Photoperiod and Testosterone Interact to Drive Seasonal Changes in Kisspeptin Expression in Siberian Hamsters (Phodopus sungorus)
Kisspeptin, a neuropeptide product of the KiSS‐1 gene, has recently been implicated in the regulation of seasonal breeding in a number of species, including Siberian hamsters. In this species, kisspeptin expression is reduced in the anteroventral periventricular nucleus (AVPV) following exposure to...
Saved in:
Published in | Journal of neuroendocrinology Vol. 20; no. 12; pp. 1339 - 1347 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.12.2008
Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Kisspeptin, a neuropeptide product of the KiSS‐1 gene, has recently been implicated in the regulation of seasonal breeding in a number of species, including Siberian hamsters. In this species, kisspeptin expression is reduced in the anteroventral periventricular nucleus (AVPV) following exposure to inhibitory day lengths, and exogenous kisspeptin activates the reproductive neuroendocrine axis of reproductively quiescent animals. Because sex steroids can impact kisspeptin expression, it is unclear whether changes in kisspeptin occur in direct response to photoperiodic cues or secondarily in response to changes in sex steroid concentrations resulting from the transition to reproductive quiescence. The present study aimed to assess the relative contributions of photoperiod and testosterone in regulating kisspeptin expression in Siberian hamsters. Animals housed in long or short day lengths for 8 weeks were either castrated or received sham surgeries. Half of the hamsters in each photoperiod were given testosterone to mimic long‐day sex steroid concentrations. The results obtained indicate that kisspeptin neurones in the AVPV and arcuate nuclei were influenced by both photoperiod and testosterone. In the AVPV, removal of testosterone or exposure to inhibitory day lengths led to a marked reduction in kisspeptin‐immunoreactive cells, and testosterone treatment increased cell numbers across conditions. Importantly, long‐day castrates exhibited significantly more kisspeptin cells than short‐day castrates or intact short‐day animals with empty capsules, suggesting the influences of photoperiod, independent of gonadal steroids. In general, the opposite pattern emerged for the arcuate nuclei. Collectively, these data suggest a role for both gonadal‐dependent and independent (i.e. photoperiodic) mechanisms regulating seasonal changes in kisspeptin expression in Siberian hamsters. |
---|---|
AbstractList | Kisspeptin, a neuropeptide product of the KiSS-1 gene, has recently been implicated in the regulation of seasonal breeding in a number of species, including Siberian hamsters. In this species, kisspeptin expression is reduced in the anteroventral periventricular nucleus (AVPV) following exposure to inhibitory day lengths, and exogenous kisspeptin activates the reproductive neuroendocrine axis of reproductively quiescent animals. Because sex steroids can impact kisspeptin expression, it is unclear whether changes in kisspeptin occur in direct response to photoperiodic cues or secondarily in response to changes in sex steroid concentrations resulting from the transition to reproductive quiescence. The present study aimed to assess the relative contributions of photoperiod and testosterone in regulating kisspeptin expression in Siberian hamsters. Animals housed in long or short day lengths for 8 weeks were either castrated or received sham surgeries. Half of the hamsters in each photoperiod were given testosterone to mimic long-day sex steroid concentrations. The results obtained indicate that kisspeptin neurones in the AVPV and arcuate nuclei were influenced by both photoperiod and testosterone. In the AVPV, removal of testosterone or exposure to inhibitory day lengths led to a marked reduction in kisspeptin-immunoreactive cells, and testosterone treatment increased cell numbers across conditions. Importantly, long-day castrates exhibited significantly more kisspeptin cells than short-day castrates or intact short-day animals with empty capsules, suggesting the influences of photoperiod, independent of gonadal steroids. In general, the opposite pattern emerged for the arcuate nuclei. Collectively, these data suggest a role for both gonadal-dependent and independent (i.e. photoperiodic) mechanisms regulating seasonal changes in kisspeptin expression in Siberian hamsters. Kisspeptin, a neuropeptide product of the KiSS-1 gene, has recently been implicated in the regulation of seasonal breeding in a number of species, including Siberian hamsters. In this species, kisspeptin expression is reduced in the anteroventral periventricular nucleus (AVPV) following exposure to inhibitory day lengths, and exogenous kisspeptin activates the reproductive neuroendocrine axis of reproductively quiescent animals. Because sex steroids can impact kisspeptin expression, it is unclear whether changes in kisspeptin occur in direct response to photoperiodic cues or secondarily in response to changes in sex steroid concentrations resulting from the transition to reproductive quiescence. The present study aimed to assess the relative contributions of photoperiod and testosterone in regulating kisspeptin expression in Siberian hamsters. Animals housed in long or short day lengths for 8weeks were either castrated or received sham surgeries. Half of the hamsters in each photoperiod were given testosterone to mimic long-day sex steroid concentrations. The results obtained indicate that kisspeptin neurones in the AVPV and arcuate nuclei were influenced by both photoperiod and testosterone. In the AVPV, removal of testosterone or exposure to inhibitory day lengths led to a marked reduction in kisspeptin-immunoreactive cells, and testosterone treatment increased cell numbers across conditions. Importantly, long-day castrates exhibited significantly more kisspeptin cells than short-day castrates or intact short-day animals with empty capsules, suggesting the influences of photoperiod, independent of gonadal steroids. In general, the opposite pattern emerged for the arcuate nuclei. Collectively, these data suggest a role for both gonadal-dependent and independent (i.e. photoperiodic) mechanisms regulating seasonal changes in kisspeptin expression in Siberian hamsters. Kisspeptin, a neuropeptide product of the KiSS‐1 gene, has recently been implicated in the regulation of seasonal breeding in a number of species, including Siberian hamsters. In this species, kisspeptin expression is reduced in the anteroventral periventricular nucleus (AVPV) following exposure to inhibitory day lengths, and exogenous kisspeptin activates the reproductive neuroendocrine axis of reproductively quiescent animals. Because sex steroids can impact kisspeptin expression, it is unclear whether changes in kisspeptin occur in direct response to photoperiodic cues or secondarily in response to changes in sex steroid concentrations resulting from the transition to reproductive quiescence. The present study aimed to assess the relative contributions of photoperiod and testosterone in regulating kisspeptin expression in Siberian hamsters. Animals housed in long or short day lengths for 8 weeks were either castrated or received sham surgeries. Half of the hamsters in each photoperiod were given testosterone to mimic long‐day sex steroid concentrations. The results obtained indicate that kisspeptin neurones in the AVPV and arcuate nuclei were influenced by both photoperiod and testosterone. In the AVPV, removal of testosterone or exposure to inhibitory day lengths led to a marked reduction in kisspeptin‐immunoreactive cells, and testosterone treatment increased cell numbers across conditions. Importantly, long‐day castrates exhibited significantly more kisspeptin cells than short‐day castrates or intact short‐day animals with empty capsules, suggesting the influences of photoperiod, independent of gonadal steroids. In general, the opposite pattern emerged for the arcuate nuclei. Collectively, these data suggest a role for both gonadal‐dependent and independent (i.e. photoperiodic) mechanisms regulating seasonal changes in kisspeptin expression in Siberian hamsters. |
Author | Demas, G. E. Greives, T. J. Scotti, M.-A. L. Kriegsfeld, L. J. Humber, S. A. Goldstein, A. N. |
AuthorAffiliation | Department of Biology, Program in Neuroscience and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA |
AuthorAffiliation_xml | – name: Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA – name: Department of Biology, Program in Neuroscience and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA |
Author_xml | – sequence: 1 givenname: T. J. surname: Greives fullname: Greives, T. J. organization: Department of Biology, Program in Neuroscience and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA – sequence: 2 givenname: S. A. surname: Humber fullname: Humber, S. A. organization: Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA – sequence: 3 givenname: A. N. surname: Goldstein fullname: Goldstein, A. N. organization: Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA – sequence: 4 givenname: M.-A. L. surname: Scotti fullname: Scotti, M.-A. L. organization: Department of Biology, Program in Neuroscience and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA – sequence: 5 givenname: G. E. surname: Demas fullname: Demas, G. E. organization: Department of Biology, Program in Neuroscience and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA – sequence: 6 givenname: L. J. surname: Kriegsfeld fullname: Kriegsfeld, L. J. organization: Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20860003$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19094081$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkVFv0zAUhSM0xLrBX0B-AcFDwnVsJ84DSFDKOphKpQ5N4sVyE6d1l9rBTkb3yD_HoVWBJ7As-Ur3O-faPmfRibFGRRHCkOCwXm0STDIWpzzNkhSAJ4DzApLdg2h0bJxEIygYiTku6Gl05v0GAsUIPIpOcQEFBY5H0Y_52na2VU7bCklToWvlO-s75cJEdGlCIcsOdRa9d_pOoYWS3hrZoPFampXySBv0SXvfqrYL5WTXOuW9tmZoLPQyGEuDpnI7WHr0IoyrbNt75Huzsq73Lx9HD2vZePXkcJ5HXz5MrsfT-OrzxeX47VVcshxDjJfLJQeFMRSpAkUZJ7UKm0FWAw9PA55iUFlBCFWU8pKntKxTnvM8rVhZkfPozd637ZdbVZXKdE42onV6K929sFKLvztGr8XK3ok0IxlnRTB4fjBw9lsfvklstS9V00ijbO9FVhQ4p5T9E8QFwzTPaQD5Hiyd9d6p-ngbDGIIWmzEkKcY8hRD0OJX0GIXpE__fM1v4SHZADw7ANKXsqmdNKX2Ry4FngEACdzrPfddN-r-vy8gPs4mQxX08V6vQ8K7o166W5HlJGfiZnYhpov51xs2eyfm5CdWBtdK |
CitedBy_id | crossref_primary_10_1111_jne_12171 crossref_primary_10_1002_cne_24498 crossref_primary_10_1016_j_yfrne_2012_09_001 crossref_primary_10_1111_jne_12251 crossref_primary_10_1016_j_pneurobio_2012_05_011 crossref_primary_10_1016_j_yhbeh_2014_03_009 crossref_primary_10_1177_0748730410361918 crossref_primary_10_1111_jne_13124 crossref_primary_10_1002_cne_23327 crossref_primary_10_1016_j_yhbeh_2016_12_006 crossref_primary_10_1177_0748730413487974 crossref_primary_10_1002_cne_24736 crossref_primary_10_1111_ejn_14287 crossref_primary_10_1152_physrev_00037_2010 crossref_primary_10_1177_0748730414532423 crossref_primary_10_1016_j_yfrne_2010_12_003 crossref_primary_10_1016_j_ygcen_2016_02_020 crossref_primary_10_1111_raq_12563 crossref_primary_10_1007_s10695_019_00717_3 crossref_primary_10_1210_en_2012_1611 crossref_primary_10_1095_biolreprod_111_097667 crossref_primary_10_1016_j_yfrne_2014_12_002 crossref_primary_10_3389_fendo_2016_00036 crossref_primary_10_1016_j_theriogenology_2024_02_027 crossref_primary_10_1111_j_1365_2826_2009_01924_x crossref_primary_10_3389_fendo_2016_00038 crossref_primary_10_1210_en_2012_1550 crossref_primary_10_1016_j_mce_2013_10_015 crossref_primary_10_1242_jeb_243030 crossref_primary_10_1016_j_physbeh_2017_11_002 crossref_primary_10_1016_j_ygcen_2010_10_001 crossref_primary_10_1007_s00360_010_0498_2 crossref_primary_10_1016_j_bbi_2021_01_023 crossref_primary_10_1111_j_1365_2826_2009_01892_x crossref_primary_10_1096_fj_13_229559 crossref_primary_10_1210_en_2010_0385 crossref_primary_10_1016_j_mce_2011_05_043 crossref_primary_10_1098_rspb_2010_2181 crossref_primary_10_1111_jne_12529 crossref_primary_10_1111_j_1095_8649_2009_02500_x crossref_primary_10_1111_j_1365_2826_2012_02317_x crossref_primary_10_1111_1365_2435_12846 |
Cites_doi | 10.1210/en.2005-0488 10.1007/s11154-007-9032-6 10.1210/en.2006-0787 10.1095/biolreprod27.3.580 10.1016/S0031-9384(04)00337-3 10.1073/pnas.0409330102 10.1210/en.2004-0836 10.1007/s003600050161 10.1210/endo-95-4-1059 10.1016/j.ygcen.2008.02.017 10.1210/en.131.4.1665 10.1016/j.bbrc.2003.11.066 10.1159/000125277 10.1111/j.1365-2826.2004.01240.x 10.1210/en.2007-0500 10.1210/en.2005-1261 10.1111/j.1600-079X.1993.tb00903.x 10.1073/pnas.0409822102 10.1002/jez.1402300112 10.1210/en.2005-0337 10.1210/en.2006-1435 10.1016/j.mce.2006.07.002 10.1113/jphysiol.2004.072298 10.1095/biolreprod.102.010900 10.1016/j.yhbeh.2007.03.029 10.1210/en.2007-1503 10.1016/0031-9384(90)90046-7 10.1007/s11154-007-9028-2 10.1111/j.1365-2826.2006.01417.x 10.1210/endo-95-6-1566 10.1152/ajpregu.1996.271.1.R64 10.1210/endo-99-6-1528 10.1073/pnas.1834399100 10.1016/j.cub.2006.07.025 10.1159/000083140 10.1152/ajpregu.00551.2007 10.1016/j.yhbeh.2007.07.004 10.1210/en.2006-1540 10.1073/pnas.0511003103 10.1530/jrf.0.0660243 10.1016/j.brainresrev.2007.04.002 10.1177/074873001129001980 10.1210/en.2005-0323 10.1262/jrd.18146 10.1210/en.2004-0431 10.2337/db05-1584 10.1016/j.bbrc.2004.05.185 10.1006/gcen.1999.7414 10.1056/NEJMoa035322 10.1523/JNEUROSCI.3328-05.2005 10.1073/pnas.0704114104 10.1111/j.1365-2826.2006.01420.x 10.1210/jc.2005-1468 10.1210/en.2007-0848 10.1152/ajpregu.1984.246.1.R26 10.1006/hbeh.2000.1604 10.1210/edrv.19.3.0332 10.1210/endo-96-4-854 10.1210/en.2006-1249 |
ContentType | Journal Article |
Copyright | 2008 The Authors. Journal Compilation © 2008 Blackwell Publishing Ltd 2009 INIST-CNRS |
Copyright_xml | – notice: 2008 The Authors. Journal Compilation © 2008 Blackwell Publishing Ltd – notice: 2009 INIST-CNRS |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 5PM |
DOI | 10.1111/j.1365-2826.2008.01790.x |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Neurosciences Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1365-2826 |
EndPage | 1347 |
ExternalDocumentID | 10_1111_j_1365_2826_2008_01790_x 19094081 20860003 JNE1790 ark_67375_WNG_HSPZW5NB_P |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: T32 HD049336 – fundername: NICHD NIH HHS grantid: R01 HD050470-02 – fundername: NICHD NIH HHS grantid: HD050470 – fundername: NICHD NIH HHS grantid: R01 HD050470 – fundername: NICHD NIH HHS grantid: HD049336-0 |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29L 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCUC ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBC EBD EBS EBX EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FYBCS FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 YFH ZGI ZXP ZZTAW ~IA ~WT AETEA AAVGM ABHUG ABPTK ACXME ADAWD ADDAD AFVGU AGJLS IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c5710-1bbb80e11092e0e4583fe3fe506f0800108210e69334e448c824cf287872d5cd3 |
IEDL.DBID | DR2 |
ISSN | 0953-8194 |
IngestDate | Tue Sep 17 20:32:00 EDT 2024 Sat Aug 17 00:33:26 EDT 2024 Fri Aug 16 21:18:25 EDT 2024 Thu Sep 26 18:21:05 EDT 2024 Sat Sep 28 07:55:41 EDT 2024 Sun Oct 22 16:10:16 EDT 2023 Sat Aug 24 01:05:26 EDT 2024 Wed Oct 30 09:58:16 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Steroid Androgen Rodentia seasonal breeding KiSS-1 Photoperiod gonadal steroids RF amide Kisspeptin Testosterone Vertebrata Reproduction Mammalia Animal Testicular hormone Phodopus sungorus Sex steroid hormone Hamster |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5710-1bbb80e11092e0e4583fe3fe506f0800108210e69334e448c824cf287872d5cd3 |
Notes | istex:C582C7334D6593136F33609D2A8BF295EB14ACD4 ArticleID:JNE1790 ark:/67375/WNG-HSPZW5NB-P ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://europepmc.org/articles/pmc2636859?pdf=render |
PMID | 19094081 |
PQID | 19514774 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2636859 proquest_miscellaneous_69917445 proquest_miscellaneous_19514774 crossref_primary_10_1111_j_1365_2826_2008_01790_x pubmed_primary_19094081 pascalfrancis_primary_20860003 wiley_primary_10_1111_j_1365_2826_2008_01790_x_JNE1790 istex_primary_ark_67375_WNG_HSPZW5NB_P |
PublicationCentury | 2000 |
PublicationDate | December 2008 |
PublicationDateYYYYMMDD | 2008-12-01 |
PublicationDate_xml | – month: 12 year: 2008 text: December 2008 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: United States |
PublicationTitle | Journal of neuroendocrinology |
PublicationTitleAlternate | J Neuroendocrinol |
PublicationYear | 2008 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Smith JT. Kisspeptin signalling in the brain: steroid regulation in the rodent and ewe. Brain Res Rev 2008; 57: 288-298. Navarro VM, Castellano JM, Fernandez-Fernandez R, Tovar S, Roa J, Mayen A, Nogueiras R, Vazquez MJ, Barreiro ML, Magni P, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M. Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology 2005; 146: 156-163. Prendergast BJ, Baillie SR, Dhabhar FS. Gonadal hormone-dependent and -independent regulation of immune function by photoperiod in Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 2008; 294: R384-R392. Revel FG, Saboureau M, Pevet P, Simonneaux V, Mikkelsen JD. RFamide-related peptide gene is a melatonin-driven photoperiodic gene. Endocrinology 2008; 149: 902. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O'Rahilly S, Carlton MBL, Crowley WF, Aparicio S, Colledge WH. The GPR54 gene as a regulator of puberty. N Engl J Med 2003; 349: 1614-1627. Han SK, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, Clifton DK, Steiner RA, Herbison AE. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci 2005; 25: 11349-11356. Wiegand SJ, Terasawa E. Discrete lesions reveal functional heterogeneity of suprachiasmatic structures in regulation of gonadotropin secretion in the female rat. Logo 1982; 34: 242-247. Bittman EL, Ehrlich DA, Ogdahl JL, Jetton AE. Photoperiod and testosterone regulate androgen receptor immunostaining in the Siberian hamster brain. Biol Reprod 2003; 69: 876-884. Adachi S, Yamada S, Takatsu Y, Matsui H, Kinoshita M, Takase K, Sugiura H, Ohtaki T, Matsumoto H, Uenoyama Y, Tsukamura H, Inoue K, Maeda KI. Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J Reprod Dev 2007; 53: 367-378. Goldman BD. Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J Biol Rhythms 2001; 16: 283-301. Navarro VM, Fernandez-Fernandez R, Castellano JM, Roa J, Mayen A, Barreiro ML, Gaytan F, Aguilar E, Pinilla L, Dieguez C, Tena-Sempere M. Advanced vaginal opening and precocious activation of the reproductive axis by KiSS-1 peptide, the endogenous ligand of GPR54. J Physiol Lond 2004; 561: 379-386. Messager S, Chatzidaki EE, Ma D, Hendrick AG, Zahn D, Dixon J, Thresher RR, Malinge I, Lomet D, Carlton MBL, Colledge WH, Caraty A, Aparicio S. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc Natl Acad Sci USA 2005; 102: 1761-1766. Kriegsfeld LJ, Mei DF, Bentley GE, Ubuka T, Mason AO, Inoue K, Ukena K, Tsutsui K, Silver R. Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc Natl Acad Sci USA 2006; 103: 2410-2415. Turek FW, Elliott JA, Alvis JD, Menaker M. Interaction of castration and photoperiod in regulation of hypophyseal and serum gonadotropin levels in male golden-hamsters. Endocrinology 1975; 96: 854-860. Navarro VM., Castellano JM, Garcia-Galiano D, Tena-Sempere M. Neuroendocrine factors in the initiation of puberty: the emergent role of kisspeptin. Rev Endocr Metab Disord 2007; 8: 11-20. Kanda S, Akazome Y, Matsunaga T, Yamamoto N, Yamada S, Tsukamura H, Maeda K-i, Oka Y. Identification of KiSS-1 product kisspeptin and steroid-sensitive sexually dimorphic kisspeptin neurons in medaka (Oryzias latipes). Endocrinology 2008; 149: 2467-2476. De Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 2003; 100: 10972-10976. Patterson M, Murphy KG, Thompson EL, Patel S, Ghatei MA, Bloom SR. Administration of kisspeptin-54 into discrete regions of the hypothalamus potently increases plasma luteinising hormone and testosterone in male adult rats. J Neuroendocrinol 2006; 18: 349-354. Krey LC, Ronchi E, Bittman EL. Effects of daylength on androgen metabolism and pulsatile luteinizing-hormone secrection in male golden-hamsters. Neuroendocrinology 1989; 50: 533-542. Castellano JM, Navarro VM, Fernandez-Fernandez R, Roa J, Vigo E, Pineda R, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M. Expression of hypothalamic KiSS-1 system and rescue of defective gonadotropic responses by kisspeptin in streptozotocin-induced diabetic male rats. Diabetes 2006; 55: 2602-2610. Smith JT, Acohido BV, Clifton DK, Steiner RA. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol 2006; 18: 298-303. D'Anglemont de Tassigny X, Fagg LA, Dixon JPC, Day K, Leitch HG, Hendrick AG, Zahn D, Franceschini I, Caraty A, Carlton MBL, Aparicio SAJR, Colledge WH. Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proc Natl Acad Sci USA 2007; 104: 10714-10719. Scotti MAL, Place NJ, Demas GE. Short-day increases in aggression are independent of circulating gonadal steroids in female Siberian hamsters (Phodopus sungorus). Horm Behav 2007; 52: 183-190. Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, Seminara S, Clifton DK, Steiner RA. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 2004; 145: 4073-4077. Greives TJ, Kriegsfeld LJ, Demas GE. Exogenous kisspeptin does not alter photoperiod-induced gonadal regression in Siberian hamsters (Phodopus sungorus). Gen Comp Endocrinol 2008; 156: 552-558. Miernicki M, Pospichal MW, Powers JB. Short photoperiods affect male hamster sociosexual behaviors in the presence and absence of testosterone. Physiol Behav 1990; 47: 95-106. Castellano JM, Navarro VM, Fernandez-Fernandez R, Nogueiras R, Tovar S, Roa J, Vazquez MJ, Vigo E, Casanueva FF, Aguilar E, Pinilla L, Dieguez C, Tena-Sempere M. Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology 2005; 146: 3917-3925. Mason AO, Greives TJ, Scotti MAL, Levine J, Frommeyer S, Ketterson ED, Demas GE, Kriegsfeld LJ. Suppression of kisspeptin expression and gonadotropic axis sensitivity following exposure to inhibitory day lengths in female Siberian hamsters. Horm Behav 2007; 52: 492-498. Smith JT, Dungan HM, Stoll EA, Gottsch ML, Braun RE, Eacker SM, Clifton DK, Steiner RA. Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 2005; 146: 2976-2984. Luque RM, Kineman RD, Tena-Sempere M. Regulation of hypothalamic expression of KiSS-1 and GPR54 genes by metabolic factors: analyses using mouse models and a cell line. Endocrinology 2007; 148: 4601-4611. Demas GE, Johnson C, Polacek KM. Social interactions differentially affect reproductive and immune responses of Siberian hamsters. Physiol Behav 2004; 83: 73-79. Simpson SM, Follett BK, Ellis DH. Modulation by photoperiod of gonadotropin secretion in intact and castrated Djungarian hamsters. J Reprod Fertil 1982; 66: 243-250. Greives TJ, Mason AO, Scotti MAL, Levine J, Ketterson ED, Kriegsfeld LJ, Demas GE. Environmental control of kisspeptin: implications for seasonal reproduction. Endocrinology 2007; 148: 1158-1166. Kauffman AS, Gottsch ML, Roa J, Byquist AC, Crown A, Clifton DK, Hoffman GE, Steiner RA, Tena-Sempere M. Sexual differentiation of Kiss1 gene expression in the brain of the rat. Endocrinology 2007; 148: 1774-1783. Goodman RL, Bittman EL, Foster DL, Karsch FJ. Alterations in the control of Luteinizing-hormone pulse frequency underlie the seasonal-variation in estadiol negative feedback in the ewe. Biol Reprod 1982; 27: 580-589. Urbanski HF. Photoperiodic modulation of luteinizing hormone secretion in orchidectomized Syrian hamsters and the influence of excitatory amino acids. Endocrinology 1992; 131: 1665-1669. Irwig MS, Fraleyb GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ, Gottsch ML, Clifton DK, Steiner RA. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology 2004; 80: 264-272. Thompson EL, Patterson M, Murphy KG, Smith KL, Dhillo WS, Todd JF, Ghatei MA, Bloom SR. Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic-pituitary-gonadal axis. J Neuroendocrinol 2004; 16: 850-858. Tamarkin L, Hutchison JS, Goldman BD. Regulation of serum gonadotropins by photoperiod and testicular hormones in the Syrian-hamster. Endocrinology 1976; 99: 1528-1533. Matsui H, Takatsu Y, Kumano S, Matsumoto H, Ohtaki T. Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem Biophys Res Commun 2004; 320: 383-388. Kriegsfeld LJ, Drazen DL, Nelson RJ. Effects of photoperiod and reproductive responsiveness on pituitary sensitivity to GnRH in male prairie voles (Microtus ochrogaster). Gen Comp Endocrinol 1999; 116: 221-228. Herbison AE. Multimodal influence of estrogen upon gonadotropin-releasing hormone neurons. Endocr Rev 1998; 19: 302-330. Maeda KI, Adachi S, Inoue K, Ohkura S, Tsukamura H. Metastin/Kisspeptin and control of estrous cycle in rats. Rev Endocr Metab Disord 2007; 8: 21-29. Smith JT, Clay CM, Caraty A, Clarke IJ. KiSS-1 messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season. Endocrinology 2007; 148: 1150-1157. Bittman EL, Jetton AE, Villalba C, Devries GJ. Effects of photoperiod and androgen on pituitary function and neuropeptide staining in Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 1996; 40: R64-R72. Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 2005; 146: 3686-3692. Revel FG, Saboureau M, Masson-Pevet M, Pevet P, Mikkelsen JD, Simonneaux V. Ki 2007; 104 2004; 320 2007; 148 2004; 561 1984; 246 1974; 95 2008; 149 1975; 96 2003; 312 2006; 257 2005; 25 1982; 27 1984; 230 1998; 19 1990; 47 2005; 102 2005; 146 1982; 66 2007; 8 2001; 16 1981 2008; 156 2004; 80 1998; 168 1989 2004; 145 1982; 34 2004; 83 2005; 90 2006; 55 2006; 16 2006; 18 2008; 57 1993 2007; 52 2007; 53 1993; 15 1989; 50 2003; 349 2000; 38 1976; 99 1992; 131 2004; 16 2003; 69 1996; 40 1999; 116 2003; 100 2008; 294 2006; 147 2006; 103 15665093 - Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1761-6 16503925 - J Neuroendocrinol. 2006 Apr;18(4):298-303 17563351 - Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10714-9 15831567 - Endocrinology. 2005 Jul;146(7):2976-84 10964524 - Horm Behav. 2000 Sep;38(2):102-10 8120796 - J Pineal Res. 1993 Nov;15(4):161-90 4370174 - Endocrinology. 1974 Oct;95(4):1059-68 6811735 - J Reprod Fertil. 1982 Sep;66(1):243-50 16174713 - J Clin Endocrinol Metab. 2005 Dec;90(12):6609-15 16959837 - Endocrinology. 2006 Dec;147(12):5817-25 6696099 - Am J Physiol. 1984 Jan;246(1 Pt 2):R26-30 16282350 - Endocrinology. 2006 Feb;147(2):1007-13 6753958 - Biol Reprod. 1982 Oct;27(3):580-9 18079200 - Endocrinology. 2008 Mar;149(3):902-12 1396311 - Endocrinology. 1992 Oct;131(4):1665-9 15486019 - J Physiol. 2004 Dec 1;561(Pt 2):379-86 15375028 - Endocrinology. 2005 Jan;146(1):156-63 17340172 - Rev Endocr Metab Disord. 2007 Mar;8(1):11-20 15919741 - Endocrinology. 2005 Sep;146(9):3686-92 15500545 - J Neuroendocrinol. 2004 Oct;16(10):850-8 14573733 - N Engl J Med. 2003 Oct 23;349(17):1614-27 1001253 - Endocrinology. 1976 Dec;99(6):1528-33 16936210 - Diabetes. 2006 Sep;55(9):2602-10 16629833 - J Neuroendocrinol. 2006 May;18(5):349-54 17989142 - Am J Physiol Regul Integr Comp Physiol. 2008 Feb;294(2):R384-92 16950111 - Curr Biol. 2006 Sep 5;16(17):1730-5 17499250 - Horm Behav. 2007 Aug;52(2):183-90 17706968 - Horm Behav. 2007 Nov;52(4):492-8 12944565 - Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10972-6 6808412 - Neuroendocrinology. 1982 Jun;34(6):395-404 15219839 - Biochem Biophys Res Commun. 2004 Jul 23;320(2):383-8 17509691 - Brain Res Rev. 2008 Mar;57(2):288-98 15684075 - Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):2129-34 17377846 - Rev Endocr Metab Disord. 2007 Mar;8(1):21-9 12748118 - Biol Reprod. 2003 Sep;69(3):876-84 9747522 - J Comp Physiol B. 1998 Aug;168(6):419-26 15665556 - Neuroendocrinology. 2004;80(4):264-72 17185374 - Endocrinology. 2007 Mar;148(3):1150-7 15217982 - Endocrinology. 2004 Sep;145(9):4073-7 17185375 - Endocrinology. 2007 Mar;148(3):1158-66 16930819 - Mol Cell Endocrinol. 2006 Sep 26;257-258:75-83 17595226 - Endocrinology. 2007 Oct;148(10):4601-11 17204549 - Endocrinology. 2007 Apr;148(4):1774-83 14652023 - Biochem Biophys Res Commun. 2003 Dec 26;312(4):1357-63 17213691 - J Reprod Dev. 2007 Apr;53(2):367-78 18405899 - Gen Comp Endocrinol. 2008 May 1;156(3):552-8 15932928 - Endocrinology. 2005 Sep;146(9):3917-25 1120474 - Endocrinology. 1975 Apr;96(4):854-60 10562452 - Gen Comp Endocrinol. 1999 Nov;116(2):221-8 9626556 - Endocr Rev. 1998 Jun;19(3):302-30 6726149 - J Exp Zool. 1984 Apr;230(1):89-95 2514394 - Neuroendocrinology. 1989 Nov;50(5):533-42 11506375 - J Biol Rhythms. 2001 Aug;16(4):283-301 4373226 - Endocrinology. 1974 Dec;95(6):1566-73 2326348 - Physiol Behav. 1990 Jan;47(1):95-106 16467147 - Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2410-5 16339030 - J Neurosci. 2005 Dec 7;25(49):11349-56 18202129 - Endocrinology. 2008 May;149(5):2467-76 15501493 - Physiol Behav. 2004 Oct 30;83(1):73-9 8760205 - Am J Physiol. 1996 Jul;271(1 Pt 2):R64-72 e_1_2_6_51_2 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_62_2 e_1_2_6_64_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_7_2 Wiegand SJ (e_1_2_6_39_2) 1982; 34 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_31_2 Turek FW (e_1_2_6_48_2) 1981 Goldman BD (e_1_2_6_29_2) 1993 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_61_2 e_1_2_6_63_2 e_1_2_6_42_2 e_1_2_6_40_2 Bronson FH (e_1_2_6_21_2) 1989 e_1_2_6_8_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 131 start-page: 1665 year: 1992 end-page: 1669 article-title: Photoperiodic modulation of luteinizing hormone secretion in orchidectomized Syrian hamsters and the influence of excitatory amino acids publication-title: Endocrinology – volume: 19 start-page: 302 year: 1998 end-page: 330 article-title: Multimodal influence of estrogen upon gonadotropin‐releasing hormone neurons publication-title: Endocr Rev – volume: 320 start-page: 383 year: 2004 end-page: 388 article-title: Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat publication-title: Biochem Biophys Res Commun – volume: 102 start-page: 2129 year: 2005 end-page: 2134 article-title: Increased hypothalamic GPR54 signaling: A potential mechanism for initiation of puberty in primates publication-title: Proc Natl Acad Sci USA – volume: 149 start-page: 902 year: 2008 article-title: RFamide‐related peptide gene is a melatonin‐driven photoperiodic gene publication-title: Endocrinology – volume: 312 start-page: 1357 year: 2003 end-page: 1363 article-title: The KiSS‐1 receptor GPR54 is essential for the development of the murine reproductive system publication-title: Biochem Biophys Res Commun – volume: 57 start-page: 288 year: 2008 end-page: 298 article-title: Kisspeptin signalling in the brain: steroid regulation in the rodent and ewe publication-title: Brain Res Rev – volume: 349 start-page: 1614 year: 2003 end-page: 1627 article-title: The GPR54 gene as a regulator of puberty publication-title: N Engl J Med – year: 1989 – volume: 145 start-page: 4073 year: 2004 end-page: 4077 article-title: A role for kisspeptins in the regulation of gonadotropin secretion in the mouse publication-title: Endocrinology – volume: 34 start-page: 242 year: 1982 end-page: 247 article-title: Discrete lesions reveal functional heterogeneity of suprachiasmatic structures in regulation of gonadotropin secretion in the female rat publication-title: Logo – volume: 18 start-page: 298 year: 2006 end-page: 303 article-title: KiSS‐1 neurones are direct targets for leptin in the ob/ob mouse publication-title: J Neuroendocrinol – volume: 18 start-page: 349 year: 2006 end-page: 354 article-title: Administration of kisspeptin‐54 into discrete regions of the hypothalamus potently increases plasma luteinising hormone and testosterone in male adult rats publication-title: J Neuroendocrinol – volume: 148 start-page: 1774 year: 2007 end-page: 1783 article-title: Sexual differentiation of Kiss1 gene expression in the brain of the rat publication-title: Endocrinology – volume: 27 start-page: 580 year: 1982 end-page: 589 article-title: Alterations in the control of Luteinizing‐hormone pulse frequency underlie the seasonal‐variation in estadiol negative feedback in the ewe publication-title: Biol Reprod – volume: 99 start-page: 1528 year: 1976 end-page: 1533 article-title: Regulation of serum gonadotropins by photoperiod and testicular hormones in the Syrian‐hamster publication-title: Endocrinology – volume: 230 start-page: 89 year: 1984 end-page: 95 article-title: Hormonal regulation of the annual pelage color cycle in the Djungarian hamster, publication-title: J Exp Zool – volume: 149 start-page: 2467 year: 2008 end-page: 2476 article-title: Identification of KiSS‐1 product kisspeptin and steroid‐sensitive sexually dimorphic kisspeptin neurons in medaka ( ) publication-title: Endocrinology – volume: 147 start-page: 5817 year: 2006 end-page: 5825 article-title: Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin‐releasing hormone neurons publication-title: Endocrinology – volume: 146 start-page: 156 year: 2005 end-page: 163 article-title: Characterization of the potent luteinizing hormone‐releasing activity of KiSS‐1 peptide, the natural ligand of GPR54 publication-title: Endocrinology – volume: 95 start-page: 1059 year: 1974 end-page: 1068 article-title: Location of intrahypothalamic estrogen‐responsive sites influencing LH secretion in the female Rhesus monkey publication-title: Endocrinology – volume: 246 start-page: 26 year: 1984 end-page: 30 article-title: Effects of photoperiod and gonadectomy on food intake, body weight, and body composition in Siberian hamsters publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 96 start-page: 854 year: 1975 end-page: 860 article-title: Interaction of castration and photoperiod in regulation of hypophyseal and serum gonadotropin levels in male golden‐hamsters publication-title: Endocrinology – volume: 116 start-page: 221 year: 1999 end-page: 228 article-title: Effects of photoperiod and reproductive responsiveness on pituitary sensitivity to GnRH in male prairie voles ( ) publication-title: Gen Comp Endocrinol – volume: 294 start-page: R384 year: 2008 end-page: R392 article-title: Gonadal hormone‐dependent and ‐independent regulation of immune function by photoperiod in Siberian hamsters publication-title: Am J Physiol Regul Integr Comp Physiol – year: 1993 – volume: 146 start-page: 2976 year: 2005 end-page: 2984 article-title: Differential regulation of KiSS‐1 mRNA expression by sex steroids in the brain of the male mouse publication-title: Endocrinology – volume: 146 start-page: 3686 year: 2005 end-page: 3692 article-title: Regulation of Kiss1 gene expression in the brain of the female mouse publication-title: Endocrinology – volume: 66 start-page: 243 year: 1982 end-page: 250 article-title: Modulation by photoperiod of gonadotropin secretion in intact and castrated Djungarian hamsters publication-title: J Reprod Fertil – volume: 55 start-page: 2602 year: 2006 end-page: 2610 article-title: Expression of hypothalamic KiSS‐1 system and rescue of defective gonadotropic responses by kisspeptin in streptozotocin‐induced diabetic male rats publication-title: Diabetes – volume: 95 start-page: 1566 year: 1974 end-page: 1573 article-title: Location of feedback receptors: effects of intracranially implanted steroids on plasma LH and LRF response publication-title: Endocrinology – volume: 257 start-page: 875 year: 2006 end-page: 883 article-title: Ontogeny and mechanisms of action for the stimulatory effect of kisspeptin on gonadotropin‐releasing hormone system of the rat publication-title: Mol Cell Endocrinol – volume: 148 start-page: 1158 year: 2007 end-page: 1166 article-title: Environmental control of kisspeptin: implications for seasonal reproduction publication-title: Endocrinology – volume: 104 start-page: 10714 year: 2007 end-page: 10719 article-title: Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene publication-title: Proc Natl Acad Sci USA – volume: 38 start-page: 102 year: 2000 end-page: 110 article-title: Short‐day increases in aggression are inversely related to circulating testosterone concentrations in male Siberian hamsters ( ) publication-title: Horm Behav – volume: 69 start-page: 876 year: 2003 end-page: 884 article-title: Photoperiod and testosterone regulate androgen receptor immunostaining in the Siberian hamster brain publication-title: Biol Reprod – volume: 80 start-page: 264 year: 2004 end-page: 272 article-title: Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS‐1 mRNA in the male rat publication-title: Neuroendocrinology – volume: 52 start-page: 183 year: 2007 end-page: 190 article-title: Short‐day increases in aggression are independent of circulating gonadal steroids in female Siberian hamsters ( ) publication-title: Horm Behav – volume: 16 start-page: 283 year: 2001 end-page: 301 article-title: Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement publication-title: J Biol Rhythms – volume: 148 start-page: 1150 year: 2007 end-page: 1157 article-title: KiSS‐1 messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season publication-title: Endocrinology – volume: 15 start-page: 161 year: 1993 end-page: 190 article-title: The timed infusion paradigm for melatonin delivery ‐ what has it taught us about the melatonin signal, its reception, and the photoperiodic control of seasonal responses publication-title: J Pineal Res – volume: 25 start-page: 11349 year: 2005 end-page: 11356 article-title: Activation of gonadotropin‐releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty publication-title: J Neurosci – start-page: 251 year: 1981 end-page: 260 – volume: 8 start-page: 21 year: 2007 end-page: 29 article-title: Metastin/Kisspeptin and control of estrous cycle in rats publication-title: Rev Endocr Metab Disord – volume: 16 start-page: 850 year: 2004 end-page: 858 article-title: Central and peripheral administration of kisspeptin‐10 stimulates the hypothalamic‐pituitary‐gonadal axis publication-title: J Neuroendocrinol – volume: 8 start-page: 11 year: 2007 end-page: 20 article-title: Neuroendocrine factors in the initiation of puberty: the emergent role of kisspeptin publication-title: Rev Endocr Metab Disord – volume: 102 start-page: 1761 year: 2005 end-page: 1766 article-title: Kisspeptin directly stimulates gonadotropin‐releasing hormone release via G protein‐coupled receptor 54 publication-title: Proc Natl Acad Sci USA – volume: 561 start-page: 379 year: 2004 end-page: 386 article-title: Advanced vaginal opening and precocious activation of the reproductive axis by KiSS‐1 peptide, the endogenous ligand of GPR54 publication-title: J Physiol Lond – volume: 168 start-page: 419 year: 1998 end-page: 426 article-title: Short‐day enhancement of immune function is independent of steroid hormones in deer mice ( ) publication-title: J Comp Physiol [B] – volume: 100 start-page: 10972 year: 2003 end-page: 10976 article-title: Hypogonadotropic hypogonadism due to loss of function of the KiSS1‐derived peptide receptor GPR54 publication-title: Proc Natl Acad Sci USA – volume: 40 start-page: R64 year: 1996 end-page: R72 article-title: Effects of photoperiod and androgen on pituitary function and neuropeptide staining in Siberian hamsters publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 90 start-page: 6609 year: 2005 end-page: 6615 article-title: Kisspeptin‐54 stimulates the hypothalamic‐pituitary gonadal axis in human males publication-title: J Clin Endocrinol Metab – volume: 53 start-page: 367 year: 2007 end-page: 378 article-title: Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats publication-title: J Reprod Dev – volume: 148 start-page: 4601 year: 2007 end-page: 4611 article-title: Regulation of hypothalamic expression of KiSS‐1 and GPR54 genes by metabolic factors: analyses using mouse models and a cell line publication-title: Endocrinology – volume: 52 start-page: 492 year: 2007 end-page: 498 article-title: Suppression of kisspeptin expression and gonadotropic axis sensitivity following exposure to inhibitory day lengths in female Siberian hamsters publication-title: Horm Behav – volume: 16 start-page: 1730 year: 2006 end-page: 1735 article-title: Kisspeptin mediates the photoperiodic control of reproduction in hamsters publication-title: Curr Biol – volume: 47 start-page: 95 year: 1990 end-page: 106 article-title: Short photoperiods affect male hamster sociosexual behaviors in the presence and absence of testosterone publication-title: Physiol Behav – volume: 50 start-page: 533 year: 1989 end-page: 542 article-title: Effects of daylength on androgen metabolism and pulsatile luteinizing‐hormone secrection in male golden‐hamsters publication-title: Neuroendocrinology – volume: 146 start-page: 3917 year: 2005 end-page: 3925 article-title: Changes in hypothalamic KiSS‐1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition publication-title: Endocrinology – volume: 156 start-page: 552 year: 2008 end-page: 558 article-title: Exogenous kisspeptin does not alter photoperiod‐induced gonadal regression in Siberian hamsters ( ) publication-title: Gen Comp Endocrinol – volume: 83 start-page: 73 year: 2004 end-page: 79 article-title: Social interactions differentially affect reproductive and immune responses of Siberian hamsters publication-title: Physiol Behav – volume: 147 start-page: 1007 year: 2006 end-page: 1013 article-title: Repetitive activation of hypothalamic G protein‐coupled receptor 54 with intravenous pulses of kisspeptin in the juvenile monkey (Macaca mulatta) elicits a sustained train of gonadotropin‐releasing hormone discharges publication-title: Endocrinology – volume: 103 start-page: 2410 year: 2006 end-page: 2415 article-title: Identification and characterization of a gonadotropin‐inhibitory system in the brains of mammals publication-title: Proc Natl Acad Sci USA – ident: e_1_2_6_28_2 doi: 10.1210/en.2005-0488 – ident: e_1_2_6_40_2 doi: 10.1007/s11154-007-9032-6 – ident: e_1_2_6_41_2 doi: 10.1210/en.2006-0787 – ident: e_1_2_6_51_2 doi: 10.1095/biolreprod27.3.580 – volume-title: Melatonin: Biosynthesis, Physiological Effects, and Clinical Applications year: 1993 ident: e_1_2_6_29_2 contributor: fullname: Goldman BD – ident: e_1_2_6_35_2 doi: 10.1016/S0031-9384(04)00337-3 – ident: e_1_2_6_14_2 doi: 10.1073/pnas.0409330102 – ident: e_1_2_6_15_2 doi: 10.1210/en.2004-0836 – ident: e_1_2_6_47_2 doi: 10.1007/s003600050161 – ident: e_1_2_6_36_2 doi: 10.1210/endo-95-4-1059 – ident: e_1_2_6_31_2 doi: 10.1016/j.ygcen.2008.02.017 – ident: e_1_2_6_56_2 doi: 10.1210/en.131.4.1665 – ident: e_1_2_6_3_2 doi: 10.1016/j.bbrc.2003.11.066 – ident: e_1_2_6_50_2 doi: 10.1159/000125277 – start-page: 251 volume-title: Biological Clocks in Seasonal Reproductive Cycles Wright year: 1981 ident: e_1_2_6_48_2 contributor: fullname: Turek FW – ident: e_1_2_6_19_2 doi: 10.1111/j.1365-2826.2004.01240.x – ident: e_1_2_6_62_2 doi: 10.1210/en.2007-0500 – volume-title: Mammalian Reproductive Biology year: 1989 ident: e_1_2_6_21_2 contributor: fullname: Bronson FH – ident: e_1_2_6_17_2 doi: 10.1210/en.2005-1261 – ident: e_1_2_6_22_2 doi: 10.1111/j.1600-079X.1993.tb00903.x – volume: 34 start-page: 242 year: 1982 ident: e_1_2_6_39_2 article-title: Discrete lesions reveal functional heterogeneity of suprachiasmatic structures in regulation of gonadotropin secretion in the female rat publication-title: Logo contributor: fullname: Wiegand SJ – ident: e_1_2_6_18_2 doi: 10.1073/pnas.0409822102 – ident: e_1_2_6_30_2 doi: 10.1002/jez.1402300112 – ident: e_1_2_6_60_2 doi: 10.1210/en.2005-0337 – ident: e_1_2_6_26_2 doi: 10.1210/en.2006-1435 – ident: e_1_2_6_7_2 doi: 10.1016/j.mce.2006.07.002 – ident: e_1_2_6_20_2 doi: 10.1113/jphysiol.2004.072298 – ident: e_1_2_6_45_2 doi: 10.1095/biolreprod.102.010900 – ident: e_1_2_6_57_2 doi: 10.1016/j.yhbeh.2007.03.029 – ident: e_1_2_6_64_2 doi: 10.1210/en.2007-1503 – ident: e_1_2_6_55_2 doi: 10.1016/0031-9384(90)90046-7 – ident: e_1_2_6_2_2 doi: 10.1007/s11154-007-9028-2 – ident: e_1_2_6_63_2 doi: 10.1111/j.1365-2826.2006.01417.x – ident: e_1_2_6_37_2 doi: 10.1210/endo-95-6-1566 – ident: e_1_2_6_49_2 doi: 10.1152/ajpregu.1996.271.1.R64 – ident: e_1_2_6_53_2 doi: 10.1210/endo-99-6-1528 – ident: e_1_2_6_5_2 doi: 10.1073/pnas.1834399100 – ident: e_1_2_6_25_2 doi: 10.1016/j.cub.2006.07.025 – ident: e_1_2_6_11_2 doi: 10.1159/000083140 – ident: e_1_2_6_58_2 doi: 10.1152/ajpregu.00551.2007 – ident: e_1_2_6_12_2 doi: 10.1016/j.yhbeh.2007.07.004 – ident: e_1_2_6_42_2 doi: 10.1210/en.2006-1540 – ident: e_1_2_6_33_2 doi: 10.1073/pnas.0511003103 – ident: e_1_2_6_52_2 doi: 10.1530/jrf.0.0660243 – ident: e_1_2_6_44_2 doi: 10.1016/j.brainresrev.2007.04.002 – ident: e_1_2_6_23_2 doi: 10.1177/074873001129001980 – ident: e_1_2_6_27_2 doi: 10.1210/en.2005-0323 – ident: e_1_2_6_43_2 doi: 10.1262/jrd.18146 – ident: e_1_2_6_9_2 doi: 10.1210/en.2004-0431 – ident: e_1_2_6_61_2 doi: 10.2337/db05-1584 – ident: e_1_2_6_13_2 doi: 10.1016/j.bbrc.2004.05.185 – ident: e_1_2_6_46_2 doi: 10.1006/gcen.1999.7414 – ident: e_1_2_6_6_2 doi: 10.1056/NEJMoa035322 – ident: e_1_2_6_10_2 doi: 10.1523/JNEUROSCI.3328-05.2005 – ident: e_1_2_6_4_2 doi: 10.1073/pnas.0704114104 – ident: e_1_2_6_16_2 doi: 10.1111/j.1365-2826.2006.01420.x – ident: e_1_2_6_8_2 doi: 10.1210/jc.2005-1468 – ident: e_1_2_6_34_2 doi: 10.1210/en.2007-0848 – ident: e_1_2_6_59_2 doi: 10.1152/ajpregu.1984.246.1.R26 – ident: e_1_2_6_32_2 doi: 10.1006/hbeh.2000.1604 – ident: e_1_2_6_38_2 doi: 10.1210/edrv.19.3.0332 – ident: e_1_2_6_54_2 doi: 10.1210/endo-96-4-854 – ident: e_1_2_6_24_2 doi: 10.1210/en.2006-1249 |
SSID | ssj0017530 |
Score | 2.1614966 |
Snippet | Kisspeptin, a neuropeptide product of the KiSS‐1 gene, has recently been implicated in the regulation of seasonal breeding in a number of species, including... Kisspeptin, a neuropeptide product of the KiSS-1 gene, has recently been implicated in the regulation of seasonal breeding in a number of species, including... Kisspeptin, a neuropeptide product of the KiSS‐1 gene, has recently been implicated in the regulation of seasonal breeding in a number of species, including... Kisspeptin, a neuropeptide product of the KiSS-1 gene, has recently been implicated in the regulation of seasonal breeding in a number of species, including... |
SourceID | pubmedcentral proquest crossref pubmed pascalfrancis wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1339 |
SubjectTerms | Animals Biological and medical sciences Cricetinae Female Fundamental and applied biological sciences. Psychology Gene Expression gonadal steroids Hypothalamus - anatomy & histology Hypothalamus - metabolism KiSS-1 Male Orchiectomy Phodopus - physiology Phodopus sungorus Photoperiod reproduction RF amide seasonal breeding Seasons Sexual Behavior, Animal - physiology Testosterone - metabolism Tumor Suppressor Proteins - genetics Tumor Suppressor Proteins - metabolism Vertebrates: endocrinology |
Title | Photoperiod and Testosterone Interact to Drive Seasonal Changes in Kisspeptin Expression in Siberian Hamsters (Phodopus sungorus) |
URI | https://api.istex.fr/ark:/67375/WNG-HSPZW5NB-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2826.2008.01790.x https://www.ncbi.nlm.nih.gov/pubmed/19094081 https://search.proquest.com/docview/19514774 https://search.proquest.com/docview/69917445 https://pubmed.ncbi.nlm.nih.gov/PMC2636859 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQ9sILt3EJl-IHNMFDqlxsJ31saUs1RFXRTZt4sezE0aZqSdUkUuGNf845TloWGBJCSH2olDhNTr9jf8f5_JmQN0FmPBaazOW-VlCgiNQF3DA3CZMoVVpzrXC986e5mJ2xkwt-0eqfcC1M4w-xn3DDzLD9NSa40mU3ya1CC_hxK4lEs6k-8kk_jFDdNf68d5JCP0qvsd0LXRgEWVfUc-uFOiPVIQZ9i8pJVULwsmbXi9to6e_qypus1w5b0_tktXvgRq2y6teV7ifffvGC_D8ReUDuteyWDhs4PiR3TP6IHA1zqOyvv9JjavWmdiL_iHxfXBZVgUbLRUpVntJT3OQGfRuK3FA7U6mSilYFHW-gS6ZLo2zZQJsFESW9yulHgM0adTk5nWxbSW-OB5YohAHk05m6xkuW9C38XFqs65KW0L8Vm7p895icTSen72duuyGEm_AIVSRa69gzaJIaGM_gK9_MwId7IkPm6wOf8T0jBmHIDNSdSRywJIOaMI6ClCdp-IQc5PAMzwgNPCU8FYgIqmjGUjMQcaw5N4rFXsiEcYi_-_PluvH9kDfqJYizxDi3u3hinOXWIccWJfsGarNC3VzE5fn8g5wtF1_O-XwkFw7pdWC0bxBAgYlVqkNe73AlId3xHY7KTVGX0gdGzICy__kMAYw_Yow75GmDw5_3P0CzxNh3SNRB6P4EtBrvHsmvLq3leCBwo4KBQ4QF4F-HRJ7MJ_jt-b82fEHuWoWOFRC9JAfVpjavgAZWukcOh6PxaNqzif4Dj7dSXQ |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQe4ALrwJNC60PqIJDVnnYTvZY6JbQx2rFbtWKi-UkjlqVJqtNIi3c-OfMONnQQJEQQsohUuI8JjP2N87nbwh57WXaYb7ObO7GChIUkdrgN8xO_CRIVRzzWOF659OxiM7Y0QW_aMsB4VqYRh-im3DDyDD9NQY4Tkj3o9xQtAAgt5xIVJsaAKBch-j3sY7DwadOSwoVKZ1GeM-3YRhkfVrPnVfqjVXraPYlcidVCebLmroXdwHT3_mVt3GvGbgOH5Evq1du-CrXg7qKB8m3X9Qg_5NNHpOHLcCl-41HPiH3dP6UbOznkNzffKV71FBOzVz-Bvk-uSyqArWWi5SqPKUzrHOD0g1FrqmZrFRJRauCHiygV6ZTrUzmQJs1ESW9yukxeM4cqTk5HS1bVm-OB6bIhQHnp5G6wUuW9A3cLi3mdUlL6OKKRV2-fUbODkez95Hd1oSwEx4gkSSO49DRqJPqaUfjX99Mw8YdkSH4dQHSuI4WQ99nGlLPJPRYkkFaGAZeypPUf07WcniHTUI9RwlHeSKARJqxVA9FGMaca8VCx2dCW8RdfX05b6Q_5K2UCews0c5tIU-0s1xaZM-4SddALa6ROhdweT7-IKPp5PM5H7-TE4vs9Pyoa-BBjomJqkV2V44lIeLxN47KdVGX0gVQzAC1__kMAaA_YIxb5EXjiD-ff4h6iaFrkaDnot0JqDbeP5JfXRrVcU9grYKhRYTxwL82iTwaj3Bv618b7pL70ez0RJ58HB9vkweGsGP4RC_JWrWo9StAhVW8Y6L9B-SPVQM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLbQJiFeuI1LuGx-QBM8pMrFdtLHwVrKBlFFN23ixbITR5uqJVWTSoU3_jnnOGlYYEgIIfWhUuI0Of2O_R3n82dCXgW58Vhocpf7WkGBIjIXcMPcNEyjTGnNtcL1zp8SMTllR-f8vNU_4VqYxh-im3DDzLD9NSb4Isv7SW4VWsCPW0kkmk0NgE9uMwFEGAnS585KCg0pvcZ3L3RhFGR9Vc-NV-oNVdsY9TVKJ1UF0cubbS9u4qW_yyuv0147bo3vkfnmiRu5ynywqvUg_faLGeT_Ccl9crelt_SgweMDcssUD8nOQQGl_dVXuk-t4NTO5O-Q79OLsi7RabnMqCoyeoK73KBxQ1kYaqcqVVrTuqSHS-iT6cwoWzfQZkVERS8Legy4WaAwp6CjdavpLfDADJUwAH06UVd4yYq-hp_LysWqohV0cOVyVb15RE7Ho5N3E7fdEcJNeYQyEq117Bl0SQ2MZ_Cdb27gwz2RI_X1gdD4nhHDMGQGCs80DliaQ1EYR0HG0yx8TLYKeIanhAaeEp4KRARlNGOZGYo41pwbxWIvZMI4xN_8-XLRGH_IawUTxFlinNttPDHOcu2QfYuSroFazlE4F3F5lryXk9n0yxlP3sqpQ3Z7MOoaBFBhYpnqkL0NriTkO77EUYUpV5X0gRIz4Ox_PkMA5Y8Y4w550uDw5_0P0S0x9h0S9RDanYBe4_0jxeWF9RwPBO5UMHSIsAD865DIo2SE3579a8M9cnt6OJYfPyTHz8kdq9axYqIXZKtersxLoIS13rW5_gOYhFOy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoperiod+and+testosterone+interact+to+drive+seasonal+changes+in+kisspeptin+expression+in+Siberian+hamsters+%28Phodopus+sungorus%29&rft.jtitle=Journal+of+neuroendocrinology&rft.au=Greives%2C+T+J&rft.au=Humber%2C+S+A&rft.au=Goldstein%2C+A+N&rft.au=Scotti%2C+M-A+L&rft.date=2008-12-01&rft.eissn=1365-2826&rft.volume=20&rft.issue=12&rft.spage=1339&rft_id=info:doi/10.1111%2Fj.1365-2826.2008.01790.x&rft_id=info%3Apmid%2F19094081&rft.externalDocID=19094081 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8194&client=summon |