Six problems for causal inference from fMRI
Neuroimaging (e.g. fMRI) data are increasingly used to attempt to identify not only brain regions of interest (ROIs) that are especially active during perception, cognition, and action, but also the qualitative causal relations among activity in these regions (known as effective connectivity; Fristo...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 49; no. 2; pp. 1545 - 1558 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.01.2010
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neuroimaging (e.g. fMRI) data are increasingly used to attempt to identify not only brain regions of interest (ROIs) that are especially active during perception, cognition, and action, but also the qualitative causal relations among activity in these regions (known as effective connectivity; Friston, 1994). Previous investigations and anatomical and physiological knowledge may somewhat constrain the possible hypotheses, but there often remains a vast space of possible causal structures. To find actual effective connectivity relations, search methods must accommodate indirect measurements of nonlinear time series dependencies, feedback, multiple subjects possibly varying in identified regions of interest, and unknown possible location-dependent variations in BOLD response delays. We describe combinations of procedures that under these conditions find feed-forward sub-structure characteristic of a group of subjects. The method is illustrated with an empirical data set and confirmed with simulations of time series of non-linear, randomly generated, effective connectivities, with feedback, subject to random differences of BOLD delays, with regions of interest missing at random for some subjects, measured with noise approximating the signal to noise ratio of the empirical data. |
---|---|
AbstractList | Neuroimaging (e.g. fMRI) data are increasingly used to attempt to identify not only brain regions of interest (ROIs) that are especially active during perception, cognition, and action, but also the qualitative causal relations among activity in these regions (known as effective connectivity; Friston, 1994). Previous investigations and anatomical and physiological knowledge may somewhat constrain the possible hypotheses, but there often remains a vast space of possible causal structures. To find actual effective connectivity relations, search methods must accommodate indirect measurements of nonlinear time series dependencies, feedback, multiple subjects possibly varying in identified regions of interest, and unknown possible location-dependent variations in BOLD response delays. We describe combinations of procedures that under these conditions find feed-forward sub-structure characteristic of a group of subjects. The method is illustrated with an empirical data set and confirmed with simulations of time series of non-linear, randomly generated, effective connectivities, with feedback, subject to random differences of BOLD delays, with regions of interest missing at random for some subjects, measured with noise approximating the signal to noise ratio of the empirical data. Neuroimaging (e.g. fMRI) data are increasingly used to attempt to identify not only brain regions of interest (ROIs) that are especially active during perception, cognition, and action, but also the qualitative causal relations among activity in these regions (known aseffective connectivity; Friston, 1994). Previous investigations and anatomical and physiological knowledge may somewhat constrain the possible hypotheses, but there often remains a vast space of possible causal structures. To find actual effective connectivity relations, search methods must accommodate indirect measurements of nonlinear time series dependencies, feedback, multiple subjects possibly varying in identified regions of interest, and unknown possible location-dependent variations in BOLD response delays. We describe combinations of procedures that under these conditions find feed-forward sub-structure characteristic of a group of subjects. The method is illustrated with an empirical data set and confirmed with simulations of time series of non-linear, randomly generated, effective connectivities, with feedback, subject to random differences of BOLD delays, with regions of interest missing at random for some subjects, measured with noise approximating the signal to noise ratio of the empirical data. Neuroimaging (e.g. fMRI) data are increasingly used to attempt to identify not only brain regions of interest (ROIs) that are especially active during perception, cognition, and action, but also the qualitative causal relations among activity in these regions (known as effective connectivity; Friston, 1994). Previous investigations and anatomical and physiological knowledge may somewhat constrain the possible hypotheses, but there often remains a vast space of possible causal structures. To find actual effective connectivity relations, search methods must accommodate indirect measurements of nonlinear time series dependencies, feedback, multiple subjects possibly varying in identified regions of interest, and unknown possible location-dependent variations in BOLD response delays. We describe combinations of procedures that under these conditions find feed-forward sub-structure characteristic of a group of subjects. The method is illustrated with an empirical data set and confirmed with simulations of time series of non-linear, randomly generated, effective connectivities, with feedback, subject to random differences of BOLD delays, with regions of interest missing at random for some subjects, measured with noise approximating the signal to noise ratio of the empirical data.Neuroimaging (e.g. fMRI) data are increasingly used to attempt to identify not only brain regions of interest (ROIs) that are especially active during perception, cognition, and action, but also the qualitative causal relations among activity in these regions (known as effective connectivity; Friston, 1994). Previous investigations and anatomical and physiological knowledge may somewhat constrain the possible hypotheses, but there often remains a vast space of possible causal structures. To find actual effective connectivity relations, search methods must accommodate indirect measurements of nonlinear time series dependencies, feedback, multiple subjects possibly varying in identified regions of interest, and unknown possible location-dependent variations in BOLD response delays. We describe combinations of procedures that under these conditions find feed-forward sub-structure characteristic of a group of subjects. The method is illustrated with an empirical data set and confirmed with simulations of time series of non-linear, randomly generated, effective connectivities, with feedback, subject to random differences of BOLD delays, with regions of interest missing at random for some subjects, measured with noise approximating the signal to noise ratio of the empirical data. |
Author | Halchenko, Y.O. Hanson, S.J. Hanson, C. Glymour, C. Poldrack, R.A. Ramsey, J.D. |
Author_xml | – sequence: 1 givenname: J.D. surname: Ramsey fullname: Ramsey, J.D. email: jdramsey@andrew.cmu.edu organization: Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA 15213 – sequence: 2 givenname: S.J. surname: Hanson fullname: Hanson, S.J. organization: Department of Psychology, Rutgers University, Rumba Lab – sequence: 3 givenname: C. surname: Hanson fullname: Hanson, C. organization: Department of Psychology, Rutgers University, Rumba Lab – sequence: 4 givenname: Y.O. surname: Halchenko fullname: Halchenko, Y.O. organization: Department of Psychology, Rutgers University, Rumba Lab – sequence: 5 givenname: R.A. surname: Poldrack fullname: Poldrack, R.A. organization: Imaging Research Center and Departments of Psychology and Neurobiology, University of Texas at Austin – sequence: 6 givenname: C. surname: Glymour fullname: Glymour, C. organization: Department of Philosophy, Carnegie Mellon University, and Florida Institute for Human and Machine Cognition |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19747552$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtrFTEYQINU7EP_ggwIupAZvySTmWQj2uKjUBF8rEMm80VynUnaZEbaf28utyrche0q3-Lk5HGOyUGIAQmpKDQUaPdq0wRcU_Sz-YENA1ANyAY68YAcUVCiVqJnB9tZ8FpSqg7Jcc4bKCBt5SNySFXf9kKwI_Lyq7-uLlMcJpxz5WKqrFmzmSofHCYMFiuX4ly5T1_OH5OHzkwZn9yuJ-T7-3ffzj7WF58_nJ-9vait6GGpR3AOUCEXYhQ4cLDWDkOneq7YgDj2ikrDbCcN2rZtuZGDlcgGkMLZMvET8mLnLfe6WjEvevbZ4jSZgHHNuuct7blgopDP_0vyjgnR9XeDjFIhFbACPtsDN3FNoTxXUwGdBAWtLNTTW2odZhz1ZSop0o3-868FeL0DbIo5J3Ta-sUsPoYlGT9pCnobUm_0v5B6G1KD1CVkEcg9wd8z7t56utuKpdEvj0ln67clR5_QLnqM_j6SN3sSO_ngrZl-4s39FL8Bz4PS5w |
CitedBy_id | crossref_primary_10_1002_meet_14505001016 crossref_primary_10_1007_s11065_015_9294_9 crossref_primary_10_1177_0149206312439471 crossref_primary_10_1371_journal_pcbi_1006957 crossref_primary_10_1080_15427560_2016_1238372 crossref_primary_10_1002_ima_20225 crossref_primary_10_3390_e21070661 crossref_primary_10_1016_j_neunet_2022_02_005 crossref_primary_10_1016_j_neuroimage_2011_11_054 crossref_primary_10_1016_j_neuroimage_2016_04_022 crossref_primary_10_1016_j_neuroimage_2019_116367 crossref_primary_10_1162_neco_a_01323 crossref_primary_10_1162_NECO_a_00690 crossref_primary_10_1523_JNEUROSCI_1385_19_2020 crossref_primary_10_1007_s12264_012_1244_4 crossref_primary_10_1109_TNNLS_2021_3106299 crossref_primary_10_4236_jcc_2023_118011 crossref_primary_10_1016_j_neuroimage_2017_02_005 crossref_primary_10_1002_bies_201900135 crossref_primary_10_1016_j_neuroimage_2013_10_020 crossref_primary_10_1016_j_neubiorev_2022_104956 crossref_primary_10_1016_j_neuroimage_2010_12_039 crossref_primary_10_1016_j_jneumeth_2016_12_019 crossref_primary_10_1007_s12376_010_0052_2 crossref_primary_10_1016_j_bpsc_2018_12_005 crossref_primary_10_1002_mrm_26583 crossref_primary_10_1016_j_neuroimage_2018_05_058 crossref_primary_10_3389_fnhum_2022_870091 crossref_primary_10_1162_jocn_a_01022 crossref_primary_10_1001_jamapsychiatry_2018_2151 crossref_primary_10_1109_JBHI_2022_3201752 crossref_primary_10_1162_netn_a_00384 crossref_primary_10_1016_j_neuroimage_2021_118017 crossref_primary_10_1016_j_neuri_2022_100104 crossref_primary_10_1111_jnp_12328 crossref_primary_10_1016_j_plrev_2015_11_003 crossref_primary_10_3389_fninf_2021_656486 crossref_primary_10_1016_j_mri_2024_01_010 crossref_primary_10_1016_j_neuroimage_2010_09_052 crossref_primary_10_1145_3154524 crossref_primary_10_1146_annurev_psych_093008_100438 crossref_primary_10_1371_journal_pone_0152600 crossref_primary_10_1086_715518 crossref_primary_10_1093_brain_aww157 crossref_primary_10_3389_fncom_2014_00131 crossref_primary_10_1016_j_ijpsycho_2021_12_008 crossref_primary_10_1016_j_neures_2012_01_002 crossref_primary_10_1016_j_uclim_2020_100659 crossref_primary_10_1016_j_ijar_2013_03_013 crossref_primary_10_1038_nn_4406 crossref_primary_10_1016_j_neuroimage_2011_08_007 crossref_primary_10_1214_17_AOS1643 crossref_primary_10_1073_pnas_1515657113 crossref_primary_10_1016_j_neuroimage_2012_01_142 crossref_primary_10_1089_brain_2012_0091 crossref_primary_10_1016_j_neuroimage_2012_01_022 crossref_primary_10_1089_brain_2014_0283 crossref_primary_10_1080_13607863_2015_1109058 crossref_primary_10_1016_j_neuroimage_2016_11_037 crossref_primary_10_1080_01621459_2014_922886 crossref_primary_10_1109_TMI_2020_2970375 crossref_primary_10_1016_j_ijar_2021_12_010 crossref_primary_10_1007_s11682_021_00566_w crossref_primary_10_1016_j_neuroimage_2012_11_006 crossref_primary_10_1371_journal_pbio_3001686 crossref_primary_10_1016_j_neuroimage_2015_10_062 crossref_primary_10_1089_brain_2011_0008 crossref_primary_10_1016_j_neuroimage_2011_06_068 crossref_primary_10_1002_hbm_22348 crossref_primary_10_1016_j_neuroimage_2011_09_025 crossref_primary_10_1007_s11517_022_02628_7 crossref_primary_10_1088_1741_2552_ac9d66 crossref_primary_10_1016_j_bpsc_2015_12_006 crossref_primary_10_1038_nrgastro_2014_89 crossref_primary_10_1162_netn_a_00062 crossref_primary_10_1016_j_neuroimage_2013_09_062 crossref_primary_10_1162_netn_a_00061 crossref_primary_10_1016_j_neuroimage_2010_08_063 crossref_primary_10_1109_TBME_2017_2738035 crossref_primary_10_3389_fnins_2019_01290 crossref_primary_10_1145_2770878 crossref_primary_10_1016_j_neuroimage_2014_09_019 crossref_primary_10_1002_brb3_2695 crossref_primary_10_1016_j_neuroimage_2012_02_048 crossref_primary_10_1038_s41598_020_57895_x crossref_primary_10_2333_bhmk_41_41 crossref_primary_10_1016_j_neuroimage_2010_07_022 crossref_primary_10_1162_jocn_a_01591 crossref_primary_10_1097_PR9_0000000000000752 crossref_primary_10_1186_s12888_020_02831_6 crossref_primary_10_1038_srep40268 crossref_primary_10_1007_s11165_017_9626_2 crossref_primary_10_1214_17_BJPS375 crossref_primary_10_1038_s41598_019_43033_9 crossref_primary_10_1002_hbm_23216 crossref_primary_10_1111_desc_13238 crossref_primary_10_1016_j_neuroimage_2012_06_026 crossref_primary_10_1080_00273171_2016_1256187 crossref_primary_10_1371_journal_pone_0245776 crossref_primary_10_1016_j_jsxm_2022_03_217 crossref_primary_10_1214_16_BA1030 crossref_primary_10_1007_s00112_012_2753_y crossref_primary_10_1007_s41465_023_00264_z crossref_primary_10_1038_s41562_018_0466_5 crossref_primary_10_1111_phc3_12470 crossref_primary_10_1016_j_bspc_2023_105364 crossref_primary_10_1152_jn_00333_2015 crossref_primary_10_1007_s41060_016_0032_z crossref_primary_10_1016_j_neuron_2016_05_014 crossref_primary_10_1016_j_neucom_2011_11_005 crossref_primary_10_3390_brainsci13070995 crossref_primary_10_1038_s41598_018_23996_x crossref_primary_10_3389_fnins_2017_00093 crossref_primary_10_7554_eLife_84888 crossref_primary_10_1523_JNEUROSCI_0926_22_2023 crossref_primary_10_3389_fnsys_2022_817962 crossref_primary_10_3390_a11050070 crossref_primary_10_1007_s11023_017_9447_0 crossref_primary_10_1016_j_neuron_2023_01_023 crossref_primary_10_3389_fnins_2018_00287 crossref_primary_10_1111_psyp_13918 crossref_primary_10_3389_fnhum_2014_00593 crossref_primary_10_1177_0962280217713347 crossref_primary_10_1371_journal_pone_0032466 crossref_primary_10_1109_JSTSP_2016_2601144 crossref_primary_10_1016_j_neuroimage_2015_01_036 crossref_primary_10_1038_tp_2016_199 crossref_primary_10_1093_jamia_ocv059 crossref_primary_10_1109_TNNLS_2021_3072149 crossref_primary_10_1089_brain_2013_0161 crossref_primary_10_1016_j_conb_2020_10_004 crossref_primary_10_3389_fnins_2015_00304 crossref_primary_10_1002_hbm_23542 crossref_primary_10_1001_jamapsychiatry_2021_1580 crossref_primary_10_1016_j_neuroimage_2017_05_047 crossref_primary_10_1109_JBHI_2019_2893880 crossref_primary_10_1016_j_neuroimage_2010_07_065 crossref_primary_10_1007_s00429_010_0276_7 crossref_primary_10_1162_netn_a_00099 crossref_primary_10_1016_j_neuroimage_2018_03_074 crossref_primary_10_1080_02331888_2015_1060237 crossref_primary_10_3390_brainsci11030329 crossref_primary_10_1002_hbm_23174 crossref_primary_10_7554_eLife_52443 crossref_primary_10_1017_S1355617715001034 crossref_primary_10_26599_BSA_2019_9050020 crossref_primary_10_1111_ncn3_12508 crossref_primary_10_1007_s10677_023_10369_1 crossref_primary_10_3389_fnhum_2014_00435 crossref_primary_10_1038_npp_2015_150 crossref_primary_10_3389_fnins_2019_00585 crossref_primary_10_1007_s11571_023_09945_z crossref_primary_10_1016_j_neurenf_2013_02_003 crossref_primary_10_1093_cercor_bhq215 crossref_primary_10_1214_16_AOAS940 crossref_primary_10_3389_fnbeh_2014_00380 crossref_primary_10_1016_j_tics_2013_09_016 crossref_primary_10_1177_2167702619867098 crossref_primary_10_1108_EJM_02_2017_0122 crossref_primary_10_1038_s41598_018_31525_z crossref_primary_10_3389_fnins_2021_696639 crossref_primary_10_1093_cercor_bhaa240 crossref_primary_10_1089_brain_2012_0130 crossref_primary_10_3389_fnhum_2016_00563 crossref_primary_10_1258_ar_2011_110262 crossref_primary_10_1016_j_dcn_2011_02_001 crossref_primary_10_1016_j_bandc_2021_105725 crossref_primary_10_1016_j_neuron_2012_06_002 crossref_primary_10_1016_j_neuroimage_2017_08_010 crossref_primary_10_1016_j_neuroimage_2020_117491 crossref_primary_10_1038_s41593_019_0510_4 crossref_primary_10_1016_j_neuron_2016_09_018 crossref_primary_10_1002_nbm_5280 crossref_primary_10_1093_bjps_axv019 crossref_primary_10_1016_j_neuroimage_2012_01_071 crossref_primary_10_1098_rsta_2020_0256 crossref_primary_10_1162_jocn_a_01623 crossref_primary_10_1038_s41598_021_93190_z crossref_primary_10_1016_j_neuroimage_2018_12_042 crossref_primary_10_1523_JNEUROSCI_3049_17_2018 crossref_primary_10_1016_j_nicl_2018_09_016 crossref_primary_10_1089_brain_2020_0766 crossref_primary_10_1016_j_csda_2019_05_007 crossref_primary_10_1016_j_jneumeth_2016_03_010 crossref_primary_10_1146_annurev_clinpsy_032814_112753 crossref_primary_10_1214_14_BA913 crossref_primary_10_1186_s12916_021_01962_1 crossref_primary_10_1523_JNEUROSCI_0578_17_2017 crossref_primary_10_1016_j_neuroimage_2022_119211 crossref_primary_10_1523_JNEUROSCI_1574_17_2017 crossref_primary_10_1523_JNEUROSCI_0573_12_2012 crossref_primary_10_1007_s10827_010_0271_2 crossref_primary_10_1002_wcs_1650 crossref_primary_10_3390_brainsci10090626 crossref_primary_10_1016_j_neuroimage_2016_07_058 crossref_primary_10_1016_j_jspi_2018_03_004 crossref_primary_10_3389_fnins_2017_00271 crossref_primary_10_1007_s11002_014_9335_9 crossref_primary_10_1007_s41237_016_0010_8 crossref_primary_10_1109_TMI_2018_2831261 crossref_primary_10_1371_journal_pone_0017461 crossref_primary_10_1371_journal_pone_0091322 |
Cites_doi | 10.1177/089443939100900106 10.1016/j.neuroimage.2004.11.017 10.1214/aos/1176344136 10.1016/j.neuroimage.2006.01.031 10.1097/00001756-200107030-00039 10.1046/j.0305-9049.2003.00087.x 10.1080/01621459.1997.10473634 10.1098/rstb.2005.1641 10.1016/j.neuroimage.2009.03.025 10.1093/scan/nsm019 10.1162/jocn.2007.19.10.1643 10.1016/j.neuroimage.2006.11.040 10.1006/nimg.2002.1107 10.1016/j.neuroimage.2004.07.041 10.1006/nimg.2000.0544 10.1002/hbm.460020107 10.1006/nimg.2000.0568 10.1006/nimg.2001.0931 10.1088/0954-898X/14/4/305 10.1002/hbm.460020104 10.1007/s00429-007-0160-2 10.1016/j.mri.2008.05.003 10.1007/s11023-008-9096-4 10.2307/1912791 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Inc. Copyright Elsevier Limited Jan 15, 2010 |
Copyright_xml | – notice: 2009 Elsevier Inc. – notice: Copyright Elsevier Limited Jan 15, 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7QO 7U5 L7M 7X8 |
DOI | 10.1016/j.neuroimage.2009.08.065 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Biotechnology Research Abstracts Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest One Psychology Engineering Research Database MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 1558 |
ExternalDocumentID | 3244767671 19747552 10_1016_j_neuroimage_2009_08_065 S105381190900977X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 .1- .FO 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AFRHN AGHFR AGQPQ AGRNS AIGII AJUYK AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 GBLVA HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP Z5R ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7QO 7U5 L7M 7X8 |
ID | FETCH-LOGICAL-c570t-d0ff0e9e355d5eb30cccbb697392beed7918a2c68aec4443a8bc8e2b085fcc8e3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Jul 11 10:48:22 EDT 2025 Fri Jul 11 04:12:37 EDT 2025 Thu Aug 07 15:03:33 EDT 2025 Wed Aug 13 06:00:46 EDT 2025 Mon Jul 21 05:59:28 EDT 2025 Thu Apr 24 23:09:55 EDT 2025 Tue Jul 01 02:14:33 EDT 2025 Fri Feb 23 02:20:32 EST 2024 Tue Aug 26 18:05:30 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c570t-d0ff0e9e355d5eb30cccbb697392beed7918a2c68aec4443a8bc8e2b085fcc8e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S105381190900977X |
PMID | 19747552 |
PQID | 1506809048 |
PQPubID | 2031077 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_734173525 proquest_miscellaneous_36255675 proquest_miscellaneous_21158902 proquest_journals_1506809048 pubmed_primary_19747552 crossref_citationtrail_10_1016_j_neuroimage_2009_08_065 crossref_primary_10_1016_j_neuroimage_2009_08_065 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2009_08_065 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2009_08_065 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-01-15 |
PublicationDateYYYYMMDD | 2010-01-15 |
PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2010 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Spirtes (bib29) 1995 Spirtes, Glymour (bib30) 1991; 9 Meek, C. (1997). Graphical Models: Selecting causal and statistical models. PhD thesis, Carnegie Mellon University. Chickering (bib4) 2002; 3 Hoyer, Shimizu, Kerminen (bib14) 2006 Penny, Stephan, Mechelli, Friston (bib22) 2004; 23 Richardson, T. (1996) A discovery algorithm for directed cyclic graphs. Proceedings of the 1996 Conference on Uncertainty in Artificial Intelligence. Mcintosh, Gonzalez-Lima (bib18) 1994; 2 Eichler (bib7) 2005; 360 Lacerda, Spirtes, Ramsey, Hoyer (bib16) 2008 Roebroeck, Formisano, Goebel (bib26) 2005; 25 Xue, Poldrack (bib37) 2007; 19 Breakspear, Terry, Friston (bib1) 2003; 14 Demiralp, Hoover (bib6) 2003; 65 Lazar, Luna, Sweeney, Eddy (bib17) 2002; 16 Spirtes, Glymour, Scheines (bib31) 1993 Silva, Glymour, Scheines, Spirtes (bib41) 2006; 7 Worsley (bib36) 2003 Granger (bib11) 1969; 37 Ramsey, Spirtes, Zhang (bib24) 2006 Chen, Herskovitz (bib3) 2007; 35 Hanson, Hanson, Halchenko, Matsuka, Zaimi (bib13) 2007; 212 Swanson, Granger (bib34) 1996; 92 Woolrich, Ripley, Brady, Smith (bib35) 2001; 14 Glymour (bib9) 2003 Glymour, Scheines, Spirtes, Kelly (bib10) 1987 Stephan, Penny, Daunizeau, Moran, Friston (bib33) 2009; 46 Poline (bib23) 2003 Demarco, Vrignaud, Destrieux, Demarco, Testelin, Devauchelle, Berquin (bib5) 2009; 27 Kaas (bib15) 2004 Rubin (bib27) 1987 Mumford, Poldrack (bib21) 2007; 2 Bullmore, Horwitz, Honey, Brammer, Williams, Sharma (bib2) 2000; 11 Spirtes, Glymour, Scheines (bib32) 2000 Hanson, Bly (bib12) 2000; 12 Miezin, Maccotta, Ollinger, Petersen, Buckner (bib20) 2000; 11 Friston (bib8) 1994; 2 Schwarz (bib28) 1978; 6 Yule (bib38) 1919 Zhang, Spirtes (bib39) 2008; 7 Zheng, Rajapake (bib40) 2006; 31 Stephan (10.1016/j.neuroimage.2009.08.065_bib33) 2009; 46 Chickering (10.1016/j.neuroimage.2009.08.065_bib4) 2002; 3 Glymour (10.1016/j.neuroimage.2009.08.065_bib9) 2003 Lacerda (10.1016/j.neuroimage.2009.08.065_bib16) 2008 Xue (10.1016/j.neuroimage.2009.08.065_bib37) 2007; 19 Roebroeck (10.1016/j.neuroimage.2009.08.065_bib26) 2005; 25 Granger (10.1016/j.neuroimage.2009.08.065_bib11) 1969; 37 10.1016/j.neuroimage.2009.08.065_bib19 Spirtes (10.1016/j.neuroimage.2009.08.065_bib30) 1991; 9 Yule (10.1016/j.neuroimage.2009.08.065_bib38) 1919 Miezin (10.1016/j.neuroimage.2009.08.065_bib20) 2000; 11 Eichler (10.1016/j.neuroimage.2009.08.065_bib7) 2005; 360 Penny (10.1016/j.neuroimage.2009.08.065_bib22) 2004; 23 Hoyer (10.1016/j.neuroimage.2009.08.065_bib14) 2006 Ramsey (10.1016/j.neuroimage.2009.08.065_bib24) 2006 Rubin (10.1016/j.neuroimage.2009.08.065_bib27) 1987 Mcintosh (10.1016/j.neuroimage.2009.08.065_bib18) 1994; 2 Mumford (10.1016/j.neuroimage.2009.08.065_bib21) 2007; 2 Spirtes (10.1016/j.neuroimage.2009.08.065_bib32) 2000 Poline (10.1016/j.neuroimage.2009.08.065_bib23) 2003 Swanson (10.1016/j.neuroimage.2009.08.065_bib34) 1996; 92 Demiralp (10.1016/j.neuroimage.2009.08.065_bib6) 2003; 65 Schwarz (10.1016/j.neuroimage.2009.08.065_bib28) 1978; 6 Silva (10.1016/j.neuroimage.2009.08.065_bib41) 2006; 7 Kaas (10.1016/j.neuroimage.2009.08.065_bib15) 2004 Chen (10.1016/j.neuroimage.2009.08.065_bib3) 2007; 35 Hanson (10.1016/j.neuroimage.2009.08.065_bib13) 2007; 212 Zheng (10.1016/j.neuroimage.2009.08.065_bib40) 2006; 31 Glymour (10.1016/j.neuroimage.2009.08.065_bib10) 1987 Friston (10.1016/j.neuroimage.2009.08.065_bib8) 1994; 2 10.1016/j.neuroimage.2009.08.065_bib25 Zhang (10.1016/j.neuroimage.2009.08.065_bib39) 2008; 7 Hanson (10.1016/j.neuroimage.2009.08.065_bib12) 2000; 12 Bullmore (10.1016/j.neuroimage.2009.08.065_bib2) 2000; 11 Demarco (10.1016/j.neuroimage.2009.08.065_bib5) 2009; 27 Breakspear (10.1016/j.neuroimage.2009.08.065_bib1) 2003; 14 Woolrich (10.1016/j.neuroimage.2009.08.065_bib35) 2001; 14 Lazar (10.1016/j.neuroimage.2009.08.065_bib17) 2002; 16 Spirtes (10.1016/j.neuroimage.2009.08.065_bib29) 1995 Spirtes (10.1016/j.neuroimage.2009.08.065_bib31) 1993 Worsley (10.1016/j.neuroimage.2009.08.065_bib36) 2003 |
References_xml | – volume: 23 start-page: S264 year: 2004 end-page: S274 ident: bib22 article-title: Modelling functional integration: a comparison of structural equation and dynamic causal models publication-title: Neuroimage – volume: 19 start-page: 1643 year: 2007 end-page: 1655 ident: bib37 article-title: The neural substrates of visual perceptual learning of words: implications for the visual word form area hypothesis publication-title: J. Cogn. Neurosci. – volume: 2 start-page: 2 year: 1994 end-page: 22 ident: bib18 article-title: Structural equation modeling and its application to network analysis in functional brain imaging publication-title: [My Copy] Hum. Brain Mapp. – volume: 7 start-page: 191 year: 2006 end-page: 246 ident: bib41 article-title: Learning the structure of latent linear structure models publication-title: J. Mach. Learn. Res. – volume: 7 start-page: 239 year: 2008 end-page: 271 ident: bib39 article-title: Detection of unfaithfulness and robust causal inference publication-title: Minds Mach – volume: 14 start-page: 703 year: 2003 end-page: 732 ident: bib1 article-title: Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics publication-title: Netw. Comput. Neural Syst. – year: 1987 ident: bib10 article-title: Discovering Causal Structure – volume: 35 start-page: 635 year: 2007 end-page: 647 ident: bib3 article-title: Graphical model based functional analysis of fMRI images publication-title: NeuroImage – volume: 6 start-page: 451 year: 1978 end-page: 464 ident: bib28 article-title: Estimating the dimension of a model publication-title: Ann. Stat. – volume: 11 start-page: 735 year: 2000 end-page: 759 ident: bib20 article-title: Characterizing the hemodynamic response: effects of presentation rate, sampling procedure and the possibility of ordering brain activity based on relative timing publication-title: NeuroImage – year: 1987 ident: bib27 article-title: Multiple Imputation for Nonresponse in Surveys – year: 2000 ident: bib32 article-title: Causation, Prediction and Search – volume: 14 start-page: 1370 year: 2001 end-page: 1386 ident: bib35 article-title: Temporal autocorrelation in univariate linear modeling of FMRI data publication-title: NeuroImage – start-page: 155 year: 2006 end-page: 162 ident: bib14 article-title: Estimation of linear, non-gaussian causal models in the presence of confounding latent variables publication-title: Proc.Third European Workshop on Probabilistic Graphical Models (PGM'06) – volume: 2 start-page: 251 year: 2007 end-page: 257 ident: bib21 article-title: Modeling group fMRI data publication-title: Soc. Cogn. Affect. Neurosci. – volume: 37 start-page: 424 year: 1969 end-page: 438 ident: bib11 article-title: Investigating causal relation by econometric and cross-sectional method publication-title: Econometrica – volume: 92 start-page: 357 year: 1996 end-page: 367 ident: bib34 article-title: Impulse response functions based on a causal approach to residual orthogonalization in vector autoregressions publication-title: J. Am. Stat. Assoc. – year: 2008 ident: bib16 article-title: Discovering cyclic causal models by independent components analysis publication-title: Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence – start-page: 401 year: 2006 end-page: 408 ident: bib24 article-title: Adjacency—faithfulness and conservative causal inference publication-title: Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence – year: 2003 ident: bib36 article-title: Statistical analysis of activation images publication-title: Functional MRI: An Introduction to Methods – volume: 12 start-page: 1971 year: 2000 end-page: 1977 ident: bib12 article-title: The distribution of BOLD susceptibility effects in the brain is non-Gaussian publication-title: NeuroReport – volume: 360 start-page: 953 year: 2005 end-page: 967 ident: bib7 article-title: A graphical approach for evaluating effective connectivity in neural systems publication-title: Philos. Trans. R. Soc., B – volume: 46 start-page: 1004 year: 2009 end-page: 1017 ident: bib33 article-title: Bayesian model selection for group studies publication-title: NeuroImage – year: 1919 ident: bib38 article-title: An Introduction to the Theory of Statistics – reference: Richardson, T. (1996) A discovery algorithm for directed cyclic graphs. Proceedings of the 1996 Conference on Uncertainty in Artificial Intelligence. – start-page: 1995 year: 1995 ident: bib29 article-title: Directed cyclic graphical representation of feedback models publication-title: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence – volume: 25 start-page: 230 year: 2005 end-page: 242 ident: bib26 article-title: Mapping directed influence over the brain using Granger causality and fMRI publication-title: NeuroImage – volume: 9 start-page: 62 year: 1991 end-page: 72 ident: bib30 article-title: An algorithm for fast recovery of sparse causal graphs publication-title: Soc. Sci. Comput. Rev. – volume: 3 start-page: 507 year: 2002 end-page: 554 ident: bib4 article-title: Optimal structure identification with greedy search publication-title: Mach. Learn. Res. – volume: 16 start-page: 538 year: 2002 end-page: 550 ident: bib17 article-title: Combining brains: a survey of methods for statistical pooling of information publication-title: NeuroImage – volume: 11 start-page: 289 year: 2000 end-page: 301 ident: bib2 article-title: How good is good enough in path analysis of fMRI data publication-title: NeuroImage – volume: 2 start-page: 56 year: 1994 end-page: 78 ident: bib8 article-title: Functional and effective connectivity in neuroimaging: a synthesis publication-title: Hum. Brain Mapp. – volume: 31 start-page: 1601 year: 2006 end-page: 1613 ident: bib40 article-title: Learning functional structure from fMRI images publication-title: NeuroImage – volume: 27 start-page: 1 year: 2009 end-page: 12 ident: bib5 article-title: Principle of structural equation modeling for exploring functional interactivity within a putative network of interconnected brain areas publication-title: Magn. Reson. Imaging – volume: 65 start-page: 745 year: 2003 end-page: 767 ident: bib6 article-title: Search for the causal structure of a vector auto-regression publication-title: Oxf. Bull. Econ. Stat. – year: 2003 ident: bib9 article-title: The Mind's Arrows: Bayes Nets and Graphical Causal Models in Psychology – start-page: 15771 year: 2004 end-page: 15775 ident: bib15 article-title: Topographic maps in the brain publication-title: International Encyclopedia of Social and Behavioral Sciences – volume: 212 start-page: 231 year: 2007 end-page: 244 ident: bib13 article-title: Bottom-up and top-down brain functional connectivity underlying comprehension of every day visual action publication-title: Brain Struct. Funct. – year: 2003 ident: bib23 article-title: Contrasts and classical inference publication-title: Human Brain Function – year: 1993 ident: bib31 article-title: Causation, prediction and search publication-title: Springer Lecture Notes in Statistics – reference: Meek, C. (1997). Graphical Models: Selecting causal and statistical models. PhD thesis, Carnegie Mellon University. – volume: 9 start-page: 62 year: 1991 ident: 10.1016/j.neuroimage.2009.08.065_bib30 article-title: An algorithm for fast recovery of sparse causal graphs publication-title: Soc. Sci. Comput. Rev. doi: 10.1177/089443939100900106 – volume: 25 start-page: 230 year: 2005 ident: 10.1016/j.neuroimage.2009.08.065_bib26 article-title: Mapping directed influence over the brain using Granger causality and fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.11.017 – volume: 6 start-page: 451 year: 1978 ident: 10.1016/j.neuroimage.2009.08.065_bib28 article-title: Estimating the dimension of a model publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 – volume: 31 start-page: 1601 year: 2006 ident: 10.1016/j.neuroimage.2009.08.065_bib40 article-title: Learning functional structure from fMRI images publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.031 – volume: 12 start-page: 1971 year: 2000 ident: 10.1016/j.neuroimage.2009.08.065_bib12 article-title: The distribution of BOLD susceptibility effects in the brain is non-Gaussian publication-title: NeuroReport doi: 10.1097/00001756-200107030-00039 – start-page: 1995 year: 1995 ident: 10.1016/j.neuroimage.2009.08.065_bib29 article-title: Directed cyclic graphical representation of feedback models – ident: 10.1016/j.neuroimage.2009.08.065_bib25 – year: 1919 ident: 10.1016/j.neuroimage.2009.08.065_bib38 – volume: 65 start-page: 745 year: 2003 ident: 10.1016/j.neuroimage.2009.08.065_bib6 article-title: Search for the causal structure of a vector auto-regression publication-title: Oxf. Bull. Econ. Stat. doi: 10.1046/j.0305-9049.2003.00087.x – volume: 92 start-page: 357 year: 1996 ident: 10.1016/j.neuroimage.2009.08.065_bib34 article-title: Impulse response functions based on a causal approach to residual orthogonalization in vector autoregressions publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1997.10473634 – start-page: 155 year: 2006 ident: 10.1016/j.neuroimage.2009.08.065_bib14 article-title: Estimation of linear, non-gaussian causal models in the presence of confounding latent variables – start-page: 401 year: 2006 ident: 10.1016/j.neuroimage.2009.08.065_bib24 article-title: Adjacency—faithfulness and conservative causal inference – volume: 360 start-page: 953 year: 2005 ident: 10.1016/j.neuroimage.2009.08.065_bib7 article-title: A graphical approach for evaluating effective connectivity in neural systems publication-title: Philos. Trans. R. Soc., B doi: 10.1098/rstb.2005.1641 – volume: 46 start-page: 1004 year: 2009 ident: 10.1016/j.neuroimage.2009.08.065_bib33 article-title: Bayesian model selection for group studies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.03.025 – year: 2003 ident: 10.1016/j.neuroimage.2009.08.065_bib9 – volume: 2 start-page: 251 year: 2007 ident: 10.1016/j.neuroimage.2009.08.065_bib21 article-title: Modeling group fMRI data publication-title: Soc. Cogn. Affect. Neurosci. doi: 10.1093/scan/nsm019 – volume: 19 start-page: 1643 year: 2007 ident: 10.1016/j.neuroimage.2009.08.065_bib37 article-title: The neural substrates of visual perceptual learning of words: implications for the visual word form area hypothesis publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2007.19.10.1643 – volume: 35 start-page: 635 year: 2007 ident: 10.1016/j.neuroimage.2009.08.065_bib3 article-title: Graphical model based functional analysis of fMRI images publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.11.040 – year: 1987 ident: 10.1016/j.neuroimage.2009.08.065_bib27 – volume: 16 start-page: 538 year: 2002 ident: 10.1016/j.neuroimage.2009.08.065_bib17 article-title: Combining brains: a survey of methods for statistical pooling of information publication-title: NeuroImage doi: 10.1006/nimg.2002.1107 – volume: 23 start-page: S264 issue: Suppl. 1 year: 2004 ident: 10.1016/j.neuroimage.2009.08.065_bib22 article-title: Modelling functional integration: a comparison of structural equation and dynamic causal models publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.041 – volume: 11 start-page: 289 year: 2000 ident: 10.1016/j.neuroimage.2009.08.065_bib2 article-title: How good is good enough in path analysis of fMRI data publication-title: NeuroImage doi: 10.1006/nimg.2000.0544 – volume: 2 start-page: 56 year: 1994 ident: 10.1016/j.neuroimage.2009.08.065_bib8 article-title: Functional and effective connectivity in neuroimaging: a synthesis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460020107 – volume: 11 start-page: 735 year: 2000 ident: 10.1016/j.neuroimage.2009.08.065_bib20 article-title: Characterizing the hemodynamic response: effects of presentation rate, sampling procedure and the possibility of ordering brain activity based on relative timing publication-title: NeuroImage doi: 10.1006/nimg.2000.0568 – volume: 14 start-page: 1370 issue: 6 year: 2001 ident: 10.1016/j.neuroimage.2009.08.065_bib35 article-title: Temporal autocorrelation in univariate linear modeling of FMRI data publication-title: NeuroImage doi: 10.1006/nimg.2001.0931 – year: 2003 ident: 10.1016/j.neuroimage.2009.08.065_bib36 article-title: Statistical analysis of activation images – volume: 14 start-page: 703 year: 2003 ident: 10.1016/j.neuroimage.2009.08.065_bib1 article-title: Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics publication-title: Netw. Comput. Neural Syst. doi: 10.1088/0954-898X/14/4/305 – start-page: 15771 year: 2004 ident: 10.1016/j.neuroimage.2009.08.065_bib15 article-title: Topographic maps in the brain – year: 1987 ident: 10.1016/j.neuroimage.2009.08.065_bib10 – volume: 2 start-page: 2 year: 1994 ident: 10.1016/j.neuroimage.2009.08.065_bib18 article-title: Structural equation modeling and its application to network analysis in functional brain imaging publication-title: [My Copy] Hum. Brain Mapp. doi: 10.1002/hbm.460020104 – volume: 7 start-page: 191 year: 2006 ident: 10.1016/j.neuroimage.2009.08.065_bib41 article-title: Learning the structure of latent linear structure models publication-title: J. Mach. Learn. Res. – year: 1993 ident: 10.1016/j.neuroimage.2009.08.065_bib31 article-title: Causation, prediction and search – volume: 212 start-page: 231 year: 2007 ident: 10.1016/j.neuroimage.2009.08.065_bib13 article-title: Bottom-up and top-down brain functional connectivity underlying comprehension of every day visual action publication-title: Brain Struct. Funct. doi: 10.1007/s00429-007-0160-2 – volume: 27 start-page: 1 year: 2009 ident: 10.1016/j.neuroimage.2009.08.065_bib5 article-title: Principle of structural equation modeling for exploring functional interactivity within a putative network of interconnected brain areas publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2008.05.003 – volume: 7 start-page: 239 year: 2008 ident: 10.1016/j.neuroimage.2009.08.065_bib39 article-title: Detection of unfaithfulness and robust causal inference publication-title: Minds Mach doi: 10.1007/s11023-008-9096-4 – volume: 37 start-page: 424 year: 1969 ident: 10.1016/j.neuroimage.2009.08.065_bib11 article-title: Investigating causal relation by econometric and cross-sectional method publication-title: Econometrica doi: 10.2307/1912791 – year: 2003 ident: 10.1016/j.neuroimage.2009.08.065_bib23 article-title: Contrasts and classical inference – year: 2000 ident: 10.1016/j.neuroimage.2009.08.065_bib32 – volume: 3 start-page: 507 year: 2002 ident: 10.1016/j.neuroimage.2009.08.065_bib4 article-title: Optimal structure identification with greedy search publication-title: Mach. Learn. Res. – ident: 10.1016/j.neuroimage.2009.08.065_bib19 – year: 2008 ident: 10.1016/j.neuroimage.2009.08.065_bib16 article-title: Discovering cyclic causal models by independent components analysis |
SSID | ssj0009148 |
Score | 2.4477599 |
Snippet | Neuroimaging (e.g. fMRI) data are increasingly used to attempt to identify not only brain regions of interest (ROIs) that are especially active during... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1545 |
SubjectTerms | Algorithms Automation Brain - physiology Computer Simulation Databases as Topic Economic models Feedback, Physiological Graphs Magnetic Resonance Imaging - methods Models, Neurological Nonlinear Dynamics Oxygen - blood Probability distribution Random variables Time Factors Time series |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kD-JFfFufPXiTun0kbYInERcV9OAD9hbSNIGKdsXugid_u5M23cVDYcFbaTOhnc7jGzIPgDMteWQKRG5JWrCAFCYKZGhIQInUJEsz9IlNtsVjevtK7sd0vALXXS2MTat0tr-16Y21dneGjpvDz7IcPiMyQHeDDo3bYoRsbCvYcXuU6YufRZoHj0hbDkeTwK522TxtjlfTM7L8QM11nSttM0_a56L6IGjjikYbsO4wpH_VvuYmrOhqC1Yf3Cn5Npw_l9--mxRT-4hKfSVnNVKUXXWfb6tKfPPwdLcDr6Obl-vbwA1FCBTNwmlQhMaEmmvECQXFSDhUSuV5ypGrcY4OL-MRk7FKmdSKEJJIlium4xyhlVF4lezCoJpUeh_8RClODcN9iSEpS6QOc6ThMkaSnCoPso4PQrmO4XZwxbvoUsPexIKDdqAlF3amZUo9iOaUn23XjCVoeMdq0VWFoh0TaNqXoL2c0_6RniWpj7o_K5wG18J2XmQoWoR5cDp_jLpnD1RkpSezWmDwTO05bf8KhAeUYkzmgd-zIkMYkdmetB7stUK14JiN9SiND_71dYew1mY8REFEj2Aw_ZrpYwRS0_yk0ZRfttYdHg priority: 102 providerName: Elsevier |
Title | Six problems for causal inference from fMRI |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381190900977X https://dx.doi.org/10.1016/j.neuroimage.2009.08.065 https://www.ncbi.nlm.nih.gov/pubmed/19747552 https://www.proquest.com/docview/1506809048 https://www.proquest.com/docview/21158902 https://www.proquest.com/docview/36255675 https://www.proquest.com/docview/734173525 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_WFsZextp91F2a-mFvQ5s_JEtiDyMtLem2hpKtkDchyxJkbElbJ9Cn_u092XLylJInGawz5qQ7_aQ7_Q7gk9UydRUit7yoBKGVS4lOHCWMakt5wXFNbLItRsXwhv6YsEk4cKtDWmXnExtHXc2NPyP_6pnwRCJxwn2_vSO-apSProYSGjuw56nL_KzmE74m3U1pexWO5URgh5DJ0-Z3NXyR0_9otYG10hN5sk3L0yb42SxDF2_gdcCP8aAd8H14YWcH8PIqRMjfwuff04c4VImpY0SksdHLGiWm3c2-2N8oid3V-PId3Fyc_zkbklAQgRjGkwWpEucSKy1ihIrhLjgxxpRlIVGjWYmLHZep0JkphLaGUpprURphsxJhlTP4lL-H3dl8Zg8hzo2RzAn8LnW0ELm2SYkyUmcoUjITAe_0oExgC_dFK_6pLi3sr1pr0BezlMrXsyxYBOlK8rZlzNhCRnaqVt2NUPRhCt36FrLfVrIBNbRoYEvpXjeyKlhvrdZzLYKT1Wu0Ox9M0TM7X9YKN87Mx2g390BowBjuxyKIN_TgCCG456ON4EM7qdYa8_s8xrKj5__vI7xq0xlSkrIe7C7ul_YYUdKi7MPOl8e03xhEH_YGZ-Nf1769_DkcYXt6ProePwHydBdC |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tiwRcEG8CC-sDnJBFnNixLYQQAlYtu90D7Eq9GcexpSJoF9IK-FP8RsaJ056KetlbpGQsazye-SbzAnjmrWahQeRWVo2ivAmM2jxwKrj1XFYSbWKXbXFajc75x6mY7sHfoRYmplUOOrFT1M3CxX_kL2MnPJVrFLg3Fz9onBoVo6vDCI1eLI79n1_osrWvx-_xfJ8XxdGHs3cjmqYKUCdkvqRNHkLutUdD2wh0JXPnXF1XGrdV1GgxpGbKFq5S1jvOeWlV7ZQvasQmweFTietegatoePPo7Mmp3DT5ZbwvvRMlVYzplDnU55N1_Sln31FLpC6ZsXGo2GYOt8Hdzuwd3YKbCa-St72A3YY9P78D1yYpIn8XXnye_SZpKk1LEAETZ1ctUsyGSkISK1hImHwa34PzS2HVfdifL-b-IZDSOS2CwnV54JUqrc9rpNG2QJJauAzkwAfjUnfyOCTjmxnS0L6aDQfj8Ext4vzMSmTA1pQXfYeOHWj0wGozVKCizjRoRnagfbWmTSilRx87Uh8MJ2uStmjNRrYzOFy_xnsegzd27her1qCjLmJMePsXCEWEQP8vA7LlC4mQRcb-txk86IVqw7HoVwpRPPr__g7h-uhscmJOxqfHj-FGn0rBKBMHsL_8ufJPEKEt66fdtSDw5bLv4T8HVFDY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVKq4IN7dtlAf4IQs9mHv2kIIAW3UUBpVhUq9Ga_XloIgabuJWv4av45x1k5OQbn0ttLuWNbYnvlmPfMNwCurZeYaRG5F2QjKGpdRnTpGOdOWVWWFPnGebTEsj87Zlwt-sQF_Yy2MT6uMNnFuqJuJ8f_I33omPJFKTzPrQlrE6UH_w-UV9R2k_E1rbKfRbZFj--cGw7f2_eAA1_p1nvcPv38-oqHDADW8Sqe0SZ1LrbTodBuOYWVqjKnrUuIU8xq9RyUzoXNTCm0NY6zQojbC5jXiFGfwqcBx78Fm5aOiHmx-Ohyeni0pfzPWFeLxgooskyGPqMsum7NVjn6jzQicmZ5GlK9yjqvA79wJ9h_Cg4Beycduuz2CDTt-DFsn4X7-Cbz5NroloUdNSxAPE6NnLUqMYl0h8fUsxJ2cDZ7C-Z0o6xn0xpOx3QZSGCO5Ezguc6wUhbZpjTJS5yhSc5NAFfWgTOAq9y0zfqmYlPZTLTXoW2lK5btpljyBbCF52fF1rCEjo6pVrEdFC6rQqawh-24hGzBLh0XWlN6LK6uC7WjVcqcnsL94jafeX-XosZ3MWoVhO_c3xKu_QGDCOUaDCZAVX1QIYCrPhpvA825TLTXmo0zO853_z28ftvAMqq-D4fEu3O_yKjKa8T3oTa9n9gXCtWn9MpwLAj_u-ij-A0USVnM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Six+problems+for+causal+inference+from+fMRI&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Ramsey%2C+J+D&rft.au=Hanson%2C+S+J&rft.au=Hanson%2C+C&rft.au=Halchenko%2C+YO&rft.date=2010-01-15&rft.issn=1053-8119&rft.volume=49&rft.issue=2&rft.spage=1545&rft.epage=1558&rft_id=info:doi/10.1016%2Fj.neuroimage.2009.08.065&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |