Piezoelectric hydrogel for treatment of periodontitis through bioenergetic activation
The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment...
Saved in:
Published in | Bioactive materials Vol. 35; pp. 346 - 361 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
China
Elsevier B.V
01.05.2024
KeAi Publishing Communications Ltd KeAi Publishing KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an anti-inflammatory and pro-regenerative niche through switching M1 macrophages to the M2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation.
[Display omitted]
•A wireless piezoelectric hydrogel was developed to generate electric signals effectively under various mechanical stresses.•The piezoelectric stimulation could energize impaired PDLSCs to osteogenic differentiation by boosting Δψm.•The piezoelectric hydrogel rebuilt an anti-inflammatory and pro-regenerative niche by phenotypic switching of macrophages.•The piezoelectric hydrogel enabled a high-quality regeneration of impaired tissue in periodontal inflammatory defects. |
---|---|
AbstractList | The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an anti-inflammatory and pro-regenerative niche through switching M1 macrophages to the M2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation.
[Display omitted]
•A wireless piezoelectric hydrogel was developed to generate electric signals effectively under various mechanical stresses.•The piezoelectric stimulation could energize impaired PDLSCs to osteogenic differentiation by boosting Δψm.•The piezoelectric hydrogel rebuilt an anti-inflammatory and pro-regenerative niche by phenotypic switching of macrophages.•The piezoelectric hydrogel enabled a high-quality regeneration of impaired tissue in periodontal inflammatory defects. The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an anti-inflammatory and pro-regenerative niche through switching M1 macrophages to the M2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation. Image 1 • A wireless piezoelectric hydrogel was developed to generate electric signals effectively under various mechanical stresses. • The piezoelectric stimulation could energize impaired PDLSCs to osteogenic differentiation by boosting Δψ m . • The piezoelectric hydrogel rebuilt an anti-inflammatory and pro-regenerative niche by phenotypic switching of macrophages. • The piezoelectric hydrogel enabled a high-quality regeneration of impaired tissue in periodontal inflammatory defects. The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an anti-inflammatory and pro-regenerative niche through switching M1 macrophages to the M2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation. The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an antiinflammatory and pro-regenerative niche through switching Ml macrophages to the М2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation. The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an anti-inflammatory and pro-regenerative niche through switching M1 macrophages to the M2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation.The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an anti-inflammatory and pro-regenerative niche through switching M1 macrophages to the M2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation. |
Author | Zhao, Jiao Hu, Quanhong Li, Linlin Chen, Yuxiao Wan, Xingyi Liu, Xin Ding, Tingting Sui, Baiyan Liu, Zhirong Wang, Zhong Lin |
Author_xml | – sequence: 1 givenname: Xin surname: Liu fullname: Liu, Xin email: liuxin8253@sjtu.edu.cn organization: Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China – sequence: 2 givenname: Xingyi surname: Wan fullname: Wan, Xingyi organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China – sequence: 3 givenname: Baiyan orcidid: 0000-0002-2300-0500 surname: Sui fullname: Sui, Baiyan organization: Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China – sequence: 4 givenname: Quanhong surname: Hu fullname: Hu, Quanhong organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China – sequence: 5 givenname: Zhirong surname: Liu fullname: Liu, Zhirong organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China – sequence: 6 givenname: Tingting surname: Ding fullname: Ding, Tingting organization: Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China – sequence: 7 givenname: Jiao surname: Zhao fullname: Zhao, Jiao organization: Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China – sequence: 8 givenname: Yuxiao surname: Chen fullname: Chen, Yuxiao organization: Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China – sequence: 9 givenname: Zhong Lin surname: Wang fullname: Wang, Zhong Lin email: zhong.wang@mse.gatech.edu organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China – sequence: 10 givenname: Linlin orcidid: 0000-0003-1041-4533 surname: Li fullname: Li, Linlin email: lilinlin@binn.cas.cn organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38379699$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1O3DAUhaOKqlDKK7SRumEzqe0k_llUFULQIiG1iyJ1ZznOTcZRYk8dZyT69L3DAAI2bJIoOef4y73nfXbgg4cs-0RJQQnlX4aiccHYNJlUMMKqgrCCUPomO2JVzVZUqT8HT54Ps5N5HgghVOCFiHfZYSlLobhSR9nNLwf_AoxgU3Q2X9-2MfQw5l2IeYpg0gQ-5aHLNxBdaINPLrk5T-sYln6dIwh4iD0kNCOS25rkgv-Qve3MOMPJ_f04u7m8-H3-Y3X98_vV-dn1ytaCpJURVlakrStGSlsqCTUhRiE3WNoqqBphpABjS1Zz27Wcs65jAKAYq3hXivI4u9rntsEMehPdZOKtDsbpuxch9tpERBtBK0VNRRppKWcV462ksmYtQFmLruF1g1nf9lmbpZmgtfjf0YzPQp9_8W6t-7DVlEjBK6kw4fQ-IYa_C8xJT262MI7GQ1hmzRRTNQ6-pCj9_EI6hCV6nJUuieCok2yn-vgU6ZHlYX0o-LoX2BjmOUKnrUt3G0BCNyKa3jVGD_qxMXrXGE2YxsagX7zwPxzxuvNs7wRc79ZB1LN14C20LmKXcP7u1Yz_urPhhg |
CitedBy_id | crossref_primary_10_1021_acsbiomaterials_4c01359 crossref_primary_10_3389_fbioe_2024_1473126 crossref_primary_10_1111_jcmm_70143 crossref_primary_10_1002_adhm_202404345 crossref_primary_10_1002_adma_202406192 crossref_primary_10_1016_j_intimp_2024_112595 crossref_primary_10_1186_s12951_025_03275_4 crossref_primary_10_1093_stcltm_szae088 crossref_primary_10_1021_acsami_4c11569 crossref_primary_10_1007_s40820_024_01536_9 crossref_primary_10_1002_advs_202413105 crossref_primary_10_1002_smll_202411265 crossref_primary_10_1007_s00784_024_05884_z crossref_primary_10_1111_jace_20018 |
Cites_doi | 10.15252/embr.202051606 10.1016/j.mito.2011.01.009 10.1002/advs.201900819 10.1021/acsami.8b01991 10.1016/j.biomaterials.2018.07.011 10.1002/smll.201704022 10.1021/acsami.9b05013 10.1002/advs.202100962 10.1084/jem.20180421 10.1021/acsnano.6b02247 10.3389/fcell.2020.00087 10.1002/adma.202007429 10.1016/j.nanoen.2017.12.034 10.1002/adma.202106317 10.1038/nri3785 10.1016/j.actbio.2021.08.023 10.1016/j.actbio.2017.01.056 10.1038/s41413-022-00197-x 10.3389/fbioe.2020.597661 10.1523/JNEUROSCI.1256-07.2007 10.1038/s41577-020-00488-6 10.1016/j.molmet.2022.101450 10.7150/thno.19888 10.1038/nmeth.1923 10.3389/fimmu.2020.00330 10.1073/pnas.1308887110 10.3389/fimmu.2019.02588 10.1007/s00068-019-01127-z 10.1038/nmeth.3317 10.1021/acsami.3c08336 10.1111/jre.12760 10.1073/pnas.1602776113 10.1016/j.archoralbio.2016.09.002 10.1021/acsami.0c10957 10.1007/s13238-017-0385-7 10.1038/nrm3772 10.1126/science.aam7928 10.1073/pnas.0903269107 10.1016/j.acthis.2016.04.011 10.1016/j.molp.2020.06.009 10.1002/mds3.10090 10.1016/j.cmet.2021.10.004 10.4061/2011/920178 10.1038/s41598-019-47389-w 10.1111/j.1600-0757.2012.00455.x 10.1126/sciadv.aay7608 10.1016/j.jdent.2020.103310 10.1016/j.diff.2014.09.002 10.1038/s41598-021-98625-1 10.1016/S0140-6736(18)32203-7 10.1016/j.jobcr.2020.10.011 10.1016/j.ijbiomac.2021.05.040 10.1007/s00068-020-01324-1 10.1016/j.scr.2021.102560 10.1038/s41423-023-00998-y 10.1073/pnas.1813000115 10.1016/j.biomaterials.2020.119841 10.1038/nmat2732 10.1111/j.1551-2916.2012.05085.x |
ContentType | Journal Article |
Copyright | 2024 The Authors 2024 The Authors. 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 The Authors 2024 |
Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. – notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 The Authors 2024 |
DBID | 6I. AAFTH AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1016/j.bioactmat.2024.02.011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database Biological Sciences Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-199X |
EndPage | 361 |
ExternalDocumentID | oai_doaj_org_article_991a40b8c162426d81852dee357fb65b PMC10876489 38379699 10_1016_j_bioactmat_2024_02_011 S2452199X24000562 |
Genre | Journal Article |
GeographicLocations | United States--US Japan |
GeographicLocations_xml | – name: United States--US – name: Japan |
GroupedDBID | 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAYWO AAYXX ABJCF ACVFH ADCNI ADMLS ADVLN AEUPX AFKRA AFPUW AIGII AKBMS AKRWK AKYEP BBNVY BENPR BGLVJ BHPHI CCPQU CITATION HCIFZ KB. M7P M~E PDBOC PHGZM PHGZT PIMPY NPM PQGLB 8FE 8FG 8FH ABUWG AZQEC D1I DWQXO GNUQQ LK8 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c570t-a7c840d54203c398e500a9452ec1d9e4b7a87eac3256cfd662ff2eee92246f373 |
IEDL.DBID | BENPR |
ISSN | 2452-199X 2097-1192 |
IngestDate | Wed Aug 27 00:44:24 EDT 2025 Thu Aug 21 18:34:57 EDT 2025 Thu Jul 10 20:28:41 EDT 2025 Fri Jul 25 11:55:13 EDT 2025 Mon Jul 21 06:04:38 EDT 2025 Thu Apr 24 23:12:07 EDT 2025 Tue Jul 01 02:11:35 EDT 2025 Sat Apr 13 16:39:06 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Piezoelectric hydrogel Periodontitis Macrophage polarization Mitochondrial bioenergetics Bone regeneration |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c570t-a7c840d54203c398e500a9452ec1d9e4b7a87eac3256cfd662ff2eee92246f373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors contributed equally to this work. |
ORCID | 0000-0003-1041-4533 0000-0002-2300-0500 |
OpenAccessLink | https://www.proquest.com/docview/3076295821?pq-origsite=%requestingapplication% |
PMID | 38379699 |
PQID | 3076295821 |
PQPubID | 6865030 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_991a40b8c162426d81852dee357fb65b pubmedcentral_primary_oai_pubmedcentral_nih_gov_10876489 proquest_miscellaneous_2929537931 proquest_journals_3076295821 pubmed_primary_38379699 crossref_citationtrail_10_1016_j_bioactmat_2024_02_011 crossref_primary_10_1016_j_bioactmat_2024_02_011 elsevier_sciencedirect_doi_10_1016_j_bioactmat_2024_02_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China – name: Beijing |
PublicationTitle | Bioactive materials |
PublicationTitleAlternate | Bioact Mater |
PublicationYear | 2024 |
Publisher | Elsevier B.V KeAi Publishing Communications Ltd KeAi Publishing KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Publishing Communications Ltd – name: KeAi Publishing – name: KeAi Communications Co., Ltd |
References | Decuypere, Monaco, Missiaen, De Smedt, Parys, Bultynck (bib53) 2011; 2011 Elkhoury, Morsink, Tahri, Kahn, Cleymand, Shin, Arab-Tehrany, Sanchez-Gonzalez (bib34) 2021; 183 Yamamoto, Ugawa, Yamashiro, Shimoe, Tomikawa, Hongo, Kochi, Ideguchi, Maeda, Takashiba (bib48) 2014; 88 Willenborg, Sanin, Jais, Ding, Ulas, Nuchel, Popovic, MacVicar, Langer, Schultze, Gerbaulet, Roers, Pearce, Bruning, Trifunovic, Eming (bib11) 2021; 33 Miller, Zachary (bib58) 2017 Zheng, Niu, Lei, Boccaccini (bib64) 2021; 133 Liu, Li, Jiao, Wu, Guo, Xiao, Wei, Wu, Gao, Wang, Lu, Tang, Zhao, Zhang, Tang, Shi, Guo (bib24) 2020; 12 Li, Levin, Kaplan (bib66) 2016; 6 Wu, Xu, Lin, Yuan, Qin, Thatikonda, Bao (bib35) 2018; 10 Naqvi, McNamara (bib49) 2020; 8 Lasisi, Shittu, Meludu, Salami (bib40) 2017; 73 Jeong, Baek, Kingon, Park, Kim (bib43) 2018; 14 Stefanowski, Lang, Rauch, Aulich, Kohler, Fiedler, Buttgereit, Schmidt-Bleek, Duda, Gaber, Niesner, Hauser (bib63) 2019; 10 Lee, Moon, Choi, Kim (bib33) 2012; 95 Tanaka, Tanaka, Takegaki, Fujino (bib56) 2016; 118 Carvalho, Fernandes, Padrao, Nicolau, Marques-Marchan, Asenjo, Gama, Ribeiro, Lanceros-Mendez (bib41) 2019; 11 Zhang, Yuan, Wu, Pei, Yang, Wu, Pang, Wang (bib46) 2020; 94 Zhai, Chen, Fei, Guo, He, Zhao, Shi, Gooding, Jin, Jin (bib6) 2022; 9 Hollenberg, Huber, Smith, Eliseev (bib18) 2021; 11 Roldan, Montoya, Solanki, Cai, Yang, Correa, Orrego (bib27) 2023; 15 Wu, Qin, Bao (bib42) 2018; 45 Leppik, Oliveira, Bhavsar, Barker (bib19) 2020; 46 Kinane, Stathopoulou, Papapanou (bib1) 2017; 3 Xu, Sui, Liu, Sun (bib32) 2023; 25 Chen, Zhu, Mao, Wu, Lin, Xu, Lu, Shi (bib26) 2023 Li, Ou, Shi, Shao (bib5) 2023; 20 Kilian, Bugarija, Lahn, Mrksich (bib61) 2010; 107 Oliveira, Barker, Berezikov, Pindur, Kynigopoulos, Eischen-Loges, Han, Bhavsar, Henrich, Leppik (bib20) 2019; 9 Ma, Tian, Kim, Xie, Ao, Shan, Lin, Hudock, Bai, Yang (bib17) 2018; 115 Kong, Liu, Ma, Duan, Yuan, Sang, Han, Wang, Liu (bib29) 2021; 8 Zhang, Zhang, Lin, Hu, Shen, Wang, Meng, Chai, Dai, Liu, Liu, Mo, Cao, Li, Deng, Chen (bib25) 2016; 10 Dai, Sui, Xue, Liu, Sun (bib30) 2018; 180 Hajishengallis (bib4) 2015; 15 Liu, Cai, Zhang, Yu, Wang, Wan, Wang, Li (bib23) 2021; 33 Chen, Chen, Zhang, Thomas, Frank, He, Xia (bib38) 2020; 13 Wu, Holstein, Upadhyay, Lin, Conway, Muller, Lechleiter (bib54) 2007; 27 Shang, Liu, Ming, Tian, Jin, Ding, Zhang, Zhang, Deng, Jin (bib39) 2017; 7 Ma, Kuzma, Bai, Yang (bib15) 2019; 6 Lin, Yin, Shi, Yang, Wen, Zhang, Zhou, Jiang (bib16) 2022; 18 Ahamad, Sun, Singh (bib52) 2021; 56 Liu, Du, St-Pierre, Bergholt, Autefage, Wang, Cai, Yang, Stevens, Zhang (bib14) 2020; 6 Gupta, Madhok, Kulshrestha, Chain, Kaur, Yadav (bib45) 2020; 10 Liu, Liu, He, Li, Li, Wang, Cai, Chen, Jiang (bib59) 2021; 22 Dai, Sui, Hua, Zhang, Bao, Lin, Liu, Zhu, Sun (bib31) 2020; 240 Kampourakis, Sun, Irving (bib50) 2016; 113 Khorolsuren, Lang, Pallinger, Foldes, Szabolcs, Varga, Mezo, Vag, Kohidai (bib57) 2020; 55 Tsogtbaatar, Landin, Minter-Dykhouse, Folmes (bib60) 2020; 8 Eming, Wynn, Martin (bib12) 2017; 356 Huebsch, Arany, Mao, Shvartsman, Ali, Bencherif, Rivera-Feliciano, Mooney (bib44) 2010; 9 Roth, Abate, Abate, Abay, Abbafati, Abbasi, Abbastabar, Abd-Allah, Abdela, Abdelalim (bib2) 2018; 392 Ito, Suda (bib10) 2014; 15 Langmead, Salzberg (bib37) 2012; 9 Hajishengallis, Chavakis (bib3) 2021; 21 Umemoto, Hashimoto, Matsumura, Nakamura-Ishizu, Suda (bib51) 2018; 215 Govindaraj, Khan, Gopalakrishna, Chandra, Vanniarajan, Reddy, Singh, Kumaresan, Srinivas, Singh (bib7) 2011; 11 McWhorter, Wang, Nguyen, Chung, Liu (bib55) 2013; 110 Julier, Park, Briquez, Martino (bib65) 2017; 53 Ning, Liu, Yang, Wang, Man, Wang, Xu (bib13) 2022; 58 Li, Gao, Chen, Guan (bib47) 2017; 8 Bhavsar, Han, DeCoster, Leppik, Costa Oliveira, Barker (bib21) 2020; 46 Liu, Wan, Wang, Li (bib28) 2021; 33 Khatua, Bhattacharya, Balla (bib22) 2020; 3 Bullon, Newman, Battino (bib8) 2000; 64 Li, Tian, Deng, Liu, Zhou, Kong, Qu, Sun, He, Chen (bib9) 2022; 10 Almubarak, Tanagala, Papapanou, Lalla, Momen-Heravi (bib62) 2020; 11 Kim, Langmead, Salzberg (bib36) 2015; 12 Langmead (10.1016/j.bioactmat.2024.02.011_bib37) 2012; 9 Stefanowski (10.1016/j.bioactmat.2024.02.011_bib63) 2019; 10 Kinane (10.1016/j.bioactmat.2024.02.011_bib1) 2017; 3 Kampourakis (10.1016/j.bioactmat.2024.02.011_bib50) 2016; 113 Jeong (10.1016/j.bioactmat.2024.02.011_bib43) 2018; 14 Liu (10.1016/j.bioactmat.2024.02.011_bib59) 2021; 22 Miller (10.1016/j.bioactmat.2024.02.011_bib58) 2017 Decuypere (10.1016/j.bioactmat.2024.02.011_bib53) 2011; 2011 Xu (10.1016/j.bioactmat.2024.02.011_bib32) 2023; 25 Chen (10.1016/j.bioactmat.2024.02.011_bib26) 2023 Li (10.1016/j.bioactmat.2024.02.011_bib9) 2022; 10 Huebsch (10.1016/j.bioactmat.2024.02.011_bib44) 2010; 9 Kong (10.1016/j.bioactmat.2024.02.011_bib29) 2021; 8 Zhang (10.1016/j.bioactmat.2024.02.011_bib46) 2020; 94 Li (10.1016/j.bioactmat.2024.02.011_bib5) 2023; 20 Lasisi (10.1016/j.bioactmat.2024.02.011_bib40) 2017; 73 Eming (10.1016/j.bioactmat.2024.02.011_bib12) 2017; 356 Julier (10.1016/j.bioactmat.2024.02.011_bib65) 2017; 53 Dai (10.1016/j.bioactmat.2024.02.011_bib30) 2018; 180 Wu (10.1016/j.bioactmat.2024.02.011_bib54) 2007; 27 Oliveira (10.1016/j.bioactmat.2024.02.011_bib20) 2019; 9 Almubarak (10.1016/j.bioactmat.2024.02.011_bib62) 2020; 11 Elkhoury (10.1016/j.bioactmat.2024.02.011_bib34) 2021; 183 Yamamoto (10.1016/j.bioactmat.2024.02.011_bib48) 2014; 88 Ma (10.1016/j.bioactmat.2024.02.011_bib15) 2019; 6 McWhorter (10.1016/j.bioactmat.2024.02.011_bib55) 2013; 110 Hollenberg (10.1016/j.bioactmat.2024.02.011_bib18) 2021; 11 Zhai (10.1016/j.bioactmat.2024.02.011_bib6) 2022; 9 Gupta (10.1016/j.bioactmat.2024.02.011_bib45) 2020; 10 Willenborg (10.1016/j.bioactmat.2024.02.011_bib11) 2021; 33 Liu (10.1016/j.bioactmat.2024.02.011_bib23) 2021; 33 Ma (10.1016/j.bioactmat.2024.02.011_bib17) 2018; 115 Ahamad (10.1016/j.bioactmat.2024.02.011_bib52) 2021; 56 Ito (10.1016/j.bioactmat.2024.02.011_bib10) 2014; 15 Khatua (10.1016/j.bioactmat.2024.02.011_bib22) 2020; 3 Chen (10.1016/j.bioactmat.2024.02.011_bib38) 2020; 13 Govindaraj (10.1016/j.bioactmat.2024.02.011_bib7) 2011; 11 Zheng (10.1016/j.bioactmat.2024.02.011_bib64) 2021; 133 Ning (10.1016/j.bioactmat.2024.02.011_bib13) 2022; 58 Tsogtbaatar (10.1016/j.bioactmat.2024.02.011_bib60) 2020; 8 Roldan (10.1016/j.bioactmat.2024.02.011_bib27) 2023; 15 Liu (10.1016/j.bioactmat.2024.02.011_bib28) 2021; 33 Roth (10.1016/j.bioactmat.2024.02.011_bib2) 2018; 392 Naqvi (10.1016/j.bioactmat.2024.02.011_bib49) 2020; 8 Bullon (10.1016/j.bioactmat.2024.02.011_bib8) 2000; 64 Zhang (10.1016/j.bioactmat.2024.02.011_bib25) 2016; 10 Khorolsuren (10.1016/j.bioactmat.2024.02.011_bib57) 2020; 55 Leppik (10.1016/j.bioactmat.2024.02.011_bib19) 2020; 46 Umemoto (10.1016/j.bioactmat.2024.02.011_bib51) 2018; 215 Kim (10.1016/j.bioactmat.2024.02.011_bib36) 2015; 12 Li (10.1016/j.bioactmat.2024.02.011_bib47) 2017; 8 Hajishengallis (10.1016/j.bioactmat.2024.02.011_bib3) 2021; 21 Li (10.1016/j.bioactmat.2024.02.011_bib66) 2016; 6 Shang (10.1016/j.bioactmat.2024.02.011_bib39) 2017; 7 Bhavsar (10.1016/j.bioactmat.2024.02.011_bib21) 2020; 46 Wu (10.1016/j.bioactmat.2024.02.011_bib35) 2018; 10 Tanaka (10.1016/j.bioactmat.2024.02.011_bib56) 2016; 118 Liu (10.1016/j.bioactmat.2024.02.011_bib24) 2020; 12 Dai (10.1016/j.bioactmat.2024.02.011_bib31) 2020; 240 Wu (10.1016/j.bioactmat.2024.02.011_bib42) 2018; 45 Lin (10.1016/j.bioactmat.2024.02.011_bib16) 2022; 18 Carvalho (10.1016/j.bioactmat.2024.02.011_bib41) 2019; 11 Lee (10.1016/j.bioactmat.2024.02.011_bib33) 2012; 95 Kilian (10.1016/j.bioactmat.2024.02.011_bib61) 2010; 107 Hajishengallis (10.1016/j.bioactmat.2024.02.011_bib4) 2015; 15 Liu (10.1016/j.bioactmat.2024.02.011_bib14) 2020; 6 |
References_xml | – volume: 183 start-page: 918 year: 2021 end-page: 926 ident: bib34 article-title: Synthesis and characterization of C2C12-laden gelatin methacryloyl (GelMA) from marine and mammalian sources publication-title: Int. J. Biol. Macromol. – volume: 133 start-page: 168 year: 2021 end-page: 186 ident: bib64 article-title: Immunomodulatory bioactive glasses for tissue regeneration publication-title: Acta Biomater. – volume: 6 year: 2016 ident: bib66 article-title: Bioelectric modulation of macrophage polarization publication-title: Sci. Rep. – volume: 10 start-page: 29 year: 2022 ident: bib9 article-title: LncRNA GACAT2 binds with protein PKM1/2 to regulate cell mitochondrial function and cementogenesis in an inflammatory environment publication-title: Bone Res. – volume: 11 start-page: 330 year: 2020 ident: bib62 article-title: Disruption of monocyte and macrophage homeostasis in periodontitis publication-title: Front. Immunol. – volume: 25 start-page: 701 year: 2023 end-page: 715 ident: bib32 article-title: A bioinspired and high-strengthed hydrogel for regeneration of perforated temporomandibular joint disc: construction and pleiotropic immunomodulatory effects publication-title: Bioact. Mater. – volume: 94 year: 2020 ident: bib46 article-title: Liraglutide regulates bone destruction and exhibits anti-inflammatory effects in periodontitis in vitro and in vivo publication-title: J. Dent. – volume: 27 start-page: 6510 year: 2007 end-page: 6520 ident: bib54 article-title: Purinergic receptor-stimulated IP3-mediated Ca2+ release enhances neuroprotection by increasing astrocyte mitochondrial metabolism during aging publication-title: J. Neurosci. – volume: 8 start-page: 439 year: 2017 end-page: 445 ident: bib47 article-title: The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells publication-title: Protein Cell – volume: 7 start-page: 4370 year: 2017 end-page: 4382 ident: bib39 article-title: Human umbilical cord MSCs as new cell sources for promoting periodontal regeneration in inflammatory periodontal defect publication-title: Theranostics – volume: 118 start-page: 464 year: 2016 end-page: 470 ident: bib56 article-title: Preventive effects of electrical stimulation on inflammation-induced muscle mitochondrial dysfunction publication-title: Acta Histochem. – volume: 8 year: 2020 ident: bib49 article-title: Stem cell mechanobiology and the role of biomaterials in governing mechanotransduction and matrix production for tissue regeneration publication-title: Front. Bioeng. Biotechnol. – volume: 33 year: 2021 ident: bib23 article-title: Cell-Traction-triggered on-demand electrical stimulation for neuron-like differentiation publication-title: Adv. Mater. – volume: 73 start-page: 100 year: 2017 end-page: 104 ident: bib40 article-title: Differential effects of total and partial sleep deprivation on salivary factors in Wistar rats publication-title: Arch. Oral Biol. – volume: 14 year: 2018 ident: bib43 article-title: Lead‐free perovskite nanowire‐employed piezopolymer for highly efficient flexible nanocomposite energy harvester publication-title: Small – volume: 22 year: 2021 ident: bib59 article-title: OXPHOS deficiency activates global adaptation pathways to maintain mitochondrial membrane potential publication-title: EMBO Rep. – volume: 12 start-page: 51885 year: 2020 end-page: 51903 ident: bib24 article-title: Biological effects of a three-dimensionally printed Ti6Al4V scaffold coated with piezoelectric BaTiO(3) nanoparticles on bone formation publication-title: ACS Appl. Mater. Interfaces – volume: 3 year: 2020 ident: bib22 article-title: In situ electrical stimulation for enhanced bone growth: a mini‐review publication-title: Med. Devices Sens. – volume: 113 start-page: E3039 year: 2016 end-page: E3047 ident: bib50 article-title: Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 95 start-page: 2429 year: 2012 end-page: 2434 ident: bib33 article-title: Synthesis and size control of tetragonal barium titanate nanopowders by facile solvothermal method publication-title: J. Am. Ceram. Soc. – volume: 10 start-page: 7279 year: 2016 end-page: 7286 ident: bib25 article-title: Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment publication-title: ACS Nano – volume: 45 start-page: 44 year: 2018 end-page: 51 ident: bib42 article-title: Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration publication-title: Nano Energy – volume: 110 start-page: 17253 year: 2013 end-page: 17258 ident: bib55 article-title: Modulation of macrophage phenotype by cell shape publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 55 start-page: 713 year: 2020 end-page: 723 ident: bib57 article-title: Functional and cell surface characteristics of periodontal ligament cells (PDLCs) on RGD-synthetic polypeptide conjugate coatings publication-title: J. Periodontal. Res. – volume: 15 start-page: 30 year: 2015 end-page: 44 ident: bib4 article-title: Periodontitis: from microbial immune subversion to systemic inflammation publication-title: Nat. Rev. Immunol. – year: 2023 ident: bib26 article-title: Piezocatalytic medicine: an emerging frontier using piezoelectric materials for biomedical applications publication-title: Adv. Mater. – volume: 9 year: 2019 ident: bib20 article-title: Electrical stimulation shifts healing/scarring towards regeneration in a rat limb amputation model publication-title: Sci. Rep. – volume: 18 start-page: 116 year: 2022 end-page: 127 ident: bib16 article-title: Orchestration of energy metabolism and osteogenesis by Mg(2+) facilitates low-dose BMP-2-driven regeneration publication-title: Bioact. Mater. – volume: 8 start-page: 87 year: 2020 ident: bib60 article-title: Energy metabolism regulates stem cell pluripotency publication-title: Front. Cell Dev. Biol. – volume: 53 start-page: 13 year: 2017 end-page: 28 ident: bib65 article-title: Promoting tissue regeneration by modulating the immune system publication-title: Acta Biomater. – volume: 13 start-page: 1194 year: 2020 end-page: 1202 ident: bib38 article-title: TBtools: an integrative toolkit developed for interactive analyses of big biological data publication-title: Mol. Plant – volume: 11 start-page: 27297 year: 2019 end-page: 27305 ident: bib41 article-title: Tailoring bacteria response by piezoelectric stimulation publication-title: ACS Appl. Mater. Interfaces – volume: 356 start-page: 1026 year: 2017 end-page: 1030 ident: bib12 article-title: Inflammation and metabolism in tissue repair and regeneration publication-title: Science – volume: 6 year: 2019 ident: bib15 article-title: Biomaterial-based metabolic regulation in regenerative engineering publication-title: Adv. Sci. – volume: 107 start-page: 4872 year: 2010 end-page: 4877 ident: bib61 article-title: Geometric cues for directing the differentiation of mesenchymal stem cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 3 start-page: 1 year: 2017 end-page: 14 ident: bib1 article-title: Periodontal diseases publication-title: Nat. Rev. Dis. Prim. – volume: 12 start-page: 357 year: 2015 end-page: 360 ident: bib36 article-title: HISAT: a fast spliced aligner with low memory requirements publication-title: Nat. Methods – volume: 9 start-page: 357 year: 2012 end-page: 359 ident: bib37 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods – volume: 10 start-page: 17842 year: 2018 end-page: 17849 ident: bib35 article-title: Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3 publication-title: ACS Appl. Mater. Interfaces – volume: 240 year: 2020 ident: bib31 article-title: A well defect-suitable and high-strength biomimetic squid type II gelatin hydrogel promoted in situ costal cartilage regeneration via dynamic immunomodulation and direct induction manners publication-title: Biomaterials – volume: 46 start-page: 231 year: 2020 end-page: 244 ident: bib19 article-title: Electrical stimulation in bone tissue engineering treatments publication-title: Eur. J. Trauma Emerg. Surg. – volume: 6 year: 2020 ident: bib14 article-title: Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state publication-title: Sci. Adv. – volume: 10 start-page: 758 year: 2020 end-page: 763 ident: bib45 article-title: Determination of stress distribution on periodontal ligament and alveolar bone by various tooth movements–A 3D FEM study publication-title: J. Oral Biol. Craniofacial Res. – volume: 9 start-page: 518 year: 2010 end-page: 526 ident: bib44 article-title: Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate publication-title: Nat. Mater. – volume: 215 start-page: 2097 year: 2018 end-page: 2113 ident: bib51 article-title: Ca(2+)-mitochondria axis drives cell division in hematopoietic stem cells publication-title: J. Exp. Med. – volume: 11 year: 2021 ident: bib18 article-title: Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair publication-title: Sci. Rep. – volume: 9 year: 2022 ident: bib6 article-title: Nanorepairers rescue inflammation‐induced mitochondrial dysfunction in mesenchymal stem cells publication-title: Adv. Sci. – start-page: 2 year: 2017 ident: bib58 article-title: Mechanisms and Morphology of Cellular Injury, Adaptation, and Death, Pathologic Basis of Veterinary Disease – volume: 15 start-page: 43441 year: 2023 end-page: 43454 ident: bib27 article-title: A novel injectable piezoelectric hydrogel for periodontal disease treatment publication-title: ACS Appl. Mater. Interfaces – volume: 8 year: 2021 ident: bib29 article-title: Wireless localized electrical stimulation generated by an ultrasound-driven piezoelectric discharge regulates proinflammatory macrophage polarization publication-title: Adv. Sci. – volume: 180 start-page: 91 year: 2018 end-page: 103 ident: bib30 article-title: Cartilage repair in degenerative osteoarthritis mediated by squid type II collagen via immunomodulating activation of M2 macrophages, inhibiting apoptosis and hypertrophy of chondrocytes publication-title: Biomaterials – volume: 10 start-page: 2588 year: 2019 ident: bib63 article-title: Spatial distribution of macrophages during callus formation and maturation reveals close crosstalk between macrophages and newly forming vessels publication-title: Front. Immunol. – volume: 58 year: 2022 ident: bib13 article-title: Update on the effects of energy metabolism in bone marrow mesenchymal stem cells differentiation publication-title: Mol. Metabol. – volume: 392 start-page: 1736 year: 2018 end-page: 1788 ident: bib2 article-title: Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017 publication-title: Lancet – volume: 2011 year: 2011 ident: bib53 article-title: IP3 receptors, mitochondria, and Ca2+ signaling: implications for aging publication-title: J. Aging Res. – volume: 115 start-page: E11741 year: 2018 end-page: E11750 ident: bib17 article-title: Citrate-based materials fuel human stem cells by metabonegenic regulation publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 20 start-page: 558 year: 2023 end-page: 569 ident: bib5 article-title: Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications publication-title: Cell. Mol. Immunol. – volume: 15 start-page: 243 year: 2014 end-page: 256 ident: bib10 article-title: Metabolic requirements for the maintenance of self-renewing stem cells publication-title: Nat. Rev. Mol. Cell Biol. – volume: 33 year: 2021 ident: bib28 article-title: Electroactive biomaterials and systems for cell fate determination and tissue regeneration: design and applications publication-title: Adv. Mater. – volume: 88 start-page: 33 year: 2014 end-page: 41 ident: bib48 article-title: Osteogenic differentiation regulated by Rho-kinase in periodontal ligament cells publication-title: Differentiation – volume: 46 start-page: 245 year: 2020 end-page: 264 ident: bib21 article-title: Electrical stimulation-based bone fracture treatment, if it works so well why do not more surgeons use it? publication-title: Eur. J. Trauma Emerg. Surg. – volume: 64 start-page: 139 year: 2000 end-page: 153 ident: bib8 article-title: Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: a shared pathology via oxidative stress and mitochondrial dysfunction? publication-title: Periodontology – volume: 21 start-page: 426 year: 2021 end-page: 440 ident: bib3 article-title: Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities publication-title: Nat. Rev. Immunol. – volume: 33 start-page: 2398 year: 2021 end-page: 2414 e9 ident: bib11 article-title: Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing publication-title: Cell Metabol. – volume: 11 start-page: 504 year: 2011 end-page: 512 ident: bib7 article-title: Mitochondrial dysfunction and genetic heterogeneity in chronic periodontitis publication-title: Mitochondrion – volume: 56 year: 2021 ident: bib52 article-title: Increasing cytosolic Ca(2+) levels restore cell proliferation and stem cell potency in aged MSCs publication-title: Stem Cell Res. – volume: 22 issue: 4 year: 2021 ident: 10.1016/j.bioactmat.2024.02.011_bib59 article-title: OXPHOS deficiency activates global adaptation pathways to maintain mitochondrial membrane potential publication-title: EMBO Rep. doi: 10.15252/embr.202051606 – volume: 11 start-page: 504 issue: 3 year: 2011 ident: 10.1016/j.bioactmat.2024.02.011_bib7 article-title: Mitochondrial dysfunction and genetic heterogeneity in chronic periodontitis publication-title: Mitochondrion doi: 10.1016/j.mito.2011.01.009 – volume: 6 issue: 19 year: 2019 ident: 10.1016/j.bioactmat.2024.02.011_bib15 article-title: Biomaterial-based metabolic regulation in regenerative engineering publication-title: Adv. Sci. doi: 10.1002/advs.201900819 – volume: 10 start-page: 17842 issue: 21 year: 2018 ident: 10.1016/j.bioactmat.2024.02.011_bib35 article-title: Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01991 – volume: 180 start-page: 91 year: 2018 ident: 10.1016/j.bioactmat.2024.02.011_bib30 article-title: Cartilage repair in degenerative osteoarthritis mediated by squid type II collagen via immunomodulating activation of M2 macrophages, inhibiting apoptosis and hypertrophy of chondrocytes publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.07.011 – volume: 14 issue: 19 year: 2018 ident: 10.1016/j.bioactmat.2024.02.011_bib43 article-title: Lead‐free perovskite nanowire‐employed piezopolymer for highly efficient flexible nanocomposite energy harvester publication-title: Small doi: 10.1002/smll.201704022 – volume: 11 start-page: 27297 issue: 30 year: 2019 ident: 10.1016/j.bioactmat.2024.02.011_bib41 article-title: Tailoring bacteria response by piezoelectric stimulation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b05013 – volume: 8 issue: 13 year: 2021 ident: 10.1016/j.bioactmat.2024.02.011_bib29 article-title: Wireless localized electrical stimulation generated by an ultrasound-driven piezoelectric discharge regulates proinflammatory macrophage polarization publication-title: Adv. Sci. doi: 10.1002/advs.202100962 – volume: 215 start-page: 2097 issue: 8 year: 2018 ident: 10.1016/j.bioactmat.2024.02.011_bib51 article-title: Ca(2+)-mitochondria axis drives cell division in hematopoietic stem cells publication-title: J. Exp. Med. doi: 10.1084/jem.20180421 – volume: 10 start-page: 7279 issue: 8 year: 2016 ident: 10.1016/j.bioactmat.2024.02.011_bib25 article-title: Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment publication-title: ACS Nano doi: 10.1021/acsnano.6b02247 – volume: 8 start-page: 87 year: 2020 ident: 10.1016/j.bioactmat.2024.02.011_bib60 article-title: Energy metabolism regulates stem cell pluripotency publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.00087 – volume: 33 issue: 32 year: 2021 ident: 10.1016/j.bioactmat.2024.02.011_bib28 article-title: Electroactive biomaterials and systems for cell fate determination and tissue regeneration: design and applications publication-title: Adv. Mater. doi: 10.1002/adma.202007429 – volume: 45 start-page: 44 year: 2018 ident: 10.1016/j.bioactmat.2024.02.011_bib42 article-title: Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.034 – volume: 33 issue: 51 year: 2021 ident: 10.1016/j.bioactmat.2024.02.011_bib23 article-title: Cell-Traction-triggered on-demand electrical stimulation for neuron-like differentiation publication-title: Adv. Mater. doi: 10.1002/adma.202106317 – volume: 15 start-page: 30 issue: 1 year: 2015 ident: 10.1016/j.bioactmat.2024.02.011_bib4 article-title: Periodontitis: from microbial immune subversion to systemic inflammation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3785 – volume: 133 start-page: 168 year: 2021 ident: 10.1016/j.bioactmat.2024.02.011_bib64 article-title: Immunomodulatory bioactive glasses for tissue regeneration publication-title: Acta Biomater. doi: 10.1016/j.actbio.2021.08.023 – volume: 25 start-page: 701 year: 2023 ident: 10.1016/j.bioactmat.2024.02.011_bib32 article-title: A bioinspired and high-strengthed hydrogel for regeneration of perforated temporomandibular joint disc: construction and pleiotropic immunomodulatory effects publication-title: Bioact. Mater. – volume: 53 start-page: 13 year: 2017 ident: 10.1016/j.bioactmat.2024.02.011_bib65 article-title: Promoting tissue regeneration by modulating the immune system publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.01.056 – volume: 10 start-page: 29 issue: 1 year: 2022 ident: 10.1016/j.bioactmat.2024.02.011_bib9 article-title: LncRNA GACAT2 binds with protein PKM1/2 to regulate cell mitochondrial function and cementogenesis in an inflammatory environment publication-title: Bone Res. doi: 10.1038/s41413-022-00197-x – volume: 8 year: 2020 ident: 10.1016/j.bioactmat.2024.02.011_bib49 article-title: Stem cell mechanobiology and the role of biomaterials in governing mechanotransduction and matrix production for tissue regeneration publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.597661 – volume: 27 start-page: 6510 issue: 24 year: 2007 ident: 10.1016/j.bioactmat.2024.02.011_bib54 article-title: Purinergic receptor-stimulated IP3-mediated Ca2+ release enhances neuroprotection by increasing astrocyte mitochondrial metabolism during aging publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1256-07.2007 – volume: 21 start-page: 426 issue: 7 year: 2021 ident: 10.1016/j.bioactmat.2024.02.011_bib3 article-title: Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-00488-6 – volume: 58 year: 2022 ident: 10.1016/j.bioactmat.2024.02.011_bib13 article-title: Update on the effects of energy metabolism in bone marrow mesenchymal stem cells differentiation publication-title: Mol. Metabol. doi: 10.1016/j.molmet.2022.101450 – volume: 18 start-page: 116 year: 2022 ident: 10.1016/j.bioactmat.2024.02.011_bib16 article-title: Orchestration of energy metabolism and osteogenesis by Mg(2+) facilitates low-dose BMP-2-driven regeneration publication-title: Bioact. Mater. – volume: 7 start-page: 4370 issue: 18 year: 2017 ident: 10.1016/j.bioactmat.2024.02.011_bib39 article-title: Human umbilical cord MSCs as new cell sources for promoting periodontal regeneration in inflammatory periodontal defect publication-title: Theranostics doi: 10.7150/thno.19888 – volume: 9 start-page: 357 issue: 4 year: 2012 ident: 10.1016/j.bioactmat.2024.02.011_bib37 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 11 start-page: 330 year: 2020 ident: 10.1016/j.bioactmat.2024.02.011_bib62 article-title: Disruption of monocyte and macrophage homeostasis in periodontitis publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.00330 – volume: 110 start-page: 17253 issue: 43 year: 2013 ident: 10.1016/j.bioactmat.2024.02.011_bib55 article-title: Modulation of macrophage phenotype by cell shape publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1308887110 – volume: 10 start-page: 2588 year: 2019 ident: 10.1016/j.bioactmat.2024.02.011_bib63 article-title: Spatial distribution of macrophages during callus formation and maturation reveals close crosstalk between macrophages and newly forming vessels publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.02588 – year: 2023 ident: 10.1016/j.bioactmat.2024.02.011_bib26 article-title: Piezocatalytic medicine: an emerging frontier using piezoelectric materials for biomedical applications publication-title: Adv. Mater. – volume: 46 start-page: 245 issue: 2 year: 2020 ident: 10.1016/j.bioactmat.2024.02.011_bib21 article-title: Electrical stimulation-based bone fracture treatment, if it works so well why do not more surgeons use it? publication-title: Eur. J. Trauma Emerg. Surg. doi: 10.1007/s00068-019-01127-z – volume: 3 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.bioactmat.2024.02.011_bib1 article-title: Periodontal diseases publication-title: Nat. Rev. Dis. Prim. – volume: 12 start-page: 357 issue: 4 year: 2015 ident: 10.1016/j.bioactmat.2024.02.011_bib36 article-title: HISAT: a fast spliced aligner with low memory requirements publication-title: Nat. Methods doi: 10.1038/nmeth.3317 – volume: 15 start-page: 43441 issue: 37 year: 2023 ident: 10.1016/j.bioactmat.2024.02.011_bib27 article-title: A novel injectable piezoelectric hydrogel for periodontal disease treatment publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c08336 – volume: 55 start-page: 713 issue: 5 year: 2020 ident: 10.1016/j.bioactmat.2024.02.011_bib57 article-title: Functional and cell surface characteristics of periodontal ligament cells (PDLCs) on RGD-synthetic polypeptide conjugate coatings publication-title: J. Periodontal. Res. doi: 10.1111/jre.12760 – volume: 113 start-page: E3039 issue: 21 year: 2016 ident: 10.1016/j.bioactmat.2024.02.011_bib50 article-title: Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1602776113 – volume: 73 start-page: 100 year: 2017 ident: 10.1016/j.bioactmat.2024.02.011_bib40 article-title: Differential effects of total and partial sleep deprivation on salivary factors in Wistar rats publication-title: Arch. Oral Biol. doi: 10.1016/j.archoralbio.2016.09.002 – volume: 12 start-page: 51885 issue: 46 year: 2020 ident: 10.1016/j.bioactmat.2024.02.011_bib24 article-title: Biological effects of a three-dimensionally printed Ti6Al4V scaffold coated with piezoelectric BaTiO(3) nanoparticles on bone formation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c10957 – volume: 8 start-page: 439 issue: 6 year: 2017 ident: 10.1016/j.bioactmat.2024.02.011_bib47 article-title: The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells publication-title: Protein Cell doi: 10.1007/s13238-017-0385-7 – volume: 15 start-page: 243 issue: 4 year: 2014 ident: 10.1016/j.bioactmat.2024.02.011_bib10 article-title: Metabolic requirements for the maintenance of self-renewing stem cells publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3772 – volume: 356 start-page: 1026 issue: 6342 year: 2017 ident: 10.1016/j.bioactmat.2024.02.011_bib12 article-title: Inflammation and metabolism in tissue repair and regeneration publication-title: Science doi: 10.1126/science.aam7928 – volume: 107 start-page: 4872 issue: 11 year: 2010 ident: 10.1016/j.bioactmat.2024.02.011_bib61 article-title: Geometric cues for directing the differentiation of mesenchymal stem cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0903269107 – start-page: 2 year: 2017 ident: 10.1016/j.bioactmat.2024.02.011_bib58 – volume: 118 start-page: 464 issue: 5 year: 2016 ident: 10.1016/j.bioactmat.2024.02.011_bib56 article-title: Preventive effects of electrical stimulation on inflammation-induced muscle mitochondrial dysfunction publication-title: Acta Histochem. doi: 10.1016/j.acthis.2016.04.011 – volume: 13 start-page: 1194 issue: 8 year: 2020 ident: 10.1016/j.bioactmat.2024.02.011_bib38 article-title: TBtools: an integrative toolkit developed for interactive analyses of big biological data publication-title: Mol. Plant doi: 10.1016/j.molp.2020.06.009 – volume: 3 issue: 4 year: 2020 ident: 10.1016/j.bioactmat.2024.02.011_bib22 article-title: In situ electrical stimulation for enhanced bone growth: a mini‐review publication-title: Med. Devices Sens. doi: 10.1002/mds3.10090 – volume: 33 start-page: 2398 issue: 12 year: 2021 ident: 10.1016/j.bioactmat.2024.02.011_bib11 article-title: Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing publication-title: Cell Metabol. doi: 10.1016/j.cmet.2021.10.004 – volume: 2011 year: 2011 ident: 10.1016/j.bioactmat.2024.02.011_bib53 article-title: IP3 receptors, mitochondria, and Ca2+ signaling: implications for aging publication-title: J. Aging Res. doi: 10.4061/2011/920178 – volume: 9 issue: 4 year: 2022 ident: 10.1016/j.bioactmat.2024.02.011_bib6 article-title: Nanorepairers rescue inflammation‐induced mitochondrial dysfunction in mesenchymal stem cells publication-title: Adv. Sci. – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.bioactmat.2024.02.011_bib20 article-title: Electrical stimulation shifts healing/scarring towards regeneration in a rat limb amputation model publication-title: Sci. Rep. doi: 10.1038/s41598-019-47389-w – volume: 64 start-page: 139 issue: 1 year: 2000 ident: 10.1016/j.bioactmat.2024.02.011_bib8 article-title: Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: a shared pathology via oxidative stress and mitochondrial dysfunction? publication-title: Periodontology doi: 10.1111/j.1600-0757.2012.00455.x – volume: 6 issue: 13 year: 2020 ident: 10.1016/j.bioactmat.2024.02.011_bib14 article-title: Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state publication-title: Sci. Adv. doi: 10.1126/sciadv.aay7608 – volume: 94 year: 2020 ident: 10.1016/j.bioactmat.2024.02.011_bib46 article-title: Liraglutide regulates bone destruction and exhibits anti-inflammatory effects in periodontitis in vitro and in vivo publication-title: J. Dent. doi: 10.1016/j.jdent.2020.103310 – volume: 88 start-page: 33 issue: 2–3 year: 2014 ident: 10.1016/j.bioactmat.2024.02.011_bib48 article-title: Osteogenic differentiation regulated by Rho-kinase in periodontal ligament cells publication-title: Differentiation doi: 10.1016/j.diff.2014.09.002 – volume: 11 issue: 1 year: 2021 ident: 10.1016/j.bioactmat.2024.02.011_bib18 article-title: Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair publication-title: Sci. Rep. doi: 10.1038/s41598-021-98625-1 – volume: 392 start-page: 1736 issue: 10159 year: 2018 ident: 10.1016/j.bioactmat.2024.02.011_bib2 article-title: Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017 publication-title: Lancet doi: 10.1016/S0140-6736(18)32203-7 – volume: 10 start-page: 758 issue: 4 year: 2020 ident: 10.1016/j.bioactmat.2024.02.011_bib45 article-title: Determination of stress distribution on periodontal ligament and alveolar bone by various tooth movements–A 3D FEM study publication-title: J. Oral Biol. Craniofacial Res. doi: 10.1016/j.jobcr.2020.10.011 – volume: 6 issue: 1 year: 2016 ident: 10.1016/j.bioactmat.2024.02.011_bib66 article-title: Bioelectric modulation of macrophage polarization publication-title: Sci. Rep. – volume: 183 start-page: 918 year: 2021 ident: 10.1016/j.bioactmat.2024.02.011_bib34 article-title: Synthesis and characterization of C2C12-laden gelatin methacryloyl (GelMA) from marine and mammalian sources publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.05.040 – volume: 46 start-page: 231 issue: 2 year: 2020 ident: 10.1016/j.bioactmat.2024.02.011_bib19 article-title: Electrical stimulation in bone tissue engineering treatments publication-title: Eur. J. Trauma Emerg. Surg. doi: 10.1007/s00068-020-01324-1 – volume: 56 year: 2021 ident: 10.1016/j.bioactmat.2024.02.011_bib52 article-title: Increasing cytosolic Ca(2+) levels restore cell proliferation and stem cell potency in aged MSCs publication-title: Stem Cell Res. doi: 10.1016/j.scr.2021.102560 – volume: 20 start-page: 558 issue: 6 year: 2023 ident: 10.1016/j.bioactmat.2024.02.011_bib5 article-title: Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications publication-title: Cell. Mol. Immunol. doi: 10.1038/s41423-023-00998-y – volume: 115 start-page: E11741 issue: 50 year: 2018 ident: 10.1016/j.bioactmat.2024.02.011_bib17 article-title: Citrate-based materials fuel human stem cells by metabonegenic regulation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1813000115 – volume: 240 year: 2020 ident: 10.1016/j.bioactmat.2024.02.011_bib31 article-title: A well defect-suitable and high-strength biomimetic squid type II gelatin hydrogel promoted in situ costal cartilage regeneration via dynamic immunomodulation and direct induction manners publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.119841 – volume: 9 start-page: 518 issue: 6 year: 2010 ident: 10.1016/j.bioactmat.2024.02.011_bib44 article-title: Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate publication-title: Nat. Mater. doi: 10.1038/nmat2732 – volume: 95 start-page: 2429 issue: 8 year: 2012 ident: 10.1016/j.bioactmat.2024.02.011_bib33 article-title: Synthesis and size control of tetragonal barium titanate nanopowders by facile solvothermal method publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2012.05085.x |
SSID | ssj0001700007 |
Score | 2.481998 |
Snippet | The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration.... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 346 |
SubjectTerms | Adenosine triphosphate Bioenergetics Biomedical materials Bone growth Bone regeneration Cell activation Cell differentiation Defects Differentiation (biology) Dimensional analysis Energy Energy metabolism Gelatin Genotype & phenotype Gum disease Hydrogels Immune system Immunomodulation Inflammation Ligaments Macrophage polarization Macrophages Metabolism Microenvironments Mitochondrial bioenergetics NMR Nuclear magnetic resonance Periodontal ligament Periodontitis Phenotypes Piezoelectric hydrogel Piezoelectricity Regeneration Regeneration (physiology) Simulation Stem cells Stimulation Tilapia Tissue engineering Ultrasonic imaging |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQiFegICNxjXD8jLkBoqqQQBxYqTfLr9BUVYK620P59czE2WgDh71wjR3Lnow93zgz3xDylmeTskyhbpMAB6VNsOeiULVHciuuM7gUmI389Zs-38gvF-rioNQXxoQVeuAiuHeAX7xkoY0NZjLohAaGp5yFMl3QKuDpCzbvwJm6KqQwaP1WAV2hH33cAQ4Er5DLiamzaVbmaGLtX1mlf1Hn38GTB9bo7CF5MMNI-qFM_xG5l4fHZPO9z7_HUtimj_TyLt2MP_M1BVxKl4ByOnYU2Y3BHZ3oVLd0LtVDYebIQY15Z5FivkO5rX1CNmeff3w6r-eyCXVUhu1qbyJ4bUlJzkQUts2KMW-l4jk2yWYZjG8NnLcC0E7skta863jO2SK3XCeMeEpOhnHIzwltZPBeqo4lk6TJLBibNIwVEwzcNaoiei89F2dOcSxtce32wWNXbhG7Q7E7xh2IvSJsefFXodU4_spH_DxLd-TFnh6AtrhZW9wxbanI-_3HdTPEKNABhuqPz-B0rw5u3ulbB2ek5hbTjSvyZmmGPYo_XvyQx9ut44BBlYCTEPo8K9qzLANvCKy2tiLtSq9W61y3DP3lxAPeIJ2gbO2L_yGZl-Q-LrXEcp6Sk93NbX4FeGsXXk9b6w9e5CuH priority: 102 providerName: Directory of Open Access Journals |
Title | Piezoelectric hydrogel for treatment of periodontitis through bioenergetic activation |
URI | https://dx.doi.org/10.1016/j.bioactmat.2024.02.011 https://www.ncbi.nlm.nih.gov/pubmed/38379699 https://www.proquest.com/docview/3076295821 https://www.proquest.com/docview/2929537931 https://pubmed.ncbi.nlm.nih.gov/PMC10876489 https://doaj.org/article/991a40b8c162426d81852dee357fb65b |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZo98IFgXgtlJWRuEY4jh8xF9RClwrRqgJW6s1KbKdNVSVld3uAX89M4qQEJHrNw_JjZvzNePwNIW940D4IXya5z8BByT3onMtkUiC5FVcBXAq8jXx8oo5W4vOZPIsBt01MqxxsYmeofeswRv4WZFFxg9c631__SLBqFJ6uxhIaO2QGJjgH52t2cHhy-vU2yqK7szqsMMeMTlLAM5Mkr7JuC7cFbAieIhcde2eaTraojsl_slP9i0T_Tqj8Y4daPiQPIrSk-70sPCL3QvOYrE7r8Kvti93Ujl789Ov2PFxRwKp0TDKnbUWR8Rhc1I5idUNj-R4KPUdearyL5ijegegjuE_Iann4_cNREkspJE5qtk0K7cCT81JwlrnM5EEyVhgheXCpN0GUusg12OAMEJCrvFK8qngIwSDfXJXp7CnZbdomPCc0FWVRCFkxr73QgZXaeAVtOQ8NV6mcEzXMnnWRZxzLXVzZIaHs0o7TbnHaLeMWpn1O2PjjdU-1cfcvB7g84-fIld09aNfnNqqeBQRcCFbmLsW7MMojROE-hEzqqlSynJN3w-LaCDt6OAFN1Xf3YG8QBxu1f2NvZXVOXo-vQW_xMKZoQnuzsRxwqczAOsI3z3rpGYeBUQOjjJmTfCJXk3FO3zT1RccNniLFoMjNi__36yW5j4PoMzf3yO52fRNeAbralguyky8_Lchs_-Pxl2-LqFCLLlbxG5ycKlQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwELZKOcAFgdhCCxgJjhGJ1xgJIbbHK13EoU_qzSS2076qStr3XoXKj-I3MpOtBCR66jWL5WVm_I098w0hL1nQPghfxJnn4KBkHnTOcRnnSG7FVACXArORd_fUdCa-HsiDNfKrz4XBsMreJjaG2tcOz8hfgywqZjCt893pWYxVo_B2tS-h0YrFdrj4AS7b8u3WJ1jfV4xNPu9_nMZdVYHYSZ2s4lw7cGq8FCzhjpssyCTJjZAsuNSbIAqdZxrMEQcw4EqvFCtLFkIwSL1Wcs2h3RvkpuDcoEZlky-XZzq6uRnEenaJ0XEK6GkUUlbM69ytAImCX8pEwxWapqMNsakbMNoX_8W9f4dv_rEfTu6SOx2Qpe9bybtH1kJ1n8y-zcPPui2tM3f06MIv6sNwQgEZ0yGkndYlRX5lcIgbQtcl7YoFUeg5smBj5pujmHHRnhc_ILNrmeKHZL2qq_CY0FQUeS5kmXjthQ5JoY1X0Jbz0HCZyoiofvas61jNsbjGie3D147tMO0Wp90mzMK0RyQZfjxtiT2u_uUDLs_wOTJzNw_qxaHtFN0C3s5FUmQuxcwb5REQMR8Cl7oslCwi8qZfXNuBnBa8QFPzq3uw2YuD7WzN0l5qRkReDK_BSuDVT16F-nxpGaBgycEWwzePWukZhoFnFEYZE5FsJFejcY7fVPOjhok8RUJDkZkn_-_Xc3Jrur-7Y3e29rY3yG0cUBszuknWV4vz8BRw3ap41igTJd-vW3t_A42KYj8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezoelectric+hydrogel+for+treatment+of+periodontitis+through+bioenergetic+activation&rft.jtitle=Bioactive+materials&rft.au=Liu%2C+Xin&rft.au=Wan%2C+Xingyi&rft.au=Sui%2C+Baiyan&rft.au=Hu%2C+Quanhong&rft.date=2024-05-01&rft.pub=KeAi+Publishing&rft.eissn=2452-199X&rft.volume=35&rft.spage=346&rft.epage=361&rft_id=info:doi/10.1016%2Fj.bioactmat.2024.02.011&rft.externalDocID=PMC10876489 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon |