Development of fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) using quenching probes for the detection of the Middle East respiratory syndrome coronavirus

•Fluorescent RT-LAMP assays using quenching probes for MERS-CoV were developed.•Quenching probe (QProbe) can solve the problem in turbidity monitoring mechanism.•Only primer-derived signal can be monitored specifically by QProbes.•Two primer sets were developed to enable to confirm MERS case by RT-L...

Full description

Saved in:
Bibliographic Details
Published inJournal of virological methods Vol. 258; pp. 41 - 48
Main Authors Shirato, Kazuya, Semba, Shohei, El-Kafrawy, Sherif A., Hassan, Ahmed M., Tolah, Ahmed M., Takayama, Ikuyo, Kageyama, Tsutomu, Notomi, Tsugunori, Kamitani, Wataru, Matsuyama, Shutoku, Azhar, Esam Ibraheem
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2018
The Authors. Published by Elsevier B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Fluorescent RT-LAMP assays using quenching probes for MERS-CoV were developed.•Quenching probe (QProbe) can solve the problem in turbidity monitoring mechanism.•Only primer-derived signal can be monitored specifically by QProbes.•Two primer sets were developed to enable to confirm MERS case by RT-LAMP only.•Both sets were highly specific and sensitive in comparison with real-time RT-PCR. Clinical detection of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) in patients is achieved using genetic diagnostic methods, such as real-time RT-PCR assay. Previously, we developed a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of MERS-CoV [Virol J. 2014. 11:139]. Generally, amplification of RT-LAMP is monitored by the turbidity induced by precipitation of magnesium pyrophosphate with newly synthesized DNA. However, this mechanism cannot completely exclude the possibility of unexpected reactions. Therefore, in this study, fluorescent RT-LAMP assays using quenching probes (QProbes) were developed specifically to monitor only primer-derived signals. Two primer sets (targeting nucleocapsid and ORF1a sequences) were constructed to confirm MERS cases by RT-LAMP assay only. Our data indicate that both primer sets were capable of detecting MERS-CoV RNA to the same level as existing genetic diagnostic methods, and that both were highly specific with no cross-reactivity observed with other respiratory viruses. These primer sets were highly efficient in amplifying target sequences derived from different MERS-CoV strains, including camel MERS-CoV. In addition, the detection efficacy of QProbe RT-LAMP was comparable to that of real-time RT-PCR assay using clinical specimens from patients in Saudi Arabia. Altogether, these results indicate that QProbe RT-LAMP assays described here can be used as powerful diagnostic tools for rapid detection and surveillance of MERS-CoV infections.
AbstractList •Fluorescent RT-LAMP assays using quenching probes for MERS-CoV were developed.•Quenching probe (QProbe) can solve the problem in turbidity monitoring mechanism.•Only primer-derived signal can be monitored specifically by QProbes.•Two primer sets were developed to enable to confirm MERS case by RT-LAMP only.•Both sets were highly specific and sensitive in comparison with real-time RT-PCR. Clinical detection of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) in patients is achieved using genetic diagnostic methods, such as real-time RT-PCR assay. Previously, we developed a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of MERS-CoV [Virol J. 2014. 11:139]. Generally, amplification of RT-LAMP is monitored by the turbidity induced by precipitation of magnesium pyrophosphate with newly synthesized DNA. However, this mechanism cannot completely exclude the possibility of unexpected reactions. Therefore, in this study, fluorescent RT-LAMP assays using quenching probes (QProbes) were developed specifically to monitor only primer-derived signals. Two primer sets (targeting nucleocapsid and ORF1a sequences) were constructed to confirm MERS cases by RT-LAMP assay only. Our data indicate that both primer sets were capable of detecting MERS-CoV RNA to the same level as existing genetic diagnostic methods, and that both were highly specific with no cross-reactivity observed with other respiratory viruses. These primer sets were highly efficient in amplifying target sequences derived from different MERS-CoV strains, including camel MERS-CoV. In addition, the detection efficacy of QProbe RT-LAMP was comparable to that of real-time RT-PCR assay using clinical specimens from patients in Saudi Arabia. Altogether, these results indicate that QProbe RT-LAMP assays described here can be used as powerful diagnostic tools for rapid detection and surveillance of MERS-CoV infections.
Clinical detection of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) in patients is achieved using genetic diagnostic methods, such as real-time RT-PCR assay. Previously, we developed a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of MERS-CoV [Virol J. 2014. 11:139]. Generally, amplification of RT-LAMP is monitored by the turbidity induced by precipitation of magnesium pyrophosphate with newly synthesized DNA. However, this mechanism cannot completely exclude the possibility of unexpected reactions. Therefore, in this study, fluorescent RT-LAMP assays using quenching probes (QProbes) were developed specifically to monitor only primer-derived signals. Two primer sets (targeting nucleocapsid and ORF1a sequences) were constructed to confirm MERS cases by RT-LAMP assay only. Our data indicate that both primer sets were capable of detecting MERS-CoV RNA to the same level as existing genetic diagnostic methods, and that both were highly specific with no cross-reactivity observed with other respiratory viruses. These primer sets were highly efficient in amplifying target sequences derived from different MERS-CoV strains, including camel MERS-CoV. In addition, the detection efficacy of QProbe RT-LAMP was comparable to that of real-time RT-PCR assay using clinical specimens from patients in Saudi Arabia. Altogether, these results indicate that QProbe RT-LAMP assays described here can be used as powerful diagnostic tools for rapid detection and surveillance of MERS-CoV infections.
Clinical detection of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) in patients is achieved using genetic diagnostic methods, such as real-time RT-PCR assay. Previously, we developed a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of MERS-CoV [Virol J. 2014. 11:139]. Generally, amplification of RT-LAMP is monitored by the turbidity induced by precipitation of magnesium pyrophosphate with newly synthesized DNA. However, this mechanism cannot completely exclude the possibility of unexpected reactions. Therefore, in this study, fluorescent RT-LAMP assays using quenching probes (QProbes) were developed specifically to monitor only primer-derived signals. Two primer sets (targeting nucleocapsid and ORF1a sequences) were constructed to confirm MERS cases by RT-LAMP assay only. Our data indicate that both primer sets were capable of detecting MERS-CoV RNA to the same level as existing genetic diagnostic methods, and that both were highly specific with no cross-reactivity observed with other respiratory viruses. These primer sets were highly efficient in amplifying target sequences derived from different MERS-CoV strains, including camel MERS-CoV. In addition, the detection efficacy of QProbe RT-LAMP was comparable to that of real-time RT-PCR assay using clinical specimens from patients in Saudi Arabia. Altogether, these results indicate that QProbe RT-LAMP assays described here can be used as powerful diagnostic tools for rapid detection and surveillance of MERS-CoV infections.Clinical detection of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) in patients is achieved using genetic diagnostic methods, such as real-time RT-PCR assay. Previously, we developed a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of MERS-CoV [Virol J. 2014. 11:139]. Generally, amplification of RT-LAMP is monitored by the turbidity induced by precipitation of magnesium pyrophosphate with newly synthesized DNA. However, this mechanism cannot completely exclude the possibility of unexpected reactions. Therefore, in this study, fluorescent RT-LAMP assays using quenching probes (QProbes) were developed specifically to monitor only primer-derived signals. Two primer sets (targeting nucleocapsid and ORF1a sequences) were constructed to confirm MERS cases by RT-LAMP assay only. Our data indicate that both primer sets were capable of detecting MERS-CoV RNA to the same level as existing genetic diagnostic methods, and that both were highly specific with no cross-reactivity observed with other respiratory viruses. These primer sets were highly efficient in amplifying target sequences derived from different MERS-CoV strains, including camel MERS-CoV. In addition, the detection efficacy of QProbe RT-LAMP was comparable to that of real-time RT-PCR assay using clinical specimens from patients in Saudi Arabia. Altogether, these results indicate that QProbe RT-LAMP assays described here can be used as powerful diagnostic tools for rapid detection and surveillance of MERS-CoV infections.
• Fluorescent RT-LAMP assays using quenching probes for MERS-CoV were developed. • Quenching probe (QProbe) can solve the problem in turbidity monitoring mechanism. • Only primer-derived signal can be monitored specifically by QProbes. • Two primer sets were developed to enable to confirm MERS case by RT-LAMP only. • Both sets were highly specific and sensitive in comparison with real-time RT-PCR. Clinical detection of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) in patients is achieved using genetic diagnostic methods, such as real-time RT-PCR assay. Previously, we developed a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for the detection of MERS-CoV [Virol J. 2014. 11:139]. Generally, amplification of RT-LAMP is monitored by the turbidity induced by precipitation of magnesium pyrophosphate with newly synthesized DNA. However, this mechanism cannot completely exclude the possibility of unexpected reactions. Therefore, in this study, fluorescent RT-LAMP assays using quenching probes (QProbes) were developed specifically to monitor only primer-derived signals. Two primer sets (targeting nucleocapsid and ORF1a sequences) were constructed to confirm MERS cases by RT-LAMP assay only. Our data indicate that both primer sets were capable of detecting MERS-CoV RNA to the same level as existing genetic diagnostic methods, and that both were highly specific with no cross-reactivity observed with other respiratory viruses. These primer sets were highly efficient in amplifying target sequences derived from different MERS-CoV strains, including camel MERS-CoV. In addition, the detection efficacy of QProbe RT-LAMP was comparable to that of real-time RT-PCR assay using clinical specimens from patients in Saudi Arabia. Altogether, these results indicate that QProbe RT-LAMP assays described here can be used as powerful diagnostic tools for rapid detection and surveillance of MERS-CoV infections.
Author Matsuyama, Shutoku
Shirato, Kazuya
Semba, Shohei
Takayama, Ikuyo
Notomi, Tsugunori
Kamitani, Wataru
El-Kafrawy, Sherif A.
Hassan, Ahmed M.
Kageyama, Tsutomu
Tolah, Ahmed M.
Azhar, Esam Ibraheem
AuthorAffiliation b Eiken Chemical Co., Ltd., 4-19-9 Taito, Taito-ku, Tokyo 110-8408, Japan
e Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
c Influenza virus Research Center, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
f Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
a Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
d Laboratory of Clinical Research on Infectious Diseases, Department of Pathogen Molecular Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
AuthorAffiliation_xml – name: c Influenza virus Research Center, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
– name: d Laboratory of Clinical Research on Infectious Diseases, Department of Pathogen Molecular Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
– name: f Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
– name: b Eiken Chemical Co., Ltd., 4-19-9 Taito, Taito-ku, Tokyo 110-8408, Japan
– name: a Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
– name: e Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Author_xml – sequence: 1
  givenname: Kazuya
  surname: Shirato
  fullname: Shirato, Kazuya
  email: shirato@nih.go.jp
  organization: Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
– sequence: 2
  givenname: Shohei
  surname: Semba
  fullname: Semba, Shohei
  organization: Eiken Chemical Co., Ltd., 4-19-9 Taito, Taito-ku, Tokyo 110-8408, Japan
– sequence: 3
  givenname: Sherif A.
  surname: El-Kafrawy
  fullname: El-Kafrawy, Sherif A.
  organization: Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
– sequence: 4
  givenname: Ahmed M.
  surname: Hassan
  fullname: Hassan, Ahmed M.
  organization: Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
– sequence: 5
  givenname: Ahmed M.
  surname: Tolah
  fullname: Tolah, Ahmed M.
  organization: Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
– sequence: 6
  givenname: Ikuyo
  surname: Takayama
  fullname: Takayama, Ikuyo
  organization: Influenza virus Research Center, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
– sequence: 7
  givenname: Tsutomu
  surname: Kageyama
  fullname: Kageyama, Tsutomu
  organization: Influenza virus Research Center, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
– sequence: 8
  givenname: Tsugunori
  surname: Notomi
  fullname: Notomi, Tsugunori
  organization: Eiken Chemical Co., Ltd., 4-19-9 Taito, Taito-ku, Tokyo 110-8408, Japan
– sequence: 9
  givenname: Wataru
  surname: Kamitani
  fullname: Kamitani, Wataru
  organization: Laboratory of Clinical Research on Infectious Diseases, Department of Pathogen Molecular Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
– sequence: 10
  givenname: Shutoku
  surname: Matsuyama
  fullname: Matsuyama, Shutoku
  organization: Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Disease, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
– sequence: 11
  givenname: Esam Ibraheem
  surname: Azhar
  fullname: Azhar, Esam Ibraheem
  organization: Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29763640$$D View this record in MEDLINE/PubMed
BookMark eNqFUstu1DAUjVARnRZ-ofKyLDLYcZyHhBBVKQ9pKhAqa8txrjseOXawnZHm5_g2nJkOAjaz8rV9zrmvc5GdWWchy64IXhJMqjeb5WarvRsgLgtMmiVmS4yrZ9mCNHWb47Ypz7JFAlYppuV5dhHCBmPMakpfZOdFW1e0KvEi-_UBtmDcOICNyCmkzOQ8BDlfffryAVD0wgbp9Ri1s8g4N-YD9FpE6JEOLq7BD8IgMYxGKy3FHnb9_SFf3dx_e42moO0j-jmBles5Gr3rICDlPEpU1EMEuaek9PPDve57A-hOhLmEMGovovM7FHa2nztG0nlnRWp_Ci-z50qYAK-ezsvsx8e7h9vP-errpy-3N6tcshrHXHRdVTeiFZRh2lGCW-g6YC1petZCy6hUDTRlX6miLElPFAVctFBQoVLIFL3M3h10x6lLvc_j8cLw0etB-B13QvN_f6xe80e35TUhtGpoErh-EvAujSJEPug0ZWOEBTcFXlDKSFHUtDwNxbRt6oJVLEGv_i7rTz3H_SbA2wNAeheCB8WljvsFpSq14QTz2U58w4924rOdOGY82SnRq__oxwwnie8PREhL2WrwPEidDJBs49O2ee_0KYnfKkjwSw
CitedBy_id crossref_primary_10_1055_s_0041_1739306
crossref_primary_10_1007_s12033_021_00417_5
crossref_primary_10_1177_2472630320953798
crossref_primary_10_1038_s41598_020_79237_7
crossref_primary_10_17352_2455_5479_000090
crossref_primary_10_3390_genes12050659
crossref_primary_10_3390_diagnostics13081432
crossref_primary_10_1021_acs_analchem_0c05154
crossref_primary_10_22490_24629448_4185
crossref_primary_10_1094_PDIS_12_19_2523_RE
crossref_primary_10_1002_jmv_25427
crossref_primary_10_1016_j_talanta_2020_121977
crossref_primary_10_1155_2021_9495126
crossref_primary_10_3390_diagnostics12092232
crossref_primary_10_1016_j_bpc_2020_106538
crossref_primary_10_7883_yoken_JJID_2019_400
crossref_primary_10_1002_jmv_25674
crossref_primary_10_1002_biot_202300521
crossref_primary_10_1016_j_mtchem_2021_100443
crossref_primary_10_1002_jgm_3303
crossref_primary_10_1007_s10142_022_00900_5
crossref_primary_10_1002_rmv_2106
crossref_primary_10_1007_s00604_019_3345_5
crossref_primary_10_7717_peerj_9725
crossref_primary_10_1007_s13206_019_3404_3
crossref_primary_10_1007_s00216_020_03046_0
crossref_primary_10_3390_ijms21145126
crossref_primary_10_3390_ijms25126374
crossref_primary_10_1080_07388551_2022_2030295
crossref_primary_10_1186_s12951_021_01081_2
crossref_primary_10_1007_s11468_023_01874_1
crossref_primary_10_3389_fmicb_2020_01840
crossref_primary_10_1016_j_mehy_2020_109786
crossref_primary_10_1016_j_prp_2021_153565
crossref_primary_10_2147_IDR_S354660
crossref_primary_10_3390_diagnostics12040828
crossref_primary_10_1021_acsomega_1c04849
crossref_primary_10_2174_1570178620666230331095720
crossref_primary_10_1007_s10096_020_04001_8
crossref_primary_10_1007_s11468_021_01589_1
crossref_primary_10_1128_spectrum_04590_22
crossref_primary_10_1007_s12033_025_01385_w
crossref_primary_10_1039_D3AN00719G
crossref_primary_10_21055_0370_1069_2020_2_22_30
crossref_primary_10_1016_j_jviromet_2019_113801
crossref_primary_10_3390_diagnostics13091530
crossref_primary_10_1016_j_ab_2020_113762
crossref_primary_10_1016_j_enzmictec_2021_109855
crossref_primary_10_1038_s41598_020_70090_2
crossref_primary_10_3390_diagnostics14050519
crossref_primary_10_1016_j_envint_2020_105962
crossref_primary_10_1016_j_jviromet_2024_114947
crossref_primary_10_1016_j_microc_2021_106094
crossref_primary_10_1111_1750_3841_16012
crossref_primary_10_4103_abr_abr_73_20
crossref_primary_10_4110_in_2021_21_e11
crossref_primary_10_3390_ijms21155380
crossref_primary_10_1039_C8NR06699J
crossref_primary_10_1111_1348_0421_12734
crossref_primary_10_3389_fpubh_2020_563095
crossref_primary_10_1007_s11082_023_04788_8
crossref_primary_10_1021_acs_analchem_0c03364
crossref_primary_10_3390_diagnostics14090967
crossref_primary_10_3390_bios14040197
crossref_primary_10_3390_diagnostics13081421
crossref_primary_10_2147_IDR_S289629
crossref_primary_10_3389_fmicb_2019_01326
crossref_primary_10_3390_mi15020271
crossref_primary_10_1007_s40291_022_00631_0
crossref_primary_10_1292_jvms_19_0009
crossref_primary_10_3390_bios12060410
crossref_primary_10_3390_bios12100857
crossref_primary_10_3390_diseases8030030
crossref_primary_10_1002_jmv_28776
crossref_primary_10_1016_j_aca_2021_339338
crossref_primary_10_1111_jam_14770
crossref_primary_10_3390_biology9080182
crossref_primary_10_1007_s11033_020_05889_3
crossref_primary_10_1016_j_jpha_2020_02_010
crossref_primary_10_3390_v13040693
crossref_primary_10_1007_s11082_024_07586_y
Cites_doi 10.1016/j.jcv.2013.06.006
10.1093/nar/29.6.e34
10.7883/yoken.JJID.2009.212
10.1099/vir.0.043117-0
10.1056/NEJMoa1401505
10.1016/j.vetpar.2010.02.046
10.1016/j.parint.2011.08.009
10.1128/JCM.42.5.1956-1961.2004
10.1016/j.vaccine.2006.05.046
10.4265/bio.14.73
10.2353/jmoldx.2010.090071
10.2807/ese.17.39.20285-en
10.1016/j.mimet.2010.10.015
10.1016/j.jviromet.2006.09.014
10.1021/ac900414u
10.1080/13102818.2015.1125765
10.1371/journal.pone.0123126
10.1006/bbrc.2001.5921
10.1006/mcpr.2002.0415
10.2807/ese.17.49.20334-en
10.1038/s41598-017-13836-9
10.1056/NEJMoa1306742
10.1093/nar/28.12.e63
10.1002/jmv.20424
10.1371/journal.pntd.0001572
10.1186/1743-422X-11-139
10.1128/JVI.00676-08
10.1128/JCM.01188-08
10.1016/j.jviromet.2016.04.012
10.7883/yoken.67.469
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
2018 The Authors 2018
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: 2018 The Authors 2018
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.jviromet.2018.05.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-0984
EndPage 48
ExternalDocumentID PMC7113683
29763640
10_1016_j_jviromet_2018_05_006
S0166093418301058
Genre Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
GeographicLocations Saudi Arabia
GeographicLocations_xml – name: Saudi Arabia
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABBQC
ABFNM
ABFRF
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CJTIS
CNWQP
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEJ
HMG
HMK
HMO
HVGLF
HZ~
IH2
IHE
J1W
K-O
KOM
L7B
LCYCR
LUGTX
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSH
SSI
SSZ
T5K
VH1
WUQ
XFK
Y6R
ZGI
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
5PM
ID FETCH-LOGICAL-c570t-abb678a9a3503b3109ebbe5918d59e953cf8e84d6f2441d1f3e029e23aff3e5f3
IEDL.DBID .~1
ISSN 0166-0934
1879-0984
IngestDate Thu Aug 21 18:17:24 EDT 2025
Tue Aug 05 10:22:43 EDT 2025
Fri Jul 11 12:35:56 EDT 2025
Thu Apr 03 06:57:45 EDT 2025
Tue Jul 01 04:29:07 EDT 2025
Thu Apr 24 22:54:13 EDT 2025
Fri Feb 23 02:49:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords HBoV
PBS
ORF
HCoV
Quenching probe
BIP
CoV
upE
FIP
TCID50
ATCC
Middle East respiratory syndrome
N
RT-LAMP
MPV
ADV
FFU
RSV
QProbe or QP
PIV
MERS coronavirus
MERS
PFU
Language English
License This is an open access article under the CC BY license.
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c570t-abb678a9a3503b3109ebbe5918d59e953cf8e84d6f2441d1f3e029e23aff3e5f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0166093418301058
PMID 29763640
PQID 2039872565
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7113683
proquest_miscellaneous_2335122734
proquest_miscellaneous_2039872565
pubmed_primary_29763640
crossref_citationtrail_10_1016_j_jviromet_2018_05_006
crossref_primary_10_1016_j_jviromet_2018_05_006
elsevier_sciencedirect_doi_10_1016_j_jviromet_2018_05_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of virological methods
PublicationTitleAlternate J Virol Methods
PublicationYear 2018
Publisher Elsevier B.V
The Authors. Published by Elsevier B.V
Publisher_xml – name: Elsevier B.V
– name: The Authors. Published by Elsevier B.V
References Shirato, Kawase, Watanabe, Hirokawa, Matsuyama, Nishimura, Taguchi (bib0115) 2012; 93
Corman, Eckerle, Bleicker, Zaki, Landt, Eschbach-Bludau, van Boheemen, Gopal, Ballhause, Bestebroer, Muth, Muller, Drexler, Zambon, Osterhaus, Fouchier, Drosten (bib0030) 2012; 17
Corman, Muller, Costabel, Timm, Binger, Meyer, Kreher, Lattwein, Eschbach-Bludau, Nitsche, Bleicker, Landt, Schweiger, Drexler, Osterhaus, Haagmans, Dittmer, Bonin, Wolff, Drosten (bib0035) 2012; 17
Shirato, Yano, Senba, Akachi, Kobayashi, Nishinaka, Notomi, Matsuyama (bib0125) 2014; 11
Wang, He, Fang, Song, Tu, Jenkins, Zhou, Zhao (bib0160) 2010; 171
Kurata, Kanagawa, Yamada, Torimura, Yokomaku, Kamagata, Kurane (bib0070) 2001; 29
Geojith, Dhanasekaran, Chandran, Kenneth (bib0050) 2011; 84
Kaida, Kubo, Takakura, Sekiguchi, Yamamoto, Kohdera, Togawa, Amo, Shiomi, Ohyama, Goto, Hase, Kageyama, Iritani (bib0065) 2014; 67
Peyrefitte, Boubis, Coudrier, Bouloy, Grandadam, Tolou, Plumet (bib0110) 2008; 46
Notomi, Okayama, Masubuchi, Yonekawa, Watanabe, Amino, Hase (bib0105) 2000; 28
Wahed, Patel, Heidenreich, Hufert, Weidmann (bib0150) 2013; 1
Nagamine, Hase, Notomi (bib0095) 2002; 16
Imai, Ninomiya, Minekawa, Notomi, Ishizaki, Tashiro, Odagiri (bib0060) 2006; 24
Shirato, Nishimura, Saijo, Okamoto, Noda, Tashiro, Taguchi (bib0120) 2007; 139
Fowler, Howson, Madi, Mioulet, Caiusi, Pauszek, Rodriguez, King (bib0045) 2016; 234
Shirogane, Takeda, Iwasaki, Ishiguro, Takeuchi, Nakatsu, Tahara, Kikuta, Yanagi (bib0130) 2008; 82
Kurosaki, Martins, Kimura, Catena, Borba, Mattos, Abe, Yoshikawa, de Lima Filho, Yasuda (bib0075) 2017; 7
Njiru (bib0100) 2012; 6
Tani, Miyata, Ichikawa, Morishita, Kurata, Nakamura, Tsuneda, Sekiguchi, Noda (bib0135) 2009; 81
Mori, Nagamine, Tomita, Notomi (bib0090) 2001; 289
Assiri, McGeer, Perl, Price, Al Rabeeah, Cummings, Alabdullatif, Assad, Almulhim, Makhdoom, Madani, Alhakeem, Al-Tawfiq, Cotten, Watson, Kellam, Zumla, Memish, Team (bib0015) 2013; 369
Lee, Baek, Kim, Choi, Song, Ahn (bib0080) 2016; 7
Mahony, Chong, Bulir, Ruyter, Mwawasi, Waltho (bib0085) 2013; 58
Bhadra, Jiang, Kumar, Johnson, Hensley, Ellington (bib0025) 2015; 10
Ushio, Yui, Yoshida, Fujino, Yonekawa, Ota, Notomi, Nakayama (bib0145) 2005; 77
Wang (bib0155) 2016; 30
Azhar, El-Kafrawy, Farraj, Hassan, Al-Saeed, Hashem, Madani (bib0020) 2014; 370
Hong, Mai, Cuong, Parida, Minekawa, Notomi, Hasebe, Morita (bib0055) 2004; 42
Arimatsu, Kaewkes, Laha, Hong, Sripa (bib0010) 2012; 61
Do, Laus, Leber, Marcon, Jordan, Martin, Wadowsky (bib0040) 2010; 12
Adhikari, Pandey, Ghimire, Shrestha, Khadka, Yoda, Suzuki (bib0005) 2009; 62
Ueda, Kuwabara (bib0140) 2009; 14
Shirato (10.1016/j.jviromet.2018.05.006_bib0115) 2012; 93
Kaida (10.1016/j.jviromet.2018.05.006_bib0065) 2014; 67
Lee (10.1016/j.jviromet.2018.05.006_bib0080) 2016; 7
Tani (10.1016/j.jviromet.2018.05.006_bib0135) 2009; 81
Njiru (10.1016/j.jviromet.2018.05.006_bib0100) 2012; 6
Wahed (10.1016/j.jviromet.2018.05.006_bib0150) 2013; 1
Do (10.1016/j.jviromet.2018.05.006_bib0040) 2010; 12
Kurata (10.1016/j.jviromet.2018.05.006_bib0070) 2001; 29
Arimatsu (10.1016/j.jviromet.2018.05.006_bib0010) 2012; 61
Ushio (10.1016/j.jviromet.2018.05.006_bib0145) 2005; 77
Adhikari (10.1016/j.jviromet.2018.05.006_bib0005) 2009; 62
Fowler (10.1016/j.jviromet.2018.05.006_bib0045) 2016; 234
Geojith (10.1016/j.jviromet.2018.05.006_bib0050) 2011; 84
Wang (10.1016/j.jviromet.2018.05.006_bib0160) 2010; 171
Shirogane (10.1016/j.jviromet.2018.05.006_bib0130) 2008; 82
Notomi (10.1016/j.jviromet.2018.05.006_bib0105) 2000; 28
Peyrefitte (10.1016/j.jviromet.2018.05.006_bib0110) 2008; 46
Shirato (10.1016/j.jviromet.2018.05.006_bib0120) 2007; 139
Kurosaki (10.1016/j.jviromet.2018.05.006_bib0075) 2017; 7
Corman (10.1016/j.jviromet.2018.05.006_bib0035) 2012; 17
Hong (10.1016/j.jviromet.2018.05.006_bib0055) 2004; 42
Wang (10.1016/j.jviromet.2018.05.006_bib0155) 2016; 30
Azhar (10.1016/j.jviromet.2018.05.006_bib0020) 2014; 370
Ueda (10.1016/j.jviromet.2018.05.006_bib0140) 2009; 14
Bhadra (10.1016/j.jviromet.2018.05.006_bib0025) 2015; 10
Corman (10.1016/j.jviromet.2018.05.006_bib0030) 2012; 17
Mori (10.1016/j.jviromet.2018.05.006_bib0090) 2001; 289
Nagamine (10.1016/j.jviromet.2018.05.006_bib0095) 2002; 16
Imai (10.1016/j.jviromet.2018.05.006_bib0060) 2006; 24
Mahony (10.1016/j.jviromet.2018.05.006_bib0085) 2013; 58
Assiri (10.1016/j.jviromet.2018.05.006_bib0015) 2013; 369
Shirato (10.1016/j.jviromet.2018.05.006_bib0125) 2014; 11
References_xml – volume: 28
  start-page: E63
  year: 2000
  ident: bib0105
  article-title: Loop-mediated isothermal amplification of DNA
  publication-title: Nucleic Acids Res.
– volume: 370
  start-page: 2499
  year: 2014
  end-page: 2505
  ident: bib0020
  article-title: Evidence for camel-to-human transmission of MERS coronavirus
  publication-title: New Engl. J. Med.
– volume: 30
  start-page: 314
  year: 2016
  end-page: 318
  ident: bib0155
  article-title: Effect of internal primer–template mismatches on loop-mediated isothermal amplification
  publication-title: Biotechnol. Biotechnol. Equip.
– volume: 61
  start-page: 178
  year: 2012
  end-page: 182
  ident: bib0010
  article-title: Rapid detection of Opisthorchis viverrini copro-DNA using loop-mediated isothermal amplification (LAMP)
  publication-title: Parasitol. Int.
– volume: 29
  start-page: E34
  year: 2001
  ident: bib0070
  article-title: Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY((R)) FL-labeled probe or primer
  publication-title: Nucleic Acids Res.
– volume: 289
  start-page: 150
  year: 2001
  end-page: 154
  ident: bib0090
  article-title: Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 62
  start-page: 212
  year: 2009
  end-page: 214
  ident: bib0005
  article-title: Loop-mediated isothermal amplification (LAMP) for the direct detection of human pulmonary infections with environmental (nontuberculosis) mycobacteria
  publication-title: Jpn. J. Infect. Dis.
– volume: 234
  start-page: 123
  year: 2016
  end-page: 131
  ident: bib0045
  article-title: Development of a reverse transcription loop-mediated isothermal amplification assay for the detection of vesicular stomatitis New Jersey virus: use of rapid molecular assays to differentiate between vesicular disease viruses
  publication-title: J. Virol. Methods
– volume: 7
  start-page: 13503
  year: 2017
  ident: bib0075
  article-title: Development and evaluation of a rapid molecular diagnostic test for Zika virus infection by reverse transcription loop-mediated isothermal amplification
  publication-title: Sci. Rep.
– volume: 11
  start-page: 139
  year: 2014
  ident: bib0125
  article-title: Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP)
  publication-title: Virol. J.
– volume: 14
  start-page: 73
  year: 2009
  end-page: 76
  ident: bib0140
  article-title: The rapid detection of salmonella from food samples by loop-mediated isothermal amplification (LAMP)
  publication-title: Biocontrol Sci.
– volume: 77
  start-page: 121
  year: 2005
  end-page: 127
  ident: bib0145
  article-title: Detection of respiratory syncytial virus genome by subgroups-A, B specific reverse transcription loop-mediated isothermal amplification (RT-LAMP)
  publication-title: J. Med. Virol.
– volume: 7
  start-page: 2166
  year: 2016
  ident: bib0080
  article-title: One-pot reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) for detecting MERS-CoV
  publication-title: Front. Microbiol.
– volume: 17
  start-page: 20285
  year: 2012
  ident: bib0030
  article-title: Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction
  publication-title: Euro Surveill.
– volume: 84
  start-page: 71
  year: 2011
  end-page: 73
  ident: bib0050
  article-title: Efficacy of loop mediated isothermal amplification (LAMP) assay for the laboratory identification of Mycobacterium tuberculosis isolates in a resource limited setting
  publication-title: J. Microbiol. Methods
– volume: 6
  start-page: e1572
  year: 2012
  ident: bib0100
  article-title: Loop-mediated isothermal amplification technology: towards point of care diagnostics
  publication-title: PLoS Negl. Trop. Dis.
– volume: 81
  start-page: 5678
  year: 2009
  end-page: 5685
  ident: bib0135
  article-title: Universal quenching probe system: flexible, specific, and cost-effective real-time polymerase chain reaction method
  publication-title: Anal. Chem.
– volume: 171
  start-page: 159
  year: 2010
  end-page: 162
  ident: bib0160
  article-title: Loop-mediated isothermal amplification (LAMP) assay for detection of Theileria sergenti infection targeting the p33 gene
  publication-title: Vet. Parasitol.
– volume: 139
  start-page: 78
  year: 2007
  end-page: 84
  ident: bib0120
  article-title: Diagnosis of human respiratory syncytial virus infection using reverse transcription loop-mediated isothermal amplification
  publication-title: J. Virol. Methods
– volume: 82
  start-page: 8942
  year: 2008
  end-page: 8946
  ident: bib0130
  article-title: Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2
  publication-title: J. Virol.
– volume: 1
  year: 2013
  ident: bib0150
  article-title: Reverse transcription recombinase polymerase amplification assay for the detection of Middle East respiratory syndrome coronavirus
  publication-title: PLOS Curr. Outbreaks Ed.
– volume: 16
  start-page: 223
  year: 2002
  end-page: 229
  ident: bib0095
  article-title: Accelerated reaction by loop-mediated isothermal amplification using loop primers
  publication-title: Mol. Cell. Probes
– volume: 369
  start-page: 407
  year: 2013
  end-page: 416
  ident: bib0015
  article-title: Hospital outbreak of Middle East respiratory syndrome coronavirus
  publication-title: New Engl. J. Med.
– volume: 10
  start-page: e0123126
  year: 2015
  ident: bib0025
  article-title: Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV)
  publication-title: PLoS One
– volume: 17
  start-page: 20334
  year: 2012
  ident: bib0035
  article-title: Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections
  publication-title: Euro Surveill.
– volume: 42
  start-page: 1956
  year: 2004
  end-page: 1961
  ident: bib0055
  article-title: Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus
  publication-title: J. Clin. Microbiol.
– volume: 67
  start-page: 469
  year: 2014
  end-page: 475
  ident: bib0065
  article-title: Associations between co-detected respiratory viruses in children with acute respiratory infections
  publication-title: Jpn. J. Infect. Dis.
– volume: 12
  start-page: 102
  year: 2010
  end-page: 108
  ident: bib0040
  article-title: A one-step, real-time PCR assay for rapid detection of rhinovirus
  publication-title: J. Mol. Diagn.
– volume: 58
  start-page: 127
  year: 2013
  end-page: 131
  ident: bib0085
  article-title: Multiplex loop-mediated isothermal amplification (M-LAMP) assay for the detection of influenza A/H1, A/H3 and influenza B can provide a specimen-to-result diagnosis in 40 min with single genome copy sensitivity
  publication-title: J. Clin. Virol.
– volume: 93
  start-page: 1908
  year: 2012
  end-page: 1917
  ident: bib0115
  article-title: Differences in neutralizing antigenicity between laboratory and clinical isolates of HCoV-229E isolated in Japan in 2004-2008 depend on the S1 region sequence of the spike protein
  publication-title: J. Gen. Virol.
– volume: 24
  start-page: 6679
  year: 2006
  end-page: 6682
  ident: bib0060
  article-title: Development of H5-RT-LAMP (loop-mediated isothermal amplification) system for rapid diagnosis of H5 avian influenza virus infection
  publication-title: Vaccine
– volume: 46
  start-page: 3653
  year: 2008
  end-page: 3659
  ident: bib0110
  article-title: Real-time reverse-transcription loop-mediated isothermal amplification for rapid detection of rift valley Fever virus
  publication-title: J. Clin. Microbiol.
– volume: 58
  start-page: 127
  year: 2013
  ident: 10.1016/j.jviromet.2018.05.006_bib0085
  article-title: Multiplex loop-mediated isothermal amplification (M-LAMP) assay for the detection of influenza A/H1, A/H3 and influenza B can provide a specimen-to-result diagnosis in 40 min with single genome copy sensitivity
  publication-title: J. Clin. Virol.
  doi: 10.1016/j.jcv.2013.06.006
– volume: 29
  start-page: E34
  year: 2001
  ident: 10.1016/j.jviromet.2018.05.006_bib0070
  article-title: Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY((R)) FL-labeled probe or primer
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.6.e34
– volume: 62
  start-page: 212
  year: 2009
  ident: 10.1016/j.jviromet.2018.05.006_bib0005
  article-title: Loop-mediated isothermal amplification (LAMP) for the direct detection of human pulmonary infections with environmental (nontuberculosis) mycobacteria
  publication-title: Jpn. J. Infect. Dis.
  doi: 10.7883/yoken.JJID.2009.212
– volume: 93
  start-page: 1908
  year: 2012
  ident: 10.1016/j.jviromet.2018.05.006_bib0115
  article-title: Differences in neutralizing antigenicity between laboratory and clinical isolates of HCoV-229E isolated in Japan in 2004-2008 depend on the S1 region sequence of the spike protein
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.043117-0
– volume: 370
  start-page: 2499
  year: 2014
  ident: 10.1016/j.jviromet.2018.05.006_bib0020
  article-title: Evidence for camel-to-human transmission of MERS coronavirus
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMoa1401505
– volume: 171
  start-page: 159
  year: 2010
  ident: 10.1016/j.jviromet.2018.05.006_bib0160
  article-title: Loop-mediated isothermal amplification (LAMP) assay for detection of Theileria sergenti infection targeting the p33 gene
  publication-title: Vet. Parasitol.
  doi: 10.1016/j.vetpar.2010.02.046
– volume: 61
  start-page: 178
  year: 2012
  ident: 10.1016/j.jviromet.2018.05.006_bib0010
  article-title: Rapid detection of Opisthorchis viverrini copro-DNA using loop-mediated isothermal amplification (LAMP)
  publication-title: Parasitol. Int.
  doi: 10.1016/j.parint.2011.08.009
– volume: 7
  start-page: 2166
  year: 2016
  ident: 10.1016/j.jviromet.2018.05.006_bib0080
  article-title: One-pot reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) for detecting MERS-CoV
  publication-title: Front. Microbiol.
– volume: 42
  start-page: 1956
  year: 2004
  ident: 10.1016/j.jviromet.2018.05.006_bib0055
  article-title: Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.42.5.1956-1961.2004
– volume: 24
  start-page: 6679
  year: 2006
  ident: 10.1016/j.jviromet.2018.05.006_bib0060
  article-title: Development of H5-RT-LAMP (loop-mediated isothermal amplification) system for rapid diagnosis of H5 avian influenza virus infection
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2006.05.046
– volume: 14
  start-page: 73
  year: 2009
  ident: 10.1016/j.jviromet.2018.05.006_bib0140
  article-title: The rapid detection of salmonella from food samples by loop-mediated isothermal amplification (LAMP)
  publication-title: Biocontrol Sci.
  doi: 10.4265/bio.14.73
– volume: 12
  start-page: 102
  year: 2010
  ident: 10.1016/j.jviromet.2018.05.006_bib0040
  article-title: A one-step, real-time PCR assay for rapid detection of rhinovirus
  publication-title: J. Mol. Diagn.
  doi: 10.2353/jmoldx.2010.090071
– volume: 17
  start-page: 20285
  year: 2012
  ident: 10.1016/j.jviromet.2018.05.006_bib0030
  article-title: Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction
  publication-title: Euro Surveill.
  doi: 10.2807/ese.17.39.20285-en
– volume: 84
  start-page: 71
  year: 2011
  ident: 10.1016/j.jviromet.2018.05.006_bib0050
  article-title: Efficacy of loop mediated isothermal amplification (LAMP) assay for the laboratory identification of Mycobacterium tuberculosis isolates in a resource limited setting
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2010.10.015
– volume: 139
  start-page: 78
  year: 2007
  ident: 10.1016/j.jviromet.2018.05.006_bib0120
  article-title: Diagnosis of human respiratory syncytial virus infection using reverse transcription loop-mediated isothermal amplification
  publication-title: J. Virol. Methods
  doi: 10.1016/j.jviromet.2006.09.014
– volume: 81
  start-page: 5678
  year: 2009
  ident: 10.1016/j.jviromet.2018.05.006_bib0135
  article-title: Universal quenching probe system: flexible, specific, and cost-effective real-time polymerase chain reaction method
  publication-title: Anal. Chem.
  doi: 10.1021/ac900414u
– volume: 30
  start-page: 314
  year: 2016
  ident: 10.1016/j.jviromet.2018.05.006_bib0155
  article-title: Effect of internal primer–template mismatches on loop-mediated isothermal amplification
  publication-title: Biotechnol. Biotechnol. Equip.
  doi: 10.1080/13102818.2015.1125765
– volume: 10
  start-page: e0123126
  year: 2015
  ident: 10.1016/j.jviromet.2018.05.006_bib0025
  article-title: Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0123126
– volume: 289
  start-page: 150
  year: 2001
  ident: 10.1016/j.jviromet.2018.05.006_bib0090
  article-title: Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2001.5921
– volume: 16
  start-page: 223
  year: 2002
  ident: 10.1016/j.jviromet.2018.05.006_bib0095
  article-title: Accelerated reaction by loop-mediated isothermal amplification using loop primers
  publication-title: Mol. Cell. Probes
  doi: 10.1006/mcpr.2002.0415
– volume: 17
  start-page: 20334
  year: 2012
  ident: 10.1016/j.jviromet.2018.05.006_bib0035
  article-title: Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections
  publication-title: Euro Surveill.
  doi: 10.2807/ese.17.49.20334-en
– volume: 7
  start-page: 13503
  year: 2017
  ident: 10.1016/j.jviromet.2018.05.006_bib0075
  article-title: Development and evaluation of a rapid molecular diagnostic test for Zika virus infection by reverse transcription loop-mediated isothermal amplification
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13836-9
– volume: 369
  start-page: 407
  year: 2013
  ident: 10.1016/j.jviromet.2018.05.006_bib0015
  article-title: Hospital outbreak of Middle East respiratory syndrome coronavirus
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMoa1306742
– volume: 28
  start-page: E63
  year: 2000
  ident: 10.1016/j.jviromet.2018.05.006_bib0105
  article-title: Loop-mediated isothermal amplification of DNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.12.e63
– volume: 1
  year: 2013
  ident: 10.1016/j.jviromet.2018.05.006_bib0150
  article-title: Reverse transcription recombinase polymerase amplification assay for the detection of Middle East respiratory syndrome coronavirus
  publication-title: PLOS Curr. Outbreaks Ed.
– volume: 77
  start-page: 121
  year: 2005
  ident: 10.1016/j.jviromet.2018.05.006_bib0145
  article-title: Detection of respiratory syncytial virus genome by subgroups-A, B specific reverse transcription loop-mediated isothermal amplification (RT-LAMP)
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.20424
– volume: 6
  start-page: e1572
  year: 2012
  ident: 10.1016/j.jviromet.2018.05.006_bib0100
  article-title: Loop-mediated isothermal amplification technology: towards point of care diagnostics
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0001572
– volume: 11
  start-page: 139
  year: 2014
  ident: 10.1016/j.jviromet.2018.05.006_bib0125
  article-title: Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP)
  publication-title: Virol. J.
  doi: 10.1186/1743-422X-11-139
– volume: 82
  start-page: 8942
  year: 2008
  ident: 10.1016/j.jviromet.2018.05.006_bib0130
  article-title: Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2
  publication-title: J. Virol.
  doi: 10.1128/JVI.00676-08
– volume: 46
  start-page: 3653
  year: 2008
  ident: 10.1016/j.jviromet.2018.05.006_bib0110
  article-title: Real-time reverse-transcription loop-mediated isothermal amplification for rapid detection of rift valley Fever virus
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.01188-08
– volume: 234
  start-page: 123
  year: 2016
  ident: 10.1016/j.jviromet.2018.05.006_bib0045
  article-title: Development of a reverse transcription loop-mediated isothermal amplification assay for the detection of vesicular stomatitis New Jersey virus: use of rapid molecular assays to differentiate between vesicular disease viruses
  publication-title: J. Virol. Methods
  doi: 10.1016/j.jviromet.2016.04.012
– volume: 67
  start-page: 469
  year: 2014
  ident: 10.1016/j.jviromet.2018.05.006_bib0065
  article-title: Associations between co-detected respiratory viruses in children with acute respiratory infections
  publication-title: Jpn. J. Infect. Dis.
  doi: 10.7883/yoken.67.469
SSID ssj0005733
Score 2.500164
Snippet •Fluorescent RT-LAMP assays using quenching probes for MERS-CoV were developed.•Quenching probe (QProbe) can solve the problem in turbidity monitoring...
Clinical detection of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) in patients is achieved using genetic diagnostic methods, such as...
• Fluorescent RT-LAMP assays using quenching probes for MERS-CoV were developed. • Quenching probe (QProbe) can solve the problem in turbidity monitoring...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 41
SubjectTerms Animals
camels
Camelus
Coronavirus Infections - diagnosis
Coronavirus Infections - veterinary
cross reaction
diagnostic techniques
DNA
DNA Primers - genetics
Fluorescence
Humans
magnesium
MERS coronavirus
Middle East respiratory syndrome
Middle East respiratory syndrome coronavirus
Middle East Respiratory Syndrome Coronavirus - genetics
Middle East Respiratory Syndrome Coronavirus - isolation & purification
Molecular Diagnostic Techniques - methods
monitoring
Nucleic Acid Amplification Techniques - methods
nucleocapsid
oligodeoxyribonucleotides
Oligonucleotide Probes - genetics
patients
quantitative polymerase chain reaction
Quenching probe
rapid methods
reverse transcriptase polymerase chain reaction
reverse transcription loop-mediated isothermal amplification
RNA
RT-LAMP
Saudi Arabia
Sensitivity and Specificity
transcription (genetics)
turbidity
viruses
Title Development of fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) using quenching probes for the detection of the Middle East respiratory syndrome coronavirus
URI https://dx.doi.org/10.1016/j.jviromet.2018.05.006
https://www.ncbi.nlm.nih.gov/pubmed/29763640
https://www.proquest.com/docview/2039872565
https://www.proquest.com/docview/2335122734
https://pubmed.ncbi.nlm.nih.gov/PMC7113683
Volume 258
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEF1VRUhcEN-Ej2qQOMDBje3dtb3HqGoVCKlQaUVv1treLYlSO4qdQy_9afw2ZtZ2lACiB06JnVl5453deV6_ecPYewx6mS2U8RJR4AOKCXFKRXgoKZ9LxDKIHNt9ehqNL8TnS3m5x476XBiiVXZrf7umu9W6OzPs7uZwOZsNvyFYifB5XKBTUplHSvgVIiYvP7zdonnEbTl5NPbIeitLeH44p1yya0OcyiBxCp5U-ejvAepPAPo7j3IrMJ08Yg87RAmjttOP2Z4pn7D7bY3Jm6fs5xYtCCoLdrGuVq2GE5B806o20FDA6pcPWFTV0nMZJYhGYVa7HK1rvIQm9rntNvngw9m592U0_foRiDt_BY6STftZQEVqTA0IhwGbQmEax_cq6fJ0Yuo2ReBY19SFzat-6NUTICdZBY13bV0_Yxcnx-dHY68r2uDlMvYbT2cZxj-tNJc-z0h31GSZkSpICqmMkjy3iUHHiCwCi6AILDd-qEzItcWv0vLnbL-sSvOSgY641byI8lByYUmFJ7SJspnWiRKFlAMm-5FK807RnAprLNKeujZP-xFOaYRTX6Y4wgM23LRbtpoed7ZQvSOkO96ZYuC5s-273nNSnLr0PkaXplrXaMRVEiPmlP-w4RwhGWkQDdiL1ts2fQ4RSvJI-AMW7_jhxoCkw3d_KWc_nIR4TKV8Ev7qP_7Xa_aAjloy5Bu236zW5i0CtCY7cDPwgN0bfZqMT-lzcvZ98gs-ZUSE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGEIIL4pvyaSSQ4JA1iePEPnCYYFPH2glBJ-3mOYkNrbqkalKhXfinuPO38Z6TVC0gdkC7tYndvPrZ7z07v_d7hLwEp5faXBpPRDlsUEwISyqGrxzzuaKEB7FDu4-O4sFx9OGEn2yRH10uDMIqW9vf2HRnrdsr_XY0-_PJpP8ZgpUY9uMRTEos8yhaZOWhOf8G-7bq7cF7UPKrMNzfG78beG1pAS_jiV97Ok3BSmupGfdZiuyYJk0Nl4HIuTSSs8wKA-LHFtxfkAeWGT-UJmTawkduGfzuFXI1AnOBZRN2vq_hSpKmfj1I56F4a2nJ050pJq-dGQRxBsJRhmKppb97xD8j3t-Bm2uecP8WudmGsHS3GaXbZMsUd8i1pqjl-V3ycw2HREtL7WxZLhrSKIp8UYvK0Bo9ZGev6Kws555LYYHwl04qlxR2Bo_QCHe37akiff1p7A13Rx_fUATrf6EOA44HaBSr4piKQvxNoSvNTe0AZgU-Hi-M3CkM3dMVirDCFtCOroFmyOOgYdSW1T1yfCmqvE-2i7IwDwnVMbOa5XEWchZZpP0JrZA21VrIKOe8R3inKZW1FOpYyWOmOqzcVHUaVqhh5XMFGu6R_qrfvCERubCH7CaC2lgOCjzdhX1fdDNHga3AF0C6MOWygkZMigSCXP6PNoxBDIikRz3yoJltK5lDiF1ZHPk9kmzMw1UD5CrfvFNMvjrO8gRrBwn26D_-13NyfTAeDdXw4OjwMbmBdxok5hOyXS-W5ilEh3X6zK1GSk4ve_n_AgULfx8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+fluorescent+reverse+transcription+loop-mediated+isothermal+amplification+%28RT-LAMP%29+using+quenching+probes+for+the+detection+of+the+Middle+East+respiratory+syndrome+coronavirus&rft.jtitle=Journal+of+virological+methods&rft.au=Shirato%2C+Kazuya&rft.au=Semba%2C+Shohei&rft.au=El-Kafrawy%2C+Sherif+A.&rft.au=Hassan%2C+Ahmed+M.&rft.date=2018-08-01&rft.pub=Elsevier+B.V&rft.issn=0166-0934&rft.eissn=1879-0984&rft.volume=258&rft.spage=41&rft.epage=48&rft_id=info:doi/10.1016%2Fj.jviromet.2018.05.006&rft.externalDocID=S0166093418301058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-0934&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-0934&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-0934&client=summon