Six problems for causal inference from fMRI

Neuroimaging (e.g. fMRI) data are increasingly used to attempt to identify not only brain regions of interest (ROIs) that are especially active during perception, cognition, and action, but also the qualitative causal relations among activity in these regions (known as effective connectivity; Fristo...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 49; no. 2; pp. 1545 - 1558
Main Authors Ramsey, J.D., Hanson, S.J., Hanson, C., Halchenko, Y.O., Poldrack, R.A., Glymour, C.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.01.2010
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neuroimaging (e.g. fMRI) data are increasingly used to attempt to identify not only brain regions of interest (ROIs) that are especially active during perception, cognition, and action, but also the qualitative causal relations among activity in these regions (known as effective connectivity; Friston, 1994). Previous investigations and anatomical and physiological knowledge may somewhat constrain the possible hypotheses, but there often remains a vast space of possible causal structures. To find actual effective connectivity relations, search methods must accommodate indirect measurements of nonlinear time series dependencies, feedback, multiple subjects possibly varying in identified regions of interest, and unknown possible location-dependent variations in BOLD response delays. We describe combinations of procedures that under these conditions find feed-forward sub-structure characteristic of a group of subjects. The method is illustrated with an empirical data set and confirmed with simulations of time series of non-linear, randomly generated, effective connectivities, with feedback, subject to random differences of BOLD delays, with regions of interest missing at random for some subjects, measured with noise approximating the signal to noise ratio of the empirical data.
AbstractList Neuroimaging (e.g. fMRI) data are increasingly used to attempt to identify not only brain regions of interest (ROIs) that are especially active during perception, cognition, and action, but also the qualitative causal relations among activity in these regions (known as effective connectivity; Friston, 1994). Previous investigations and anatomical and physiological knowledge may somewhat constrain the possible hypotheses, but there often remains a vast space of possible causal structures. To find actual effective connectivity relations, search methods must accommodate indirect measurements of nonlinear time series dependencies, feedback, multiple subjects possibly varying in identified regions of interest, and unknown possible location-dependent variations in BOLD response delays. We describe combinations of procedures that under these conditions find feed-forward sub-structure characteristic of a group of subjects. The method is illustrated with an empirical data set and confirmed with simulations of time series of non-linear, randomly generated, effective connectivities, with feedback, subject to random differences of BOLD delays, with regions of interest missing at random for some subjects, measured with noise approximating the signal to noise ratio of the empirical data.
Neuroimaging (e.g. fMRI) data are increasingly used to attempt to identify not only brain regions of interest (ROIs) that are especially active during perception, cognition, and action, but also the qualitative causal relations among activity in these regions (known aseffective connectivity; Friston, 1994). Previous investigations and anatomical and physiological knowledge may somewhat constrain the possible hypotheses, but there often remains a vast space of possible causal structures. To find actual effective connectivity relations, search methods must accommodate indirect measurements of nonlinear time series dependencies, feedback, multiple subjects possibly varying in identified regions of interest, and unknown possible location-dependent variations in BOLD response delays. We describe combinations of procedures that under these conditions find feed-forward sub-structure characteristic of a group of subjects. The method is illustrated with an empirical data set and confirmed with simulations of time series of non-linear, randomly generated, effective connectivities, with feedback, subject to random differences of BOLD delays, with regions of interest missing at random for some subjects, measured with noise approximating the signal to noise ratio of the empirical data.
Neuroimaging (e.g. fMRI) data are increasingly used to attempt to identify not only brain regions of interest (ROIs) that are especially active during perception, cognition, and action, but also the qualitative causal relations among activity in these regions (known as effective connectivity; Friston, 1994). Previous investigations and anatomical and physiological knowledge may somewhat constrain the possible hypotheses, but there often remains a vast space of possible causal structures. To find actual effective connectivity relations, search methods must accommodate indirect measurements of nonlinear time series dependencies, feedback, multiple subjects possibly varying in identified regions of interest, and unknown possible location-dependent variations in BOLD response delays. We describe combinations of procedures that under these conditions find feed-forward sub-structure characteristic of a group of subjects. The method is illustrated with an empirical data set and confirmed with simulations of time series of non-linear, randomly generated, effective connectivities, with feedback, subject to random differences of BOLD delays, with regions of interest missing at random for some subjects, measured with noise approximating the signal to noise ratio of the empirical data.Neuroimaging (e.g. fMRI) data are increasingly used to attempt to identify not only brain regions of interest (ROIs) that are especially active during perception, cognition, and action, but also the qualitative causal relations among activity in these regions (known as effective connectivity; Friston, 1994). Previous investigations and anatomical and physiological knowledge may somewhat constrain the possible hypotheses, but there often remains a vast space of possible causal structures. To find actual effective connectivity relations, search methods must accommodate indirect measurements of nonlinear time series dependencies, feedback, multiple subjects possibly varying in identified regions of interest, and unknown possible location-dependent variations in BOLD response delays. We describe combinations of procedures that under these conditions find feed-forward sub-structure characteristic of a group of subjects. The method is illustrated with an empirical data set and confirmed with simulations of time series of non-linear, randomly generated, effective connectivities, with feedback, subject to random differences of BOLD delays, with regions of interest missing at random for some subjects, measured with noise approximating the signal to noise ratio of the empirical data.
Author Halchenko, Y.O.
Hanson, S.J.
Hanson, C.
Glymour, C.
Poldrack, R.A.
Ramsey, J.D.
Author_xml – sequence: 1
  givenname: J.D.
  surname: Ramsey
  fullname: Ramsey, J.D.
  email: jdramsey@andrew.cmu.edu
  organization: Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA 15213
– sequence: 2
  givenname: S.J.
  surname: Hanson
  fullname: Hanson, S.J.
  organization: Department of Psychology, Rutgers University, Rumba Lab
– sequence: 3
  givenname: C.
  surname: Hanson
  fullname: Hanson, C.
  organization: Department of Psychology, Rutgers University, Rumba Lab
– sequence: 4
  givenname: Y.O.
  surname: Halchenko
  fullname: Halchenko, Y.O.
  organization: Department of Psychology, Rutgers University, Rumba Lab
– sequence: 5
  givenname: R.A.
  surname: Poldrack
  fullname: Poldrack, R.A.
  organization: Imaging Research Center and Departments of Psychology and Neurobiology, University of Texas at Austin
– sequence: 6
  givenname: C.
  surname: Glymour
  fullname: Glymour, C.
  organization: Department of Philosophy, Carnegie Mellon University, and Florida Institute for Human and Machine Cognition
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19747552$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtrFTEYQINU7EP_ggwIupAZvySTmWQj2uKjUBF8rEMm80VynUnaZEbaf28utyrche0q3-Lk5HGOyUGIAQmpKDQUaPdq0wRcU_Sz-YENA1ANyAY68YAcUVCiVqJnB9tZ8FpSqg7Jcc4bKCBt5SNySFXf9kKwI_Lyq7-uLlMcJpxz5WKqrFmzmSofHCYMFiuX4ly5T1_OH5OHzkwZn9yuJ-T7-3ffzj7WF58_nJ-9vait6GGpR3AOUCEXYhQ4cLDWDkOneq7YgDj2ikrDbCcN2rZtuZGDlcgGkMLZMvET8mLnLfe6WjEvevbZ4jSZgHHNuuct7blgopDP_0vyjgnR9XeDjFIhFbACPtsDN3FNoTxXUwGdBAWtLNTTW2odZhz1ZSop0o3-868FeL0DbIo5J3Ta-sUsPoYlGT9pCnobUm_0v5B6G1KD1CVkEcg9wd8z7t56utuKpdEvj0ln67clR5_QLnqM_j6SN3sSO_ngrZl-4s39FL8Bz4PS5w
CitedBy_id crossref_primary_10_1002_meet_14505001016
crossref_primary_10_1007_s11065_015_9294_9
crossref_primary_10_1177_0149206312439471
crossref_primary_10_1371_journal_pcbi_1006957
crossref_primary_10_1080_15427560_2016_1238372
crossref_primary_10_1002_ima_20225
crossref_primary_10_3390_e21070661
crossref_primary_10_1016_j_neunet_2022_02_005
crossref_primary_10_1016_j_neuroimage_2011_11_054
crossref_primary_10_1016_j_neuroimage_2016_04_022
crossref_primary_10_1016_j_neuroimage_2019_116367
crossref_primary_10_1162_neco_a_01323
crossref_primary_10_1162_NECO_a_00690
crossref_primary_10_1523_JNEUROSCI_1385_19_2020
crossref_primary_10_1007_s12264_012_1244_4
crossref_primary_10_1109_TNNLS_2021_3106299
crossref_primary_10_4236_jcc_2023_118011
crossref_primary_10_1016_j_neuroimage_2017_02_005
crossref_primary_10_1002_bies_201900135
crossref_primary_10_1016_j_neuroimage_2013_10_020
crossref_primary_10_1016_j_neubiorev_2022_104956
crossref_primary_10_1016_j_neuroimage_2010_12_039
crossref_primary_10_1016_j_jneumeth_2016_12_019
crossref_primary_10_1007_s12376_010_0052_2
crossref_primary_10_1016_j_bpsc_2018_12_005
crossref_primary_10_1002_mrm_26583
crossref_primary_10_1016_j_neuroimage_2018_05_058
crossref_primary_10_3389_fnhum_2022_870091
crossref_primary_10_1162_jocn_a_01022
crossref_primary_10_1001_jamapsychiatry_2018_2151
crossref_primary_10_1109_JBHI_2022_3201752
crossref_primary_10_1162_netn_a_00384
crossref_primary_10_1016_j_neuroimage_2021_118017
crossref_primary_10_1016_j_neuri_2022_100104
crossref_primary_10_1111_jnp_12328
crossref_primary_10_1016_j_plrev_2015_11_003
crossref_primary_10_3389_fninf_2021_656486
crossref_primary_10_1016_j_mri_2024_01_010
crossref_primary_10_1016_j_neuroimage_2010_09_052
crossref_primary_10_1145_3154524
crossref_primary_10_1146_annurev_psych_093008_100438
crossref_primary_10_1371_journal_pone_0152600
crossref_primary_10_1086_715518
crossref_primary_10_1093_brain_aww157
crossref_primary_10_3389_fncom_2014_00131
crossref_primary_10_1016_j_ijpsycho_2021_12_008
crossref_primary_10_1016_j_neures_2012_01_002
crossref_primary_10_1016_j_uclim_2020_100659
crossref_primary_10_1016_j_ijar_2013_03_013
crossref_primary_10_1038_nn_4406
crossref_primary_10_1016_j_neuroimage_2011_08_007
crossref_primary_10_1214_17_AOS1643
crossref_primary_10_1073_pnas_1515657113
crossref_primary_10_1016_j_neuroimage_2012_01_142
crossref_primary_10_1089_brain_2012_0091
crossref_primary_10_1016_j_neuroimage_2012_01_022
crossref_primary_10_1089_brain_2014_0283
crossref_primary_10_1080_13607863_2015_1109058
crossref_primary_10_1016_j_neuroimage_2016_11_037
crossref_primary_10_1080_01621459_2014_922886
crossref_primary_10_1109_TMI_2020_2970375
crossref_primary_10_1016_j_ijar_2021_12_010
crossref_primary_10_1007_s11682_021_00566_w
crossref_primary_10_1016_j_neuroimage_2012_11_006
crossref_primary_10_1371_journal_pbio_3001686
crossref_primary_10_1016_j_neuroimage_2015_10_062
crossref_primary_10_1089_brain_2011_0008
crossref_primary_10_1016_j_neuroimage_2011_06_068
crossref_primary_10_1002_hbm_22348
crossref_primary_10_1016_j_neuroimage_2011_09_025
crossref_primary_10_1007_s11517_022_02628_7
crossref_primary_10_1088_1741_2552_ac9d66
crossref_primary_10_1016_j_bpsc_2015_12_006
crossref_primary_10_1038_nrgastro_2014_89
crossref_primary_10_1162_netn_a_00062
crossref_primary_10_1016_j_neuroimage_2013_09_062
crossref_primary_10_1162_netn_a_00061
crossref_primary_10_1016_j_neuroimage_2010_08_063
crossref_primary_10_1109_TBME_2017_2738035
crossref_primary_10_3389_fnins_2019_01290
crossref_primary_10_1145_2770878
crossref_primary_10_1016_j_neuroimage_2014_09_019
crossref_primary_10_1002_brb3_2695
crossref_primary_10_1016_j_neuroimage_2012_02_048
crossref_primary_10_1038_s41598_020_57895_x
crossref_primary_10_2333_bhmk_41_41
crossref_primary_10_1016_j_neuroimage_2010_07_022
crossref_primary_10_1162_jocn_a_01591
crossref_primary_10_1097_PR9_0000000000000752
crossref_primary_10_1186_s12888_020_02831_6
crossref_primary_10_1038_srep40268
crossref_primary_10_1007_s11165_017_9626_2
crossref_primary_10_1214_17_BJPS375
crossref_primary_10_1038_s41598_019_43033_9
crossref_primary_10_1002_hbm_23216
crossref_primary_10_1111_desc_13238
crossref_primary_10_1016_j_neuroimage_2012_06_026
crossref_primary_10_1080_00273171_2016_1256187
crossref_primary_10_1371_journal_pone_0245776
crossref_primary_10_1016_j_jsxm_2022_03_217
crossref_primary_10_1214_16_BA1030
crossref_primary_10_1007_s00112_012_2753_y
crossref_primary_10_1007_s41465_023_00264_z
crossref_primary_10_1038_s41562_018_0466_5
crossref_primary_10_1111_phc3_12470
crossref_primary_10_1016_j_bspc_2023_105364
crossref_primary_10_1152_jn_00333_2015
crossref_primary_10_1007_s41060_016_0032_z
crossref_primary_10_1016_j_neuron_2016_05_014
crossref_primary_10_1016_j_neucom_2011_11_005
crossref_primary_10_3390_brainsci13070995
crossref_primary_10_1038_s41598_018_23996_x
crossref_primary_10_3389_fnins_2017_00093
crossref_primary_10_7554_eLife_84888
crossref_primary_10_1523_JNEUROSCI_0926_22_2023
crossref_primary_10_3389_fnsys_2022_817962
crossref_primary_10_3390_a11050070
crossref_primary_10_1007_s11023_017_9447_0
crossref_primary_10_1016_j_neuron_2023_01_023
crossref_primary_10_3389_fnins_2018_00287
crossref_primary_10_1111_psyp_13918
crossref_primary_10_3389_fnhum_2014_00593
crossref_primary_10_1177_0962280217713347
crossref_primary_10_1371_journal_pone_0032466
crossref_primary_10_1109_JSTSP_2016_2601144
crossref_primary_10_1016_j_neuroimage_2015_01_036
crossref_primary_10_1038_tp_2016_199
crossref_primary_10_1093_jamia_ocv059
crossref_primary_10_1109_TNNLS_2021_3072149
crossref_primary_10_1089_brain_2013_0161
crossref_primary_10_1016_j_conb_2020_10_004
crossref_primary_10_3389_fnins_2015_00304
crossref_primary_10_1002_hbm_23542
crossref_primary_10_1001_jamapsychiatry_2021_1580
crossref_primary_10_1016_j_neuroimage_2017_05_047
crossref_primary_10_1109_JBHI_2019_2893880
crossref_primary_10_1016_j_neuroimage_2010_07_065
crossref_primary_10_1007_s00429_010_0276_7
crossref_primary_10_1162_netn_a_00099
crossref_primary_10_1016_j_neuroimage_2018_03_074
crossref_primary_10_1080_02331888_2015_1060237
crossref_primary_10_3390_brainsci11030329
crossref_primary_10_1002_hbm_23174
crossref_primary_10_7554_eLife_52443
crossref_primary_10_1017_S1355617715001034
crossref_primary_10_26599_BSA_2019_9050020
crossref_primary_10_1111_ncn3_12508
crossref_primary_10_1007_s10677_023_10369_1
crossref_primary_10_3389_fnhum_2014_00435
crossref_primary_10_1038_npp_2015_150
crossref_primary_10_3389_fnins_2019_00585
crossref_primary_10_1007_s11571_023_09945_z
crossref_primary_10_1016_j_neurenf_2013_02_003
crossref_primary_10_1093_cercor_bhq215
crossref_primary_10_1214_16_AOAS940
crossref_primary_10_3389_fnbeh_2014_00380
crossref_primary_10_1016_j_tics_2013_09_016
crossref_primary_10_1177_2167702619867098
crossref_primary_10_1108_EJM_02_2017_0122
crossref_primary_10_1038_s41598_018_31525_z
crossref_primary_10_3389_fnins_2021_696639
crossref_primary_10_1093_cercor_bhaa240
crossref_primary_10_1089_brain_2012_0130
crossref_primary_10_3389_fnhum_2016_00563
crossref_primary_10_1258_ar_2011_110262
crossref_primary_10_1016_j_dcn_2011_02_001
crossref_primary_10_1016_j_bandc_2021_105725
crossref_primary_10_1016_j_neuron_2012_06_002
crossref_primary_10_1016_j_neuroimage_2017_08_010
crossref_primary_10_1016_j_neuroimage_2020_117491
crossref_primary_10_1038_s41593_019_0510_4
crossref_primary_10_1016_j_neuron_2016_09_018
crossref_primary_10_1002_nbm_5280
crossref_primary_10_1093_bjps_axv019
crossref_primary_10_1016_j_neuroimage_2012_01_071
crossref_primary_10_1098_rsta_2020_0256
crossref_primary_10_1162_jocn_a_01623
crossref_primary_10_1038_s41598_021_93190_z
crossref_primary_10_1016_j_neuroimage_2018_12_042
crossref_primary_10_1523_JNEUROSCI_3049_17_2018
crossref_primary_10_1016_j_nicl_2018_09_016
crossref_primary_10_1089_brain_2020_0766
crossref_primary_10_1016_j_csda_2019_05_007
crossref_primary_10_1016_j_jneumeth_2016_03_010
crossref_primary_10_1146_annurev_clinpsy_032814_112753
crossref_primary_10_1214_14_BA913
crossref_primary_10_1186_s12916_021_01962_1
crossref_primary_10_1523_JNEUROSCI_0578_17_2017
crossref_primary_10_1016_j_neuroimage_2022_119211
crossref_primary_10_1523_JNEUROSCI_1574_17_2017
crossref_primary_10_1523_JNEUROSCI_0573_12_2012
crossref_primary_10_1007_s10827_010_0271_2
crossref_primary_10_1002_wcs_1650
crossref_primary_10_3390_brainsci10090626
crossref_primary_10_1016_j_neuroimage_2016_07_058
crossref_primary_10_1016_j_jspi_2018_03_004
crossref_primary_10_3389_fnins_2017_00271
crossref_primary_10_1007_s11002_014_9335_9
crossref_primary_10_1007_s41237_016_0010_8
crossref_primary_10_1109_TMI_2018_2831261
crossref_primary_10_1371_journal_pone_0017461
crossref_primary_10_1371_journal_pone_0091322
Cites_doi 10.1177/089443939100900106
10.1016/j.neuroimage.2004.11.017
10.1214/aos/1176344136
10.1016/j.neuroimage.2006.01.031
10.1097/00001756-200107030-00039
10.1046/j.0305-9049.2003.00087.x
10.1080/01621459.1997.10473634
10.1098/rstb.2005.1641
10.1016/j.neuroimage.2009.03.025
10.1093/scan/nsm019
10.1162/jocn.2007.19.10.1643
10.1016/j.neuroimage.2006.11.040
10.1006/nimg.2002.1107
10.1016/j.neuroimage.2004.07.041
10.1006/nimg.2000.0544
10.1002/hbm.460020107
10.1006/nimg.2000.0568
10.1006/nimg.2001.0931
10.1088/0954-898X/14/4/305
10.1002/hbm.460020104
10.1007/s00429-007-0160-2
10.1016/j.mri.2008.05.003
10.1007/s11023-008-9096-4
10.2307/1912791
ContentType Journal Article
Copyright 2009 Elsevier Inc.
Copyright Elsevier Limited Jan 15, 2010
Copyright_xml – notice: 2009 Elsevier Inc.
– notice: Copyright Elsevier Limited Jan 15, 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7QO
7U5
L7M
7X8
DOI 10.1016/j.neuroimage.2009.08.065
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest One Psychology
Engineering Research Database
MEDLINE - Academic
Technology Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 1558
ExternalDocumentID 3244767671
19747552
10_1016_j_neuroimage_2009_08_065
S105381190900977X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
.1-
.FO
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AFRHN
AGHFR
AGQPQ
AGRNS
AIGII
AJUYK
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
GBLVA
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
Z5R
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7QO
7U5
L7M
7X8
ID FETCH-LOGICAL-c570t-d0ff0e9e355d5eb30cccbb697392beed7918a2c68aec4443a8bc8e2b085fcc8e3
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Fri Jul 11 10:48:22 EDT 2025
Fri Jul 11 04:12:37 EDT 2025
Thu Aug 07 15:03:33 EDT 2025
Wed Aug 13 06:00:46 EDT 2025
Mon Jul 21 05:59:28 EDT 2025
Thu Apr 24 23:09:55 EDT 2025
Tue Jul 01 02:14:33 EDT 2025
Fri Feb 23 02:20:32 EST 2024
Tue Aug 26 18:05:30 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c570t-d0ff0e9e355d5eb30cccbb697392beed7918a2c68aec4443a8bc8e2b085fcc8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S105381190900977X
PMID 19747552
PQID 1506809048
PQPubID 2031077
PageCount 14
ParticipantIDs proquest_miscellaneous_734173525
proquest_miscellaneous_36255675
proquest_miscellaneous_21158902
proquest_journals_1506809048
pubmed_primary_19747552
crossref_citationtrail_10_1016_j_neuroimage_2009_08_065
crossref_primary_10_1016_j_neuroimage_2009_08_065
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2009_08_065
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2009_08_065
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-01-15
PublicationDateYYYYMMDD 2010-01-15
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2010
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Spirtes (bib29) 1995
Spirtes, Glymour (bib30) 1991; 9
Meek, C. (1997). Graphical Models: Selecting causal and statistical models. PhD thesis, Carnegie Mellon University.
Chickering (bib4) 2002; 3
Hoyer, Shimizu, Kerminen (bib14) 2006
Penny, Stephan, Mechelli, Friston (bib22) 2004; 23
Richardson, T. (1996) A discovery algorithm for directed cyclic graphs. Proceedings of the 1996 Conference on Uncertainty in Artificial Intelligence.
Mcintosh, Gonzalez-Lima (bib18) 1994; 2
Eichler (bib7) 2005; 360
Lacerda, Spirtes, Ramsey, Hoyer (bib16) 2008
Roebroeck, Formisano, Goebel (bib26) 2005; 25
Xue, Poldrack (bib37) 2007; 19
Breakspear, Terry, Friston (bib1) 2003; 14
Demiralp, Hoover (bib6) 2003; 65
Lazar, Luna, Sweeney, Eddy (bib17) 2002; 16
Spirtes, Glymour, Scheines (bib31) 1993
Silva, Glymour, Scheines, Spirtes (bib41) 2006; 7
Worsley (bib36) 2003
Granger (bib11) 1969; 37
Ramsey, Spirtes, Zhang (bib24) 2006
Chen, Herskovitz (bib3) 2007; 35
Hanson, Hanson, Halchenko, Matsuka, Zaimi (bib13) 2007; 212
Swanson, Granger (bib34) 1996; 92
Woolrich, Ripley, Brady, Smith (bib35) 2001; 14
Glymour (bib9) 2003
Glymour, Scheines, Spirtes, Kelly (bib10) 1987
Stephan, Penny, Daunizeau, Moran, Friston (bib33) 2009; 46
Poline (bib23) 2003
Demarco, Vrignaud, Destrieux, Demarco, Testelin, Devauchelle, Berquin (bib5) 2009; 27
Kaas (bib15) 2004
Rubin (bib27) 1987
Mumford, Poldrack (bib21) 2007; 2
Bullmore, Horwitz, Honey, Brammer, Williams, Sharma (bib2) 2000; 11
Spirtes, Glymour, Scheines (bib32) 2000
Hanson, Bly (bib12) 2000; 12
Miezin, Maccotta, Ollinger, Petersen, Buckner (bib20) 2000; 11
Friston (bib8) 1994; 2
Schwarz (bib28) 1978; 6
Yule (bib38) 1919
Zhang, Spirtes (bib39) 2008; 7
Zheng, Rajapake (bib40) 2006; 31
Stephan (10.1016/j.neuroimage.2009.08.065_bib33) 2009; 46
Chickering (10.1016/j.neuroimage.2009.08.065_bib4) 2002; 3
Glymour (10.1016/j.neuroimage.2009.08.065_bib9) 2003
Lacerda (10.1016/j.neuroimage.2009.08.065_bib16) 2008
Xue (10.1016/j.neuroimage.2009.08.065_bib37) 2007; 19
Roebroeck (10.1016/j.neuroimage.2009.08.065_bib26) 2005; 25
Granger (10.1016/j.neuroimage.2009.08.065_bib11) 1969; 37
10.1016/j.neuroimage.2009.08.065_bib19
Spirtes (10.1016/j.neuroimage.2009.08.065_bib30) 1991; 9
Yule (10.1016/j.neuroimage.2009.08.065_bib38) 1919
Miezin (10.1016/j.neuroimage.2009.08.065_bib20) 2000; 11
Eichler (10.1016/j.neuroimage.2009.08.065_bib7) 2005; 360
Penny (10.1016/j.neuroimage.2009.08.065_bib22) 2004; 23
Hoyer (10.1016/j.neuroimage.2009.08.065_bib14) 2006
Ramsey (10.1016/j.neuroimage.2009.08.065_bib24) 2006
Rubin (10.1016/j.neuroimage.2009.08.065_bib27) 1987
Mcintosh (10.1016/j.neuroimage.2009.08.065_bib18) 1994; 2
Mumford (10.1016/j.neuroimage.2009.08.065_bib21) 2007; 2
Spirtes (10.1016/j.neuroimage.2009.08.065_bib32) 2000
Poline (10.1016/j.neuroimage.2009.08.065_bib23) 2003
Swanson (10.1016/j.neuroimage.2009.08.065_bib34) 1996; 92
Demiralp (10.1016/j.neuroimage.2009.08.065_bib6) 2003; 65
Schwarz (10.1016/j.neuroimage.2009.08.065_bib28) 1978; 6
Silva (10.1016/j.neuroimage.2009.08.065_bib41) 2006; 7
Kaas (10.1016/j.neuroimage.2009.08.065_bib15) 2004
Chen (10.1016/j.neuroimage.2009.08.065_bib3) 2007; 35
Hanson (10.1016/j.neuroimage.2009.08.065_bib13) 2007; 212
Zheng (10.1016/j.neuroimage.2009.08.065_bib40) 2006; 31
Glymour (10.1016/j.neuroimage.2009.08.065_bib10) 1987
Friston (10.1016/j.neuroimage.2009.08.065_bib8) 1994; 2
10.1016/j.neuroimage.2009.08.065_bib25
Zhang (10.1016/j.neuroimage.2009.08.065_bib39) 2008; 7
Hanson (10.1016/j.neuroimage.2009.08.065_bib12) 2000; 12
Bullmore (10.1016/j.neuroimage.2009.08.065_bib2) 2000; 11
Demarco (10.1016/j.neuroimage.2009.08.065_bib5) 2009; 27
Breakspear (10.1016/j.neuroimage.2009.08.065_bib1) 2003; 14
Woolrich (10.1016/j.neuroimage.2009.08.065_bib35) 2001; 14
Lazar (10.1016/j.neuroimage.2009.08.065_bib17) 2002; 16
Spirtes (10.1016/j.neuroimage.2009.08.065_bib29) 1995
Spirtes (10.1016/j.neuroimage.2009.08.065_bib31) 1993
Worsley (10.1016/j.neuroimage.2009.08.065_bib36) 2003
References_xml – volume: 23
  start-page: S264
  year: 2004
  end-page: S274
  ident: bib22
  article-title: Modelling functional integration: a comparison of structural equation and dynamic causal models
  publication-title: Neuroimage
– volume: 19
  start-page: 1643
  year: 2007
  end-page: 1655
  ident: bib37
  article-title: The neural substrates of visual perceptual learning of words: implications for the visual word form area hypothesis
  publication-title: J. Cogn. Neurosci.
– volume: 2
  start-page: 2
  year: 1994
  end-page: 22
  ident: bib18
  article-title: Structural equation modeling and its application to network analysis in functional brain imaging
  publication-title: [My Copy] Hum. Brain Mapp.
– volume: 7
  start-page: 191
  year: 2006
  end-page: 246
  ident: bib41
  article-title: Learning the structure of latent linear structure models
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 239
  year: 2008
  end-page: 271
  ident: bib39
  article-title: Detection of unfaithfulness and robust causal inference
  publication-title: Minds Mach
– volume: 14
  start-page: 703
  year: 2003
  end-page: 732
  ident: bib1
  article-title: Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics
  publication-title: Netw. Comput. Neural Syst.
– year: 1987
  ident: bib10
  article-title: Discovering Causal Structure
– volume: 35
  start-page: 635
  year: 2007
  end-page: 647
  ident: bib3
  article-title: Graphical model based functional analysis of fMRI images
  publication-title: NeuroImage
– volume: 6
  start-page: 451
  year: 1978
  end-page: 464
  ident: bib28
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
– volume: 11
  start-page: 735
  year: 2000
  end-page: 759
  ident: bib20
  article-title: Characterizing the hemodynamic response: effects of presentation rate, sampling procedure and the possibility of ordering brain activity based on relative timing
  publication-title: NeuroImage
– year: 1987
  ident: bib27
  article-title: Multiple Imputation for Nonresponse in Surveys
– year: 2000
  ident: bib32
  article-title: Causation, Prediction and Search
– volume: 14
  start-page: 1370
  year: 2001
  end-page: 1386
  ident: bib35
  article-title: Temporal autocorrelation in univariate linear modeling of FMRI data
  publication-title: NeuroImage
– start-page: 155
  year: 2006
  end-page: 162
  ident: bib14
  article-title: Estimation of linear, non-gaussian causal models in the presence of confounding latent variables
  publication-title: Proc.Third European Workshop on Probabilistic Graphical Models (PGM'06)
– volume: 2
  start-page: 251
  year: 2007
  end-page: 257
  ident: bib21
  article-title: Modeling group fMRI data
  publication-title: Soc. Cogn. Affect. Neurosci.
– volume: 37
  start-page: 424
  year: 1969
  end-page: 438
  ident: bib11
  article-title: Investigating causal relation by econometric and cross-sectional method
  publication-title: Econometrica
– volume: 92
  start-page: 357
  year: 1996
  end-page: 367
  ident: bib34
  article-title: Impulse response functions based on a causal approach to residual orthogonalization in vector autoregressions
  publication-title: J. Am. Stat. Assoc.
– year: 2008
  ident: bib16
  article-title: Discovering cyclic causal models by independent components analysis
  publication-title: Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence
– start-page: 401
  year: 2006
  end-page: 408
  ident: bib24
  article-title: Adjacency—faithfulness and conservative causal inference
  publication-title: Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence
– year: 2003
  ident: bib36
  article-title: Statistical analysis of activation images
  publication-title: Functional MRI: An Introduction to Methods
– volume: 12
  start-page: 1971
  year: 2000
  end-page: 1977
  ident: bib12
  article-title: The distribution of BOLD susceptibility effects in the brain is non-Gaussian
  publication-title: NeuroReport
– volume: 360
  start-page: 953
  year: 2005
  end-page: 967
  ident: bib7
  article-title: A graphical approach for evaluating effective connectivity in neural systems
  publication-title: Philos. Trans. R. Soc., B
– volume: 46
  start-page: 1004
  year: 2009
  end-page: 1017
  ident: bib33
  article-title: Bayesian model selection for group studies
  publication-title: NeuroImage
– year: 1919
  ident: bib38
  article-title: An Introduction to the Theory of Statistics
– reference: Richardson, T. (1996) A discovery algorithm for directed cyclic graphs. Proceedings of the 1996 Conference on Uncertainty in Artificial Intelligence.
– start-page: 1995
  year: 1995
  ident: bib29
  article-title: Directed cyclic graphical representation of feedback models
  publication-title: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
– volume: 25
  start-page: 230
  year: 2005
  end-page: 242
  ident: bib26
  article-title: Mapping directed influence over the brain using Granger causality and fMRI
  publication-title: NeuroImage
– volume: 9
  start-page: 62
  year: 1991
  end-page: 72
  ident: bib30
  article-title: An algorithm for fast recovery of sparse causal graphs
  publication-title: Soc. Sci. Comput. Rev.
– volume: 3
  start-page: 507
  year: 2002
  end-page: 554
  ident: bib4
  article-title: Optimal structure identification with greedy search
  publication-title: Mach. Learn. Res.
– volume: 16
  start-page: 538
  year: 2002
  end-page: 550
  ident: bib17
  article-title: Combining brains: a survey of methods for statistical pooling of information
  publication-title: NeuroImage
– volume: 11
  start-page: 289
  year: 2000
  end-page: 301
  ident: bib2
  article-title: How good is good enough in path analysis of fMRI data
  publication-title: NeuroImage
– volume: 2
  start-page: 56
  year: 1994
  end-page: 78
  ident: bib8
  article-title: Functional and effective connectivity in neuroimaging: a synthesis
  publication-title: Hum. Brain Mapp.
– volume: 31
  start-page: 1601
  year: 2006
  end-page: 1613
  ident: bib40
  article-title: Learning functional structure from fMRI images
  publication-title: NeuroImage
– volume: 27
  start-page: 1
  year: 2009
  end-page: 12
  ident: bib5
  article-title: Principle of structural equation modeling for exploring functional interactivity within a putative network of interconnected brain areas
  publication-title: Magn. Reson. Imaging
– volume: 65
  start-page: 745
  year: 2003
  end-page: 767
  ident: bib6
  article-title: Search for the causal structure of a vector auto-regression
  publication-title: Oxf. Bull. Econ. Stat.
– year: 2003
  ident: bib9
  article-title: The Mind's Arrows: Bayes Nets and Graphical Causal Models in Psychology
– start-page: 15771
  year: 2004
  end-page: 15775
  ident: bib15
  article-title: Topographic maps in the brain
  publication-title: International Encyclopedia of Social and Behavioral Sciences
– volume: 212
  start-page: 231
  year: 2007
  end-page: 244
  ident: bib13
  article-title: Bottom-up and top-down brain functional connectivity underlying comprehension of every day visual action
  publication-title: Brain Struct. Funct.
– year: 2003
  ident: bib23
  article-title: Contrasts and classical inference
  publication-title: Human Brain Function
– year: 1993
  ident: bib31
  article-title: Causation, prediction and search
  publication-title: Springer Lecture Notes in Statistics
– reference: Meek, C. (1997). Graphical Models: Selecting causal and statistical models. PhD thesis, Carnegie Mellon University.
– volume: 9
  start-page: 62
  year: 1991
  ident: 10.1016/j.neuroimage.2009.08.065_bib30
  article-title: An algorithm for fast recovery of sparse causal graphs
  publication-title: Soc. Sci. Comput. Rev.
  doi: 10.1177/089443939100900106
– volume: 25
  start-page: 230
  year: 2005
  ident: 10.1016/j.neuroimage.2009.08.065_bib26
  article-title: Mapping directed influence over the brain using Granger causality and fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.11.017
– volume: 6
  start-page: 451
  year: 1978
  ident: 10.1016/j.neuroimage.2009.08.065_bib28
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– volume: 31
  start-page: 1601
  year: 2006
  ident: 10.1016/j.neuroimage.2009.08.065_bib40
  article-title: Learning functional structure from fMRI images
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.031
– volume: 12
  start-page: 1971
  year: 2000
  ident: 10.1016/j.neuroimage.2009.08.065_bib12
  article-title: The distribution of BOLD susceptibility effects in the brain is non-Gaussian
  publication-title: NeuroReport
  doi: 10.1097/00001756-200107030-00039
– start-page: 1995
  year: 1995
  ident: 10.1016/j.neuroimage.2009.08.065_bib29
  article-title: Directed cyclic graphical representation of feedback models
– ident: 10.1016/j.neuroimage.2009.08.065_bib25
– year: 1919
  ident: 10.1016/j.neuroimage.2009.08.065_bib38
– volume: 65
  start-page: 745
  year: 2003
  ident: 10.1016/j.neuroimage.2009.08.065_bib6
  article-title: Search for the causal structure of a vector auto-regression
  publication-title: Oxf. Bull. Econ. Stat.
  doi: 10.1046/j.0305-9049.2003.00087.x
– volume: 92
  start-page: 357
  year: 1996
  ident: 10.1016/j.neuroimage.2009.08.065_bib34
  article-title: Impulse response functions based on a causal approach to residual orthogonalization in vector autoregressions
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1997.10473634
– start-page: 155
  year: 2006
  ident: 10.1016/j.neuroimage.2009.08.065_bib14
  article-title: Estimation of linear, non-gaussian causal models in the presence of confounding latent variables
– start-page: 401
  year: 2006
  ident: 10.1016/j.neuroimage.2009.08.065_bib24
  article-title: Adjacency—faithfulness and conservative causal inference
– volume: 360
  start-page: 953
  year: 2005
  ident: 10.1016/j.neuroimage.2009.08.065_bib7
  article-title: A graphical approach for evaluating effective connectivity in neural systems
  publication-title: Philos. Trans. R. Soc., B
  doi: 10.1098/rstb.2005.1641
– volume: 46
  start-page: 1004
  year: 2009
  ident: 10.1016/j.neuroimage.2009.08.065_bib33
  article-title: Bayesian model selection for group studies
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.03.025
– year: 2003
  ident: 10.1016/j.neuroimage.2009.08.065_bib9
– volume: 2
  start-page: 251
  year: 2007
  ident: 10.1016/j.neuroimage.2009.08.065_bib21
  article-title: Modeling group fMRI data
  publication-title: Soc. Cogn. Affect. Neurosci.
  doi: 10.1093/scan/nsm019
– volume: 19
  start-page: 1643
  year: 2007
  ident: 10.1016/j.neuroimage.2009.08.065_bib37
  article-title: The neural substrates of visual perceptual learning of words: implications for the visual word form area hypothesis
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2007.19.10.1643
– volume: 35
  start-page: 635
  year: 2007
  ident: 10.1016/j.neuroimage.2009.08.065_bib3
  article-title: Graphical model based functional analysis of fMRI images
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.11.040
– year: 1987
  ident: 10.1016/j.neuroimage.2009.08.065_bib27
– volume: 16
  start-page: 538
  year: 2002
  ident: 10.1016/j.neuroimage.2009.08.065_bib17
  article-title: Combining brains: a survey of methods for statistical pooling of information
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1107
– volume: 23
  start-page: S264
  issue: Suppl. 1
  year: 2004
  ident: 10.1016/j.neuroimage.2009.08.065_bib22
  article-title: Modelling functional integration: a comparison of structural equation and dynamic causal models
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.041
– volume: 11
  start-page: 289
  year: 2000
  ident: 10.1016/j.neuroimage.2009.08.065_bib2
  article-title: How good is good enough in path analysis of fMRI data
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0544
– volume: 2
  start-page: 56
  year: 1994
  ident: 10.1016/j.neuroimage.2009.08.065_bib8
  article-title: Functional and effective connectivity in neuroimaging: a synthesis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460020107
– volume: 11
  start-page: 735
  year: 2000
  ident: 10.1016/j.neuroimage.2009.08.065_bib20
  article-title: Characterizing the hemodynamic response: effects of presentation rate, sampling procedure and the possibility of ordering brain activity based on relative timing
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0568
– volume: 14
  start-page: 1370
  issue: 6
  year: 2001
  ident: 10.1016/j.neuroimage.2009.08.065_bib35
  article-title: Temporal autocorrelation in univariate linear modeling of FMRI data
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0931
– year: 2003
  ident: 10.1016/j.neuroimage.2009.08.065_bib36
  article-title: Statistical analysis of activation images
– volume: 14
  start-page: 703
  year: 2003
  ident: 10.1016/j.neuroimage.2009.08.065_bib1
  article-title: Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics
  publication-title: Netw. Comput. Neural Syst.
  doi: 10.1088/0954-898X/14/4/305
– start-page: 15771
  year: 2004
  ident: 10.1016/j.neuroimage.2009.08.065_bib15
  article-title: Topographic maps in the brain
– year: 1987
  ident: 10.1016/j.neuroimage.2009.08.065_bib10
– volume: 2
  start-page: 2
  year: 1994
  ident: 10.1016/j.neuroimage.2009.08.065_bib18
  article-title: Structural equation modeling and its application to network analysis in functional brain imaging
  publication-title: [My Copy] Hum. Brain Mapp.
  doi: 10.1002/hbm.460020104
– volume: 7
  start-page: 191
  year: 2006
  ident: 10.1016/j.neuroimage.2009.08.065_bib41
  article-title: Learning the structure of latent linear structure models
  publication-title: J. Mach. Learn. Res.
– year: 1993
  ident: 10.1016/j.neuroimage.2009.08.065_bib31
  article-title: Causation, prediction and search
– volume: 212
  start-page: 231
  year: 2007
  ident: 10.1016/j.neuroimage.2009.08.065_bib13
  article-title: Bottom-up and top-down brain functional connectivity underlying comprehension of every day visual action
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-007-0160-2
– volume: 27
  start-page: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2009.08.065_bib5
  article-title: Principle of structural equation modeling for exploring functional interactivity within a putative network of interconnected brain areas
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2008.05.003
– volume: 7
  start-page: 239
  year: 2008
  ident: 10.1016/j.neuroimage.2009.08.065_bib39
  article-title: Detection of unfaithfulness and robust causal inference
  publication-title: Minds Mach
  doi: 10.1007/s11023-008-9096-4
– volume: 37
  start-page: 424
  year: 1969
  ident: 10.1016/j.neuroimage.2009.08.065_bib11
  article-title: Investigating causal relation by econometric and cross-sectional method
  publication-title: Econometrica
  doi: 10.2307/1912791
– year: 2003
  ident: 10.1016/j.neuroimage.2009.08.065_bib23
  article-title: Contrasts and classical inference
– year: 2000
  ident: 10.1016/j.neuroimage.2009.08.065_bib32
– volume: 3
  start-page: 507
  year: 2002
  ident: 10.1016/j.neuroimage.2009.08.065_bib4
  article-title: Optimal structure identification with greedy search
  publication-title: Mach. Learn. Res.
– ident: 10.1016/j.neuroimage.2009.08.065_bib19
– year: 2008
  ident: 10.1016/j.neuroimage.2009.08.065_bib16
  article-title: Discovering cyclic causal models by independent components analysis
SSID ssj0009148
Score 2.4477599
Snippet Neuroimaging (e.g. fMRI) data are increasingly used to attempt to identify not only brain regions of interest (ROIs) that are especially active during...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1545
SubjectTerms Algorithms
Automation
Brain - physiology
Computer Simulation
Databases as Topic
Economic models
Feedback, Physiological
Graphs
Magnetic Resonance Imaging - methods
Models, Neurological
Nonlinear Dynamics
Oxygen - blood
Probability distribution
Random variables
Time Factors
Time series
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kD-JFfFufPXiTun0kbYInERcV9OAD9hbSNIGKdsXugid_u5M23cVDYcFbaTOhnc7jGzIPgDMteWQKRG5JWrCAFCYKZGhIQInUJEsz9IlNtsVjevtK7sd0vALXXS2MTat0tr-16Y21dneGjpvDz7IcPiMyQHeDDo3bYoRsbCvYcXuU6YufRZoHj0hbDkeTwK522TxtjlfTM7L8QM11nSttM0_a56L6IGjjikYbsO4wpH_VvuYmrOhqC1Yf3Cn5Npw_l9--mxRT-4hKfSVnNVKUXXWfb6tKfPPwdLcDr6Obl-vbwA1FCBTNwmlQhMaEmmvECQXFSDhUSuV5ypGrcY4OL-MRk7FKmdSKEJJIlium4xyhlVF4lezCoJpUeh_8RClODcN9iSEpS6QOc6ThMkaSnCoPso4PQrmO4XZwxbvoUsPexIKDdqAlF3amZUo9iOaUn23XjCVoeMdq0VWFoh0TaNqXoL2c0_6RniWpj7o_K5wG18J2XmQoWoR5cDp_jLpnD1RkpSezWmDwTO05bf8KhAeUYkzmgd-zIkMYkdmetB7stUK14JiN9SiND_71dYew1mY8REFEj2Aw_ZrpYwRS0_yk0ZRfttYdHg
  priority: 102
  providerName: Elsevier
Title Six problems for causal inference from fMRI
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381190900977X
https://dx.doi.org/10.1016/j.neuroimage.2009.08.065
https://www.ncbi.nlm.nih.gov/pubmed/19747552
https://www.proquest.com/docview/1506809048
https://www.proquest.com/docview/21158902
https://www.proquest.com/docview/36255675
https://www.proquest.com/docview/734173525
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_WFsZextp91F2a-mFvQ5s_JEtiDyMtLem2hpKtkDchyxJkbElbJ9Cn_u092XLylJInGawz5qQ7_aQ7_Q7gk9UydRUit7yoBKGVS4lOHCWMakt5wXFNbLItRsXwhv6YsEk4cKtDWmXnExtHXc2NPyP_6pnwRCJxwn2_vSO-apSProYSGjuw56nL_KzmE74m3U1pexWO5URgh5DJ0-Z3NXyR0_9otYG10hN5sk3L0yb42SxDF2_gdcCP8aAd8H14YWcH8PIqRMjfwuff04c4VImpY0SksdHLGiWm3c2-2N8oid3V-PId3Fyc_zkbklAQgRjGkwWpEucSKy1ihIrhLjgxxpRlIVGjWYmLHZep0JkphLaGUpprURphsxJhlTP4lL-H3dl8Zg8hzo2RzAn8LnW0ELm2SYkyUmcoUjITAe_0oExgC_dFK_6pLi3sr1pr0BezlMrXsyxYBOlK8rZlzNhCRnaqVt2NUPRhCt36FrLfVrIBNbRoYEvpXjeyKlhvrdZzLYKT1Wu0Ox9M0TM7X9YKN87Mx2g390BowBjuxyKIN_TgCCG456ON4EM7qdYa8_s8xrKj5__vI7xq0xlSkrIe7C7ul_YYUdKi7MPOl8e03xhEH_YGZ-Nf1769_DkcYXt6ProePwHydBdC
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tiwRcEG8CC-sDnJBFnNixLYQQAlYtu90D7Eq9GcexpSJoF9IK-FP8RsaJ056KetlbpGQsazye-SbzAnjmrWahQeRWVo2ivAmM2jxwKrj1XFYSbWKXbXFajc75x6mY7sHfoRYmplUOOrFT1M3CxX_kL2MnPJVrFLg3Fz9onBoVo6vDCI1eLI79n1_osrWvx-_xfJ8XxdGHs3cjmqYKUCdkvqRNHkLutUdD2wh0JXPnXF1XGrdV1GgxpGbKFq5S1jvOeWlV7ZQvasQmweFTietegatoePPo7Mmp3DT5ZbwvvRMlVYzplDnU55N1_Sln31FLpC6ZsXGo2GYOt8Hdzuwd3YKbCa-St72A3YY9P78D1yYpIn8XXnye_SZpKk1LEAETZ1ctUsyGSkISK1hImHwa34PzS2HVfdifL-b-IZDSOS2CwnV54JUqrc9rpNG2QJJauAzkwAfjUnfyOCTjmxnS0L6aDQfj8Ext4vzMSmTA1pQXfYeOHWj0wGozVKCizjRoRnagfbWmTSilRx87Uh8MJ2uStmjNRrYzOFy_xnsegzd27her1qCjLmJMePsXCEWEQP8vA7LlC4mQRcb-txk86IVqw7HoVwpRPPr__g7h-uhscmJOxqfHj-FGn0rBKBMHsL_8ufJPEKEt66fdtSDw5bLv4T8HVFDY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVKq4IN7dtlAf4IQs9mHv2kIIAW3UUBpVhUq9Ga_XloIgabuJWv4av45x1k5OQbn0ttLuWNbYnvlmPfMNwCurZeYaRG5F2QjKGpdRnTpGOdOWVWWFPnGebTEsj87Zlwt-sQF_Yy2MT6uMNnFuqJuJ8f_I33omPJFKTzPrQlrE6UH_w-UV9R2k_E1rbKfRbZFj--cGw7f2_eAA1_p1nvcPv38-oqHDADW8Sqe0SZ1LrbTodBuOYWVqjKnrUuIU8xq9RyUzoXNTCm0NY6zQojbC5jXiFGfwqcBx78Fm5aOiHmx-Ohyeni0pfzPWFeLxgooskyGPqMsum7NVjn6jzQicmZ5GlK9yjqvA79wJ9h_Cg4Beycduuz2CDTt-DFsn4X7-Cbz5NroloUdNSxAPE6NnLUqMYl0h8fUsxJ2cDZ7C-Z0o6xn0xpOx3QZSGCO5Ezguc6wUhbZpjTJS5yhSc5NAFfWgTOAq9y0zfqmYlPZTLTXoW2lK5btpljyBbCF52fF1rCEjo6pVrEdFC6rQqawh-24hGzBLh0XWlN6LK6uC7WjVcqcnsL94jafeX-XosZ3MWoVhO_c3xKu_QGDCOUaDCZAVX1QIYCrPhpvA825TLTXmo0zO853_z28ftvAMqq-D4fEu3O_yKjKa8T3oTa9n9gXCtWn9MpwLAj_u-ij-A0USVnM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Six+problems+for+causal+inference+from+fMRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Ramsey%2C+J+D&rft.au=Hanson%2C+S+J&rft.au=Hanson%2C+C&rft.au=Halchenko%2C+YO&rft.date=2010-01-15&rft.issn=1053-8119&rft.volume=49&rft.issue=2&rft.spage=1545&rft.epage=1558&rft_id=info:doi/10.1016%2Fj.neuroimage.2009.08.065&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon