Renal Fibrosis: SIRT1 Still of Value

Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibr...

Full description

Saved in:
Bibliographic Details
Published inBiomedicines Vol. 12; no. 9; p. 1942
Main Authors Wu, Huailiang, Qiu, Zhen, Wang, Liyan, Li, Wei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.09.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments.
AbstractList Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD )-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments.
Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD[sup.+])-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments.
Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments.Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments.
Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments.
Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD + )-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments.
Audience Academic
Author Li, Wei
Wang, Liyan
Qiu, Zhen
Wu, Huailiang
AuthorAffiliation 2 Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China; wlyan360@163.com
1 Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; whliang360@163.com (H.W.); qiuzhen124@126.com (Z.Q.)
AuthorAffiliation_xml – name: 1 Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; whliang360@163.com (H.W.); qiuzhen124@126.com (Z.Q.)
– name: 2 Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China; wlyan360@163.com
Author_xml – sequence: 1
  givenname: Huailiang
  surname: Wu
  fullname: Wu, Huailiang
– sequence: 2
  givenname: Zhen
  surname: Qiu
  fullname: Qiu, Zhen
– sequence: 3
  givenname: Liyan
  surname: Wang
  fullname: Wang, Liyan
– sequence: 4
  givenname: Wei
  surname: Li
  fullname: Li, Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39335456$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1LHDEUQEOxVKv-g1IG2oe-rOZzkvgiIrUuCAW1fQ2ZzM02S3Zik5lC_32zXa2uSJOHhOTcc7nJfYt2hjQAQu8IPmJM4-MupBX0wYUBCqFYE83pK7RHKZUzjYXeebLfRYelLHEdmjBF-Bu0yzRjgot2D328hsHG5iJ0OZVQTpqb-fUtaW7GEGOTfPPdxgkO0GtvY4HD-3Uffbv4fHt-Obv6-mV-fnY1c0LiceY7r7UkkoNzglChtRLgO6a1ANH2rO9Ix4lsFXDm2557CdZ71Vekc1wC20fzjbdPdmnucljZ_NskG8zfg5QXxuYxuAhGYC9qEiaUZByU0kpbLzHFrndKalVdpxvX3dTVp3IwjNnGLen2zRB-mEX6ZQjhVHEtq-HTvSGnnxOU0axCcRCjHSBNxTBCsMaKclHRD8_QZZpyfdgNxZRsW_xILWytIAw-1cRuLTVnqrpE2zJeqaMXqDp7WAVX28CHer4V8P5ppf9KfPjkCpxsAFf_uGTwxoXRjiGtCw_REGzWTWVeaqoazJ8FP_j_G_YHAFfPxA
CitedBy_id crossref_primary_10_1186_s10020_025_01071_2
Cites_doi 10.3389/fendo.2023.1085605
10.3389/fphar.2018.00512
10.1172/jci.insight.150887
10.1016/j.freeradbiomed.2022.10.320
10.1016/j.exger.2021.111403
10.1155/2017/6878795
10.1167/iovs.64.3.16
10.1016/j.diabres.2013.12.021
10.1073/pnas.1917663117
10.3390/nu11010146
10.1016/j.metabol.2019.04.013
10.1016/j.tips.2023.06.001
10.1155/2021/2999296
10.1161/JAHA.122.026365
10.1038/s41580-023-00689-6
10.1038/s41586-020-2941-1
10.3390/ijms21186766
10.1016/j.redox.2019.101229
10.1016/j.kint.2022.11.027
10.1016/j.biopha.2023.114925
10.1002/dmrr.3596
10.1016/j.exger.2021.111394
10.1038/s41598-022-20719-1
10.3389/fphar.2020.616378
10.3390/ph15060737
10.1016/j.cmet.2024.01.015
10.18632/aging.103450
10.1155/2020/7202519
10.1113/JP286658
10.1016/j.lfs.2021.119716
10.1016/j.biopha.2020.110241
10.3892/ijmm.2020.4647
10.1038/s41419-023-05587-5
10.1016/j.lfs.2022.121033
10.1073/pnas.1716578115
10.1002/path.5007
10.1096/fj.202100219R
10.5483/BMBRep.2023-0076
10.1111/jcmm.13060
10.1111/acel.12904
10.1080/15476286.2019.1667215
10.1371/journal.pone.0053573
10.1142/S0192415X22500744
10.1080/15548627.2019.1615822
10.3390/biom10070996
10.1126/scisignal.aaz2597
10.3390/ijms25063370
10.1016/j.autrev.2023.103466
10.1016/j.matbio.2020.04.005
10.1016/j.biopha.2023.114340
10.1038/s41419-020-02871-6
10.1016/j.freeradbiomed.2018.11.006
10.1172/jci.insight.130651
10.1007/s11010-022-04581-3
10.1038/s41420-021-00443-x
10.1016/j.biopha.2023.116039
10.1038/s41420-022-00931-8
10.1159/000527713
10.1152/ajpcell.00018.2024
10.3390/ijms24076737
10.3390/cells11142212
10.1016/j.ejphar.2019.01.012
10.1186/s12967-022-03408-5
10.3390/nu15010237
10.1038/s41581-020-00343-w
10.1002/jsfa.10152
10.1016/j.redox.2023.102939
10.1681/ASN.2013060664
10.1042/CS20200171
10.3389/fphar.2023.1335094
10.1039/C9FO00373H
10.1016/j.lfs.2024.122530
10.1186/s12967-023-04440-9
10.1016/j.biopha.2019.109227
10.3389/fendo.2018.00624
10.1038/srep33705
10.1038/nm.3902
10.1038/nrneph.2016.54
10.1016/j.arr.2021.101468
10.3389/fphys.2019.01225
10.1038/s41598-023-44177-5
10.3389/fphys.2023.1090724
10.3389/fmolb.2020.00137
10.3389/fphar.2020.01136
10.1016/j.metabol.2023.155592
10.1186/s12964-023-01442-4
10.1016/j.phymed.2018.10.031
10.1124/jpet.115.224386
10.1038/s41584-019-0324-5
10.1016/j.mam.2023.101206
10.1016/j.intimp.2024.112002
10.1007/s00109-023-02364-x
10.3389/fendo.2022.917773
10.1038/s41420-024-01831-9
10.1016/j.phymed.2023.155285
10.1186/s12964-017-0205-y
10.1186/s12967-023-04376-0
10.1038/s41581-024-00806-4
10.1016/j.phymed.2019.153163
10.1530/EC-23-0448
10.1042/CS20210447
10.3389/fphar.2022.1039726
10.3892/ijmm.2017.2931
10.1016/j.biochi.2019.03.003
10.1159/000495896
10.1016/j.biopha.2020.110798
10.1007/s12272-022-01375-5
10.3390/molecules27072344
10.18632/oncotarget.14884
10.1096/fj.201801711R
10.1038/ki.2011.208
10.1007/s00018-023-04826-4
10.3389/fcell.2022.986511
10.1080/0886022X.2022.2044351
10.1016/j.bbrc.2017.12.048
10.1038/s41392-022-01257-8
10.1016/j.lfs.2020.118487
10.1096/fj.201600410RR
10.1038/s41581-022-00590-z
10.7150/jca.46429
10.3892/etm.2023.11958
10.1097/HJH.0000000000002605
10.1038/s41467-023-43226-x
10.1016/j.kint.2021.06.010
10.1681/ASN.2018111160
10.1016/j.kint.2018.11.031
10.1016/j.nutres.2023.03.002
10.3389/fimmu.2022.925738
10.1038/s41580-024-00727-x
10.3390/ijms21062084
10.1016/j.biopha.2021.112164
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/biomedicines12091942
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological science database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
EISSN 2227-9059
ExternalDocumentID oai_doaj_org_article_50f5c51358734e88989af7020cdc8798
PMC11428497
A810956634
39335456
10_3390_biomedicines12091942
Genre Journal Article
Review
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 82272232
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ACPRK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EMOBN
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PQGLB
PMFND
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c570t-fbf997174ecc51259985efb3995e56d3db1b41768e43f6d4f7eaff8dfb3bc47e3
IEDL.DBID DOA
ISSN 2227-9059
IngestDate Wed Aug 27 01:32:42 EDT 2025
Thu Aug 21 18:31:19 EDT 2025
Thu Jul 10 23:45:39 EDT 2025
Fri Jul 25 11:50:15 EDT 2025
Tue Jun 17 22:03:55 EDT 2025
Tue Jun 10 21:03:00 EDT 2025
Mon Jul 21 05:56:45 EDT 2025
Tue Jul 01 01:44:19 EDT 2025
Thu Apr 24 22:56:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords aging
renal fibrosis
SIRT1
oxidative stress
lipid metabolism
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c570t-fbf997174ecc51259985efb3995e56d3db1b41768e43f6d4f7eaff8dfb3bc47e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://doaj.org/article/50f5c51358734e88989af7020cdc8798
PMID 39335456
PQID 3110387660
PQPubID 2032426
ParticipantIDs doaj_primary_oai_doaj_org_article_50f5c51358734e88989af7020cdc8798
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11428497
proquest_miscellaneous_3110908245
proquest_journals_3110387660
gale_infotracmisc_A810956634
gale_infotracacademiconefile_A810956634
pubmed_primary_39335456
crossref_citationtrail_10_3390_biomedicines12091942
crossref_primary_10_3390_biomedicines12091942
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biomedicines
PublicationTitleAlternate Biomedicines
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chiusa (ref_37) 2019; 30
Gong (ref_20) 2021; 135
ref_91
ref_90
Kuppe (ref_92) 2021; 589
Bouffette (ref_35) 2023; 44
ref_10
Fan (ref_119) 2020; 17
ref_132
ref_95
ref_134
ref_17
Falke (ref_28) 2018; 244
Abed (ref_31) 2014; 25
Martin (ref_27) 2019; 95
Sung (ref_98) 2021; 150
Yang (ref_63) 2023; 56
Chen (ref_21) 2022; 44
Zhao (ref_7) 2020; 11
Lovisa (ref_79) 2015; 21
ref_125
Yuan (ref_70) 2023; 25
Liu (ref_39) 2019; 10
Lafont (ref_23) 2020; 5
Zhang (ref_82) 2021; 280
ref_122
Liao (ref_54) 2024; 124
Jin (ref_111) 2019; 847
Edeling (ref_41) 2016; 12
Xue (ref_124) 2019; 54
Yang (ref_86) 2019; 96
Nystrom (ref_93) 2024; 326
Zhou (ref_106) 2023; 39
Feng (ref_12) 2018; 51
Ren (ref_78) 2017; 39
Cao (ref_29) 2023; 14
ref_72
Suryantoro (ref_133) 2024; 602
ref_71
Yuan (ref_105) 2024; 25
Perico (ref_131) 2024; 20
Wei (ref_53) 2023; 312
ref_77
ref_76
ref_75
ref_74
Li (ref_2) 2022; 18
Liu (ref_123) 2022; 50
Li (ref_100) 2019; 130
ref_81
Ponnusamy (ref_51) 2015; 354
ref_87
Varghese (ref_56) 2023; 21
ref_85
Wang (ref_96) 2021; 151
Zhang (ref_88) 2024; 343
Sun (ref_65) 2020; 134
Shi (ref_80) 2023; 103
Yu (ref_94) 2024; 36
ref_50
Li (ref_49) 2021; 7
Alqudah (ref_16) 2020; 91–92
Fang (ref_130) 2021; 2021
Zhang (ref_121) 2020; 46
ref_57
Lian (ref_67) 2023; 64
Liu (ref_15) 2017; 21
Chang (ref_109) 2016; 133
Borza (ref_36) 2022; 7
Chen (ref_128) 2024; 13
Livingston (ref_11) 2019; 15
Sosa (ref_24) 2020; 12
Li (ref_40) 2022; 11
Chen (ref_97) 2024; 10
Roccatello (ref_22) 2024; 23
Chen (ref_26) 2011; 80
Ryu (ref_99) 2019; 18
Xu (ref_52) 2023; 145
Ren (ref_38) 2020; 67
ref_60
Zhao (ref_104) 2017; 2017
Lovisa (ref_89) 2020; 13
Wu (ref_61) 2024; 132
ref_69
Carrasco (ref_6) 2018; 115
Klinkhammer (ref_3) 2023; 93
Dong (ref_101) 2017; 8
Zhang (ref_59) 2022; 2022
ref_64
ref_62
Li (ref_45) 2022; 193
Jin (ref_48) 2024; 22
Zhang (ref_58) 2022; 20
Yang (ref_8) 2020; 261
Yamakoshi (ref_126) 2021; 39
Wu (ref_42) 2022; 7
ref_114
ref_117
ref_118
Huang (ref_107) 2020; 2020
Wang (ref_113) 2022; 8
ref_34
ref_33
ref_110
ref_30
ref_112
Tang (ref_25) 2014; 104
Ha (ref_66) 2022; 45
Li (ref_14) 2023; 14
Jiang (ref_9) 2019; 33
He (ref_68) 2023; 101
Tian (ref_115) 2020; 100
Bian (ref_32) 2019; 160
Ye (ref_18) 2023; 80
Sun (ref_83) 2024; 16
ref_103
Tang (ref_4) 2020; 117
Reidy (ref_55) 2021; 100
Liarte (ref_84) 2017; 15
Xiong (ref_73) 2023; 21
Abdollahi (ref_116) 2023; 113
ref_47
ref_46
Kaushik (ref_102) 2021; 72
Hinz (ref_108) 2020; 16
Chen (ref_13) 2020; 11
Huang (ref_5) 2022; 47
ref_43
Zhao (ref_127) 2023; 478
Xue (ref_120) 2018; 498
Schunk (ref_19) 2021; 17
ref_1
Buler (ref_44) 2016; 30
Yang (ref_129) 2021; 35
References_xml – ident: ref_1
  doi: 10.3389/fendo.2023.1085605
– ident: ref_77
  doi: 10.3389/fphar.2018.00512
– volume: 7
  start-page: e150887
  year: 2022
  ident: ref_36
  article-title: DDR1 contributes to kidney inflammation and fibrosis by promoting the phosphorylation of BCR and STAT3
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.150887
– volume: 2022
  start-page: 6275505
  year: 2022
  ident: ref_59
  article-title: Gandi capsule improved podocyte lipid metabolism of diabetic nephropathy mice through SIRT1/AMPK/HNF4A pathway
  publication-title: Oxid. Med. Cell Longev.
– volume: 193
  start-page: 459
  year: 2022
  ident: ref_45
  article-title: Sirtuin 7 mitigates renal ferroptosis, fibrosis and injury in hypertensive mice by facilitating the KLF15/Nrf2 signaling
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2022.10.320
– volume: 151
  start-page: 111403
  year: 2021
  ident: ref_96
  article-title: Cellular senescence and the senescence-associated secretory phenotype: Potential therapeutic targets for renal fibrosis
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2021.111403
– volume: 2017
  start-page: 6878795
  year: 2017
  ident: ref_104
  article-title: Sinomenine hydrochloride attenuates renal fibrosis by inhibiting excessive autophagy induced by adriamycin: An experimental study
  publication-title: Evid. Based Complement. Altern. Med.
  doi: 10.1155/2017/6878795
– volume: 64
  start-page: 16
  year: 2023
  ident: ref_67
  article-title: SIRT1 inhibits high glucose-induced TXNIP/NLRP3 inflammasome activation and cataract formation
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.64.3.16
– volume: 104
  start-page: 176
  year: 2014
  ident: ref_25
  article-title: Endothelin-1 mediated high glucose-induced epithelial-mesenchymal transition in renal tubular cells
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2013.12.021
– volume: 117
  start-page: 20741
  year: 2020
  ident: ref_4
  article-title: Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1917663117
– ident: ref_60
  doi: 10.3390/nu11010146
– volume: 96
  start-page: 33
  year: 2019
  ident: ref_86
  article-title: Yy1: A novel therapeutic target for diabetic nephropathy orchestrated renal fibrosis
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2019.04.013
– volume: 44
  start-page: 519
  year: 2023
  ident: ref_35
  article-title: Targeting galectin-3 in inflammatory and fibrotic diseases
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2023.06.001
– volume: 2021
  start-page: 2999296
  year: 2021
  ident: ref_130
  article-title: Calorie restriction protects against contrast-induced nephropathy via SIRT1/GPX4 activation
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2021/2999296
– volume: 11
  start-page: e26365
  year: 2022
  ident: ref_40
  article-title: Intact fibroblast growth factor 23 regulates chronic kidney disease-induced myocardial fibrosis by activating the sonic hedgehog signaling pathway
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.122.026365
– volume: 25
  start-page: 379
  year: 2024
  ident: ref_105
  article-title: A guide to cell death pathways
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-023-00689-6
– volume: 589
  start-page: 281
  year: 2021
  ident: ref_92
  article-title: Decoding myofibroblast origins in human kidney fibrosis
  publication-title: Nature
  doi: 10.1038/s41586-020-2941-1
– ident: ref_118
  doi: 10.3390/ijms21186766
– ident: ref_43
  doi: 10.1016/j.redox.2019.101229
– volume: 103
  start-page: 544
  year: 2023
  ident: ref_80
  article-title: Ubiquitin-specific protease 11 promotes partial epithelial-to-mesenchymal transition by deubiquitinating the epidermal growth factor receptor during kidney fibrosis
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2022.11.027
– ident: ref_50
  doi: 10.1016/j.biopha.2023.114925
– volume: 39
  start-page: e3596
  year: 2023
  ident: ref_106
  article-title: Role of renal tubular programed cell death in diabetic kidney disease
  publication-title: Diabetes Metab. Res. Rev.
  doi: 10.1002/dmrr.3596
– volume: 150
  start-page: 111394
  year: 2021
  ident: ref_98
  article-title: SIRT1 suppresses cellular senescence and inflammatory cytokine release in human dermal fibroblasts by promoting the deacetylation of NF-κB and activating autophagy
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2021.111394
– ident: ref_74
  doi: 10.1038/s41598-022-20719-1
– ident: ref_64
  doi: 10.3389/fphar.2020.616378
– ident: ref_81
  doi: 10.3390/ph15060737
– volume: 36
  start-page: 793
  year: 2024
  ident: ref_94
  article-title: IgG is an aging factor that drives adipose tissue fibrosis and metabolic decline
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2024.01.015
– volume: 12
  start-page: 11200
  year: 2020
  ident: ref_24
  article-title: Endothelin-1 induces cellular senescence and fibrosis in cultured myoblasts. A potential mechanism of aging-related sarcopenia
  publication-title: Aging
  doi: 10.18632/aging.103450
– volume: 2020
  start-page: 7202519
  year: 2020
  ident: ref_107
  article-title: Cordyceps cicadae prevents renal tubular epithelial cell apoptosis by regulating the SIRT1/p53 pathway in hypertensive renal injury
  publication-title: Evid. Based Complement. Altern. Med.
  doi: 10.1155/2020/7202519
– volume: 602
  start-page: 2165
  year: 2024
  ident: ref_133
  article-title: Resveratrol in renal health: Bridging therapeutic gaps from acute kidney injury to chronic disease prevention
  publication-title: J. Physiol.
  doi: 10.1113/JP286658
– volume: 280
  start-page: 119716
  year: 2021
  ident: ref_82
  article-title: Silent information regulator 1 suppresses epithelial-to-mesenchymal transition in lung cancer cells via its regulation of mitochondria status
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2021.119716
– ident: ref_87
  doi: 10.1016/j.biopha.2020.110241
– volume: 46
  start-page: 1063
  year: 2020
  ident: ref_121
  article-title: Inhibition of miRNA-135a-5p ameliorates TGF-β1-induced human renal fibrosis by targeting SIRT1 in diabetic nephropathy
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2020.4647
– volume: 14
  start-page: 200
  year: 2023
  ident: ref_14
  article-title: HIF1α-BNIP3-mediated mitophagy protects against renal fibrosis by decreasing ROS and inhibiting activation of the NLRP3 inflammasome
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-023-05587-5
– volume: 312
  start-page: 121033
  year: 2023
  ident: ref_53
  article-title: Advances in energy metabolism in renal fibrosis
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2022.121033
– volume: 115
  start-page: 4182
  year: 2018
  ident: ref_6
  article-title: Tweak and RIPK1 mediate a second wave of cell death during AKI
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1716578115
– volume: 244
  start-page: 227
  year: 2018
  ident: ref_28
  article-title: Connective tissue growth factor induces renal fibrosis via epidermal growth factor receptor activation
  publication-title: J. Pathol.
  doi: 10.1002/path.5007
– volume: 35
  start-page: e21823
  year: 2021
  ident: ref_129
  article-title: Exercise training ameliorates early diabetic kidney injury by regulating the H2S/SIRT1/p53 pathway
  publication-title: FASEB J.
  doi: 10.1096/fj.202100219R
– volume: 56
  start-page: 651
  year: 2023
  ident: ref_63
  article-title: Fatty acid oxidation regulates cellular senescence by modulating the autophagy-SIRT1 axis
  publication-title: BMB Rep.
  doi: 10.5483/BMBRep.2023-0076
– volume: 21
  start-page: 1248
  year: 2017
  ident: ref_15
  article-title: Signalling pathways involved in hypoxia-induced renal fibrosis
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.13060
– volume: 18
  start-page: e12904
  year: 2019
  ident: ref_99
  article-title: SIRT1-hypoxia-inducible factor-1α interaction is a key mediator of tubulointerstitial damage in the aged kidney
  publication-title: Aging Cell
  doi: 10.1111/acel.12904
– volume: 17
  start-page: 1
  year: 2020
  ident: ref_119
  article-title: Emerging role of miRNAs in renal fibrosis
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2019.1667215
– ident: ref_17
  doi: 10.1371/journal.pone.0053573
– volume: 50
  start-page: 1739
  year: 2022
  ident: ref_123
  article-title: A review of traditional Chinese medicine on treatment of diabetic nephropathy and the involved mechanisms
  publication-title: Am. J. Chin. Med.
  doi: 10.1142/S0192415X22500744
– volume: 15
  start-page: 2142
  year: 2019
  ident: ref_11
  article-title: Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys
  publication-title: Autophagy
  doi: 10.1080/15548627.2019.1615822
– volume: 133
  start-page: 116
  year: 2016
  ident: ref_109
  article-title: Up-regulation of SIRT1 reduces endoplasmic reticulum stress and renal fibrosis
  publication-title: Nephron Clin. Pract.
– ident: ref_112
  doi: 10.3390/biom10070996
– volume: 13
  start-page: eaaz2597
  year: 2020
  ident: ref_89
  article-title: Endothelial-to-mesenchymal transition compromises vascular integrity to induce Myc-mediated metabolic reprogramming in kidney fibrosis
  publication-title: Sci. Signal
  doi: 10.1126/scisignal.aaz2597
– ident: ref_132
  doi: 10.3390/ijms25063370
– volume: 23
  start-page: 103466
  year: 2024
  ident: ref_22
  article-title: From inflammation to renal fibrosis: A one-way road in autoimmunity?
  publication-title: Autoimmun. Rev.
  doi: 10.1016/j.autrev.2023.103466
– volume: 91–92
  start-page: 92
  year: 2020
  ident: ref_16
  article-title: Targeting the renin-angiotensin-aldosterone system in fibrosis
  publication-title: Matrix Biol.
  doi: 10.1016/j.matbio.2020.04.005
– ident: ref_103
  doi: 10.1016/j.biopha.2023.114340
– volume: 11
  start-page: 629
  year: 2020
  ident: ref_7
  article-title: XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia-reperfusion injury
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-020-02871-6
– volume: 130
  start-page: 512
  year: 2019
  ident: ref_100
  article-title: N-acetylcysteine ameliorates cisplatin-induced renal senescence and renal interstitial fibrosis through sirtuin1 activation and p53 deacetylation
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.11.006
– volume: 5
  start-page: e130651
  year: 2020
  ident: ref_23
  article-title: Immune cell landscaping reveals a protective role for regulatory T cells during kidney injury and fibrosis
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.130651
– volume: 478
  start-page: 1109
  year: 2023
  ident: ref_127
  article-title: Swimming exercise activates peroxisome proliferator-activated receptor-alpha and mitigates age-related renal fibrosis in rats
  publication-title: Mol. Cell Biochem.
  doi: 10.1007/s11010-022-04581-3
– volume: 7
  start-page: 59
  year: 2021
  ident: ref_49
  article-title: SIRT1 attenuates renal fibrosis by repressing HIF-2α
  publication-title: Cell Death Discov.
  doi: 10.1038/s41420-021-00443-x
– ident: ref_122
  doi: 10.1016/j.biopha.2023.116039
– volume: 8
  start-page: 127
  year: 2022
  ident: ref_113
  article-title: Ferroptosis, a new target for treatment of renal injury and fibrosis in a 5/6 nephrectomy-induced CKD rat model
  publication-title: Cell Death Discov.
  doi: 10.1038/s41420-022-00931-8
– volume: 47
  start-page: 729
  year: 2022
  ident: ref_5
  article-title: SIS3 alleviates cisplatin-induced acute kidney injury by regulating the lncRNA Arid2-IR-transferrin receptor pathway
  publication-title: Kidney Blood Press. Res.
  doi: 10.1159/000527713
– volume: 326
  start-page: C645
  year: 2024
  ident: ref_93
  article-title: The intertwined aging, the extracellular matrix, and fibrosis
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00018.2024
– ident: ref_110
  doi: 10.3390/ijms24076737
– ident: ref_33
  doi: 10.3390/cells11142212
– volume: 847
  start-page: 26
  year: 2019
  ident: ref_111
  article-title: Bisdemethoxycurcumin protects against renal fibrosis via activation of fibroblast apoptosis
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2019.01.012
– volume: 20
  start-page: 222
  year: 2022
  ident: ref_58
  article-title: SIRT1 prevents cigarette smoking-induced lung fibroblasts activation by regulating mitochondrial oxidative stress and lipid metabolism
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-022-03408-5
– ident: ref_125
  doi: 10.3390/nu15010237
– volume: 17
  start-page: 172
  year: 2021
  ident: ref_19
  article-title: WNT-β-catenin signalling—A versatile player in kidney injury and repair
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-020-00343-w
– volume: 100
  start-page: 1392
  year: 2020
  ident: ref_115
  article-title: Resveratrol: A review of plant sources, synthesis, stability, modification and food application
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.10152
– ident: ref_114
  doi: 10.1016/j.redox.2023.102939
– volume: 25
  start-page: 1724
  year: 2014
  ident: ref_31
  article-title: Inhibition of periostin expression protects against the development of renal inflammation and fibrosis
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2013060664
– volume: 134
  start-page: 1573
  year: 2020
  ident: ref_65
  article-title: Connexin 43 prevents the progression of diabetic renal tubulointerstitial fibrosis by regulating the SIRT1-HIF-1α signaling pathway
  publication-title: Clin. Sci.
  doi: 10.1042/CS20200171
– ident: ref_75
  doi: 10.3389/fphar.2023.1335094
– volume: 10
  start-page: 3782
  year: 2019
  ident: ref_39
  article-title: Quercetin inhibits kidney fibrosis and the epithelial to mesenchymal transition of the renal tubular system involving suppression of the sonic hedgehog signaling pathway
  publication-title: Food Funct.
  doi: 10.1039/C9FO00373H
– volume: 343
  start-page: 122530
  year: 2024
  ident: ref_88
  article-title: The mechanism by which SIRT1 regulates autophagy and EMT in drug-resistant oesophageal cancer cells
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2024.122530
– volume: 21
  start-page: 627
  year: 2023
  ident: ref_56
  article-title: SIRT1 activation promotes energy homeostasis and reprograms liver cancer metabolism
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-023-04440-9
– ident: ref_90
  doi: 10.1016/j.biopha.2019.109227
– ident: ref_46
  doi: 10.3389/fendo.2018.00624
– ident: ref_76
  doi: 10.1038/srep33705
– volume: 21
  start-page: 998
  year: 2015
  ident: ref_79
  article-title: Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis
  publication-title: Nat. Med.
  doi: 10.1038/nm.3902
– volume: 12
  start-page: 426
  year: 2016
  ident: ref_41
  article-title: Developmental signalling pathways in renal fibrosis: The roles of Notch, Wnt and hedgehog
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2016.54
– volume: 72
  start-page: 101468
  year: 2021
  ident: ref_102
  article-title: Autophagy and the hallmarks of aging
  publication-title: Ageing Res. Rev.
  doi: 10.1016/j.arr.2021.101468
– ident: ref_10
  doi: 10.3389/fphys.2019.01225
– ident: ref_30
  doi: 10.1038/s41598-023-44177-5
– ident: ref_34
  doi: 10.3389/fphys.2023.1090724
– ident: ref_72
  doi: 10.3389/fmolb.2020.00137
– ident: ref_85
  doi: 10.3389/fphar.2020.01136
– volume: 145
  start-page: 155592
  year: 2023
  ident: ref_52
  article-title: Regulation of pericyte metabolic reprogramming restricts the AKI to CKD transition
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2023.155592
– volume: 22
  start-page: 114
  year: 2024
  ident: ref_48
  article-title: Sirtuins in kidney diseases: Potential mechanism and therapeutic targets
  publication-title: Cell Commun. Signal
  doi: 10.1186/s12964-023-01442-4
– volume: 54
  start-page: 240
  year: 2019
  ident: ref_124
  article-title: Salidroside stimulates the Sirt1/PGC-1α axis and ameliorates diabetic nephropathy in mice
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2018.10.031
– volume: 354
  start-page: 142
  year: 2015
  ident: ref_51
  article-title: Activation of sirtuin-1 promotes renal fibroblast activation and aggravates renal fibrogenesis
  publication-title: J. Pharmacol. Exp. Ther.
  doi: 10.1124/jpet.115.224386
– volume: 16
  start-page: 11
  year: 2020
  ident: ref_108
  article-title: Evasion of apoptosis by myofibroblasts: A hallmark of fibrotic diseases
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/s41584-019-0324-5
– volume: 93
  start-page: 101206
  year: 2023
  ident: ref_3
  article-title: Kidney fibrosis: Emerging diagnostic and therapeutic strategies
  publication-title: Mol. Asp. Med.
  doi: 10.1016/j.mam.2023.101206
– volume: 132
  start-page: 112002
  year: 2024
  ident: ref_61
  article-title: The SP1/SIRT1/ACLY signaling axis mediates fatty acid oxidation in renal ischemia-reperfusion-induced renal fibrosis
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2024.112002
– volume: 101
  start-page: 1397
  year: 2023
  ident: ref_68
  article-title: Insufficient SIRT1in macrophages promotes oxidative stress and inflammation during scarring
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-023-02364-x
– ident: ref_47
  doi: 10.3389/fendo.2022.917773
– volume: 10
  start-page: 62
  year: 2024
  ident: ref_97
  article-title: Cellular senescence of renal tubular epithelial cells in acute kidney injury
  publication-title: Cell Death Discov.
  doi: 10.1038/s41420-024-01831-9
– volume: 124
  start-page: 155285
  year: 2024
  ident: ref_54
  article-title: Formononetin promotes fatty acid β-oxidation to treat non-alcoholic steatohepatitis through SIRT1/PGC-1α/PPARα pathway
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2023.155285
– volume: 15
  start-page: 50
  year: 2017
  ident: ref_84
  article-title: Sirt1 interaction with active Smad2 modulates transforming growth factor-β regulated transcription
  publication-title: Cell Commun. Signal
  doi: 10.1186/s12964-017-0205-y
– volume: 21
  start-page: 521
  year: 2023
  ident: ref_73
  article-title: UCP1 alleviates renal interstitial fibrosis progression through oxidative stress pathway mediated by SIRT3 protein stability
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-023-04376-0
– volume: 20
  start-page: 313
  year: 2024
  ident: ref_131
  article-title: Sirtuins in kidney health and disease
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-024-00806-4
– volume: 67
  start-page: 153163
  year: 2020
  ident: ref_38
  article-title: Saikosaponin b2 attenuates kidney fibrosis via inhibiting the hedgehog pathway
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2019.153163
– volume: 13
  start-page: e230448
  year: 2024
  ident: ref_128
  article-title: Exercise alleviates renal interstitial fibrosis by ameliorating the SIRT1-mediated TGF-β1/Smad3 pathway in t2dm mice
  publication-title: Endocr. Connect.
  doi: 10.1530/EC-23-0448
– volume: 135
  start-page: 1873
  year: 2021
  ident: ref_20
  article-title: Brahma-related gene-1 promotes tubular senescence and renal fibrosis through Wnt/β-catenin/autophagy axis
  publication-title: Clin. Sci.
  doi: 10.1042/CS20210447
– ident: ref_57
  doi: 10.3389/fphar.2022.1039726
– volume: 39
  start-page: 1317
  year: 2017
  ident: ref_78
  article-title: The Sirt1 activator, SRT1720, attenuates renal fibrosis by inhibiting CTGF and oxidative stress
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2017.2931
– volume: 160
  start-page: 172
  year: 2019
  ident: ref_32
  article-title: Periostin contributes to renal and cardiac dysfunction in rats with chronic kidney disease: Reduction of PPARα
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2019.03.003
– volume: 51
  start-page: 2359
  year: 2018
  ident: ref_12
  article-title: Mammalian STE20-like kinase 1 deletion alleviates renal ischaemia-reperfusion injury via modulating mitophagy and the AMPK-YAP signalling pathway
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000495896
– ident: ref_91
  doi: 10.1016/j.biopha.2020.110798
– volume: 45
  start-page: 159
  year: 2022
  ident: ref_66
  article-title: Renal tubular PAR2 promotes interstitial fibrosis by increasing inflammatory responses and EMT process
  publication-title: Arch. Pharm. Res.
  doi: 10.1007/s12272-022-01375-5
– ident: ref_62
  doi: 10.3390/molecules27072344
– volume: 8
  start-page: 16109
  year: 2017
  ident: ref_101
  article-title: Alleviation of senescence and epithelial-mesenchymal transition in aging kidney by short-term caloric restriction and caloric restriction mimetics via modulation of AMPK/mTOR signaling
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14884
– volume: 33
  start-page: 3523
  year: 2019
  ident: ref_9
  article-title: hsa-miR-500a-3p alleviates kidney injury by targeting MLKL-mediated necroptosis in renal epithelial cells
  publication-title: FASEB J.
  doi: 10.1096/fj.201801711R
– volume: 80
  start-page: 1170
  year: 2011
  ident: ref_26
  article-title: Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis
  publication-title: Kidney Int.
  doi: 10.1038/ki.2011.208
– volume: 80
  start-page: 184
  year: 2023
  ident: ref_18
  article-title: Macrophage Dectin-1 mediates Ang II renal injury through neutrophil migration and TGF-β1 secretion
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-023-04826-4
– volume: 16
  start-page: 6588
  year: 2024
  ident: ref_83
  article-title: TGF-β downstream of Smad3 and MAPK signaling antagonistically regulate the viability and partial epithelial-mesenchymal transition of liver progenitor cells
  publication-title: Aging
– ident: ref_71
  doi: 10.3389/fcell.2022.986511
– volume: 44
  start-page: 513
  year: 2022
  ident: ref_21
  article-title: Relaxin inhibits renal fibrosis and the epithelial-to-mesenchymal transition via the Wnt/β-catenin signaling pathway
  publication-title: Ren. Fail.
  doi: 10.1080/0886022X.2022.2044351
– volume: 498
  start-page: 38
  year: 2018
  ident: ref_120
  article-title: High glucose up-regulates microRNA-34a-5p to aggravate fibrosis by targeting SIRT1 in HK-2 cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.12.048
– volume: 7
  start-page: 402
  year: 2022
  ident: ref_42
  article-title: The sirtuin family in health and disease
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-022-01257-8
– volume: 261
  start-page: 118487
  year: 2020
  ident: ref_8
  article-title: Tocilizumab mimotope alleviates kidney injury and fibrosis by inhibiting IL-6 signaling and ferroptosis in UUO model
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2020.118487
– volume: 30
  start-page: 3942
  year: 2016
  ident: ref_44
  article-title: Who watches the watchmen? Regulation of the expression and activity of sirtuins
  publication-title: FASEB J.
  doi: 10.1096/fj.201600410RR
– volume: 18
  start-page: 545
  year: 2022
  ident: ref_2
  article-title: The fibrogenic niche in kidney fibrosis: Components and mechanisms
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/s41581-022-00590-z
– volume: 11
  start-page: 7291
  year: 2020
  ident: ref_13
  article-title: VEGF promotes migration and invasion by regulating EMT and MMPS in nasopharyngeal carcinoma
  publication-title: J. Cancer
  doi: 10.7150/jca.46429
– volume: 25
  start-page: 259
  year: 2023
  ident: ref_70
  article-title: Diosgenin alleviates the inflammatory damage and insulin resistance in high glucose-induced podocyte cells via the AMPK/SIRT1/NF-κB signaling pathway
  publication-title: Exp. Ther. Med.
  doi: 10.3892/etm.2023.11958
– volume: 39
  start-page: 143
  year: 2021
  ident: ref_126
  article-title: Effects of exercise training on renal interstitial fibrosis and renin-angiotensin system in rats with chronic renal failure
  publication-title: J. Hypertens.
  doi: 10.1097/HJH.0000000000002605
– volume: 14
  start-page: 7357
  year: 2023
  ident: ref_29
  article-title: Epidermal growth factor receptor activation is essential for kidney fibrosis development
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-43226-x
– volume: 100
  start-page: 742
  year: 2021
  ident: ref_55
  article-title: Re-energizing the kidney: Targeting fatty acid metabolism protects against kidney fibrosis
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2021.06.010
– volume: 30
  start-page: 1605
  year: 2019
  ident: ref_37
  article-title: The extracellular matrix receptor discoidin domain receptor 1 regulates collagen transcription by translocating to the nucleus
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2018111160
– volume: 95
  start-page: 1103
  year: 2019
  ident: ref_27
  article-title: Identification of platelet-derived growth factor c as a mediator of both renal fibrosis and hypertension
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2018.11.031
– volume: 113
  start-page: 1
  year: 2023
  ident: ref_116
  article-title: Resveratrol may mildly improve renal function in the general adult population: A systematic review and meta-analysis of randomized controlled clinical trials
  publication-title: Nutr. Res.
  doi: 10.1016/j.nutres.2023.03.002
– ident: ref_69
  doi: 10.3389/fimmu.2022.925738
– ident: ref_95
  doi: 10.1038/s41580-024-00727-x
– ident: ref_134
  doi: 10.3390/ijms21062084
– ident: ref_117
  doi: 10.1016/j.biopha.2021.112164
SSID ssj0000913814
Score 2.2810116
SecondaryResourceType review_article
Snippet Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1942
SubjectTerms Adenosine
Aging
Amino acids
Apoptosis
Autophagy
Cell cycle
Development and progression
DNA methylation
End-stage renal disease
Energy
Extracellular matrix
Fatty acids
Fibroblasts
Fibrosis
Health aspects
Histones
Homeostasis
Inflammation
Kidney diseases
Lipid metabolism
Metabolism
Metabolites
NAD
Oxidation
Oxidative metabolism
Oxidative stress
Physiological aspects
Physiology
Proteins
Public health
renal fibrosis
Review
Ribosomal DNA
SIRT1
SIRT1 protein
Stem cells
Therapeutic targets
Transcription factors
Trimetazidine
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB7B9gJCCMortKAgVeIUNVnbscOlaquuChIV2raotyiObVhplZRm9_8zE3vDRqByySEeS37N055vAA506moupE5SY6YJR4VNctDhhymTFwQoTqGBrxf5-TX_ciNuQsCtC88qNzKxF9SmrSlGfsgygvKWeZ4e3f5KqGoU3a6GEhoPYQdFsFIT2Dk5u_g2H6IshHqpMu5z5hj694c-q72_te4obxSd-OlIJ_XQ_X8L6C0NNX49uaWOZs_gabAj42O_8c_hgW124fEWuuAuPPEhudhnGr2Ag7mlLjN0kNtu0X2KLz_Pr7L4crVYLuPWxd-r5dq-hOvZ2dXpeRKKJCS1kOkqcdoVBfpkHPcClbdA90lYpylj1YrcMKMzzTN0KixnLjfcSVs5pwyS6JpLy17BpGkb-wZiU1lb8WmqVYV2hlQVus5C25xrkRqZZRGwzTKVdUAQp0IWyxI9CVrc8l-LG0Ey9Lr1CBr_oT-hHRhoCf-6_9He_SgDO5UidQKny4SSjFtFNTArJ9H0rU2tZKEi-Ej7VxKX4hDrKiQb4EQJ76o8VhkhMOaMR7A_okTuqsfNmxNQBu7uyj9nMYIPQzP1pBdrjW3XnobKyXMRwWt_YIYpsYIxslwjUKOjNJrzuKVZ_Oyxvyn1WfFCvr1_XHvwaIrWl38Mtw-T1d3avkPraaXfBxb5Dc4mGHo
  priority: 102
  providerName: ProQuest
Title Renal Fibrosis: SIRT1 Still of Value
URI https://www.ncbi.nlm.nih.gov/pubmed/39335456
https://www.proquest.com/docview/3110387660
https://www.proquest.com/docview/3110908245
https://pubmed.ncbi.nlm.nih.gov/PMC11428497
https://doaj.org/article/50f5c51358734e88989af7020cdc8798
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KemkOoY-kcZsGFwI5mVgryZJ7S0qWtNBQNg9yE9aLLize0t39_52xnMUmhVx68cEagTQjaeazNd8AnNgyOiGVLUrvJ4VAh03nYMQH176qiVCcPg38uK6u7sT3B_kwKPVFd8ISPXBS3Jkso3SScakVF0FTtcMmKgxynHda1V2aL_q8AZjqzuCaoSsSKVeOI64_S9ns3d_qFeWLInifjHxRR9n_9GAeeKbxrcmBG5q-hr0-fszP07jfwIvQvoXdAavgOziZBRKZIhBeruarL_nNt9kty2_W88UiX8b8vllswj7cTS9vv14VfTGEwklVrotoY10j9hKoc3TSEmGSDNFSZmqQlefeMisYgocgeKy8iCo0MWqPItYJFfgB7LTLNhxC7psQGjEprW4wnlC6QYgsbaiElaVXjGXAH9ViXM8UTgUrFgYRAynT_EuZGRTbXr8TU8Yz8hek8a0s8Vx3L9D6pre-ec76GZySvQztRhyia_qkApwo8VqZc82IabHiIoOjkSTuIjdufrS46XfxynBG9PGqqsoMPm-bqSfdTGvDcpNkqGy8kBm8TwtkOyVec04RagZ6tHRGcx63tPNfHcc3pThrUasP_0NLH-HVBGOxdDXuCHbWfzbhE8ZSa3sMLy8ur3_Ojrvt8xeKXxsb
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gEmhGB8BQYEaYinaElsxw4SQhusatlWoa5DewtxbI9KVTPWVoh_ir-RuyQtjUDwtJc8xOfIZ5_vw_H9DmBXh67gQuogNCYOOBps0oMOH0yZJCVAcToaOBkkvTP-8Vycb8DPZS4MXatc6sRKUZuyoDPyPRYRlLdMkvDd5beAqkbR39VlCY1aLI7sj-8Yss3e9j_g-r6K4-7h6H0vaKoKBIWQ4Txw2qUpBjEcB4_WTmC8IazTlOJpRWKY0ZHmEXrhljOXGO6kzZ1TBkl0waVl-N0bsMlZEsYd2Dw4HHwark51CGVTRbzO0WMsDffqLPrqL_mM8lSjlMctG1iVCvjTIKxZxPZtzTXz170Ldxq_1d-vBe0ebNjpNmytoRluw-36CNCvM5vuw-7QUpcuBuTlbDx745_2h6PIP52PJxO_dP7nfLKwD-DsWqbvIXSm5dQ-Bt_k1uY8DrXK0a-RKsdQXWibcC1CI6PIA7acpqxoEMupcMYkw8iFJjf72-R6EKx6XdaIHf-hP6AVWNES3nb1ory6yJrtm4nQCWSXCSUZt4pqbuZOoqtdmELJVHnwmtYvI62AQyzyJrkBGSV8rWxfRYT4mDDuwU6LEndz0W5eSkDWaJNZ9lv2PXi5aqaedENuastFTUPl67nw4FEtMCuWWMoYecoeqJYotXhut0zHXyuscUq1VjyVT_49rhdwszc6Oc6O-4Ojp3ArRs-vvoi3A5351cI-Q89trp8328WHL9e9Q38BqBxW_w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTkIghGD8CwwI0hBPUZPYjh0khDa2amVQTd2G9hbi2IZKVTOWVoivxqfjrklDIxA87aUP8bnK2Xe-O-fudwA7OnQFF1IHoTFxwNFg0zno8Icpk6QEKE5XAx9HyeEZf38uzjfg56oWhtIqV2fi8qA2ZUF35H0WEZS3TJKw75q0iOP9wduLbwF1kKIvrat2GrWIHNkf3zF8q94M93GvX8bx4OD03WHQdBgICiHDeeC0S1MMaDgygpZPYOwhrNNU7mlFYpjRkeYReuSWM5cY7qTNnVMGSXTBpWX4v9dgU1JU1IPNvYPR8bi94SHETRXxul6PsTTs1xX1yy_mFdWsRimPO_Zw2TbgT-OwZh27mZtrpnBwB243Pqy_WwvdXdiwsy24uYZsuAW36utAv65yugc7Y0tTBhicl9Wkeu2fDMenkX8yn0ynfun8T_l0Ye_D2ZUs3wPozcqZfQS-ya3NeRxqlaOPI1WOYbvQNuFahEZGkQdstUxZ0aCXUxONaYZRDC1u9rfF9SBoZ13U6B3_od-jHWhpCXt7-aC8_JI1qpyJ0AlklwklGbeK-m_mTqLbXZhCyVR58Ir2L6MTAl-xyJtCB2SUsLayXRUR-mPCuAfbHUrU7KI7vJKArDlZquy3Hnjwoh2mmZQtN7PloqahVvZcePCwFpiWJZYyRl6zB6ojSh2euyOzydcl7jiVXSueysf_fq_ncB01M_swHB09gRsxOoF1Tt429OaXC_sUnbi5ftZoiw-fr1pBfwGOl1s0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Renal+Fibrosis%3A+SIRT1+Still+of+Value&rft.jtitle=Biomedicines&rft.au=Wu%2C+Huailiang&rft.au=Qiu%2C+Zhen&rft.au=Wang%2C+Liyan&rft.au=Li%2C+Wei&rft.date=2024-09-01&rft.issn=2227-9059&rft.eissn=2227-9059&rft.volume=12&rft.issue=9&rft_id=info:doi/10.3390%2Fbiomedicines12091942&rft_id=info%3Apmid%2F39335456&rft.externalDocID=39335456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9059&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9059&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9059&client=summon