Renal Fibrosis: SIRT1 Still of Value
Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibr...
Saved in:
Published in | Biomedicines Vol. 12; no. 9; p. 1942 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.09.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments. |
---|---|
AbstractList | Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD
)-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments. Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD[sup.+])-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments. Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments.Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments. Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments. Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD + )-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments. |
Audience | Academic |
Author | Li, Wei Wang, Liyan Qiu, Zhen Wu, Huailiang |
AuthorAffiliation | 2 Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China; wlyan360@163.com 1 Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; whliang360@163.com (H.W.); qiuzhen124@126.com (Z.Q.) |
AuthorAffiliation_xml | – name: 1 Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; whliang360@163.com (H.W.); qiuzhen124@126.com (Z.Q.) – name: 2 Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China; wlyan360@163.com |
Author_xml | – sequence: 1 givenname: Huailiang surname: Wu fullname: Wu, Huailiang – sequence: 2 givenname: Zhen surname: Qiu fullname: Qiu, Zhen – sequence: 3 givenname: Liyan surname: Wang fullname: Wang, Liyan – sequence: 4 givenname: Wei surname: Li fullname: Li, Wei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39335456$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1LHDEUQEOxVKv-g1IG2oe-rOZzkvgiIrUuCAW1fQ2ZzM02S3Zik5lC_32zXa2uSJOHhOTcc7nJfYt2hjQAQu8IPmJM4-MupBX0wYUBCqFYE83pK7RHKZUzjYXeebLfRYelLHEdmjBF-Bu0yzRjgot2D328hsHG5iJ0OZVQTpqb-fUtaW7GEGOTfPPdxgkO0GtvY4HD-3Uffbv4fHt-Obv6-mV-fnY1c0LiceY7r7UkkoNzglChtRLgO6a1ANH2rO9Ix4lsFXDm2557CdZ71Vekc1wC20fzjbdPdmnucljZ_NskG8zfg5QXxuYxuAhGYC9qEiaUZByU0kpbLzHFrndKalVdpxvX3dTVp3IwjNnGLen2zRB-mEX6ZQjhVHEtq-HTvSGnnxOU0axCcRCjHSBNxTBCsMaKclHRD8_QZZpyfdgNxZRsW_xILWytIAw-1cRuLTVnqrpE2zJeqaMXqDp7WAVX28CHer4V8P5ppf9KfPjkCpxsAFf_uGTwxoXRjiGtCw_REGzWTWVeaqoazJ8FP_j_G_YHAFfPxA |
CitedBy_id | crossref_primary_10_1186_s10020_025_01071_2 |
Cites_doi | 10.3389/fendo.2023.1085605 10.3389/fphar.2018.00512 10.1172/jci.insight.150887 10.1016/j.freeradbiomed.2022.10.320 10.1016/j.exger.2021.111403 10.1155/2017/6878795 10.1167/iovs.64.3.16 10.1016/j.diabres.2013.12.021 10.1073/pnas.1917663117 10.3390/nu11010146 10.1016/j.metabol.2019.04.013 10.1016/j.tips.2023.06.001 10.1155/2021/2999296 10.1161/JAHA.122.026365 10.1038/s41580-023-00689-6 10.1038/s41586-020-2941-1 10.3390/ijms21186766 10.1016/j.redox.2019.101229 10.1016/j.kint.2022.11.027 10.1016/j.biopha.2023.114925 10.1002/dmrr.3596 10.1016/j.exger.2021.111394 10.1038/s41598-022-20719-1 10.3389/fphar.2020.616378 10.3390/ph15060737 10.1016/j.cmet.2024.01.015 10.18632/aging.103450 10.1155/2020/7202519 10.1113/JP286658 10.1016/j.lfs.2021.119716 10.1016/j.biopha.2020.110241 10.3892/ijmm.2020.4647 10.1038/s41419-023-05587-5 10.1016/j.lfs.2022.121033 10.1073/pnas.1716578115 10.1002/path.5007 10.1096/fj.202100219R 10.5483/BMBRep.2023-0076 10.1111/jcmm.13060 10.1111/acel.12904 10.1080/15476286.2019.1667215 10.1371/journal.pone.0053573 10.1142/S0192415X22500744 10.1080/15548627.2019.1615822 10.3390/biom10070996 10.1126/scisignal.aaz2597 10.3390/ijms25063370 10.1016/j.autrev.2023.103466 10.1016/j.matbio.2020.04.005 10.1016/j.biopha.2023.114340 10.1038/s41419-020-02871-6 10.1016/j.freeradbiomed.2018.11.006 10.1172/jci.insight.130651 10.1007/s11010-022-04581-3 10.1038/s41420-021-00443-x 10.1016/j.biopha.2023.116039 10.1038/s41420-022-00931-8 10.1159/000527713 10.1152/ajpcell.00018.2024 10.3390/ijms24076737 10.3390/cells11142212 10.1016/j.ejphar.2019.01.012 10.1186/s12967-022-03408-5 10.3390/nu15010237 10.1038/s41581-020-00343-w 10.1002/jsfa.10152 10.1016/j.redox.2023.102939 10.1681/ASN.2013060664 10.1042/CS20200171 10.3389/fphar.2023.1335094 10.1039/C9FO00373H 10.1016/j.lfs.2024.122530 10.1186/s12967-023-04440-9 10.1016/j.biopha.2019.109227 10.3389/fendo.2018.00624 10.1038/srep33705 10.1038/nm.3902 10.1038/nrneph.2016.54 10.1016/j.arr.2021.101468 10.3389/fphys.2019.01225 10.1038/s41598-023-44177-5 10.3389/fphys.2023.1090724 10.3389/fmolb.2020.00137 10.3389/fphar.2020.01136 10.1016/j.metabol.2023.155592 10.1186/s12964-023-01442-4 10.1016/j.phymed.2018.10.031 10.1124/jpet.115.224386 10.1038/s41584-019-0324-5 10.1016/j.mam.2023.101206 10.1016/j.intimp.2024.112002 10.1007/s00109-023-02364-x 10.3389/fendo.2022.917773 10.1038/s41420-024-01831-9 10.1016/j.phymed.2023.155285 10.1186/s12964-017-0205-y 10.1186/s12967-023-04376-0 10.1038/s41581-024-00806-4 10.1016/j.phymed.2019.153163 10.1530/EC-23-0448 10.1042/CS20210447 10.3389/fphar.2022.1039726 10.3892/ijmm.2017.2931 10.1016/j.biochi.2019.03.003 10.1159/000495896 10.1016/j.biopha.2020.110798 10.1007/s12272-022-01375-5 10.3390/molecules27072344 10.18632/oncotarget.14884 10.1096/fj.201801711R 10.1038/ki.2011.208 10.1007/s00018-023-04826-4 10.3389/fcell.2022.986511 10.1080/0886022X.2022.2044351 10.1016/j.bbrc.2017.12.048 10.1038/s41392-022-01257-8 10.1016/j.lfs.2020.118487 10.1096/fj.201600410RR 10.1038/s41581-022-00590-z 10.7150/jca.46429 10.3892/etm.2023.11958 10.1097/HJH.0000000000002605 10.1038/s41467-023-43226-x 10.1016/j.kint.2021.06.010 10.1681/ASN.2018111160 10.1016/j.kint.2018.11.031 10.1016/j.nutres.2023.03.002 10.3389/fimmu.2022.925738 10.1038/s41580-024-00727-x 10.3390/ijms21062084 10.1016/j.biopha.2021.112164 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/biomedicines12091942 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological science database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Public Health |
EISSN | 2227-9059 |
ExternalDocumentID | oai_doaj_org_article_50f5c51358734e88989af7020cdc8798 PMC11428497 A810956634 39335456 10_3390_biomedicines12091942 |
Genre | Journal Article Review |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 82272232 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ACPRK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION EMOBN GROUPED_DOAJ GX1 HCIFZ HYE IAO IHR INH ITC KQ8 LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PQGLB PMFND ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c570t-fbf997174ecc51259985efb3995e56d3db1b41768e43f6d4f7eaff8dfb3bc47e3 |
IEDL.DBID | DOA |
ISSN | 2227-9059 |
IngestDate | Wed Aug 27 01:32:42 EDT 2025 Thu Aug 21 18:31:19 EDT 2025 Thu Jul 10 23:45:39 EDT 2025 Fri Jul 25 11:50:15 EDT 2025 Tue Jun 17 22:03:55 EDT 2025 Tue Jun 10 21:03:00 EDT 2025 Mon Jul 21 05:56:45 EDT 2025 Tue Jul 01 01:44:19 EDT 2025 Thu Apr 24 22:56:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | aging renal fibrosis SIRT1 oxidative stress lipid metabolism |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c570t-fbf997174ecc51259985efb3995e56d3db1b41768e43f6d4f7eaff8dfb3bc47e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://doaj.org/article/50f5c51358734e88989af7020cdc8798 |
PMID | 39335456 |
PQID | 3110387660 |
PQPubID | 2032426 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_50f5c51358734e88989af7020cdc8798 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11428497 proquest_miscellaneous_3110908245 proquest_journals_3110387660 gale_infotracmisc_A810956634 gale_infotracacademiconefile_A810956634 pubmed_primary_39335456 crossref_citationtrail_10_3390_biomedicines12091942 crossref_primary_10_3390_biomedicines12091942 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Biomedicines |
PublicationTitleAlternate | Biomedicines |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Chiusa (ref_37) 2019; 30 Gong (ref_20) 2021; 135 ref_91 ref_90 Kuppe (ref_92) 2021; 589 Bouffette (ref_35) 2023; 44 ref_10 Fan (ref_119) 2020; 17 ref_132 ref_95 ref_134 ref_17 Falke (ref_28) 2018; 244 Abed (ref_31) 2014; 25 Martin (ref_27) 2019; 95 Sung (ref_98) 2021; 150 Yang (ref_63) 2023; 56 Chen (ref_21) 2022; 44 Zhao (ref_7) 2020; 11 Lovisa (ref_79) 2015; 21 ref_125 Yuan (ref_70) 2023; 25 Liu (ref_39) 2019; 10 Lafont (ref_23) 2020; 5 Zhang (ref_82) 2021; 280 ref_122 Liao (ref_54) 2024; 124 Jin (ref_111) 2019; 847 Edeling (ref_41) 2016; 12 Xue (ref_124) 2019; 54 Yang (ref_86) 2019; 96 Nystrom (ref_93) 2024; 326 Zhou (ref_106) 2023; 39 Feng (ref_12) 2018; 51 Ren (ref_78) 2017; 39 Cao (ref_29) 2023; 14 ref_72 Suryantoro (ref_133) 2024; 602 ref_71 Yuan (ref_105) 2024; 25 Perico (ref_131) 2024; 20 Wei (ref_53) 2023; 312 ref_77 ref_76 ref_75 ref_74 Li (ref_2) 2022; 18 Liu (ref_123) 2022; 50 Li (ref_100) 2019; 130 ref_81 Ponnusamy (ref_51) 2015; 354 ref_87 Varghese (ref_56) 2023; 21 ref_85 Wang (ref_96) 2021; 151 Zhang (ref_88) 2024; 343 Sun (ref_65) 2020; 134 Shi (ref_80) 2023; 103 Yu (ref_94) 2024; 36 ref_50 Li (ref_49) 2021; 7 Alqudah (ref_16) 2020; 91–92 Fang (ref_130) 2021; 2021 Zhang (ref_121) 2020; 46 ref_57 Lian (ref_67) 2023; 64 Liu (ref_15) 2017; 21 Chang (ref_109) 2016; 133 Borza (ref_36) 2022; 7 Chen (ref_128) 2024; 13 Livingston (ref_11) 2019; 15 Sosa (ref_24) 2020; 12 Li (ref_40) 2022; 11 Chen (ref_97) 2024; 10 Roccatello (ref_22) 2024; 23 Chen (ref_26) 2011; 80 Ryu (ref_99) 2019; 18 Xu (ref_52) 2023; 145 Ren (ref_38) 2020; 67 ref_60 Zhao (ref_104) 2017; 2017 Lovisa (ref_89) 2020; 13 Wu (ref_61) 2024; 132 ref_69 Carrasco (ref_6) 2018; 115 Klinkhammer (ref_3) 2023; 93 Dong (ref_101) 2017; 8 Zhang (ref_59) 2022; 2022 ref_64 ref_62 Li (ref_45) 2022; 193 Jin (ref_48) 2024; 22 Zhang (ref_58) 2022; 20 Yang (ref_8) 2020; 261 Yamakoshi (ref_126) 2021; 39 Wu (ref_42) 2022; 7 ref_114 ref_117 ref_118 Huang (ref_107) 2020; 2020 Wang (ref_113) 2022; 8 ref_34 ref_33 ref_110 ref_30 ref_112 Tang (ref_25) 2014; 104 Ha (ref_66) 2022; 45 Li (ref_14) 2023; 14 Jiang (ref_9) 2019; 33 He (ref_68) 2023; 101 Tian (ref_115) 2020; 100 Bian (ref_32) 2019; 160 Ye (ref_18) 2023; 80 Sun (ref_83) 2024; 16 ref_103 Tang (ref_4) 2020; 117 Reidy (ref_55) 2021; 100 Liarte (ref_84) 2017; 15 Xiong (ref_73) 2023; 21 Abdollahi (ref_116) 2023; 113 ref_47 ref_46 Kaushik (ref_102) 2021; 72 Hinz (ref_108) 2020; 16 Chen (ref_13) 2020; 11 Huang (ref_5) 2022; 47 ref_43 Zhao (ref_127) 2023; 478 Xue (ref_120) 2018; 498 Schunk (ref_19) 2021; 17 ref_1 Buler (ref_44) 2016; 30 Yang (ref_129) 2021; 35 |
References_xml | – ident: ref_1 doi: 10.3389/fendo.2023.1085605 – ident: ref_77 doi: 10.3389/fphar.2018.00512 – volume: 7 start-page: e150887 year: 2022 ident: ref_36 article-title: DDR1 contributes to kidney inflammation and fibrosis by promoting the phosphorylation of BCR and STAT3 publication-title: JCI Insight doi: 10.1172/jci.insight.150887 – volume: 2022 start-page: 6275505 year: 2022 ident: ref_59 article-title: Gandi capsule improved podocyte lipid metabolism of diabetic nephropathy mice through SIRT1/AMPK/HNF4A pathway publication-title: Oxid. Med. Cell Longev. – volume: 193 start-page: 459 year: 2022 ident: ref_45 article-title: Sirtuin 7 mitigates renal ferroptosis, fibrosis and injury in hypertensive mice by facilitating the KLF15/Nrf2 signaling publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2022.10.320 – volume: 151 start-page: 111403 year: 2021 ident: ref_96 article-title: Cellular senescence and the senescence-associated secretory phenotype: Potential therapeutic targets for renal fibrosis publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2021.111403 – volume: 2017 start-page: 6878795 year: 2017 ident: ref_104 article-title: Sinomenine hydrochloride attenuates renal fibrosis by inhibiting excessive autophagy induced by adriamycin: An experimental study publication-title: Evid. Based Complement. Altern. Med. doi: 10.1155/2017/6878795 – volume: 64 start-page: 16 year: 2023 ident: ref_67 article-title: SIRT1 inhibits high glucose-induced TXNIP/NLRP3 inflammasome activation and cataract formation publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.64.3.16 – volume: 104 start-page: 176 year: 2014 ident: ref_25 article-title: Endothelin-1 mediated high glucose-induced epithelial-mesenchymal transition in renal tubular cells publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2013.12.021 – volume: 117 start-page: 20741 year: 2020 ident: ref_4 article-title: Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1917663117 – ident: ref_60 doi: 10.3390/nu11010146 – volume: 96 start-page: 33 year: 2019 ident: ref_86 article-title: Yy1: A novel therapeutic target for diabetic nephropathy orchestrated renal fibrosis publication-title: Metabolism doi: 10.1016/j.metabol.2019.04.013 – volume: 44 start-page: 519 year: 2023 ident: ref_35 article-title: Targeting galectin-3 in inflammatory and fibrotic diseases publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2023.06.001 – volume: 2021 start-page: 2999296 year: 2021 ident: ref_130 article-title: Calorie restriction protects against contrast-induced nephropathy via SIRT1/GPX4 activation publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2021/2999296 – volume: 11 start-page: e26365 year: 2022 ident: ref_40 article-title: Intact fibroblast growth factor 23 regulates chronic kidney disease-induced myocardial fibrosis by activating the sonic hedgehog signaling pathway publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.122.026365 – volume: 25 start-page: 379 year: 2024 ident: ref_105 article-title: A guide to cell death pathways publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-023-00689-6 – volume: 589 start-page: 281 year: 2021 ident: ref_92 article-title: Decoding myofibroblast origins in human kidney fibrosis publication-title: Nature doi: 10.1038/s41586-020-2941-1 – ident: ref_118 doi: 10.3390/ijms21186766 – ident: ref_43 doi: 10.1016/j.redox.2019.101229 – volume: 103 start-page: 544 year: 2023 ident: ref_80 article-title: Ubiquitin-specific protease 11 promotes partial epithelial-to-mesenchymal transition by deubiquitinating the epidermal growth factor receptor during kidney fibrosis publication-title: Kidney Int. doi: 10.1016/j.kint.2022.11.027 – ident: ref_50 doi: 10.1016/j.biopha.2023.114925 – volume: 39 start-page: e3596 year: 2023 ident: ref_106 article-title: Role of renal tubular programed cell death in diabetic kidney disease publication-title: Diabetes Metab. Res. Rev. doi: 10.1002/dmrr.3596 – volume: 150 start-page: 111394 year: 2021 ident: ref_98 article-title: SIRT1 suppresses cellular senescence and inflammatory cytokine release in human dermal fibroblasts by promoting the deacetylation of NF-κB and activating autophagy publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2021.111394 – ident: ref_74 doi: 10.1038/s41598-022-20719-1 – ident: ref_64 doi: 10.3389/fphar.2020.616378 – ident: ref_81 doi: 10.3390/ph15060737 – volume: 36 start-page: 793 year: 2024 ident: ref_94 article-title: IgG is an aging factor that drives adipose tissue fibrosis and metabolic decline publication-title: Cell Metab. doi: 10.1016/j.cmet.2024.01.015 – volume: 12 start-page: 11200 year: 2020 ident: ref_24 article-title: Endothelin-1 induces cellular senescence and fibrosis in cultured myoblasts. A potential mechanism of aging-related sarcopenia publication-title: Aging doi: 10.18632/aging.103450 – volume: 2020 start-page: 7202519 year: 2020 ident: ref_107 article-title: Cordyceps cicadae prevents renal tubular epithelial cell apoptosis by regulating the SIRT1/p53 pathway in hypertensive renal injury publication-title: Evid. Based Complement. Altern. Med. doi: 10.1155/2020/7202519 – volume: 602 start-page: 2165 year: 2024 ident: ref_133 article-title: Resveratrol in renal health: Bridging therapeutic gaps from acute kidney injury to chronic disease prevention publication-title: J. Physiol. doi: 10.1113/JP286658 – volume: 280 start-page: 119716 year: 2021 ident: ref_82 article-title: Silent information regulator 1 suppresses epithelial-to-mesenchymal transition in lung cancer cells via its regulation of mitochondria status publication-title: Life Sci. doi: 10.1016/j.lfs.2021.119716 – ident: ref_87 doi: 10.1016/j.biopha.2020.110241 – volume: 46 start-page: 1063 year: 2020 ident: ref_121 article-title: Inhibition of miRNA-135a-5p ameliorates TGF-β1-induced human renal fibrosis by targeting SIRT1 in diabetic nephropathy publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2020.4647 – volume: 14 start-page: 200 year: 2023 ident: ref_14 article-title: HIF1α-BNIP3-mediated mitophagy protects against renal fibrosis by decreasing ROS and inhibiting activation of the NLRP3 inflammasome publication-title: Cell Death Dis. doi: 10.1038/s41419-023-05587-5 – volume: 312 start-page: 121033 year: 2023 ident: ref_53 article-title: Advances in energy metabolism in renal fibrosis publication-title: Life Sci. doi: 10.1016/j.lfs.2022.121033 – volume: 115 start-page: 4182 year: 2018 ident: ref_6 article-title: Tweak and RIPK1 mediate a second wave of cell death during AKI publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1716578115 – volume: 244 start-page: 227 year: 2018 ident: ref_28 article-title: Connective tissue growth factor induces renal fibrosis via epidermal growth factor receptor activation publication-title: J. Pathol. doi: 10.1002/path.5007 – volume: 35 start-page: e21823 year: 2021 ident: ref_129 article-title: Exercise training ameliorates early diabetic kidney injury by regulating the H2S/SIRT1/p53 pathway publication-title: FASEB J. doi: 10.1096/fj.202100219R – volume: 56 start-page: 651 year: 2023 ident: ref_63 article-title: Fatty acid oxidation regulates cellular senescence by modulating the autophagy-SIRT1 axis publication-title: BMB Rep. doi: 10.5483/BMBRep.2023-0076 – volume: 21 start-page: 1248 year: 2017 ident: ref_15 article-title: Signalling pathways involved in hypoxia-induced renal fibrosis publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.13060 – volume: 18 start-page: e12904 year: 2019 ident: ref_99 article-title: SIRT1-hypoxia-inducible factor-1α interaction is a key mediator of tubulointerstitial damage in the aged kidney publication-title: Aging Cell doi: 10.1111/acel.12904 – volume: 17 start-page: 1 year: 2020 ident: ref_119 article-title: Emerging role of miRNAs in renal fibrosis publication-title: RNA Biol. doi: 10.1080/15476286.2019.1667215 – ident: ref_17 doi: 10.1371/journal.pone.0053573 – volume: 50 start-page: 1739 year: 2022 ident: ref_123 article-title: A review of traditional Chinese medicine on treatment of diabetic nephropathy and the involved mechanisms publication-title: Am. J. Chin. Med. doi: 10.1142/S0192415X22500744 – volume: 15 start-page: 2142 year: 2019 ident: ref_11 article-title: Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys publication-title: Autophagy doi: 10.1080/15548627.2019.1615822 – volume: 133 start-page: 116 year: 2016 ident: ref_109 article-title: Up-regulation of SIRT1 reduces endoplasmic reticulum stress and renal fibrosis publication-title: Nephron Clin. Pract. – ident: ref_112 doi: 10.3390/biom10070996 – volume: 13 start-page: eaaz2597 year: 2020 ident: ref_89 article-title: Endothelial-to-mesenchymal transition compromises vascular integrity to induce Myc-mediated metabolic reprogramming in kidney fibrosis publication-title: Sci. Signal doi: 10.1126/scisignal.aaz2597 – ident: ref_132 doi: 10.3390/ijms25063370 – volume: 23 start-page: 103466 year: 2024 ident: ref_22 article-title: From inflammation to renal fibrosis: A one-way road in autoimmunity? publication-title: Autoimmun. Rev. doi: 10.1016/j.autrev.2023.103466 – volume: 91–92 start-page: 92 year: 2020 ident: ref_16 article-title: Targeting the renin-angiotensin-aldosterone system in fibrosis publication-title: Matrix Biol. doi: 10.1016/j.matbio.2020.04.005 – ident: ref_103 doi: 10.1016/j.biopha.2023.114340 – volume: 11 start-page: 629 year: 2020 ident: ref_7 article-title: XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia-reperfusion injury publication-title: Cell Death Dis. doi: 10.1038/s41419-020-02871-6 – volume: 130 start-page: 512 year: 2019 ident: ref_100 article-title: N-acetylcysteine ameliorates cisplatin-induced renal senescence and renal interstitial fibrosis through sirtuin1 activation and p53 deacetylation publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.11.006 – volume: 5 start-page: e130651 year: 2020 ident: ref_23 article-title: Immune cell landscaping reveals a protective role for regulatory T cells during kidney injury and fibrosis publication-title: JCI Insight doi: 10.1172/jci.insight.130651 – volume: 478 start-page: 1109 year: 2023 ident: ref_127 article-title: Swimming exercise activates peroxisome proliferator-activated receptor-alpha and mitigates age-related renal fibrosis in rats publication-title: Mol. Cell Biochem. doi: 10.1007/s11010-022-04581-3 – volume: 7 start-page: 59 year: 2021 ident: ref_49 article-title: SIRT1 attenuates renal fibrosis by repressing HIF-2α publication-title: Cell Death Discov. doi: 10.1038/s41420-021-00443-x – ident: ref_122 doi: 10.1016/j.biopha.2023.116039 – volume: 8 start-page: 127 year: 2022 ident: ref_113 article-title: Ferroptosis, a new target for treatment of renal injury and fibrosis in a 5/6 nephrectomy-induced CKD rat model publication-title: Cell Death Discov. doi: 10.1038/s41420-022-00931-8 – volume: 47 start-page: 729 year: 2022 ident: ref_5 article-title: SIS3 alleviates cisplatin-induced acute kidney injury by regulating the lncRNA Arid2-IR-transferrin receptor pathway publication-title: Kidney Blood Press. Res. doi: 10.1159/000527713 – volume: 326 start-page: C645 year: 2024 ident: ref_93 article-title: The intertwined aging, the extracellular matrix, and fibrosis publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00018.2024 – ident: ref_110 doi: 10.3390/ijms24076737 – ident: ref_33 doi: 10.3390/cells11142212 – volume: 847 start-page: 26 year: 2019 ident: ref_111 article-title: Bisdemethoxycurcumin protects against renal fibrosis via activation of fibroblast apoptosis publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2019.01.012 – volume: 20 start-page: 222 year: 2022 ident: ref_58 article-title: SIRT1 prevents cigarette smoking-induced lung fibroblasts activation by regulating mitochondrial oxidative stress and lipid metabolism publication-title: J. Transl. Med. doi: 10.1186/s12967-022-03408-5 – ident: ref_125 doi: 10.3390/nu15010237 – volume: 17 start-page: 172 year: 2021 ident: ref_19 article-title: WNT-β-catenin signalling—A versatile player in kidney injury and repair publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-020-00343-w – volume: 100 start-page: 1392 year: 2020 ident: ref_115 article-title: Resveratrol: A review of plant sources, synthesis, stability, modification and food application publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.10152 – ident: ref_114 doi: 10.1016/j.redox.2023.102939 – volume: 25 start-page: 1724 year: 2014 ident: ref_31 article-title: Inhibition of periostin expression protects against the development of renal inflammation and fibrosis publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2013060664 – volume: 134 start-page: 1573 year: 2020 ident: ref_65 article-title: Connexin 43 prevents the progression of diabetic renal tubulointerstitial fibrosis by regulating the SIRT1-HIF-1α signaling pathway publication-title: Clin. Sci. doi: 10.1042/CS20200171 – ident: ref_75 doi: 10.3389/fphar.2023.1335094 – volume: 10 start-page: 3782 year: 2019 ident: ref_39 article-title: Quercetin inhibits kidney fibrosis and the epithelial to mesenchymal transition of the renal tubular system involving suppression of the sonic hedgehog signaling pathway publication-title: Food Funct. doi: 10.1039/C9FO00373H – volume: 343 start-page: 122530 year: 2024 ident: ref_88 article-title: The mechanism by which SIRT1 regulates autophagy and EMT in drug-resistant oesophageal cancer cells publication-title: Life Sci. doi: 10.1016/j.lfs.2024.122530 – volume: 21 start-page: 627 year: 2023 ident: ref_56 article-title: SIRT1 activation promotes energy homeostasis and reprograms liver cancer metabolism publication-title: J. Transl. Med. doi: 10.1186/s12967-023-04440-9 – ident: ref_90 doi: 10.1016/j.biopha.2019.109227 – ident: ref_46 doi: 10.3389/fendo.2018.00624 – ident: ref_76 doi: 10.1038/srep33705 – volume: 21 start-page: 998 year: 2015 ident: ref_79 article-title: Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis publication-title: Nat. Med. doi: 10.1038/nm.3902 – volume: 12 start-page: 426 year: 2016 ident: ref_41 article-title: Developmental signalling pathways in renal fibrosis: The roles of Notch, Wnt and hedgehog publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2016.54 – volume: 72 start-page: 101468 year: 2021 ident: ref_102 article-title: Autophagy and the hallmarks of aging publication-title: Ageing Res. Rev. doi: 10.1016/j.arr.2021.101468 – ident: ref_10 doi: 10.3389/fphys.2019.01225 – ident: ref_30 doi: 10.1038/s41598-023-44177-5 – ident: ref_34 doi: 10.3389/fphys.2023.1090724 – ident: ref_72 doi: 10.3389/fmolb.2020.00137 – ident: ref_85 doi: 10.3389/fphar.2020.01136 – volume: 145 start-page: 155592 year: 2023 ident: ref_52 article-title: Regulation of pericyte metabolic reprogramming restricts the AKI to CKD transition publication-title: Metabolism doi: 10.1016/j.metabol.2023.155592 – volume: 22 start-page: 114 year: 2024 ident: ref_48 article-title: Sirtuins in kidney diseases: Potential mechanism and therapeutic targets publication-title: Cell Commun. Signal doi: 10.1186/s12964-023-01442-4 – volume: 54 start-page: 240 year: 2019 ident: ref_124 article-title: Salidroside stimulates the Sirt1/PGC-1α axis and ameliorates diabetic nephropathy in mice publication-title: Phytomedicine doi: 10.1016/j.phymed.2018.10.031 – volume: 354 start-page: 142 year: 2015 ident: ref_51 article-title: Activation of sirtuin-1 promotes renal fibroblast activation and aggravates renal fibrogenesis publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.115.224386 – volume: 16 start-page: 11 year: 2020 ident: ref_108 article-title: Evasion of apoptosis by myofibroblasts: A hallmark of fibrotic diseases publication-title: Nat. Rev. Rheumatol. doi: 10.1038/s41584-019-0324-5 – volume: 93 start-page: 101206 year: 2023 ident: ref_3 article-title: Kidney fibrosis: Emerging diagnostic and therapeutic strategies publication-title: Mol. Asp. Med. doi: 10.1016/j.mam.2023.101206 – volume: 132 start-page: 112002 year: 2024 ident: ref_61 article-title: The SP1/SIRT1/ACLY signaling axis mediates fatty acid oxidation in renal ischemia-reperfusion-induced renal fibrosis publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2024.112002 – volume: 101 start-page: 1397 year: 2023 ident: ref_68 article-title: Insufficient SIRT1in macrophages promotes oxidative stress and inflammation during scarring publication-title: J. Mol. Med. doi: 10.1007/s00109-023-02364-x – ident: ref_47 doi: 10.3389/fendo.2022.917773 – volume: 10 start-page: 62 year: 2024 ident: ref_97 article-title: Cellular senescence of renal tubular epithelial cells in acute kidney injury publication-title: Cell Death Discov. doi: 10.1038/s41420-024-01831-9 – volume: 124 start-page: 155285 year: 2024 ident: ref_54 article-title: Formononetin promotes fatty acid β-oxidation to treat non-alcoholic steatohepatitis through SIRT1/PGC-1α/PPARα pathway publication-title: Phytomedicine doi: 10.1016/j.phymed.2023.155285 – volume: 15 start-page: 50 year: 2017 ident: ref_84 article-title: Sirt1 interaction with active Smad2 modulates transforming growth factor-β regulated transcription publication-title: Cell Commun. Signal doi: 10.1186/s12964-017-0205-y – volume: 21 start-page: 521 year: 2023 ident: ref_73 article-title: UCP1 alleviates renal interstitial fibrosis progression through oxidative stress pathway mediated by SIRT3 protein stability publication-title: J. Transl. Med. doi: 10.1186/s12967-023-04376-0 – volume: 20 start-page: 313 year: 2024 ident: ref_131 article-title: Sirtuins in kidney health and disease publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-024-00806-4 – volume: 67 start-page: 153163 year: 2020 ident: ref_38 article-title: Saikosaponin b2 attenuates kidney fibrosis via inhibiting the hedgehog pathway publication-title: Phytomedicine doi: 10.1016/j.phymed.2019.153163 – volume: 13 start-page: e230448 year: 2024 ident: ref_128 article-title: Exercise alleviates renal interstitial fibrosis by ameliorating the SIRT1-mediated TGF-β1/Smad3 pathway in t2dm mice publication-title: Endocr. Connect. doi: 10.1530/EC-23-0448 – volume: 135 start-page: 1873 year: 2021 ident: ref_20 article-title: Brahma-related gene-1 promotes tubular senescence and renal fibrosis through Wnt/β-catenin/autophagy axis publication-title: Clin. Sci. doi: 10.1042/CS20210447 – ident: ref_57 doi: 10.3389/fphar.2022.1039726 – volume: 39 start-page: 1317 year: 2017 ident: ref_78 article-title: The Sirt1 activator, SRT1720, attenuates renal fibrosis by inhibiting CTGF and oxidative stress publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2017.2931 – volume: 160 start-page: 172 year: 2019 ident: ref_32 article-title: Periostin contributes to renal and cardiac dysfunction in rats with chronic kidney disease: Reduction of PPARα publication-title: Biochimie doi: 10.1016/j.biochi.2019.03.003 – volume: 51 start-page: 2359 year: 2018 ident: ref_12 article-title: Mammalian STE20-like kinase 1 deletion alleviates renal ischaemia-reperfusion injury via modulating mitophagy and the AMPK-YAP signalling pathway publication-title: Cell. Physiol. Biochem. doi: 10.1159/000495896 – ident: ref_91 doi: 10.1016/j.biopha.2020.110798 – volume: 45 start-page: 159 year: 2022 ident: ref_66 article-title: Renal tubular PAR2 promotes interstitial fibrosis by increasing inflammatory responses and EMT process publication-title: Arch. Pharm. Res. doi: 10.1007/s12272-022-01375-5 – ident: ref_62 doi: 10.3390/molecules27072344 – volume: 8 start-page: 16109 year: 2017 ident: ref_101 article-title: Alleviation of senescence and epithelial-mesenchymal transition in aging kidney by short-term caloric restriction and caloric restriction mimetics via modulation of AMPK/mTOR signaling publication-title: Oncotarget doi: 10.18632/oncotarget.14884 – volume: 33 start-page: 3523 year: 2019 ident: ref_9 article-title: hsa-miR-500a-3p alleviates kidney injury by targeting MLKL-mediated necroptosis in renal epithelial cells publication-title: FASEB J. doi: 10.1096/fj.201801711R – volume: 80 start-page: 1170 year: 2011 ident: ref_26 article-title: Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis publication-title: Kidney Int. doi: 10.1038/ki.2011.208 – volume: 80 start-page: 184 year: 2023 ident: ref_18 article-title: Macrophage Dectin-1 mediates Ang II renal injury through neutrophil migration and TGF-β1 secretion publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-023-04826-4 – volume: 16 start-page: 6588 year: 2024 ident: ref_83 article-title: TGF-β downstream of Smad3 and MAPK signaling antagonistically regulate the viability and partial epithelial-mesenchymal transition of liver progenitor cells publication-title: Aging – ident: ref_71 doi: 10.3389/fcell.2022.986511 – volume: 44 start-page: 513 year: 2022 ident: ref_21 article-title: Relaxin inhibits renal fibrosis and the epithelial-to-mesenchymal transition via the Wnt/β-catenin signaling pathway publication-title: Ren. Fail. doi: 10.1080/0886022X.2022.2044351 – volume: 498 start-page: 38 year: 2018 ident: ref_120 article-title: High glucose up-regulates microRNA-34a-5p to aggravate fibrosis by targeting SIRT1 in HK-2 cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.12.048 – volume: 7 start-page: 402 year: 2022 ident: ref_42 article-title: The sirtuin family in health and disease publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-022-01257-8 – volume: 261 start-page: 118487 year: 2020 ident: ref_8 article-title: Tocilizumab mimotope alleviates kidney injury and fibrosis by inhibiting IL-6 signaling and ferroptosis in UUO model publication-title: Life Sci. doi: 10.1016/j.lfs.2020.118487 – volume: 30 start-page: 3942 year: 2016 ident: ref_44 article-title: Who watches the watchmen? Regulation of the expression and activity of sirtuins publication-title: FASEB J. doi: 10.1096/fj.201600410RR – volume: 18 start-page: 545 year: 2022 ident: ref_2 article-title: The fibrogenic niche in kidney fibrosis: Components and mechanisms publication-title: Nat. Rev. Nephrol. doi: 10.1038/s41581-022-00590-z – volume: 11 start-page: 7291 year: 2020 ident: ref_13 article-title: VEGF promotes migration and invasion by regulating EMT and MMPS in nasopharyngeal carcinoma publication-title: J. Cancer doi: 10.7150/jca.46429 – volume: 25 start-page: 259 year: 2023 ident: ref_70 article-title: Diosgenin alleviates the inflammatory damage and insulin resistance in high glucose-induced podocyte cells via the AMPK/SIRT1/NF-κB signaling pathway publication-title: Exp. Ther. Med. doi: 10.3892/etm.2023.11958 – volume: 39 start-page: 143 year: 2021 ident: ref_126 article-title: Effects of exercise training on renal interstitial fibrosis and renin-angiotensin system in rats with chronic renal failure publication-title: J. Hypertens. doi: 10.1097/HJH.0000000000002605 – volume: 14 start-page: 7357 year: 2023 ident: ref_29 article-title: Epidermal growth factor receptor activation is essential for kidney fibrosis development publication-title: Nat. Commun. doi: 10.1038/s41467-023-43226-x – volume: 100 start-page: 742 year: 2021 ident: ref_55 article-title: Re-energizing the kidney: Targeting fatty acid metabolism protects against kidney fibrosis publication-title: Kidney Int. doi: 10.1016/j.kint.2021.06.010 – volume: 30 start-page: 1605 year: 2019 ident: ref_37 article-title: The extracellular matrix receptor discoidin domain receptor 1 regulates collagen transcription by translocating to the nucleus publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2018111160 – volume: 95 start-page: 1103 year: 2019 ident: ref_27 article-title: Identification of platelet-derived growth factor c as a mediator of both renal fibrosis and hypertension publication-title: Kidney Int. doi: 10.1016/j.kint.2018.11.031 – volume: 113 start-page: 1 year: 2023 ident: ref_116 article-title: Resveratrol may mildly improve renal function in the general adult population: A systematic review and meta-analysis of randomized controlled clinical trials publication-title: Nutr. Res. doi: 10.1016/j.nutres.2023.03.002 – ident: ref_69 doi: 10.3389/fimmu.2022.925738 – ident: ref_95 doi: 10.1038/s41580-024-00727-x – ident: ref_134 doi: 10.3390/ijms21062084 – ident: ref_117 doi: 10.1016/j.biopha.2021.112164 |
SSID | ssj0000913814 |
Score | 2.2810116 |
SecondaryResourceType | review_article |
Snippet | Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1942 |
SubjectTerms | Adenosine Aging Amino acids Apoptosis Autophagy Cell cycle Development and progression DNA methylation End-stage renal disease Energy Extracellular matrix Fatty acids Fibroblasts Fibrosis Health aspects Histones Homeostasis Inflammation Kidney diseases Lipid metabolism Metabolism Metabolites NAD Oxidation Oxidative metabolism Oxidative stress Physiological aspects Physiology Proteins Public health renal fibrosis Review Ribosomal DNA SIRT1 SIRT1 protein Stem cells Therapeutic targets Transcription factors Trimetazidine |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB7B9gJCCMortKAgVeIUNVnbscOlaquuChIV2raotyiObVhplZRm9_8zE3vDRqByySEeS37N055vAA506moupE5SY6YJR4VNctDhhymTFwQoTqGBrxf5-TX_ciNuQsCtC88qNzKxF9SmrSlGfsgygvKWeZ4e3f5KqGoU3a6GEhoPYQdFsFIT2Dk5u_g2H6IshHqpMu5z5hj694c-q72_te4obxSd-OlIJ_XQ_X8L6C0NNX49uaWOZs_gabAj42O_8c_hgW124fEWuuAuPPEhudhnGr2Ag7mlLjN0kNtu0X2KLz_Pr7L4crVYLuPWxd-r5dq-hOvZ2dXpeRKKJCS1kOkqcdoVBfpkHPcClbdA90lYpylj1YrcMKMzzTN0KixnLjfcSVs5pwyS6JpLy17BpGkb-wZiU1lb8WmqVYV2hlQVus5C25xrkRqZZRGwzTKVdUAQp0IWyxI9CVrc8l-LG0Ey9Lr1CBr_oT-hHRhoCf-6_9He_SgDO5UidQKny4SSjFtFNTArJ9H0rU2tZKEi-Ej7VxKX4hDrKiQb4EQJ76o8VhkhMOaMR7A_okTuqsfNmxNQBu7uyj9nMYIPQzP1pBdrjW3XnobKyXMRwWt_YIYpsYIxslwjUKOjNJrzuKVZ_Oyxvyn1WfFCvr1_XHvwaIrWl38Mtw-T1d3avkPraaXfBxb5Dc4mGHo priority: 102 providerName: ProQuest |
Title | Renal Fibrosis: SIRT1 Still of Value |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39335456 https://www.proquest.com/docview/3110387660 https://www.proquest.com/docview/3110908245 https://pubmed.ncbi.nlm.nih.gov/PMC11428497 https://doaj.org/article/50f5c51358734e88989af7020cdc8798 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KemkOoY-kcZsGFwI5mVgryZJ7S0qWtNBQNg9yE9aLLize0t39_52xnMUmhVx68cEagTQjaeazNd8AnNgyOiGVLUrvJ4VAh03nYMQH176qiVCcPg38uK6u7sT3B_kwKPVFd8ISPXBS3Jkso3SScakVF0FTtcMmKgxynHda1V2aL_q8AZjqzuCaoSsSKVeOI64_S9ns3d_qFeWLInifjHxRR9n_9GAeeKbxrcmBG5q-hr0-fszP07jfwIvQvoXdAavgOziZBRKZIhBeruarL_nNt9kty2_W88UiX8b8vllswj7cTS9vv14VfTGEwklVrotoY10j9hKoc3TSEmGSDNFSZmqQlefeMisYgocgeKy8iCo0MWqPItYJFfgB7LTLNhxC7psQGjEprW4wnlC6QYgsbaiElaVXjGXAH9ViXM8UTgUrFgYRAynT_EuZGRTbXr8TU8Yz8hek8a0s8Vx3L9D6pre-ec76GZySvQztRhyia_qkApwo8VqZc82IabHiIoOjkSTuIjdufrS46XfxynBG9PGqqsoMPm-bqSfdTGvDcpNkqGy8kBm8TwtkOyVec04RagZ6tHRGcx63tPNfHcc3pThrUasP_0NLH-HVBGOxdDXuCHbWfzbhE8ZSa3sMLy8ur3_Ojrvt8xeKXxsb |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gEmhGB8BQYEaYinaElsxw4SQhusatlWoa5DewtxbI9KVTPWVoh_ir-RuyQtjUDwtJc8xOfIZ5_vw_H9DmBXh67gQuogNCYOOBps0oMOH0yZJCVAcToaOBkkvTP-8Vycb8DPZS4MXatc6sRKUZuyoDPyPRYRlLdMkvDd5beAqkbR39VlCY1aLI7sj-8Yss3e9j_g-r6K4-7h6H0vaKoKBIWQ4Txw2qUpBjEcB4_WTmC8IazTlOJpRWKY0ZHmEXrhljOXGO6kzZ1TBkl0waVl-N0bsMlZEsYd2Dw4HHwark51CGVTRbzO0WMsDffqLPrqL_mM8lSjlMctG1iVCvjTIKxZxPZtzTXz170Ldxq_1d-vBe0ebNjpNmytoRluw-36CNCvM5vuw-7QUpcuBuTlbDx745_2h6PIP52PJxO_dP7nfLKwD-DsWqbvIXSm5dQ-Bt_k1uY8DrXK0a-RKsdQXWibcC1CI6PIA7acpqxoEMupcMYkw8iFJjf72-R6EKx6XdaIHf-hP6AVWNES3nb1ory6yJrtm4nQCWSXCSUZt4pqbuZOoqtdmELJVHnwmtYvI62AQyzyJrkBGSV8rWxfRYT4mDDuwU6LEndz0W5eSkDWaJNZ9lv2PXi5aqaedENuastFTUPl67nw4FEtMCuWWMoYecoeqJYotXhut0zHXyuscUq1VjyVT_49rhdwszc6Oc6O-4Ojp3ArRs-vvoi3A5351cI-Q89trp8328WHL9e9Q38BqBxW_w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTkIghGD8CwwI0hBPUZPYjh0khDa2amVQTd2G9hbi2IZKVTOWVoivxqfjrklDIxA87aUP8bnK2Xe-O-fudwA7OnQFF1IHoTFxwNFg0zno8Icpk6QEKE5XAx9HyeEZf38uzjfg56oWhtIqV2fi8qA2ZUF35H0WEZS3TJKw75q0iOP9wduLbwF1kKIvrat2GrWIHNkf3zF8q94M93GvX8bx4OD03WHQdBgICiHDeeC0S1MMaDgygpZPYOwhrNNU7mlFYpjRkeYReuSWM5cY7qTNnVMGSXTBpWX4v9dgU1JU1IPNvYPR8bi94SHETRXxul6PsTTs1xX1yy_mFdWsRimPO_Zw2TbgT-OwZh27mZtrpnBwB243Pqy_WwvdXdiwsy24uYZsuAW36utAv65yugc7Y0tTBhicl9Wkeu2fDMenkX8yn0ynfun8T_l0Ye_D2ZUs3wPozcqZfQS-ya3NeRxqlaOPI1WOYbvQNuFahEZGkQdstUxZ0aCXUxONaYZRDC1u9rfF9SBoZ13U6B3_od-jHWhpCXt7-aC8_JI1qpyJ0AlklwklGbeK-m_mTqLbXZhCyVR58Ir2L6MTAl-xyJtCB2SUsLayXRUR-mPCuAfbHUrU7KI7vJKArDlZquy3Hnjwoh2mmZQtN7PloqahVvZcePCwFpiWJZYyRl6zB6ojSh2euyOzydcl7jiVXSueysf_fq_ncB01M_swHB09gRsxOoF1Tt429OaXC_sUnbi5ftZoiw-fr1pBfwGOl1s0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renal+Fibrosis%3A+SIRT1+Still+of+Value&rft.jtitle=Biomedicines&rft.au=Wu%2C+Huailiang&rft.au=Qiu%2C+Zhen&rft.au=Wang%2C+Liyan&rft.au=Li%2C+Wei&rft.date=2024-09-01&rft.issn=2227-9059&rft.eissn=2227-9059&rft.volume=12&rft.issue=9&rft_id=info:doi/10.3390%2Fbiomedicines12091942&rft_id=info%3Apmid%2F39335456&rft.externalDocID=39335456 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9059&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9059&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9059&client=summon |