Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water

[Display omitted] •Granulation followed by ferric loading had the best phosphate adsorption capacity.•The phosphate adsorption capacity was increased from 0 to 0.963mg/g.•Both granulation and ferric oxides loading obviously increased the surface areas.•Pseudo-first order model is allowable to estima...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 178; pp. 119 - 125
Main Authors Ren, Jing, Li, Nan, Li, Lei, An, Jing-Kun, Zhao, Lin, Ren, Nan-Qi
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Granulation followed by ferric loading had the best phosphate adsorption capacity.•The phosphate adsorption capacity was increased from 0 to 0.963mg/g.•Both granulation and ferric oxides loading obviously increased the surface areas.•Pseudo-first order model is allowable to estimate the adsorption kinetics. Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. Bg-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0mg/g of raw biochar powder to 0.963mg/g (Bg-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59–0.399mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides.
AbstractList Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. Bg-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0 mg/g of raw biochar powder to 0.963 mg/g (Bg-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59-0.399 mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides.Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. Bg-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0 mg/g of raw biochar powder to 0.963 mg/g (Bg-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59-0.399 mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides.
Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. Bg-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0mg/g of raw biochar powder to 0.963mg/g (Bg-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59–0.399mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides.
[Display omitted] •Granulation followed by ferric loading had the best phosphate adsorption capacity.•The phosphate adsorption capacity was increased from 0 to 0.963mg/g.•Both granulation and ferric oxides loading obviously increased the surface areas.•Pseudo-first order model is allowable to estimate the adsorption kinetics. Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. Bg-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0mg/g of raw biochar powder to 0.963mg/g (Bg-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59–0.399mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides.
Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (B sub(g)-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. B sub(g)-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0 mg/g of raw biochar powder to 0.963 mg/g (B sub(g)-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59-0.399 mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides.
Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. Bg-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0 mg/g of raw biochar powder to 0.963 mg/g (Bg-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59-0.399 mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides.
Author Li, Nan
An, Jing-Kun
Ren, Nan-Qi
Zhao, Lin
Ren, Jing
Li, Lei
Author_xml – sequence: 1
  givenname: Jing
  surname: Ren
  fullname: Ren, Jing
  organization: School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
– sequence: 2
  givenname: Nan
  surname: Li
  fullname: Li, Nan
  email: nli@tju.edu.cn
  organization: School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
– sequence: 3
  givenname: Lei
  surname: Li
  fullname: Li, Lei
  organization: School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
– sequence: 4
  givenname: Jing-Kun
  surname: An
  fullname: An, Jing-Kun
  organization: School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
– sequence: 5
  givenname: Lin
  surname: Zhao
  fullname: Zhao, Lin
  organization: School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
– sequence: 6
  givenname: Nan-Qi
  surname: Ren
  fullname: Ren, Nan-Qi
  organization: State Key Laboratory of Urban Water Resource and Environment, No. 73 Huanghe Road, Nangang District, Harbin 150090, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25446788$$D View this record in MEDLINE/PubMed
BookMark eNqNkj1vFDEQhq0oEbkE_kLkkmYXe_25EgUogoAUiSbUlj9mcz5214ftO-Dfs-FyDc2lmimeZ6Z43yt0PqcZELqhpKWEyneb1sWUK_h12xHKW9K3RNEztKJasabrlTxHK9JL0mjR8Ut0VcqGEMKo6l6hy05wLpXWKzTdZTvvRltjmrGdAx4g5-hx-h0DFDwmG-L8iGG2bgS8_PRrm3GAHPewwDlN2KdaF7lUO_7ANeEMU9oD3q5T2a5thQP1a9nya3Qx2LHAm-d5jb5__vRw-6W5_3b39fbjfeOFIrUJRAydA0ahd8FJOWgvglIyeKWdVa53lLpB8oFTULLjgxUQlCXaqSB7kOwavT3c3eb0cwelmikWD-NoZ0i7YqhmUiqquTqNStlrLhkTL0EJ00JS_gKUM8oFEWxBb57RnZsgmG2Ok81_zDGjBXh_AHxOpWQYjI_1X2A12zgaSsxTJczGHCthniphSG-WSiy6_E8_fjgpfjiIsCS1j5BN8RFmDyFm8NWEFE-d-AsV5NWl
CitedBy_id crossref_primary_10_1016_j_scitotenv_2018_03_246
crossref_primary_10_1016_j_cej_2024_148931
crossref_primary_10_1016_j_jwpe_2024_106051
crossref_primary_10_7717_peerj_9164
crossref_primary_10_3390_ijms24031974
crossref_primary_10_1080_10643389_2023_2242227
crossref_primary_10_18307_2022_0502
crossref_primary_10_1515_gps_2022_0046
crossref_primary_10_1007_s10653_017_9986_6
crossref_primary_10_1016_j_arabjc_2023_105125
crossref_primary_10_1016_j_cej_2022_138978
crossref_primary_10_1016_j_chemosphere_2018_04_113
crossref_primary_10_1016_j_colsurfa_2018_10_082
crossref_primary_10_1016_j_jclepro_2017_12_117
crossref_primary_10_1016_j_jclepro_2021_129490
crossref_primary_10_1016_j_jenvman_2020_111048
crossref_primary_10_1039_C6EW00224B
crossref_primary_10_1007_s11814_018_0057_1
crossref_primary_10_1016_j_geoderma_2024_116917
crossref_primary_10_1080_19443994_2016_1193767
crossref_primary_10_1016_j_watres_2025_123169
crossref_primary_10_15446_agron_colomb_v35n1_58671
crossref_primary_10_1016_j_chemosphere_2022_134858
crossref_primary_10_1016_j_scp_2020_100361
crossref_primary_10_3390_agriculture10010002
crossref_primary_10_1016_j_jenvman_2018_02_088
crossref_primary_10_1016_j_jece_2022_108064
crossref_primary_10_1038_s41598_024_69117_9
crossref_primary_10_1016_j_biortech_2015_03_139
crossref_primary_10_1590_1678_4499_20210313
crossref_primary_10_1088_1755_1315_127_1_012015
crossref_primary_10_1016_j_envpol_2020_114223
crossref_primary_10_1016_j_chemosphere_2021_131176
crossref_primary_10_1016_j_scitotenv_2020_141809
crossref_primary_10_1016_j_biortech_2015_10_008
crossref_primary_10_3390_nano10020336
crossref_primary_10_3390_su142114523
crossref_primary_10_1007_s11356_017_0338_y
crossref_primary_10_1016_j_molliq_2017_05_102
crossref_primary_10_1016_j_jwpe_2022_102793
crossref_primary_10_1016_j_geoderma_2018_04_025
crossref_primary_10_1016_j_jenvman_2022_115506
crossref_primary_10_1016_j_biortech_2015_05_052
crossref_primary_10_1016_j_scitotenv_2020_144246
crossref_primary_10_1016_j_jtice_2018_05_032
crossref_primary_10_1016_j_jtice_2017_07_002
crossref_primary_10_1007_s11368_023_03520_z
crossref_primary_10_1007_s41742_020_00250_9
crossref_primary_10_1016_j_chemosphere_2017_02_123
crossref_primary_10_1016_j_scitotenv_2016_03_151
crossref_primary_10_1016_j_heliyon_2023_e19830
crossref_primary_10_1016_j_chemosphere_2021_129766
crossref_primary_10_1080_01932691_2022_2102035
crossref_primary_10_1016_j_biombioe_2024_107179
crossref_primary_10_1080_01496395_2017_1345944
crossref_primary_10_1016_j_scitotenv_2019_05_400
crossref_primary_10_1016_j_biortech_2016_05_005
crossref_primary_10_1016_j_jclepro_2021_126144
crossref_primary_10_1016_j_chemosphere_2021_131391
crossref_primary_10_2139_ssrn_4067929
crossref_primary_10_5004_dwt_2019_24516
crossref_primary_10_1016_j_proenv_2016_02_076
crossref_primary_10_1016_j_biortech_2016_07_072
crossref_primary_10_1021_acsami_6b03583
crossref_primary_10_1021_acssuschemeng_8b01809
crossref_primary_10_2166_wst_2019_305
crossref_primary_10_1016_j_biortech_2017_09_136
crossref_primary_10_1016_j_carbon_2017_12_070
crossref_primary_10_1007_s12155_022_10520_3
crossref_primary_10_1016_j_jcis_2020_10_143
crossref_primary_10_1016_j_biortech_2019_122403
crossref_primary_10_1016_j_jece_2024_112776
crossref_primary_10_1016_j_jenvman_2017_02_030
crossref_primary_10_1016_j_ijhydene_2020_05_227
crossref_primary_10_1021_acs_est_0c01404
crossref_primary_10_2965_jwet_16_069
crossref_primary_10_1016_j_ecoenv_2020_111261
crossref_primary_10_1016_j_jes_2019_10_018
crossref_primary_10_1016_j_biortech_2017_07_082
crossref_primary_10_1007_s11356_020_09166_5
crossref_primary_10_2139_ssrn_3995932
crossref_primary_10_1016_j_seppur_2015_03_043
crossref_primary_10_1016_j_jhazmat_2018_11_058
crossref_primary_10_1016_j_matpr_2021_05_701
crossref_primary_10_1098_rsos_201789
crossref_primary_10_1016_j_jclepro_2021_127019
crossref_primary_10_1002_agg2_20142
crossref_primary_10_1051_e3sconf_201911801022
crossref_primary_10_1016_j_chemosphere_2020_128991
crossref_primary_10_1007_s11356_023_29960_1
crossref_primary_10_1002_wer_1070
crossref_primary_10_1007_s12209_017_0064_z
crossref_primary_10_1016_j_jenvman_2017_04_057
crossref_primary_10_1016_j_micromeso_2020_110764
crossref_primary_10_1016_j_scitotenv_2022_157592
crossref_primary_10_1039_C5RA22870K
crossref_primary_10_1016_j_scitotenv_2017_10_193
crossref_primary_10_1016_j_watres_2016_02_038
crossref_primary_10_2166_wrd_2018_018
crossref_primary_10_3390_separations8030032
crossref_primary_10_1007_s41204_020_00090_0
crossref_primary_10_1016_j_cej_2020_126494
crossref_primary_10_3390_environments8050041
crossref_primary_10_1007_s40726_022_00238_3
crossref_primary_10_1007_s12517_019_4694_4
crossref_primary_10_1007_s11356_017_0778_4
crossref_primary_10_5004_dwt_2020_25635
crossref_primary_10_1016_j_scitotenv_2021_149454
crossref_primary_10_1016_j_matpr_2022_08_391
crossref_primary_10_1016_j_chemosphere_2016_01_043
crossref_primary_10_1016_j_biortech_2016_04_093
crossref_primary_10_1016_j_eti_2021_101771
crossref_primary_10_1016_j_clce_2024_100118
crossref_primary_10_1016_j_jwpe_2020_101187
crossref_primary_10_1007_s11356_022_21628_6
crossref_primary_10_1016_j_envpol_2019_01_012
crossref_primary_10_1016_j_chemosphere_2016_02_004
crossref_primary_10_1016_j_jiec_2019_06_008
crossref_primary_10_1016_j_scitotenv_2018_02_135
crossref_primary_10_3389_fenvs_2020_538539
crossref_primary_10_1016_j_jaap_2025_107020
crossref_primary_10_1007_s10311_022_01519_5
crossref_primary_10_3389_fceng_2023_1303357
crossref_primary_10_1016_j_jenvman_2018_07_037
crossref_primary_10_2166_wst_2018_230
crossref_primary_10_2139_ssrn_3985149
crossref_primary_10_3390_w16060873
crossref_primary_10_1016_j_biortech_2016_02_125
crossref_primary_10_1016_j_envpol_2025_125919
crossref_primary_10_5004_dwt_2022_28136
crossref_primary_10_1016_j_jwpe_2019_101036
crossref_primary_10_5004_dwt_2018_21737
crossref_primary_10_1007_s11356_020_08307_0
crossref_primary_10_1016_j_cej_2020_125502
crossref_primary_10_1007_s11368_022_03335_4
crossref_primary_10_1016_j_jclepro_2020_125638
crossref_primary_10_1061__ASCE_EE_1943_7870_0001946
crossref_primary_10_1002_clen_201600123
crossref_primary_10_1016_j_jhazmat_2020_122026
crossref_primary_10_5004_dwt_2017_21588
crossref_primary_10_1039_C9RA02052G
crossref_primary_10_1038_s41598_024_66965_3
crossref_primary_10_3390_land10040372
crossref_primary_10_1016_j_ecoleng_2020_105792
crossref_primary_10_1016_j_cej_2021_132166
crossref_primary_10_1016_j_ecoenv_2020_111451
crossref_primary_10_3390_en17061310
crossref_primary_10_1016_j_jenvman_2021_111970
crossref_primary_10_1016_j_jaap_2018_01_028
crossref_primary_10_1021_acssuschemeng_5b00932
crossref_primary_10_1088_2053_1591_ac1533
crossref_primary_10_1016_j_jtice_2016_02_012
crossref_primary_10_1016_j_cej_2020_128211
crossref_primary_10_1002_wer_11077
crossref_primary_10_1016_j_watres_2020_115629
crossref_primary_10_2134_ael2016_11_0044
Cites_doi 10.1021/jf104206c
10.1007/s11368-011-0405-9
10.1021/es303619a
10.2134/jeq2012.0482
10.1016/j.biortech.2010.08.067
10.1016/0378-5963(80)90148-8
10.1016/j.jhazmat.2011.03.083
10.1016/j.biortech.2011.03.006
10.1016/j.chemosphere.2012.12.057
10.1016/j.jenvman.2013.01.001
10.1002/sia.1984
10.1016/0368-2048(87)85010-7
10.1016/j.cej.2013.02.001
10.1016/j.watres.2003.12.009
10.1016/j.envpol.2013.05.056
10.5194/bg-4-155-2007
10.1021/es8002684
10.1007/s11783-014-0629-1
10.1016/j.apsusc.2013.05.046
10.1016/j.biortech.2010.11.018
10.1021/es803092k
10.1007/s11104-010-0464-5
10.1016/j.cej.2012.05.025
10.1016/j.cej.2013.04.077
10.1016/S0927-7757(01)01004-4
10.1016/j.chemosphere.2009.02.004
10.1021/es202401p
10.1016/j.envpol.2012.08.007
10.1016/j.chemosphere.2007.01.081
10.1016/j.biortech.2013.03.186
10.1002/(SICI)1097-4660(199705)69:1<1::AID-JCTB653>3.0.CO;2-H
10.1016/j.biortech.2013.07.022
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7ST
8FD
C1K
FR3
P64
SOI
7SR
7SU
7TB
JG9
KR7
7S9
L.6
DOI 10.1016/j.biortech.2014.09.071
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
Engineered Materials Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Materials Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

Materials Research Database
MEDLINE
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 125
ExternalDocumentID 25446788
10_1016_j_biortech_2014_09_071
S0960852414013303
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7ST
8FD
C1K
FR3
P64
SOI
7SR
7SU
7TB
JG9
KR7
7S9
L.6
ID FETCH-LOGICAL-c570t-d05f2be31e9bdb66f8c5d776dc78ba7b9b11bf64f41e7624fa5ed7a08b7d69e63
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Fri Jul 11 09:26:56 EDT 2025
Fri Jul 11 13:33:22 EDT 2025
Fri Jul 11 11:40:16 EDT 2025
Fri Jul 11 11:47:27 EDT 2025
Wed Feb 19 02:42:36 EST 2025
Tue Jul 01 02:06:26 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Fri Feb 23 02:16:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ferric oxides
Phosphate removal
Granulation
Biochar
Language English
License Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c570t-d05f2be31e9bdb66f8c5d776dc78ba7b9b11bf64f41e7624fa5ed7a08b7d69e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25446788
PQID 1643145053
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1836671847
proquest_miscellaneous_1669846335
proquest_miscellaneous_1660385614
proquest_miscellaneous_1643145053
pubmed_primary_25446788
crossref_citationtrail_10_1016_j_biortech_2014_09_071
crossref_primary_10_1016_j_biortech_2014_09_071
elsevier_sciencedirect_doi_10_1016_j_biortech_2014_09_071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Uchimiya, Wartelle, Klasson, Fortier, Lima (b0120) 2011; 59
Lewis, Wurtsbaugh, Paerl (b0085) 2011; 45
Han, Boateng, Qi, Lima, Chang (b0065) 2013; 118
Grosvenor, Kobe, Biesinger, McIntyre (b0055) 2004; 36
Safarik Vvo, Safarikova (b0095) 1997; 69
Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (b0135) 2011; 102
Zhang, Gao (b0160) 2013; 226
Slomp, Van Cappellen (b0110) 2007; 4
Dong, Yu, Wang (b0050) 2012; 46
Cui, Wang, Fu, Ci (b0040) 2011; 11
Wang, Gao, Zhou, Dong, Yu, Feng (b0125) 2013; 144
Brion (b0015) 1980; 5
Kolodynska, Wnetrzak, Leahy, Hayes, Kwapinski, Hubicki (b0080) 2012; 197
Wang, Wang, Fang, Herath, Wang, Cang, Xie, Zhou (b0130) 2013; 172
Kim, Shim, Kim, Hyun, Ryu, Park, Jung (b0075) 2013; 138
Juang, Wu, Tseng (b0070) 2002; 201
Ren, Li, Zhao, Ren (b0090) 2014; 8
Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (b0140) 2011; 190
Angin, Kose, Selengil (b0005) 2013; 280
Chen, Chen, Lv (b0030) 2011; 102
Sarkhot, Ghezzehei, Berhe (b0100) 2013; 42
Atkinson, Fitzgerald, Hipps (b0010) 2010; 337
Chen, Zhou, Zhu (b0035) 2008; 42
Zhang, Du, Jiao, Pan, Zhang, Sun, Wang, Wang, Gao (b0165) 2013; 221
Yuan, Xu, Zhang (b0145) 2011; 102
Zheng, Wang, Zhao, Herbert, Xing (b0170) 2013; 181
Cao, Ma, Gao, Harris (b0020) 2009; 43
Chen, Chen (b0025) 2009; 76
Hale, Alling, Martinsen, Mulder, Breedveld, Cornelissen (b0060) 2013; 91
Zeng, Li, Liu (b0150) 2004; 38
Seyama, Soma (b0105) 1987; 42
Sohi, Krull, Lopez-Capel, Bol (b0115) 2010; vol. 105
Zhang, Qu, Liu, Cooper, Wu (b0155) 2007; 68
Hale (10.1016/j.biortech.2014.09.071_b0060) 2013; 91
Cao (10.1016/j.biortech.2014.09.071_b0020) 2009; 43
Dong (10.1016/j.biortech.2014.09.071_b0050) 2012; 46
Chen (10.1016/j.biortech.2014.09.071_b0025) 2009; 76
Zheng (10.1016/j.biortech.2014.09.071_b0170) 2013; 181
Han (10.1016/j.biortech.2014.09.071_b0065) 2013; 118
Yao (10.1016/j.biortech.2014.09.071_b0135) 2011; 102
Zhang (10.1016/j.biortech.2014.09.071_b0155) 2007; 68
Zhang (10.1016/j.biortech.2014.09.071_b0160) 2013; 226
Kolodynska (10.1016/j.biortech.2014.09.071_b0080) 2012; 197
Lewis (10.1016/j.biortech.2014.09.071_b0085) 2011; 45
Seyama (10.1016/j.biortech.2014.09.071_b0105) 1987; 42
Kim (10.1016/j.biortech.2014.09.071_b0075) 2013; 138
Wang (10.1016/j.biortech.2014.09.071_b0130) 2013; 172
Zeng (10.1016/j.biortech.2014.09.071_b0150) 2004; 38
Chen (10.1016/j.biortech.2014.09.071_b0035) 2008; 42
Sohi (10.1016/j.biortech.2014.09.071_b0115) 2010; vol. 105
Zhang (10.1016/j.biortech.2014.09.071_b0165) 2013; 221
Slomp (10.1016/j.biortech.2014.09.071_b0110) 2007; 4
Yuan (10.1016/j.biortech.2014.09.071_b0145) 2011; 102
Atkinson (10.1016/j.biortech.2014.09.071_b0010) 2010; 337
Yao (10.1016/j.biortech.2014.09.071_b0140) 2011; 190
Uchimiya (10.1016/j.biortech.2014.09.071_b0120) 2011; 59
Cui (10.1016/j.biortech.2014.09.071_b0040) 2011; 11
Ren (10.1016/j.biortech.2014.09.071_b0090) 2014; 8
Sarkhot (10.1016/j.biortech.2014.09.071_b0100) 2013; 42
Wang (10.1016/j.biortech.2014.09.071_b0125) 2013; 144
Grosvenor (10.1016/j.biortech.2014.09.071_b0055) 2004; 36
Juang (10.1016/j.biortech.2014.09.071_b0070) 2002; 201
Chen (10.1016/j.biortech.2014.09.071_b0030) 2011; 102
Angin (10.1016/j.biortech.2014.09.071_b0005) 2013; 280
Brion (10.1016/j.biortech.2014.09.071_b0015) 1980; 5
Safarik Vvo (10.1016/j.biortech.2014.09.071_b0095) 1997; 69
References_xml – volume: 138
  start-page: 266
  year: 2013
  end-page: 270
  ident: b0075
  article-title: Characterization of cadmium removal from aqueous solution by biochar produced from a giant
  publication-title: Bioresour. Technol.
– volume: 197
  start-page: 295
  year: 2012
  end-page: 305
  ident: b0080
  article-title: Kinetic and adsorptive characterization of biochar in metal ions removal
  publication-title: Chem. Eng. J.
– volume: 42
  start-page: 97
  year: 1987
  end-page: 101
  ident: b0105
  article-title: Fe 2p spectra of silicate minerals
  publication-title: J. Electron Spectrosc. Relat. Phenom.
– volume: 102
  start-page: 716
  year: 2011
  end-page: 723
  ident: b0030
  article-title: A novel magnetic biochar efficiently sorbs organic pollutants and phosphate
  publication-title: Bioresour. Technol.
– volume: 280
  start-page: 705
  year: 2013
  end-page: 710
  ident: b0005
  article-title: Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff
  publication-title: Appl. Surf. Sci.
– volume: 190
  start-page: 501
  year: 2011
  end-page: 507
  ident: b0140
  article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings
  publication-title: J. Hazard. Mater.
– volume: 8
  start-page: 531
  year: 2014
  end-page: 538
  ident: b0090
  article-title: Enhanced adsorption of phosphate by loading nanosized ferric oxyhydroxide on anion resin
  publication-title: Front. Environ. Sci. Eng.
– volume: 201
  start-page: 191
  year: 2002
  end-page: 199
  ident: b0070
  article-title: Characterization and use of activated carbons prepared from bagasses for liquid-phase adsorption
  publication-title: Colloids Surf. A
– volume: 36
  start-page: 1564
  year: 2004
  end-page: 1574
  ident: b0055
  article-title: Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds
  publication-title: Surf. Interface Anal.
– volume: 172
  start-page: 86
  year: 2013
  end-page: 93
  ident: b0130
  article-title: Enhanced PCBs sorption on biochars as affected by environmental factors: humic acid and metal cations
  publication-title: Environ. Pollut.
– volume: 5
  start-page: 133
  year: 1980
  end-page: 152
  ident: b0015
  article-title: Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l’air et dans l’eau
  publication-title: Appl. Surf. Sci.
– volume: 226
  start-page: 286
  year: 2013
  end-page: 292
  ident: b0160
  article-title: Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite
  publication-title: Chem. Eng. J.
– volume: 221
  start-page: 315
  year: 2013
  end-page: 321
  ident: b0165
  article-title: Selective removal of phosphate in waters using a novel of cation adsorbent: zirconium phosphate (ZrP) behavior and mechanism
  publication-title: Chem. Eng. J.
– volume: 59
  start-page: 2501
  year: 2011
  end-page: 2510
  ident: b0120
  article-title: Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil
  publication-title: J. Agric. Food Chem.
– volume: 38
  start-page: 1318
  year: 2004
  end-page: 1326
  ident: b0150
  article-title: Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings
  publication-title: Water Res.
– volume: 68
  start-page: 1058
  year: 2007
  end-page: 1066
  ident: b0155
  article-title: CuFe2O4/activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration
  publication-title: Chemosphere
– volume: 43
  start-page: 3285
  year: 2009
  end-page: 3291
  ident: b0020
  article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine
  publication-title: Environ. Sci. Technol.
– volume: 69
  start-page: 1
  year: 1997
  end-page: 4
  ident: b0095
  article-title: Adsorption of water-soluble organic dyes on magnetic charcoal
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 46
  start-page: 13009
  year: 2012
  end-page: 13015
  ident: b0050
  article-title: Catalysis kinetics and porous analysis of rolling activated carbon-PTFE air-cathode in microbial fuel cells
  publication-title: Environ. Sci. Technol.
– volume: 144
  start-page: 632
  year: 2013
  end-page: 636
  ident: b0125
  article-title: Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells
  publication-title: Bioresour. Technol.
– volume: 45
  start-page: 10300
  year: 2011
  end-page: 10305
  ident: b0085
  article-title: Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters
  publication-title: Environ. Sci. Technol.
– volume: 42
  start-page: 1545
  year: 2013
  end-page: 1554
  ident: b0100
  article-title: Effectiveness of biochar for sorption of ammonium and phosphate from dairy effluent
  publication-title: J. Environ. Qual.
– volume: 181
  start-page: 60
  year: 2013
  end-page: 67
  ident: b0170
  article-title: Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures
  publication-title: Environ. Pollut.
– volume: 4
  start-page: 155
  year: 2007
  end-page: 171
  ident: b0110
  article-title: The global marine phosphorus cycle: sensitivity to oceanic circulation
  publication-title: Biogeosciences
– volume: 11
  start-page: 1135
  year: 2011
  end-page: 1141
  ident: b0040
  article-title: Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar
  publication-title: J. Soils Sediments
– volume: 102
  start-page: 3488
  year: 2011
  end-page: 3497
  ident: b0145
  article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures
  publication-title: Bioresour. Technol.
– volume: 118
  start-page: 196
  year: 2013
  end-page: 204
  ident: b0065
  article-title: Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties
  publication-title: J. Environ. Manage.
– volume: 76
  start-page: 127
  year: 2009
  end-page: 133
  ident: b0025
  article-title: Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures
  publication-title: Chemosphere
– volume: vol. 105
  start-page: 47
  year: 2010
  end-page: 82
  ident: b0115
  article-title: A review of biochar and its use and function in soil
  publication-title: Advances in Agronomy
– volume: 102
  start-page: 6273
  year: 2011
  end-page: 6278
  ident: b0135
  article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential
  publication-title: Bioresour. Technol.
– volume: 91
  start-page: 1612
  year: 2013
  end-page: 1619
  ident: b0060
  article-title: The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars
  publication-title: Chemosphere
– volume: 42
  start-page: 5137
  year: 2008
  end-page: 5143
  ident: b0035
  article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures
  publication-title: Environ. Sci. Technol.
– volume: 337
  start-page: 1
  year: 2010
  end-page: 18
  ident: b0010
  article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review
  publication-title: Plant Soil
– volume: 59
  start-page: 2501
  year: 2011
  ident: 10.1016/j.biortech.2014.09.071_b0120
  article-title: Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf104206c
– volume: 11
  start-page: 1135
  year: 2011
  ident: 10.1016/j.biortech.2014.09.071_b0040
  article-title: Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-011-0405-9
– volume: 46
  start-page: 13009
  year: 2012
  ident: 10.1016/j.biortech.2014.09.071_b0050
  article-title: Catalysis kinetics and porous analysis of rolling activated carbon-PTFE air-cathode in microbial fuel cells
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es303619a
– volume: 42
  start-page: 1545
  year: 2013
  ident: 10.1016/j.biortech.2014.09.071_b0100
  article-title: Effectiveness of biochar for sorption of ammonium and phosphate from dairy effluent
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2012.0482
– volume: 102
  start-page: 716
  year: 2011
  ident: 10.1016/j.biortech.2014.09.071_b0030
  article-title: A novel magnetic biochar efficiently sorbs organic pollutants and phosphate
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.08.067
– volume: 5
  start-page: 133
  year: 1980
  ident: 10.1016/j.biortech.2014.09.071_b0015
  article-title: Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l’air et dans l’eau
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/0378-5963(80)90148-8
– volume: 190
  start-page: 501
  year: 2011
  ident: 10.1016/j.biortech.2014.09.071_b0140
  article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.03.083
– volume: 102
  start-page: 6273
  year: 2011
  ident: 10.1016/j.biortech.2014.09.071_b0135
  article-title: Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.03.006
– volume: 91
  start-page: 1612
  year: 2013
  ident: 10.1016/j.biortech.2014.09.071_b0060
  article-title: The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.12.057
– volume: 118
  start-page: 196
  year: 2013
  ident: 10.1016/j.biortech.2014.09.071_b0065
  article-title: Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2013.01.001
– volume: 36
  start-page: 1564
  year: 2004
  ident: 10.1016/j.biortech.2014.09.071_b0055
  article-title: Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.1984
– volume: 42
  start-page: 97
  year: 1987
  ident: 10.1016/j.biortech.2014.09.071_b0105
  article-title: Fe 2p spectra of silicate minerals
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/0368-2048(87)85010-7
– volume: 221
  start-page: 315
  year: 2013
  ident: 10.1016/j.biortech.2014.09.071_b0165
  article-title: Selective removal of phosphate in waters using a novel of cation adsorbent: zirconium phosphate (ZrP) behavior and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.02.001
– volume: 38
  start-page: 1318
  year: 2004
  ident: 10.1016/j.biortech.2014.09.071_b0150
  article-title: Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings
  publication-title: Water Res.
  doi: 10.1016/j.watres.2003.12.009
– volume: 181
  start-page: 60
  year: 2013
  ident: 10.1016/j.biortech.2014.09.071_b0170
  article-title: Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2013.05.056
– volume: 4
  start-page: 155
  year: 2007
  ident: 10.1016/j.biortech.2014.09.071_b0110
  article-title: The global marine phosphorus cycle: sensitivity to oceanic circulation
  publication-title: Biogeosciences
  doi: 10.5194/bg-4-155-2007
– volume: 42
  start-page: 5137
  year: 2008
  ident: 10.1016/j.biortech.2014.09.071_b0035
  article-title: Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8002684
– volume: 8
  start-page: 531
  year: 2014
  ident: 10.1016/j.biortech.2014.09.071_b0090
  article-title: Enhanced adsorption of phosphate by loading nanosized ferric oxyhydroxide on anion resin
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-014-0629-1
– volume: 280
  start-page: 705
  year: 2013
  ident: 10.1016/j.biortech.2014.09.071_b0005
  article-title: Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.05.046
– volume: vol. 105
  start-page: 47
  year: 2010
  ident: 10.1016/j.biortech.2014.09.071_b0115
  article-title: A review of biochar and its use and function in soil
– volume: 102
  start-page: 3488
  year: 2011
  ident: 10.1016/j.biortech.2014.09.071_b0145
  article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.11.018
– volume: 43
  start-page: 3285
  year: 2009
  ident: 10.1016/j.biortech.2014.09.071_b0020
  article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803092k
– volume: 337
  start-page: 1
  year: 2010
  ident: 10.1016/j.biortech.2014.09.071_b0010
  article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0464-5
– volume: 197
  start-page: 295
  year: 2012
  ident: 10.1016/j.biortech.2014.09.071_b0080
  article-title: Kinetic and adsorptive characterization of biochar in metal ions removal
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.05.025
– volume: 226
  start-page: 286
  year: 2013
  ident: 10.1016/j.biortech.2014.09.071_b0160
  article-title: Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.04.077
– volume: 201
  start-page: 191
  year: 2002
  ident: 10.1016/j.biortech.2014.09.071_b0070
  article-title: Characterization and use of activated carbons prepared from bagasses for liquid-phase adsorption
  publication-title: Colloids Surf. A
  doi: 10.1016/S0927-7757(01)01004-4
– volume: 76
  start-page: 127
  year: 2009
  ident: 10.1016/j.biortech.2014.09.071_b0025
  article-title: Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.02.004
– volume: 45
  start-page: 10300
  year: 2011
  ident: 10.1016/j.biortech.2014.09.071_b0085
  article-title: Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202401p
– volume: 172
  start-page: 86
  year: 2013
  ident: 10.1016/j.biortech.2014.09.071_b0130
  article-title: Enhanced PCBs sorption on biochars as affected by environmental factors: humic acid and metal cations
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2012.08.007
– volume: 68
  start-page: 1058
  year: 2007
  ident: 10.1016/j.biortech.2014.09.071_b0155
  article-title: CuFe2O4/activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.01.081
– volume: 138
  start-page: 266
  year: 2013
  ident: 10.1016/j.biortech.2014.09.071_b0075
  article-title: Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.03.186
– volume: 69
  start-page: 1
  year: 1997
  ident: 10.1016/j.biortech.2014.09.071_b0095
  article-title: Adsorption of water-soluble organic dyes on magnetic charcoal
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/(SICI)1097-4660(199705)69:1<1::AID-JCTB653>3.0.CO;2-H
– volume: 144
  start-page: 632
  year: 2013
  ident: 10.1016/j.biortech.2014.09.071_b0125
  article-title: Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.07.022
SSID ssj0003172
Score 2.5430324
Snippet [Display omitted] •Granulation followed by ferric loading had the best phosphate adsorption capacity.•The phosphate adsorption capacity was increased from 0 to...
Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate...
Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (B sub(g)-FO-1) substantially enhanced phosphate...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119
SubjectTerms Adsorbents
Adsorption
Biochar
Biotechnology - methods
Charcoal - chemistry
Cotton
Ferric Compounds - chemistry
Ferric oxide
Ferric oxides
Gossypium - chemistry
Granulation
oxides
Phosphate removal
Phosphates
Phosphates - chemistry
Porosity
porous media
Powders
Soil
Surface area
Surface chemistry
Water - chemistry
Water Pollutants, Chemical - analysis
Water Purification
Title Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water
URI https://dx.doi.org/10.1016/j.biortech.2014.09.071
https://www.ncbi.nlm.nih.gov/pubmed/25446788
https://www.proquest.com/docview/1643145053
https://www.proquest.com/docview/1660385614
https://www.proquest.com/docview/1669846335
https://www.proquest.com/docview/1836671847
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9tAFB4hONAeKkq3sGkq9WpiZ_ZjFAFpq3JpkbiNZnMJJHbkhOXEb-eNF6AHwqE3L9-TbL_xe99o3vsGoW_GM0q4cwlh1iQ0twp-KcYTyNVhQLySmYgNzr9O-fiM_jhn52to1PXCxLLKNvY3Mb2O1u2Vfvs1-_PJpP87km_JIAPFKQKpFT8pFXGUH94_lXlAfqxXEgCcRPSzLuHLQzuJFa31okTW6J2K7KUE9RIBrRPR8RZ61zJIPGwe8j1aC8U2ejv8W7UqGmEbbY66bdzgzjPFwQ9odgK5qd2xC5vC4zwqMzpc3k18WOBpWZfU41B3VGF48NiVhT1Y3wQAV-UMRzEHMAZWOb3CyxJXYVbeBDy_KBfzC2CuDeoWjqqP6Oz46M9onLQ7LiSOiXSZ-JTlAxtIFpT1lvNcOuaF4N4JaY2wymaZzTnNaRYgitLcsOCFSaUVnqvAySe0XpRF-IKwNcRxaSAiDCKeKW8AIiRTuU-dtz3Eus-sXStHHnfFmOqu7uxSd-7R0T06VRrc00P9R7t5I8jxqoXqvKj_GVoassartl87t2vwW1xMMUUorxcappkko8AfySoMjwuvwIBWYhRwQELYCowknAOJoKKHPjdj7_Hdo8QcEA658x9vuYvewBlritH30Pqyug77wLWW9qD-mQ7QxvD7z_HpA5vzK68
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELZQONAeqkJfaWnrSr1usxuvX8coKoQCuRQkbpZfW0KT3WgTaH8-411vRA-EQ2-r9Yxke-yZz_LMZ4S-akdzwqxNCDU6yQsjYUtRlkCs9kPipMh4KHA-n7LJZf7jil7toHFXCxPSKqPvb316463jn0GczcFyNhv8DOBbUIhA4YhAAuPnbmCnoj20Ozo5nUw3DhlCZHOZAPJJUHhQKHzzzcxCUmtzL5G1lKc8eyxGPYZBm1h09BK9iCASj9p-7qMdXx6g56NfdSTS8Adob9y95AYtD0gHX6HFMYSn-GgX1qXDRSBntLj6O3N-hedVk1WPfVNUhaHjoTALO9C-8yBcVwsc-BxAGYDl_DdeV7j2i-rO4-V1tVpeA3htpf7AV_0aXR59vxhPkvjoQmIpT9eJS2kxNJ5kXhpnGCuEpY5z5iwXRnMjTZaZguVFnnlwpHmhqXdcp8Jwx6Rn5A3qlVXp3yFsNLFMaHAKwyBPpdMgwgWVhUutM31Eu2lWNjKSh4cx5qpLPbtRnXlUMI9KpQLz9NFgo7dsOTme1JCdFdU_q0tB4HhS90tndgV2C_cpuvTV7UrBSZNkOUBIsk2GhbtXAEFbZSTAQELoFhlBGAMckfM-etuuvc3YA8scYA7x_j9G-RntTS7Oz9TZyfT0A3oGLbTNTT9EvXV96z8C9FqbT3Fr3QPARi5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Granulation+and+ferric+oxides+loading+enable+biochar+derived+from+cotton+stalk+to+remove+phosphate+from+water&rft.jtitle=Bioresource+technology&rft.au=Ren%2C+Jing&rft.au=Li%2C+Nan&rft.au=Li%2C+Lei&rft.au=An%2C+Jing-Kun&rft.date=2015-02-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=178&rft.spage=119&rft_id=info:doi/10.1016%2Fj.biortech.2014.09.071&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon