  doi: 10.3732/ajb.1500501
– ident: e_1_2_7_10_1
  doi: 10.1139/g71-035
– ident: e_1_2_7_35_1
  doi: 10.3732/ajb.93.3.412
– ident: e_1_2_7_71_1
  doi: 10.1007/BF00224274
– ident: e_1_2_7_33_1
  doi: 10.1093/aob/mcw217
– ident: e_1_2_7_51_1
  doi: 10.1007/s001220100647
– ident: e_1_2_7_39_1
  doi: 10.3389/fpls.2015.00249
– ident: e_1_2_7_43_1
  doi: 10.1139/g83-036
– ident: e_1_2_7_20_1
  doi: 10.1080/07352680903035481
– volume-title: R: A Language and Environment For Statistical Computing
  year: 2016
  ident: e_1_2_7_52_1
– ident: e_1_2_7_53_1
  doi: 10.1146/annurev.ecolsys.29.1.467
– ident: e_1_2_7_61_1
  doi: 10.1093/genetics/53.4.747
– ident: e_1_2_7_54_1
  doi: 10.1038/182713a0
– ident: e_1_2_7_12_1
  doi: 10.1534/genetics.115.181008
– ident: e_1_2_7_55_1
  doi: 10.1111/mec.13078
– ident: e_1_2_7_75_1
  doi: 10.1080/14620316.2013.11512940
– ident: e_1_2_7_14_1
  doi: 10.1600/036364407781179653
– ident: e_1_2_7_19_1
  doi: 10.1139/g93-103
– ident: e_1_2_7_44_1
  doi: 10.1093/jxb/erw269
– ident: e_1_2_7_67_1
  doi: 10.1186/1471-2105-12-172
– ident: e_1_2_7_3_1
  doi: 10.1093/genetics/145.4.1083
– ident: e_1_2_7_13_1
  doi: 10.1007/s00122-016-2768-1
– ident: e_1_2_7_25_1
  doi: 10.1016/j.tplants.2010.11.005
– ident: e_1_2_7_63_1
  doi: 10.1007/BF00283241
– ident: e_1_2_7_32_1
  doi: 10.1007/s00122-014-2347-2
– ident: e_1_2_7_5_1
  doi: 10.1111/nph.13150
– ident: e_1_2_7_46_1
  doi: 10.3389/fpls.2016.01635
– volume: 16
  start-page: 1
  year: 1953
  ident: e_1_2_7_62_1
  article-title: Cytology and genetics of the potato (Solanum tuberosum) and related species
  publication-title: Bibliogr. Genet.
– ident: e_1_2_7_30_1
  doi: 10.1038/sj.hdy.6800173
– ident: e_1_2_7_72_1
  doi: 10.1006/tpbi.2002.1608
– ident: e_1_2_7_40_1
  doi: 10.3732/ajb.95.3.353
– ident: e_1_2_7_65_1
  doi: 10.1139/g96-148
– ident: e_1_2_7_38_1
  doi: 10.1007/s00122-012-1855-1
– ident: e_1_2_7_66_1
  doi: 10.1017/CBO9781139003889
– ident: e_1_2_7_24_1
  doi: 10.1093/aob/mcu245
– ident: e_1_2_7_7_1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_7_16_1
  doi: 10.1101/gr.1596604
– volume: 5
  start-page: 6
  year: 1957
  ident: e_1_2_7_48_1
  article-title: Asynaptic effect of chromosome V
  publication-title: Wheat Inf. Serv.
– ident: e_1_2_7_6_1
– ident: e_1_2_7_50_1
  doi: 10.1007/s00122-016-2761-8
– ident: e_1_2_7_69_1
  doi: 10.1111/j.1095-8339.2005.00368.x
– ident: e_1_2_7_56_1
  doi: 10.3389/fpls.2016.01798
– ident: e_1_2_7_22_1
  doi: 10.1111/nph.14276
– ident: e_1_2_7_21_1
  doi: 10.1111/j.1469-8137.2009.03118.x
– reference: 30762942 - Plant J. 2019 Feb;97(3):616
SSID ssj0017364
Score 2.4611473
Snippet Summary It has long been recognised that polyploid species do not always neatly fall into the categories of auto‐ or allopolyploid, leading to the term...
It has long been recognised that polyploid species do not always neatly fall into the categories of auto‐ or allopolyploid, leading to the term ‘segmental...
It has long been recognised that polyploid species do not always neatly fall into the categories of auto- or allopolyploid, leading to the term 'segmental...
Summary It has long been recognised that polyploid species do not always neatly fall into the categories of auto- or allopolyploid, leading to the term...
It has long been recognised that polyploid species do not always neatly fall into the categories of auto- or allopolyploid, leading to the term ‘segmental...
SourceID wageningen
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 330
SubjectTerms allopolyploidy
autotetraploidy
Chromosome Mapping
chromosome pairing
Chromosome Pairing - genetics
Chromosome Pairing - physiology
Chromosomes
Fragaria vesca
Genetic Linkage
Genotype
genotyping
high-density integrated map
hybrids
meiosis
Meiosis - genetics
meiotic chromosomal pairing behaviour
nucleotide sequences
polyploid genetic linkage map
Polyploidy
Rosa
Rosa - genetics
Rosa hybrida
segmental allopolyploid
single nucleotide polymorphism
strawberries
Tetraploidy
Title Partial preferential chromosome pairing is genotype dependent in tetraploid rose
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.13496
https://www.ncbi.nlm.nih.gov/pubmed/28142191
https://www.proquest.com/docview/1884411058
https://www.proquest.com/docview/1863710240
https://www.proquest.com/docview/1891876416
https://www.proquest.com/docview/2000447439
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F519784
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VikM5tLxJW6qAOHBJldjeJFZPgKiqSqAVaqUekCzHsdUVSxJtsqrKr2fGeUCBIkQuSeRJYjszmc_O-BuAV6zEMVfCdSStdZFwXETamTgyzgomXG4ySYuTP3xMT87F6cXsYgOOxrUwPT_ENOFGluG_12Tgumh_MvKuoRgtIYlum2K1CBB9mqijkoz31FGI0CP0mmxgFaIonunKm77oN4B5D7au0Kgrv8rpJnj13ud4Bz6P9e6DTr4crrvi0Hz7hdLxPxt2H7YHVBq-6dXoAWzY6iHcfVsjcrx-BPM56ReWN0NSEn9iLimSr62_2rDRC5oeDBdtSJyvNK0bjtl1u3BRhZ3tVrpZ1osyxJ6wj-H8-P3Zu5NoyMQQmRkOqCKpHZNmhlvGNEenJgvr0JitcLFJuUmMcxyxmJWlcC4usjITqeaM2PlkFpf8CWxWdWWfQegSqXNjiYcuFbPE6rRktkTUjI8ohRUBvB7fiTIDTTlly1iqcbiC_aN8_wTwchJtem6OPwntjy9WDebZqiTPEQYitMwDeDEVo2HR3xJd2XpNMikn-CXiv8nIBN0JgtrbZZj_aU7jvgCe9oo11ZbliUCXkQTAf2iaqiiLVKuI-HvQF3W1XqlqSTu8Q6totXFOXeX16PbGq7P5qT_Y_XfRPdhiBF18dNI-bHartX2OwKsrDuAOE_MDb2ffAQivLMc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgkQ58KYYChgEEhdX9u7G9h44AKVKn4pQKvW2dda7ImqwrdhRVH4Tf4X_xIxfUKCISw_k4kQeOfbuPL5Zz34D8JKlmHMFPPGkMdYTlgsvsdr3tDWCCRvrSNLm5IPDcHgkdo8HxyvwtdsL0_BD9AtuZBm1vyYDpwXpn6y8KqhIS8iwLancM2dLTNjKNztbOLuvGNv-MH4_9NqeAp4eYGrgycQyqQf4iVjC0T3LibGolkZYX4dcB9pajqjCyFRY60-iNBJhwhnxzMnITzle9wpcpQ7ixNS_9bEnqwoi3pBVYU7gYZxmLY8R1Q31t3o--v0GaW_A2hLdSFbvqzoPl-t4t30LvnUj1ZS5nG4uqsmm_vILieT_MpS34WYLvN23jaXcgRWT3YVr73IEx2f3YDQiE8LzRdt3pf6hP1GxYpl_Nm6RTGkF1J2WLtHa0sq12zUQrtxp5lammifFLJ-mLg69uQ9Hl_I0D2A1yzPzEFwbyCTWhqj2QjEITBKmzKSYGOBfpMIIB153SqB0y8RODUFmqsvIcD5UPR8OvOhFi4Z-5E9CG50mqdYDlSqIY0S6iJ5jB573p9F30AuhJDP5gmRCTghT-H-TkQFGTMTtF8uwui6AUlsH1htN7u-WxYHAqBg4wH-otsqoUVapiNu8VVC1XMxVNqMDXqFUtKE6pqGqFffih1fj0W795dG_iz6D68Pxwb7a3zncewxrjJBaXYy1AavVfGGeIM6sJk9r83bh5LKN4Ds1vYgo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tC0LLAfEmsIBBIHGJlNhuEh84AEu1D1j1sCvtzaSOLSqVJGpSVfub-JPMOA9YwSIu20tbZZS6kxnPN_b4G4DXvMCcKxZ5qKx1oXRChrkzUWiclVy6zKSKDid_OU72T-Xh2eRsC34MZ2E6fohxwY08w8_X5OB14X5z8ramGi2pkr6i8siebzBfa94d7OHDfcP59NPJx_2wbykQmglmBqHKHVdmgq-U5wJnZzW3Dq3SSheZRJjYOCcQVFhVSOeieVqkMskFJ5o5lUaFwPteg-u0uUj1Y1zOxi2LVHRcVZgShBimeU9jRGVD41AvBr8_EO0t2NngLFL6Y1UX0bIPd9M7cLvHqex9Z1h3YcuW9-DGhwqx5Pl9mM3I4vB63bcp8V_MN6rta6rvltX5ghYM2aJhxAJLC71s6LfbskXJWtuu8npZLQqGQ7UP4PRKFPkQtsuqtI-BuVjlmbHETJfISWzzpOC2QByNP1FIKwN4OyhNm564nPpnLPWQwKB-tddvAK9G0bpj6_ib0O6ged07bKPjLENgiGAzC-DleBldjfZP8tJWa5JJBAEyGf1LRsUYYBDmXi7D_TY6ZYIBPOqe_DhansUSg0gcgPhlCrqkvlKNJirw3jX0Zr3S5ZLe8A6NpvPHGanK28zlf16fzA79hyf_L_oCbs72pvrzwfHRU9jhhGt86dIubLertX2GqKydP_fewODrVbvfT9XGRx4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Partial+preferential+chromosome+pairing+is+genotype+dependent+in+tetraploid+rose&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Bourke%2C+Peter+M.&rft.au=Arens%2C+Paul&rft.au=Voorrips%2C+Roeland+E.&rft.au=Esselink%2C+G.+Danny&rft.date=2017-04-01&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=90&rft.issue=2&rft.spage=330&rft.epage=343&rft_id=info:doi/10.1111%2Ftpj.13496&rft.externalDBID=10.1111%252Ftpj.13496&rft.externalDocID=TPJ13496
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon