Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water
[Display omitted] •Granulation followed by ferric loading had the best phosphate adsorption capacity.•The phosphate adsorption capacity was increased from 0 to 0.963mg/g.•Both granulation and ferric oxides loading obviously increased the surface areas.•Pseudo-first order model is allowable to estima...
Saved in:
Published in | Bioresource technology Vol. 178; pp. 119 - 125 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Granulation followed by ferric loading had the best phosphate adsorption capacity.•The phosphate adsorption capacity was increased from 0 to 0.963mg/g.•Both granulation and ferric oxides loading obviously increased the surface areas.•Pseudo-first order model is allowable to estimate the adsorption kinetics.
Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. Bg-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0mg/g of raw biochar powder to 0.963mg/g (Bg-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59–0.399mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides. |
---|---|
AbstractList | Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. Bg-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0 mg/g of raw biochar powder to 0.963 mg/g (Bg-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59-0.399 mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides.Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. Bg-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0 mg/g of raw biochar powder to 0.963 mg/g (Bg-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59-0.399 mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides. Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. Bg-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0mg/g of raw biochar powder to 0.963mg/g (Bg-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59–0.399mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides. [Display omitted] •Granulation followed by ferric loading had the best phosphate adsorption capacity.•The phosphate adsorption capacity was increased from 0 to 0.963mg/g.•Both granulation and ferric oxides loading obviously increased the surface areas.•Pseudo-first order model is allowable to estimate the adsorption kinetics. Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. Bg-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0mg/g of raw biochar powder to 0.963mg/g (Bg-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59–0.399mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides. Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (B sub(g)-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. B sub(g)-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0 mg/g of raw biochar powder to 0.963 mg/g (B sub(g)-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59-0.399 mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides. Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. Bg-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0 mg/g of raw biochar powder to 0.963 mg/g (Bg-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59-0.399 mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides. |
Author | Li, Nan An, Jing-Kun Ren, Nan-Qi Zhao, Lin Ren, Jing Li, Lei |
Author_xml | – sequence: 1 givenname: Jing surname: Ren fullname: Ren, Jing organization: School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China – sequence: 2 givenname: Nan surname: Li fullname: Li, Nan email: nli@tju.edu.cn organization: School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China – sequence: 3 givenname: Lei surname: Li fullname: Li, Lei organization: School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China – sequence: 4 givenname: Jing-Kun surname: An fullname: An, Jing-Kun organization: School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China – sequence: 5 givenname: Lin surname: Zhao fullname: Zhao, Lin organization: School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China – sequence: 6 givenname: Nan-Qi surname: Ren fullname: Ren, Nan-Qi organization: State Key Laboratory of Urban Water Resource and Environment, No. 73 Huanghe Road, Nangang District, Harbin 150090, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25446788$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkj1vFDEQhq0oEbkE_kLkkmYXe_25EgUogoAUiSbUlj9mcz5214ftO-Dfs-FyDc2lmimeZ6Z43yt0PqcZELqhpKWEyneb1sWUK_h12xHKW9K3RNEztKJasabrlTxHK9JL0mjR8Ut0VcqGEMKo6l6hy05wLpXWKzTdZTvvRltjmrGdAx4g5-hx-h0DFDwmG-L8iGG2bgS8_PRrm3GAHPewwDlN2KdaF7lUO_7ANeEMU9oD3q5T2a5thQP1a9nya3Qx2LHAm-d5jb5__vRw-6W5_3b39fbjfeOFIrUJRAydA0ahd8FJOWgvglIyeKWdVa53lLpB8oFTULLjgxUQlCXaqSB7kOwavT3c3eb0cwelmikWD-NoZ0i7YqhmUiqquTqNStlrLhkTL0EJ00JS_gKUM8oFEWxBb57RnZsgmG2Ok81_zDGjBXh_AHxOpWQYjI_1X2A12zgaSsxTJczGHCthniphSG-WSiy6_E8_fjgpfjiIsCS1j5BN8RFmDyFm8NWEFE-d-AsV5NWl |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2018_03_246 crossref_primary_10_1016_j_cej_2024_148931 crossref_primary_10_1016_j_jwpe_2024_106051 crossref_primary_10_7717_peerj_9164 crossref_primary_10_3390_ijms24031974 crossref_primary_10_1080_10643389_2023_2242227 crossref_primary_10_18307_2022_0502 crossref_primary_10_1515_gps_2022_0046 crossref_primary_10_1007_s10653_017_9986_6 crossref_primary_10_1016_j_arabjc_2023_105125 crossref_primary_10_1016_j_cej_2022_138978 crossref_primary_10_1016_j_chemosphere_2018_04_113 crossref_primary_10_1016_j_colsurfa_2018_10_082 crossref_primary_10_1016_j_jclepro_2017_12_117 crossref_primary_10_1016_j_jclepro_2021_129490 crossref_primary_10_1016_j_jenvman_2020_111048 crossref_primary_10_1039_C6EW00224B crossref_primary_10_1007_s11814_018_0057_1 crossref_primary_10_1016_j_geoderma_2024_116917 crossref_primary_10_1080_19443994_2016_1193767 crossref_primary_10_1016_j_watres_2025_123169 crossref_primary_10_15446_agron_colomb_v35n1_58671 crossref_primary_10_1016_j_chemosphere_2022_134858 crossref_primary_10_1016_j_scp_2020_100361 crossref_primary_10_3390_agriculture10010002 crossref_primary_10_1016_j_jenvman_2018_02_088 crossref_primary_10_1016_j_jece_2022_108064 crossref_primary_10_1038_s41598_024_69117_9 crossref_primary_10_1016_j_biortech_2015_03_139 crossref_primary_10_1590_1678_4499_20210313 crossref_primary_10_1088_1755_1315_127_1_012015 crossref_primary_10_1016_j_envpol_2020_114223 crossref_primary_10_1016_j_chemosphere_2021_131176 crossref_primary_10_1016_j_scitotenv_2020_141809 crossref_primary_10_1016_j_biortech_2015_10_008 crossref_primary_10_3390_nano10020336 crossref_primary_10_3390_su142114523 crossref_primary_10_1007_s11356_017_0338_y crossref_primary_10_1016_j_molliq_2017_05_102 crossref_primary_10_1016_j_jwpe_2022_102793 crossref_primary_10_1016_j_geoderma_2018_04_025 crossref_primary_10_1016_j_jenvman_2022_115506 crossref_primary_10_1016_j_biortech_2015_05_052 crossref_primary_10_1016_j_scitotenv_2020_144246 crossref_primary_10_1016_j_jtice_2018_05_032 crossref_primary_10_1016_j_jtice_2017_07_002 crossref_primary_10_1007_s11368_023_03520_z crossref_primary_10_1007_s41742_020_00250_9 crossref_primary_10_1016_j_chemosphere_2017_02_123 crossref_primary_10_1016_j_scitotenv_2016_03_151 crossref_primary_10_1016_j_heliyon_2023_e19830 crossref_primary_10_1016_j_chemosphere_2021_129766 crossref_primary_10_1080_01932691_2022_2102035 crossref_primary_10_1016_j_biombioe_2024_107179 crossref_primary_10_1080_01496395_2017_1345944 crossref_primary_10_1016_j_scitotenv_2019_05_400 crossref_primary_10_1016_j_biortech_2016_05_005 crossref_primary_10_1016_j_jclepro_2021_126144 crossref_primary_10_1016_j_chemosphere_2021_131391 crossref_primary_10_2139_ssrn_4067929 crossref_primary_10_5004_dwt_2019_24516 crossref_primary_10_1016_j_proenv_2016_02_076 crossref_primary_10_1016_j_biortech_2016_07_072 crossref_primary_10_1021_acsami_6b03583 crossref_primary_10_1021_acssuschemeng_8b01809 crossref_primary_10_2166_wst_2019_305 crossref_primary_10_1016_j_biortech_2017_09_136 crossref_primary_10_1016_j_carbon_2017_12_070 crossref_primary_10_1007_s12155_022_10520_3 crossref_primary_10_1016_j_jcis_2020_10_143 crossref_primary_10_1016_j_biortech_2019_122403 crossref_primary_10_1016_j_jece_2024_112776 crossref_primary_10_1016_j_jenvman_2017_02_030 crossref_primary_10_1016_j_ijhydene_2020_05_227 crossref_primary_10_1021_acs_est_0c01404 crossref_primary_10_2965_jwet_16_069 crossref_primary_10_1016_j_ecoenv_2020_111261 crossref_primary_10_1016_j_jes_2019_10_018 crossref_primary_10_1016_j_biortech_2017_07_082 crossref_primary_10_1007_s11356_020_09166_5 crossref_primary_10_2139_ssrn_3995932 crossref_primary_10_1016_j_seppur_2015_03_043 crossref_primary_10_1016_j_jhazmat_2018_11_058 crossref_primary_10_1016_j_matpr_2021_05_701 crossref_primary_10_1098_rsos_201789 crossref_primary_10_1016_j_jclepro_2021_127019 crossref_primary_10_1002_agg2_20142 crossref_primary_10_1051_e3sconf_201911801022 crossref_primary_10_1016_j_chemosphere_2020_128991 crossref_primary_10_1007_s11356_023_29960_1 crossref_primary_10_1002_wer_1070 crossref_primary_10_1007_s12209_017_0064_z crossref_primary_10_1016_j_jenvman_2017_04_057 crossref_primary_10_1016_j_micromeso_2020_110764 crossref_primary_10_1016_j_scitotenv_2022_157592 crossref_primary_10_1039_C5RA22870K crossref_primary_10_1016_j_scitotenv_2017_10_193 crossref_primary_10_1016_j_watres_2016_02_038 crossref_primary_10_2166_wrd_2018_018 crossref_primary_10_3390_separations8030032 crossref_primary_10_1007_s41204_020_00090_0 crossref_primary_10_1016_j_cej_2020_126494 crossref_primary_10_3390_environments8050041 crossref_primary_10_1007_s40726_022_00238_3 crossref_primary_10_1007_s12517_019_4694_4 crossref_primary_10_1007_s11356_017_0778_4 crossref_primary_10_5004_dwt_2020_25635 crossref_primary_10_1016_j_scitotenv_2021_149454 crossref_primary_10_1016_j_matpr_2022_08_391 crossref_primary_10_1016_j_chemosphere_2016_01_043 crossref_primary_10_1016_j_biortech_2016_04_093 crossref_primary_10_1016_j_eti_2021_101771 crossref_primary_10_1016_j_clce_2024_100118 crossref_primary_10_1016_j_jwpe_2020_101187 crossref_primary_10_1007_s11356_022_21628_6 crossref_primary_10_1016_j_envpol_2019_01_012 crossref_primary_10_1016_j_chemosphere_2016_02_004 crossref_primary_10_1016_j_jiec_2019_06_008 crossref_primary_10_1016_j_scitotenv_2018_02_135 crossref_primary_10_3389_fenvs_2020_538539 crossref_primary_10_1016_j_jaap_2025_107020 crossref_primary_10_1007_s10311_022_01519_5 crossref_primary_10_3389_fceng_2023_1303357 crossref_primary_10_1016_j_jenvman_2018_07_037 crossref_primary_10_2166_wst_2018_230 crossref_primary_10_2139_ssrn_3985149 crossref_primary_10_3390_w16060873 crossref_primary_10_1016_j_biortech_2016_02_125 crossref_primary_10_1016_j_envpol_2025_125919 crossref_primary_10_5004_dwt_2022_28136 crossref_primary_10_1016_j_jwpe_2019_101036 crossref_primary_10_5004_dwt_2018_21737 crossref_primary_10_1007_s11356_020_08307_0 crossref_primary_10_1016_j_cej_2020_125502 crossref_primary_10_1007_s11368_022_03335_4 crossref_primary_10_1016_j_jclepro_2020_125638 crossref_primary_10_1061__ASCE_EE_1943_7870_0001946 crossref_primary_10_1002_clen_201600123 crossref_primary_10_1016_j_jhazmat_2020_122026 crossref_primary_10_5004_dwt_2017_21588 crossref_primary_10_1039_C9RA02052G crossref_primary_10_1038_s41598_024_66965_3 crossref_primary_10_3390_land10040372 crossref_primary_10_1016_j_ecoleng_2020_105792 crossref_primary_10_1016_j_cej_2021_132166 crossref_primary_10_1016_j_ecoenv_2020_111451 crossref_primary_10_3390_en17061310 crossref_primary_10_1016_j_jenvman_2021_111970 crossref_primary_10_1016_j_jaap_2018_01_028 crossref_primary_10_1021_acssuschemeng_5b00932 crossref_primary_10_1088_2053_1591_ac1533 crossref_primary_10_1016_j_jtice_2016_02_012 crossref_primary_10_1016_j_cej_2020_128211 crossref_primary_10_1002_wer_11077 crossref_primary_10_1016_j_watres_2020_115629 crossref_primary_10_2134_ael2016_11_0044 |
Cites_doi | 10.1021/jf104206c 10.1007/s11368-011-0405-9 10.1021/es303619a 10.2134/jeq2012.0482 10.1016/j.biortech.2010.08.067 10.1016/0378-5963(80)90148-8 10.1016/j.jhazmat.2011.03.083 10.1016/j.biortech.2011.03.006 10.1016/j.chemosphere.2012.12.057 10.1016/j.jenvman.2013.01.001 10.1002/sia.1984 10.1016/0368-2048(87)85010-7 10.1016/j.cej.2013.02.001 10.1016/j.watres.2003.12.009 10.1016/j.envpol.2013.05.056 10.5194/bg-4-155-2007 10.1021/es8002684 10.1007/s11783-014-0629-1 10.1016/j.apsusc.2013.05.046 10.1016/j.biortech.2010.11.018 10.1021/es803092k 10.1007/s11104-010-0464-5 10.1016/j.cej.2012.05.025 10.1016/j.cej.2013.04.077 10.1016/S0927-7757(01)01004-4 10.1016/j.chemosphere.2009.02.004 10.1021/es202401p 10.1016/j.envpol.2012.08.007 10.1016/j.chemosphere.2007.01.081 10.1016/j.biortech.2013.03.186 10.1002/(SICI)1097-4660(199705)69:1<1::AID-JCTB653>3.0.CO;2-H 10.1016/j.biortech.2013.07.022 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd Copyright © 2014 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7ST 8FD C1K FR3 P64 SOI 7SR 7SU 7TB JG9 KR7 7S9 L.6 |
DOI | 10.1016/j.biortech.2014.09.071 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts Engineered Materials Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Materials Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Materials Research Database MEDLINE Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 125 |
ExternalDocumentID | 25446788 10_1016_j_biortech_2014_09_071 S0960852414013303 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7QO 7ST 8FD C1K FR3 P64 SOI 7SR 7SU 7TB JG9 KR7 7S9 L.6 |
ID | FETCH-LOGICAL-c570t-d05f2be31e9bdb66f8c5d776dc78ba7b9b11bf64f41e7624fa5ed7a08b7d69e63 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Jul 11 09:26:56 EDT 2025 Fri Jul 11 13:33:22 EDT 2025 Fri Jul 11 11:40:16 EDT 2025 Fri Jul 11 11:47:27 EDT 2025 Wed Feb 19 02:42:36 EST 2025 Tue Jul 01 02:06:26 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Fri Feb 23 02:16:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ferric oxides Phosphate removal Granulation Biochar |
Language | English |
License | Copyright © 2014 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c570t-d05f2be31e9bdb66f8c5d776dc78ba7b9b11bf64f41e7624fa5ed7a08b7d69e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25446788 |
PQID | 1643145053 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1836671847 proquest_miscellaneous_1669846335 proquest_miscellaneous_1660385614 proquest_miscellaneous_1643145053 pubmed_primary_25446788 crossref_citationtrail_10_1016_j_biortech_2014_09_071 crossref_primary_10_1016_j_biortech_2014_09_071 elsevier_sciencedirect_doi_10_1016_j_biortech_2014_09_071 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-01 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Uchimiya, Wartelle, Klasson, Fortier, Lima (b0120) 2011; 59 Lewis, Wurtsbaugh, Paerl (b0085) 2011; 45 Han, Boateng, Qi, Lima, Chang (b0065) 2013; 118 Grosvenor, Kobe, Biesinger, McIntyre (b0055) 2004; 36 Safarik Vvo, Safarikova (b0095) 1997; 69 Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (b0135) 2011; 102 Zhang, Gao (b0160) 2013; 226 Slomp, Van Cappellen (b0110) 2007; 4 Dong, Yu, Wang (b0050) 2012; 46 Cui, Wang, Fu, Ci (b0040) 2011; 11 Wang, Gao, Zhou, Dong, Yu, Feng (b0125) 2013; 144 Brion (b0015) 1980; 5 Kolodynska, Wnetrzak, Leahy, Hayes, Kwapinski, Hubicki (b0080) 2012; 197 Wang, Wang, Fang, Herath, Wang, Cang, Xie, Zhou (b0130) 2013; 172 Kim, Shim, Kim, Hyun, Ryu, Park, Jung (b0075) 2013; 138 Juang, Wu, Tseng (b0070) 2002; 201 Ren, Li, Zhao, Ren (b0090) 2014; 8 Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (b0140) 2011; 190 Angin, Kose, Selengil (b0005) 2013; 280 Chen, Chen, Lv (b0030) 2011; 102 Sarkhot, Ghezzehei, Berhe (b0100) 2013; 42 Atkinson, Fitzgerald, Hipps (b0010) 2010; 337 Chen, Zhou, Zhu (b0035) 2008; 42 Zhang, Du, Jiao, Pan, Zhang, Sun, Wang, Wang, Gao (b0165) 2013; 221 Yuan, Xu, Zhang (b0145) 2011; 102 Zheng, Wang, Zhao, Herbert, Xing (b0170) 2013; 181 Cao, Ma, Gao, Harris (b0020) 2009; 43 Chen, Chen (b0025) 2009; 76 Hale, Alling, Martinsen, Mulder, Breedveld, Cornelissen (b0060) 2013; 91 Zeng, Li, Liu (b0150) 2004; 38 Seyama, Soma (b0105) 1987; 42 Sohi, Krull, Lopez-Capel, Bol (b0115) 2010; vol. 105 Zhang, Qu, Liu, Cooper, Wu (b0155) 2007; 68 Hale (10.1016/j.biortech.2014.09.071_b0060) 2013; 91 Cao (10.1016/j.biortech.2014.09.071_b0020) 2009; 43 Dong (10.1016/j.biortech.2014.09.071_b0050) 2012; 46 Chen (10.1016/j.biortech.2014.09.071_b0025) 2009; 76 Zheng (10.1016/j.biortech.2014.09.071_b0170) 2013; 181 Han (10.1016/j.biortech.2014.09.071_b0065) 2013; 118 Yao (10.1016/j.biortech.2014.09.071_b0135) 2011; 102 Zhang (10.1016/j.biortech.2014.09.071_b0155) 2007; 68 Zhang (10.1016/j.biortech.2014.09.071_b0160) 2013; 226 Kolodynska (10.1016/j.biortech.2014.09.071_b0080) 2012; 197 Lewis (10.1016/j.biortech.2014.09.071_b0085) 2011; 45 Seyama (10.1016/j.biortech.2014.09.071_b0105) 1987; 42 Kim (10.1016/j.biortech.2014.09.071_b0075) 2013; 138 Wang (10.1016/j.biortech.2014.09.071_b0130) 2013; 172 Zeng (10.1016/j.biortech.2014.09.071_b0150) 2004; 38 Chen (10.1016/j.biortech.2014.09.071_b0035) 2008; 42 Sohi (10.1016/j.biortech.2014.09.071_b0115) 2010; vol. 105 Zhang (10.1016/j.biortech.2014.09.071_b0165) 2013; 221 Slomp (10.1016/j.biortech.2014.09.071_b0110) 2007; 4 Yuan (10.1016/j.biortech.2014.09.071_b0145) 2011; 102 Atkinson (10.1016/j.biortech.2014.09.071_b0010) 2010; 337 Yao (10.1016/j.biortech.2014.09.071_b0140) 2011; 190 Uchimiya (10.1016/j.biortech.2014.09.071_b0120) 2011; 59 Cui (10.1016/j.biortech.2014.09.071_b0040) 2011; 11 Ren (10.1016/j.biortech.2014.09.071_b0090) 2014; 8 Sarkhot (10.1016/j.biortech.2014.09.071_b0100) 2013; 42 Wang (10.1016/j.biortech.2014.09.071_b0125) 2013; 144 Grosvenor (10.1016/j.biortech.2014.09.071_b0055) 2004; 36 Juang (10.1016/j.biortech.2014.09.071_b0070) 2002; 201 Chen (10.1016/j.biortech.2014.09.071_b0030) 2011; 102 Angin (10.1016/j.biortech.2014.09.071_b0005) 2013; 280 Brion (10.1016/j.biortech.2014.09.071_b0015) 1980; 5 Safarik Vvo (10.1016/j.biortech.2014.09.071_b0095) 1997; 69 |
References_xml | – volume: 138 start-page: 266 year: 2013 end-page: 270 ident: b0075 article-title: Characterization of cadmium removal from aqueous solution by biochar produced from a giant publication-title: Bioresour. Technol. – volume: 197 start-page: 295 year: 2012 end-page: 305 ident: b0080 article-title: Kinetic and adsorptive characterization of biochar in metal ions removal publication-title: Chem. Eng. J. – volume: 42 start-page: 97 year: 1987 end-page: 101 ident: b0105 article-title: Fe 2p spectra of silicate minerals publication-title: J. Electron Spectrosc. Relat. Phenom. – volume: 102 start-page: 716 year: 2011 end-page: 723 ident: b0030 article-title: A novel magnetic biochar efficiently sorbs organic pollutants and phosphate publication-title: Bioresour. Technol. – volume: 280 start-page: 705 year: 2013 end-page: 710 ident: b0005 article-title: Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff publication-title: Appl. Surf. Sci. – volume: 190 start-page: 501 year: 2011 end-page: 507 ident: b0140 article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings publication-title: J. Hazard. Mater. – volume: 8 start-page: 531 year: 2014 end-page: 538 ident: b0090 article-title: Enhanced adsorption of phosphate by loading nanosized ferric oxyhydroxide on anion resin publication-title: Front. Environ. Sci. Eng. – volume: 201 start-page: 191 year: 2002 end-page: 199 ident: b0070 article-title: Characterization and use of activated carbons prepared from bagasses for liquid-phase adsorption publication-title: Colloids Surf. A – volume: 36 start-page: 1564 year: 2004 end-page: 1574 ident: b0055 article-title: Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds publication-title: Surf. Interface Anal. – volume: 172 start-page: 86 year: 2013 end-page: 93 ident: b0130 article-title: Enhanced PCBs sorption on biochars as affected by environmental factors: humic acid and metal cations publication-title: Environ. Pollut. – volume: 5 start-page: 133 year: 1980 end-page: 152 ident: b0015 article-title: Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l’air et dans l’eau publication-title: Appl. Surf. Sci. – volume: 226 start-page: 286 year: 2013 end-page: 292 ident: b0160 article-title: Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite publication-title: Chem. Eng. J. – volume: 221 start-page: 315 year: 2013 end-page: 321 ident: b0165 article-title: Selective removal of phosphate in waters using a novel of cation adsorbent: zirconium phosphate (ZrP) behavior and mechanism publication-title: Chem. Eng. J. – volume: 59 start-page: 2501 year: 2011 end-page: 2510 ident: b0120 article-title: Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil publication-title: J. Agric. Food Chem. – volume: 38 start-page: 1318 year: 2004 end-page: 1326 ident: b0150 article-title: Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings publication-title: Water Res. – volume: 68 start-page: 1058 year: 2007 end-page: 1066 ident: b0155 article-title: CuFe2O4/activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration publication-title: Chemosphere – volume: 43 start-page: 3285 year: 2009 end-page: 3291 ident: b0020 article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine publication-title: Environ. Sci. Technol. – volume: 69 start-page: 1 year: 1997 end-page: 4 ident: b0095 article-title: Adsorption of water-soluble organic dyes on magnetic charcoal publication-title: J. Chem. Technol. Biotechnol. – volume: 46 start-page: 13009 year: 2012 end-page: 13015 ident: b0050 article-title: Catalysis kinetics and porous analysis of rolling activated carbon-PTFE air-cathode in microbial fuel cells publication-title: Environ. Sci. Technol. – volume: 144 start-page: 632 year: 2013 end-page: 636 ident: b0125 article-title: Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells publication-title: Bioresour. Technol. – volume: 45 start-page: 10300 year: 2011 end-page: 10305 ident: b0085 article-title: Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters publication-title: Environ. Sci. Technol. – volume: 42 start-page: 1545 year: 2013 end-page: 1554 ident: b0100 article-title: Effectiveness of biochar for sorption of ammonium and phosphate from dairy effluent publication-title: J. Environ. Qual. – volume: 181 start-page: 60 year: 2013 end-page: 67 ident: b0170 article-title: Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures publication-title: Environ. Pollut. – volume: 4 start-page: 155 year: 2007 end-page: 171 ident: b0110 article-title: The global marine phosphorus cycle: sensitivity to oceanic circulation publication-title: Biogeosciences – volume: 11 start-page: 1135 year: 2011 end-page: 1141 ident: b0040 article-title: Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar publication-title: J. Soils Sediments – volume: 102 start-page: 3488 year: 2011 end-page: 3497 ident: b0145 article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures publication-title: Bioresour. Technol. – volume: 118 start-page: 196 year: 2013 end-page: 204 ident: b0065 article-title: Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties publication-title: J. Environ. Manage. – volume: 76 start-page: 127 year: 2009 end-page: 133 ident: b0025 article-title: Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures publication-title: Chemosphere – volume: vol. 105 start-page: 47 year: 2010 end-page: 82 ident: b0115 article-title: A review of biochar and its use and function in soil publication-title: Advances in Agronomy – volume: 102 start-page: 6273 year: 2011 end-page: 6278 ident: b0135 article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential publication-title: Bioresour. Technol. – volume: 91 start-page: 1612 year: 2013 end-page: 1619 ident: b0060 article-title: The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars publication-title: Chemosphere – volume: 42 start-page: 5137 year: 2008 end-page: 5143 ident: b0035 article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures publication-title: Environ. Sci. Technol. – volume: 337 start-page: 1 year: 2010 end-page: 18 ident: b0010 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant Soil – volume: 59 start-page: 2501 year: 2011 ident: 10.1016/j.biortech.2014.09.071_b0120 article-title: Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil publication-title: J. Agric. Food Chem. doi: 10.1021/jf104206c – volume: 11 start-page: 1135 year: 2011 ident: 10.1016/j.biortech.2014.09.071_b0040 article-title: Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar publication-title: J. Soils Sediments doi: 10.1007/s11368-011-0405-9 – volume: 46 start-page: 13009 year: 2012 ident: 10.1016/j.biortech.2014.09.071_b0050 article-title: Catalysis kinetics and porous analysis of rolling activated carbon-PTFE air-cathode in microbial fuel cells publication-title: Environ. Sci. Technol. doi: 10.1021/es303619a – volume: 42 start-page: 1545 year: 2013 ident: 10.1016/j.biortech.2014.09.071_b0100 article-title: Effectiveness of biochar for sorption of ammonium and phosphate from dairy effluent publication-title: J. Environ. Qual. doi: 10.2134/jeq2012.0482 – volume: 102 start-page: 716 year: 2011 ident: 10.1016/j.biortech.2014.09.071_b0030 article-title: A novel magnetic biochar efficiently sorbs organic pollutants and phosphate publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.08.067 – volume: 5 start-page: 133 year: 1980 ident: 10.1016/j.biortech.2014.09.071_b0015 article-title: Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l’air et dans l’eau publication-title: Appl. Surf. Sci. doi: 10.1016/0378-5963(80)90148-8 – volume: 190 start-page: 501 year: 2011 ident: 10.1016/j.biortech.2014.09.071_b0140 article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.03.083 – volume: 102 start-page: 6273 year: 2011 ident: 10.1016/j.biortech.2014.09.071_b0135 article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.03.006 – volume: 91 start-page: 1612 year: 2013 ident: 10.1016/j.biortech.2014.09.071_b0060 article-title: The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.12.057 – volume: 118 start-page: 196 year: 2013 ident: 10.1016/j.biortech.2014.09.071_b0065 article-title: Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2013.01.001 – volume: 36 start-page: 1564 year: 2004 ident: 10.1016/j.biortech.2014.09.071_b0055 article-title: Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds publication-title: Surf. Interface Anal. doi: 10.1002/sia.1984 – volume: 42 start-page: 97 year: 1987 ident: 10.1016/j.biortech.2014.09.071_b0105 article-title: Fe 2p spectra of silicate minerals publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/0368-2048(87)85010-7 – volume: 221 start-page: 315 year: 2013 ident: 10.1016/j.biortech.2014.09.071_b0165 article-title: Selective removal of phosphate in waters using a novel of cation adsorbent: zirconium phosphate (ZrP) behavior and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.02.001 – volume: 38 start-page: 1318 year: 2004 ident: 10.1016/j.biortech.2014.09.071_b0150 article-title: Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings publication-title: Water Res. doi: 10.1016/j.watres.2003.12.009 – volume: 181 start-page: 60 year: 2013 ident: 10.1016/j.biortech.2014.09.071_b0170 article-title: Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.05.056 – volume: 4 start-page: 155 year: 2007 ident: 10.1016/j.biortech.2014.09.071_b0110 article-title: The global marine phosphorus cycle: sensitivity to oceanic circulation publication-title: Biogeosciences doi: 10.5194/bg-4-155-2007 – volume: 42 start-page: 5137 year: 2008 ident: 10.1016/j.biortech.2014.09.071_b0035 article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures publication-title: Environ. Sci. Technol. doi: 10.1021/es8002684 – volume: 8 start-page: 531 year: 2014 ident: 10.1016/j.biortech.2014.09.071_b0090 article-title: Enhanced adsorption of phosphate by loading nanosized ferric oxyhydroxide on anion resin publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-014-0629-1 – volume: 280 start-page: 705 year: 2013 ident: 10.1016/j.biortech.2014.09.071_b0005 article-title: Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.05.046 – volume: vol. 105 start-page: 47 year: 2010 ident: 10.1016/j.biortech.2014.09.071_b0115 article-title: A review of biochar and its use and function in soil – volume: 102 start-page: 3488 year: 2011 ident: 10.1016/j.biortech.2014.09.071_b0145 article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.11.018 – volume: 43 start-page: 3285 year: 2009 ident: 10.1016/j.biortech.2014.09.071_b0020 article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine publication-title: Environ. Sci. Technol. doi: 10.1021/es803092k – volume: 337 start-page: 1 year: 2010 ident: 10.1016/j.biortech.2014.09.071_b0010 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant Soil doi: 10.1007/s11104-010-0464-5 – volume: 197 start-page: 295 year: 2012 ident: 10.1016/j.biortech.2014.09.071_b0080 article-title: Kinetic and adsorptive characterization of biochar in metal ions removal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.05.025 – volume: 226 start-page: 286 year: 2013 ident: 10.1016/j.biortech.2014.09.071_b0160 article-title: Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.04.077 – volume: 201 start-page: 191 year: 2002 ident: 10.1016/j.biortech.2014.09.071_b0070 article-title: Characterization and use of activated carbons prepared from bagasses for liquid-phase adsorption publication-title: Colloids Surf. A doi: 10.1016/S0927-7757(01)01004-4 – volume: 76 start-page: 127 year: 2009 ident: 10.1016/j.biortech.2014.09.071_b0025 article-title: Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.02.004 – volume: 45 start-page: 10300 year: 2011 ident: 10.1016/j.biortech.2014.09.071_b0085 article-title: Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters publication-title: Environ. Sci. Technol. doi: 10.1021/es202401p – volume: 172 start-page: 86 year: 2013 ident: 10.1016/j.biortech.2014.09.071_b0130 article-title: Enhanced PCBs sorption on biochars as affected by environmental factors: humic acid and metal cations publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2012.08.007 – volume: 68 start-page: 1058 year: 2007 ident: 10.1016/j.biortech.2014.09.071_b0155 article-title: CuFe2O4/activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.01.081 – volume: 138 start-page: 266 year: 2013 ident: 10.1016/j.biortech.2014.09.071_b0075 article-title: Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.03.186 – volume: 69 start-page: 1 year: 1997 ident: 10.1016/j.biortech.2014.09.071_b0095 article-title: Adsorption of water-soluble organic dyes on magnetic charcoal publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/(SICI)1097-4660(199705)69:1<1::AID-JCTB653>3.0.CO;2-H – volume: 144 start-page: 632 year: 2013 ident: 10.1016/j.biortech.2014.09.071_b0125 article-title: Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.07.022 |
SSID | ssj0003172 |
Score | 2.5430324 |
Snippet | [Display omitted]
•Granulation followed by ferric loading had the best phosphate adsorption capacity.•The phosphate adsorption capacity was increased from 0 to... Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate... Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (B sub(g)-FO-1) substantially enhanced phosphate... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 119 |
SubjectTerms | Adsorbents Adsorption Biochar Biotechnology - methods Charcoal - chemistry Cotton Ferric Compounds - chemistry Ferric oxide Ferric oxides Gossypium - chemistry Granulation oxides Phosphate removal Phosphates Phosphates - chemistry Porosity porous media Powders Soil Surface area Surface chemistry Water - chemistry Water Pollutants, Chemical - analysis Water Purification |
Title | Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water |
URI | https://dx.doi.org/10.1016/j.biortech.2014.09.071 https://www.ncbi.nlm.nih.gov/pubmed/25446788 https://www.proquest.com/docview/1643145053 https://www.proquest.com/docview/1660385614 https://www.proquest.com/docview/1669846335 https://www.proquest.com/docview/1836671847 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9tAFB4hONAeKkq3sGkq9WpiZ_ZjFAFpq3JpkbiNZnMJJHbkhOXEb-eNF6AHwqE3L9-TbL_xe99o3vsGoW_GM0q4cwlh1iQ0twp-KcYTyNVhQLySmYgNzr9O-fiM_jhn52to1PXCxLLKNvY3Mb2O1u2Vfvs1-_PJpP87km_JIAPFKQKpFT8pFXGUH94_lXlAfqxXEgCcRPSzLuHLQzuJFa31okTW6J2K7KUE9RIBrRPR8RZ61zJIPGwe8j1aC8U2ejv8W7UqGmEbbY66bdzgzjPFwQ9odgK5qd2xC5vC4zwqMzpc3k18WOBpWZfU41B3VGF48NiVhT1Y3wQAV-UMRzEHMAZWOb3CyxJXYVbeBDy_KBfzC2CuDeoWjqqP6Oz46M9onLQ7LiSOiXSZ-JTlAxtIFpT1lvNcOuaF4N4JaY2wymaZzTnNaRYgitLcsOCFSaUVnqvAySe0XpRF-IKwNcRxaSAiDCKeKW8AIiRTuU-dtz3Eus-sXStHHnfFmOqu7uxSd-7R0T06VRrc00P9R7t5I8jxqoXqvKj_GVoassartl87t2vwW1xMMUUorxcappkko8AfySoMjwuvwIBWYhRwQELYCowknAOJoKKHPjdj7_Hdo8QcEA658x9vuYvewBlritH30Pqyug77wLWW9qD-mQ7QxvD7z_HpA5vzK68 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELZQONAeqkJfaWnrSr1usxuvX8coKoQCuRQkbpZfW0KT3WgTaH8-411vRA-EQ2-r9Yxke-yZz_LMZ4S-akdzwqxNCDU6yQsjYUtRlkCs9kPipMh4KHA-n7LJZf7jil7toHFXCxPSKqPvb316463jn0GczcFyNhv8DOBbUIhA4YhAAuPnbmCnoj20Ozo5nUw3DhlCZHOZAPJJUHhQKHzzzcxCUmtzL5G1lKc8eyxGPYZBm1h09BK9iCASj9p-7qMdXx6g56NfdSTS8Adob9y95AYtD0gHX6HFMYSn-GgX1qXDRSBntLj6O3N-hedVk1WPfVNUhaHjoTALO9C-8yBcVwsc-BxAGYDl_DdeV7j2i-rO4-V1tVpeA3htpf7AV_0aXR59vxhPkvjoQmIpT9eJS2kxNJ5kXhpnGCuEpY5z5iwXRnMjTZaZguVFnnlwpHmhqXdcp8Jwx6Rn5A3qlVXp3yFsNLFMaHAKwyBPpdMgwgWVhUutM31Eu2lWNjKSh4cx5qpLPbtRnXlUMI9KpQLz9NFgo7dsOTme1JCdFdU_q0tB4HhS90tndgV2C_cpuvTV7UrBSZNkOUBIsk2GhbtXAEFbZSTAQELoFhlBGAMckfM-etuuvc3YA8scYA7x_j9G-RntTS7Oz9TZyfT0A3oGLbTNTT9EvXV96z8C9FqbT3Fr3QPARi5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Granulation+and+ferric+oxides+loading+enable+biochar+derived+from+cotton+stalk+to+remove+phosphate+from+water&rft.jtitle=Bioresource+technology&rft.au=Ren%2C+Jing&rft.au=Li%2C+Nan&rft.au=Li%2C+Lei&rft.au=An%2C+Jing-Kun&rft.date=2015-02-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=178&rft.spage=119&rft_id=info:doi/10.1016%2Fj.biortech.2014.09.071&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |