Piezoelectric hydrogel for treatment of periodontitis through bioenergetic activation

The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment...

Full description

Saved in:
Bibliographic Details
Published inBioactive materials Vol. 35; pp. 346 - 361
Main Authors Liu, Xin, Wan, Xingyi, Sui, Baiyan, Hu, Quanhong, Liu, Zhirong, Ding, Tingting, Zhao, Jiao, Chen, Yuxiao, Wang, Zhong Lin, Li, Linlin
Format Journal Article
LanguageEnglish
Published China Elsevier B.V 01.05.2024
KeAi Publishing Communications Ltd
KeAi Publishing
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an anti-inflammatory and pro-regenerative niche through switching M1 macrophages to the M2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation. [Display omitted] •A wireless piezoelectric hydrogel was developed to generate electric signals effectively under various mechanical stresses.•The piezoelectric stimulation could energize impaired PDLSCs to osteogenic differentiation by boosting Δψm.•The piezoelectric hydrogel rebuilt an anti-inflammatory and pro-regenerative niche by phenotypic switching of macrophages.•The piezoelectric hydrogel enabled a high-quality regeneration of impaired tissue in periodontal inflammatory defects.
AbstractList The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an anti-inflammatory and pro-regenerative niche through switching M1 macrophages to the M2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation. [Display omitted] •A wireless piezoelectric hydrogel was developed to generate electric signals effectively under various mechanical stresses.•The piezoelectric stimulation could energize impaired PDLSCs to osteogenic differentiation by boosting Δψm.•The piezoelectric hydrogel rebuilt an anti-inflammatory and pro-regenerative niche by phenotypic switching of macrophages.•The piezoelectric hydrogel enabled a high-quality regeneration of impaired tissue in periodontal inflammatory defects.
The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an anti-inflammatory and pro-regenerative niche through switching M1 macrophages to the M2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation. Image 1 • A wireless piezoelectric hydrogel was developed to generate electric signals effectively under various mechanical stresses. • The piezoelectric stimulation could energize impaired PDLSCs to osteogenic differentiation by boosting Δψ m . • The piezoelectric hydrogel rebuilt an anti-inflammatory and pro-regenerative niche by phenotypic switching of macrophages. • The piezoelectric hydrogel enabled a high-quality regeneration of impaired tissue in periodontal inflammatory defects.
The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an anti-inflammatory and pro-regenerative niche through switching M1 macrophages to the M2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation.
The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an antiinflammatory and pro-regenerative niche through switching Ml macrophages to the М2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation.
The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an anti-inflammatory and pro-regenerative niche through switching M1 macrophages to the M2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation.The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration. Herein, we construct a piezoelectric hydrogel to rescue the impaired osteogenic capability and rebuild the regenerative immune microenvironment through bioenergetic activation. Under local mechanical stress, the piezoelectric hydrogel generated piezopotential that initiates osteogenic differentiation of inflammatory periodontal ligament stem cells (PDLSCs) via modulating energy metabolism and promoting adenosine triphosphate (ATP) synthesis. Moreover, it also reshapes an anti-inflammatory and pro-regenerative niche through switching M1 macrophages to the M2 phenotype. The synergy of tilapia gelatin and piezoelectric stimulation enhances in situ regeneration in periodontal inflammatory defects of rats. These findings pave a new pathway for treating periodontitis and other immune-related bone defects through piezoelectric stimulation-enabled energy metabolism modulation and immunomodulation.
Author Zhao, Jiao
Hu, Quanhong
Li, Linlin
Chen, Yuxiao
Wan, Xingyi
Liu, Xin
Ding, Tingting
Sui, Baiyan
Liu, Zhirong
Wang, Zhong Lin
Author_xml – sequence: 1
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  email: liuxin8253@sjtu.edu.cn
  organization: Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
– sequence: 2
  givenname: Xingyi
  surname: Wan
  fullname: Wan, Xingyi
  organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
– sequence: 3
  givenname: Baiyan
  orcidid: 0000-0002-2300-0500
  surname: Sui
  fullname: Sui, Baiyan
  organization: Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
– sequence: 4
  givenname: Quanhong
  surname: Hu
  fullname: Hu, Quanhong
  organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
– sequence: 5
  givenname: Zhirong
  surname: Liu
  fullname: Liu, Zhirong
  organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
– sequence: 6
  givenname: Tingting
  surname: Ding
  fullname: Ding, Tingting
  organization: Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
– sequence: 7
  givenname: Jiao
  surname: Zhao
  fullname: Zhao, Jiao
  organization: Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
– sequence: 8
  givenname: Yuxiao
  surname: Chen
  fullname: Chen, Yuxiao
  organization: Department of Dental Materials, Shanghai Biomaterials Research & Testing Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, PR China
– sequence: 9
  givenname: Zhong Lin
  surname: Wang
  fullname: Wang, Zhong Lin
  email: zhong.wang@mse.gatech.edu
  organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
– sequence: 10
  givenname: Linlin
  orcidid: 0000-0003-1041-4533
  surname: Li
  fullname: Li, Linlin
  email: lilinlin@binn.cas.cn
  organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38379699$$D View this record in MEDLINE/PubMed
BookMark eNqFks1O3DAUhaOKqlDKK7SRumEzqe0k_llUFULQIiG1iyJ1ZznOTcZRYk8dZyT69L3DAAI2bJIoOef4y73nfXbgg4cs-0RJQQnlX4aiccHYNJlUMMKqgrCCUPomO2JVzVZUqT8HT54Ps5N5HgghVOCFiHfZYSlLobhSR9nNLwf_AoxgU3Q2X9-2MfQw5l2IeYpg0gQ-5aHLNxBdaINPLrk5T-sYln6dIwh4iD0kNCOS25rkgv-Qve3MOMPJ_f04u7m8-H3-Y3X98_vV-dn1ytaCpJURVlakrStGSlsqCTUhRiE3WNoqqBphpABjS1Zz27Wcs65jAKAYq3hXivI4u9rntsEMehPdZOKtDsbpuxch9tpERBtBK0VNRRppKWcV462ksmYtQFmLruF1g1nf9lmbpZmgtfjf0YzPQp9_8W6t-7DVlEjBK6kw4fQ-IYa_C8xJT262MI7GQ1hmzRRTNQ6-pCj9_EI6hCV6nJUuieCok2yn-vgU6ZHlYX0o-LoX2BjmOUKnrUt3G0BCNyKa3jVGD_qxMXrXGE2YxsagX7zwPxzxuvNs7wRc79ZB1LN14C20LmKXcP7u1Yz_urPhhg
CitedBy_id crossref_primary_10_1021_acsbiomaterials_4c01359
crossref_primary_10_3389_fbioe_2024_1473126
crossref_primary_10_1111_jcmm_70143
crossref_primary_10_1002_adhm_202404345
crossref_primary_10_1002_adma_202406192
crossref_primary_10_1016_j_intimp_2024_112595
crossref_primary_10_1186_s12951_025_03275_4
crossref_primary_10_1093_stcltm_szae088
crossref_primary_10_1021_acsami_4c11569
crossref_primary_10_1007_s40820_024_01536_9
crossref_primary_10_1002_advs_202413105
crossref_primary_10_1002_smll_202411265
crossref_primary_10_1007_s00784_024_05884_z
crossref_primary_10_1111_jace_20018
Cites_doi 10.15252/embr.202051606
10.1016/j.mito.2011.01.009
10.1002/advs.201900819
10.1021/acsami.8b01991
10.1016/j.biomaterials.2018.07.011
10.1002/smll.201704022
10.1021/acsami.9b05013
10.1002/advs.202100962
10.1084/jem.20180421
10.1021/acsnano.6b02247
10.3389/fcell.2020.00087
10.1002/adma.202007429
10.1016/j.nanoen.2017.12.034
10.1002/adma.202106317
10.1038/nri3785
10.1016/j.actbio.2021.08.023
10.1016/j.actbio.2017.01.056
10.1038/s41413-022-00197-x
10.3389/fbioe.2020.597661
10.1523/JNEUROSCI.1256-07.2007
10.1038/s41577-020-00488-6
10.1016/j.molmet.2022.101450
10.7150/thno.19888
10.1038/nmeth.1923
10.3389/fimmu.2020.00330
10.1073/pnas.1308887110
10.3389/fimmu.2019.02588
10.1007/s00068-019-01127-z
10.1038/nmeth.3317
10.1021/acsami.3c08336
10.1111/jre.12760
10.1073/pnas.1602776113
10.1016/j.archoralbio.2016.09.002
10.1021/acsami.0c10957
10.1007/s13238-017-0385-7
10.1038/nrm3772
10.1126/science.aam7928
10.1073/pnas.0903269107
10.1016/j.acthis.2016.04.011
10.1016/j.molp.2020.06.009
10.1002/mds3.10090
10.1016/j.cmet.2021.10.004
10.4061/2011/920178
10.1038/s41598-019-47389-w
10.1111/j.1600-0757.2012.00455.x
10.1126/sciadv.aay7608
10.1016/j.jdent.2020.103310
10.1016/j.diff.2014.09.002
10.1038/s41598-021-98625-1
10.1016/S0140-6736(18)32203-7
10.1016/j.jobcr.2020.10.011
10.1016/j.ijbiomac.2021.05.040
10.1007/s00068-020-01324-1
10.1016/j.scr.2021.102560
10.1038/s41423-023-00998-y
10.1073/pnas.1813000115
10.1016/j.biomaterials.2020.119841
10.1038/nmat2732
10.1111/j.1551-2916.2012.05085.x
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1016/j.bioactmat.2024.02.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Biological Sciences
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2452-199X
EndPage 361
ExternalDocumentID oai_doaj_org_article_991a40b8c162426d81852dee357fb65b
PMC10876489
38379699
10_1016_j_bioactmat_2024_02_011
S2452199X24000562
Genre Journal Article
GeographicLocations United States--US
Japan
GeographicLocations_xml – name: United States--US
– name: Japan
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAYWO
AAYXX
ABJCF
ACVFH
ADCNI
ADMLS
ADVLN
AEUPX
AFKRA
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
HCIFZ
KB.
M7P
M~E
PDBOC
PHGZM
PHGZT
PIMPY
NPM
PQGLB
8FE
8FG
8FH
ABUWG
AZQEC
D1I
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c570t-a7c840d54203c398e500a9452ec1d9e4b7a87eac3256cfd662ff2eee92246f373
IEDL.DBID BENPR
ISSN 2452-199X
2097-1192
IngestDate Wed Aug 27 00:44:24 EDT 2025
Thu Aug 21 18:34:57 EDT 2025
Thu Jul 10 20:28:41 EDT 2025
Fri Jul 25 11:55:13 EDT 2025
Mon Jul 21 06:04:38 EDT 2025
Thu Apr 24 23:12:07 EDT 2025
Tue Jul 01 02:11:35 EDT 2025
Sat Apr 13 16:39:06 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Piezoelectric hydrogel
Periodontitis
Macrophage polarization
Mitochondrial bioenergetics
Bone regeneration
Language English
License This is an open access article under the CC BY-NC-ND license.
2024 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c570t-a7c840d54203c398e500a9452ec1d9e4b7a87eac3256cfd662ff2eee92246f373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors contributed equally to this work.
ORCID 0000-0003-1041-4533
0000-0002-2300-0500
OpenAccessLink https://www.proquest.com/docview/3076295821?pq-origsite=%requestingapplication%
PMID 38379699
PQID 3076295821
PQPubID 6865030
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_991a40b8c162426d81852dee357fb65b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10876489
proquest_miscellaneous_2929537931
proquest_journals_3076295821
pubmed_primary_38379699
crossref_citationtrail_10_1016_j_bioactmat_2024_02_011
crossref_primary_10_1016_j_bioactmat_2024_02_011
elsevier_sciencedirect_doi_10_1016_j_bioactmat_2024_02_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
– name: Beijing
PublicationTitle Bioactive materials
PublicationTitleAlternate Bioact Mater
PublicationYear 2024
Publisher Elsevier B.V
KeAi Publishing Communications Ltd
KeAi Publishing
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Publishing Communications Ltd
– name: KeAi Publishing
– name: KeAi Communications Co., Ltd
References Decuypere, Monaco, Missiaen, De Smedt, Parys, Bultynck (bib53) 2011; 2011
Elkhoury, Morsink, Tahri, Kahn, Cleymand, Shin, Arab-Tehrany, Sanchez-Gonzalez (bib34) 2021; 183
Yamamoto, Ugawa, Yamashiro, Shimoe, Tomikawa, Hongo, Kochi, Ideguchi, Maeda, Takashiba (bib48) 2014; 88
Willenborg, Sanin, Jais, Ding, Ulas, Nuchel, Popovic, MacVicar, Langer, Schultze, Gerbaulet, Roers, Pearce, Bruning, Trifunovic, Eming (bib11) 2021; 33
Miller, Zachary (bib58) 2017
Zheng, Niu, Lei, Boccaccini (bib64) 2021; 133
Liu, Li, Jiao, Wu, Guo, Xiao, Wei, Wu, Gao, Wang, Lu, Tang, Zhao, Zhang, Tang, Shi, Guo (bib24) 2020; 12
Li, Levin, Kaplan (bib66) 2016; 6
Wu, Xu, Lin, Yuan, Qin, Thatikonda, Bao (bib35) 2018; 10
Naqvi, McNamara (bib49) 2020; 8
Lasisi, Shittu, Meludu, Salami (bib40) 2017; 73
Jeong, Baek, Kingon, Park, Kim (bib43) 2018; 14
Stefanowski, Lang, Rauch, Aulich, Kohler, Fiedler, Buttgereit, Schmidt-Bleek, Duda, Gaber, Niesner, Hauser (bib63) 2019; 10
Lee, Moon, Choi, Kim (bib33) 2012; 95
Tanaka, Tanaka, Takegaki, Fujino (bib56) 2016; 118
Carvalho, Fernandes, Padrao, Nicolau, Marques-Marchan, Asenjo, Gama, Ribeiro, Lanceros-Mendez (bib41) 2019; 11
Zhang, Yuan, Wu, Pei, Yang, Wu, Pang, Wang (bib46) 2020; 94
Zhai, Chen, Fei, Guo, He, Zhao, Shi, Gooding, Jin, Jin (bib6) 2022; 9
Hollenberg, Huber, Smith, Eliseev (bib18) 2021; 11
Roldan, Montoya, Solanki, Cai, Yang, Correa, Orrego (bib27) 2023; 15
Wu, Qin, Bao (bib42) 2018; 45
Leppik, Oliveira, Bhavsar, Barker (bib19) 2020; 46
Kinane, Stathopoulou, Papapanou (bib1) 2017; 3
Xu, Sui, Liu, Sun (bib32) 2023; 25
Chen, Zhu, Mao, Wu, Lin, Xu, Lu, Shi (bib26) 2023
Li, Ou, Shi, Shao (bib5) 2023; 20
Kilian, Bugarija, Lahn, Mrksich (bib61) 2010; 107
Oliveira, Barker, Berezikov, Pindur, Kynigopoulos, Eischen-Loges, Han, Bhavsar, Henrich, Leppik (bib20) 2019; 9
Ma, Tian, Kim, Xie, Ao, Shan, Lin, Hudock, Bai, Yang (bib17) 2018; 115
Kong, Liu, Ma, Duan, Yuan, Sang, Han, Wang, Liu (bib29) 2021; 8
Zhang, Zhang, Lin, Hu, Shen, Wang, Meng, Chai, Dai, Liu, Liu, Mo, Cao, Li, Deng, Chen (bib25) 2016; 10
Dai, Sui, Xue, Liu, Sun (bib30) 2018; 180
Hajishengallis (bib4) 2015; 15
Liu, Cai, Zhang, Yu, Wang, Wan, Wang, Li (bib23) 2021; 33
Chen, Chen, Zhang, Thomas, Frank, He, Xia (bib38) 2020; 13
Wu, Holstein, Upadhyay, Lin, Conway, Muller, Lechleiter (bib54) 2007; 27
Shang, Liu, Ming, Tian, Jin, Ding, Zhang, Zhang, Deng, Jin (bib39) 2017; 7
Ma, Kuzma, Bai, Yang (bib15) 2019; 6
Lin, Yin, Shi, Yang, Wen, Zhang, Zhou, Jiang (bib16) 2022; 18
Ahamad, Sun, Singh (bib52) 2021; 56
Liu, Du, St-Pierre, Bergholt, Autefage, Wang, Cai, Yang, Stevens, Zhang (bib14) 2020; 6
Gupta, Madhok, Kulshrestha, Chain, Kaur, Yadav (bib45) 2020; 10
Liu, Liu, He, Li, Li, Wang, Cai, Chen, Jiang (bib59) 2021; 22
Dai, Sui, Hua, Zhang, Bao, Lin, Liu, Zhu, Sun (bib31) 2020; 240
Kampourakis, Sun, Irving (bib50) 2016; 113
Khorolsuren, Lang, Pallinger, Foldes, Szabolcs, Varga, Mezo, Vag, Kohidai (bib57) 2020; 55
Tsogtbaatar, Landin, Minter-Dykhouse, Folmes (bib60) 2020; 8
Eming, Wynn, Martin (bib12) 2017; 356
Huebsch, Arany, Mao, Shvartsman, Ali, Bencherif, Rivera-Feliciano, Mooney (bib44) 2010; 9
Roth, Abate, Abate, Abay, Abbafati, Abbasi, Abbastabar, Abd-Allah, Abdela, Abdelalim (bib2) 2018; 392
Ito, Suda (bib10) 2014; 15
Langmead, Salzberg (bib37) 2012; 9
Hajishengallis, Chavakis (bib3) 2021; 21
Umemoto, Hashimoto, Matsumura, Nakamura-Ishizu, Suda (bib51) 2018; 215
Govindaraj, Khan, Gopalakrishna, Chandra, Vanniarajan, Reddy, Singh, Kumaresan, Srinivas, Singh (bib7) 2011; 11
McWhorter, Wang, Nguyen, Chung, Liu (bib55) 2013; 110
Julier, Park, Briquez, Martino (bib65) 2017; 53
Ning, Liu, Yang, Wang, Man, Wang, Xu (bib13) 2022; 58
Li, Gao, Chen, Guan (bib47) 2017; 8
Bhavsar, Han, DeCoster, Leppik, Costa Oliveira, Barker (bib21) 2020; 46
Liu, Wan, Wang, Li (bib28) 2021; 33
Khatua, Bhattacharya, Balla (bib22) 2020; 3
Bullon, Newman, Battino (bib8) 2000; 64
Li, Tian, Deng, Liu, Zhou, Kong, Qu, Sun, He, Chen (bib9) 2022; 10
Almubarak, Tanagala, Papapanou, Lalla, Momen-Heravi (bib62) 2020; 11
Kim, Langmead, Salzberg (bib36) 2015; 12
Langmead (10.1016/j.bioactmat.2024.02.011_bib37) 2012; 9
Stefanowski (10.1016/j.bioactmat.2024.02.011_bib63) 2019; 10
Kinane (10.1016/j.bioactmat.2024.02.011_bib1) 2017; 3
Kampourakis (10.1016/j.bioactmat.2024.02.011_bib50) 2016; 113
Jeong (10.1016/j.bioactmat.2024.02.011_bib43) 2018; 14
Liu (10.1016/j.bioactmat.2024.02.011_bib59) 2021; 22
Miller (10.1016/j.bioactmat.2024.02.011_bib58) 2017
Decuypere (10.1016/j.bioactmat.2024.02.011_bib53) 2011; 2011
Xu (10.1016/j.bioactmat.2024.02.011_bib32) 2023; 25
Chen (10.1016/j.bioactmat.2024.02.011_bib26) 2023
Li (10.1016/j.bioactmat.2024.02.011_bib9) 2022; 10
Huebsch (10.1016/j.bioactmat.2024.02.011_bib44) 2010; 9
Kong (10.1016/j.bioactmat.2024.02.011_bib29) 2021; 8
Zhang (10.1016/j.bioactmat.2024.02.011_bib46) 2020; 94
Li (10.1016/j.bioactmat.2024.02.011_bib5) 2023; 20
Lasisi (10.1016/j.bioactmat.2024.02.011_bib40) 2017; 73
Eming (10.1016/j.bioactmat.2024.02.011_bib12) 2017; 356
Julier (10.1016/j.bioactmat.2024.02.011_bib65) 2017; 53
Dai (10.1016/j.bioactmat.2024.02.011_bib30) 2018; 180
Wu (10.1016/j.bioactmat.2024.02.011_bib54) 2007; 27
Oliveira (10.1016/j.bioactmat.2024.02.011_bib20) 2019; 9
Almubarak (10.1016/j.bioactmat.2024.02.011_bib62) 2020; 11
Elkhoury (10.1016/j.bioactmat.2024.02.011_bib34) 2021; 183
Yamamoto (10.1016/j.bioactmat.2024.02.011_bib48) 2014; 88
Ma (10.1016/j.bioactmat.2024.02.011_bib15) 2019; 6
McWhorter (10.1016/j.bioactmat.2024.02.011_bib55) 2013; 110
Hollenberg (10.1016/j.bioactmat.2024.02.011_bib18) 2021; 11
Zhai (10.1016/j.bioactmat.2024.02.011_bib6) 2022; 9
Gupta (10.1016/j.bioactmat.2024.02.011_bib45) 2020; 10
Willenborg (10.1016/j.bioactmat.2024.02.011_bib11) 2021; 33
Liu (10.1016/j.bioactmat.2024.02.011_bib23) 2021; 33
Ma (10.1016/j.bioactmat.2024.02.011_bib17) 2018; 115
Ahamad (10.1016/j.bioactmat.2024.02.011_bib52) 2021; 56
Ito (10.1016/j.bioactmat.2024.02.011_bib10) 2014; 15
Khatua (10.1016/j.bioactmat.2024.02.011_bib22) 2020; 3
Chen (10.1016/j.bioactmat.2024.02.011_bib38) 2020; 13
Govindaraj (10.1016/j.bioactmat.2024.02.011_bib7) 2011; 11
Zheng (10.1016/j.bioactmat.2024.02.011_bib64) 2021; 133
Ning (10.1016/j.bioactmat.2024.02.011_bib13) 2022; 58
Tsogtbaatar (10.1016/j.bioactmat.2024.02.011_bib60) 2020; 8
Roldan (10.1016/j.bioactmat.2024.02.011_bib27) 2023; 15
Liu (10.1016/j.bioactmat.2024.02.011_bib28) 2021; 33
Roth (10.1016/j.bioactmat.2024.02.011_bib2) 2018; 392
Naqvi (10.1016/j.bioactmat.2024.02.011_bib49) 2020; 8
Bullon (10.1016/j.bioactmat.2024.02.011_bib8) 2000; 64
Zhang (10.1016/j.bioactmat.2024.02.011_bib25) 2016; 10
Khorolsuren (10.1016/j.bioactmat.2024.02.011_bib57) 2020; 55
Leppik (10.1016/j.bioactmat.2024.02.011_bib19) 2020; 46
Umemoto (10.1016/j.bioactmat.2024.02.011_bib51) 2018; 215
Kim (10.1016/j.bioactmat.2024.02.011_bib36) 2015; 12
Li (10.1016/j.bioactmat.2024.02.011_bib47) 2017; 8
Hajishengallis (10.1016/j.bioactmat.2024.02.011_bib3) 2021; 21
Li (10.1016/j.bioactmat.2024.02.011_bib66) 2016; 6
Shang (10.1016/j.bioactmat.2024.02.011_bib39) 2017; 7
Bhavsar (10.1016/j.bioactmat.2024.02.011_bib21) 2020; 46
Wu (10.1016/j.bioactmat.2024.02.011_bib35) 2018; 10
Tanaka (10.1016/j.bioactmat.2024.02.011_bib56) 2016; 118
Liu (10.1016/j.bioactmat.2024.02.011_bib24) 2020; 12
Dai (10.1016/j.bioactmat.2024.02.011_bib31) 2020; 240
Wu (10.1016/j.bioactmat.2024.02.011_bib42) 2018; 45
Lin (10.1016/j.bioactmat.2024.02.011_bib16) 2022; 18
Carvalho (10.1016/j.bioactmat.2024.02.011_bib41) 2019; 11
Lee (10.1016/j.bioactmat.2024.02.011_bib33) 2012; 95
Kilian (10.1016/j.bioactmat.2024.02.011_bib61) 2010; 107
Hajishengallis (10.1016/j.bioactmat.2024.02.011_bib4) 2015; 15
Liu (10.1016/j.bioactmat.2024.02.011_bib14) 2020; 6
References_xml – volume: 183
  start-page: 918
  year: 2021
  end-page: 926
  ident: bib34
  article-title: Synthesis and characterization of C2C12-laden gelatin methacryloyl (GelMA) from marine and mammalian sources
  publication-title: Int. J. Biol. Macromol.
– volume: 133
  start-page: 168
  year: 2021
  end-page: 186
  ident: bib64
  article-title: Immunomodulatory bioactive glasses for tissue regeneration
  publication-title: Acta Biomater.
– volume: 6
  year: 2016
  ident: bib66
  article-title: Bioelectric modulation of macrophage polarization
  publication-title: Sci. Rep.
– volume: 10
  start-page: 29
  year: 2022
  ident: bib9
  article-title: LncRNA GACAT2 binds with protein PKM1/2 to regulate cell mitochondrial function and cementogenesis in an inflammatory environment
  publication-title: Bone Res.
– volume: 11
  start-page: 330
  year: 2020
  ident: bib62
  article-title: Disruption of monocyte and macrophage homeostasis in periodontitis
  publication-title: Front. Immunol.
– volume: 25
  start-page: 701
  year: 2023
  end-page: 715
  ident: bib32
  article-title: A bioinspired and high-strengthed hydrogel for regeneration of perforated temporomandibular joint disc: construction and pleiotropic immunomodulatory effects
  publication-title: Bioact. Mater.
– volume: 94
  year: 2020
  ident: bib46
  article-title: Liraglutide regulates bone destruction and exhibits anti-inflammatory effects in periodontitis in vitro and in vivo
  publication-title: J. Dent.
– volume: 27
  start-page: 6510
  year: 2007
  end-page: 6520
  ident: bib54
  article-title: Purinergic receptor-stimulated IP3-mediated Ca2+ release enhances neuroprotection by increasing astrocyte mitochondrial metabolism during aging
  publication-title: J. Neurosci.
– volume: 8
  start-page: 439
  year: 2017
  end-page: 445
  ident: bib47
  article-title: The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells
  publication-title: Protein Cell
– volume: 7
  start-page: 4370
  year: 2017
  end-page: 4382
  ident: bib39
  article-title: Human umbilical cord MSCs as new cell sources for promoting periodontal regeneration in inflammatory periodontal defect
  publication-title: Theranostics
– volume: 118
  start-page: 464
  year: 2016
  end-page: 470
  ident: bib56
  article-title: Preventive effects of electrical stimulation on inflammation-induced muscle mitochondrial dysfunction
  publication-title: Acta Histochem.
– volume: 8
  year: 2020
  ident: bib49
  article-title: Stem cell mechanobiology and the role of biomaterials in governing mechanotransduction and matrix production for tissue regeneration
  publication-title: Front. Bioeng. Biotechnol.
– volume: 33
  year: 2021
  ident: bib23
  article-title: Cell-Traction-triggered on-demand electrical stimulation for neuron-like differentiation
  publication-title: Adv. Mater.
– volume: 73
  start-page: 100
  year: 2017
  end-page: 104
  ident: bib40
  article-title: Differential effects of total and partial sleep deprivation on salivary factors in Wistar rats
  publication-title: Arch. Oral Biol.
– volume: 14
  year: 2018
  ident: bib43
  article-title: Lead‐free perovskite nanowire‐employed piezopolymer for highly efficient flexible nanocomposite energy harvester
  publication-title: Small
– volume: 22
  year: 2021
  ident: bib59
  article-title: OXPHOS deficiency activates global adaptation pathways to maintain mitochondrial membrane potential
  publication-title: EMBO Rep.
– volume: 12
  start-page: 51885
  year: 2020
  end-page: 51903
  ident: bib24
  article-title: Biological effects of a three-dimensionally printed Ti6Al4V scaffold coated with piezoelectric BaTiO(3) nanoparticles on bone formation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  year: 2020
  ident: bib22
  article-title: In situ electrical stimulation for enhanced bone growth: a mini‐review
  publication-title: Med. Devices Sens.
– volume: 113
  start-page: E3039
  year: 2016
  end-page: E3047
  ident: bib50
  article-title: Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 95
  start-page: 2429
  year: 2012
  end-page: 2434
  ident: bib33
  article-title: Synthesis and size control of tetragonal barium titanate nanopowders by facile solvothermal method
  publication-title: J. Am. Ceram. Soc.
– volume: 10
  start-page: 7279
  year: 2016
  end-page: 7286
  ident: bib25
  article-title: Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment
  publication-title: ACS Nano
– volume: 45
  start-page: 44
  year: 2018
  end-page: 51
  ident: bib42
  article-title: Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration
  publication-title: Nano Energy
– volume: 110
  start-page: 17253
  year: 2013
  end-page: 17258
  ident: bib55
  article-title: Modulation of macrophage phenotype by cell shape
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 55
  start-page: 713
  year: 2020
  end-page: 723
  ident: bib57
  article-title: Functional and cell surface characteristics of periodontal ligament cells (PDLCs) on RGD-synthetic polypeptide conjugate coatings
  publication-title: J. Periodontal. Res.
– volume: 15
  start-page: 30
  year: 2015
  end-page: 44
  ident: bib4
  article-title: Periodontitis: from microbial immune subversion to systemic inflammation
  publication-title: Nat. Rev. Immunol.
– year: 2023
  ident: bib26
  article-title: Piezocatalytic medicine: an emerging frontier using piezoelectric materials for biomedical applications
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  ident: bib20
  article-title: Electrical stimulation shifts healing/scarring towards regeneration in a rat limb amputation model
  publication-title: Sci. Rep.
– volume: 18
  start-page: 116
  year: 2022
  end-page: 127
  ident: bib16
  article-title: Orchestration of energy metabolism and osteogenesis by Mg(2+) facilitates low-dose BMP-2-driven regeneration
  publication-title: Bioact. Mater.
– volume: 8
  start-page: 87
  year: 2020
  ident: bib60
  article-title: Energy metabolism regulates stem cell pluripotency
  publication-title: Front. Cell Dev. Biol.
– volume: 53
  start-page: 13
  year: 2017
  end-page: 28
  ident: bib65
  article-title: Promoting tissue regeneration by modulating the immune system
  publication-title: Acta Biomater.
– volume: 13
  start-page: 1194
  year: 2020
  end-page: 1202
  ident: bib38
  article-title: TBtools: an integrative toolkit developed for interactive analyses of big biological data
  publication-title: Mol. Plant
– volume: 11
  start-page: 27297
  year: 2019
  end-page: 27305
  ident: bib41
  article-title: Tailoring bacteria response by piezoelectric stimulation
  publication-title: ACS Appl. Mater. Interfaces
– volume: 356
  start-page: 1026
  year: 2017
  end-page: 1030
  ident: bib12
  article-title: Inflammation and metabolism in tissue repair and regeneration
  publication-title: Science
– volume: 6
  year: 2019
  ident: bib15
  article-title: Biomaterial-based metabolic regulation in regenerative engineering
  publication-title: Adv. Sci.
– volume: 107
  start-page: 4872
  year: 2010
  end-page: 4877
  ident: bib61
  article-title: Geometric cues for directing the differentiation of mesenchymal stem cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 3
  start-page: 1
  year: 2017
  end-page: 14
  ident: bib1
  article-title: Periodontal diseases
  publication-title: Nat. Rev. Dis. Prim.
– volume: 12
  start-page: 357
  year: 2015
  end-page: 360
  ident: bib36
  article-title: HISAT: a fast spliced aligner with low memory requirements
  publication-title: Nat. Methods
– volume: 9
  start-page: 357
  year: 2012
  end-page: 359
  ident: bib37
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
– volume: 10
  start-page: 17842
  year: 2018
  end-page: 17849
  ident: bib35
  article-title: Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3
  publication-title: ACS Appl. Mater. Interfaces
– volume: 240
  year: 2020
  ident: bib31
  article-title: A well defect-suitable and high-strength biomimetic squid type II gelatin hydrogel promoted in situ costal cartilage regeneration via dynamic immunomodulation and direct induction manners
  publication-title: Biomaterials
– volume: 46
  start-page: 231
  year: 2020
  end-page: 244
  ident: bib19
  article-title: Electrical stimulation in bone tissue engineering treatments
  publication-title: Eur. J. Trauma Emerg. Surg.
– volume: 6
  year: 2020
  ident: bib14
  article-title: Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state
  publication-title: Sci. Adv.
– volume: 10
  start-page: 758
  year: 2020
  end-page: 763
  ident: bib45
  article-title: Determination of stress distribution on periodontal ligament and alveolar bone by various tooth movements–A 3D FEM study
  publication-title: J. Oral Biol. Craniofacial Res.
– volume: 9
  start-page: 518
  year: 2010
  end-page: 526
  ident: bib44
  article-title: Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate
  publication-title: Nat. Mater.
– volume: 215
  start-page: 2097
  year: 2018
  end-page: 2113
  ident: bib51
  article-title: Ca(2+)-mitochondria axis drives cell division in hematopoietic stem cells
  publication-title: J. Exp. Med.
– volume: 11
  year: 2021
  ident: bib18
  article-title: Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair
  publication-title: Sci. Rep.
– volume: 9
  year: 2022
  ident: bib6
  article-title: Nanorepairers rescue inflammation‐induced mitochondrial dysfunction in mesenchymal stem cells
  publication-title: Adv. Sci.
– start-page: 2
  year: 2017
  ident: bib58
  article-title: Mechanisms and Morphology of Cellular Injury, Adaptation, and Death, Pathologic Basis of Veterinary Disease
– volume: 15
  start-page: 43441
  year: 2023
  end-page: 43454
  ident: bib27
  article-title: A novel injectable piezoelectric hydrogel for periodontal disease treatment
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  year: 2021
  ident: bib29
  article-title: Wireless localized electrical stimulation generated by an ultrasound-driven piezoelectric discharge regulates proinflammatory macrophage polarization
  publication-title: Adv. Sci.
– volume: 180
  start-page: 91
  year: 2018
  end-page: 103
  ident: bib30
  article-title: Cartilage repair in degenerative osteoarthritis mediated by squid type II collagen via immunomodulating activation of M2 macrophages, inhibiting apoptosis and hypertrophy of chondrocytes
  publication-title: Biomaterials
– volume: 10
  start-page: 2588
  year: 2019
  ident: bib63
  article-title: Spatial distribution of macrophages during callus formation and maturation reveals close crosstalk between macrophages and newly forming vessels
  publication-title: Front. Immunol.
– volume: 58
  year: 2022
  ident: bib13
  article-title: Update on the effects of energy metabolism in bone marrow mesenchymal stem cells differentiation
  publication-title: Mol. Metabol.
– volume: 392
  start-page: 1736
  year: 2018
  end-page: 1788
  ident: bib2
  article-title: Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017
  publication-title: Lancet
– volume: 2011
  year: 2011
  ident: bib53
  article-title: IP3 receptors, mitochondria, and Ca2+ signaling: implications for aging
  publication-title: J. Aging Res.
– volume: 115
  start-page: E11741
  year: 2018
  end-page: E11750
  ident: bib17
  article-title: Citrate-based materials fuel human stem cells by metabonegenic regulation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 20
  start-page: 558
  year: 2023
  end-page: 569
  ident: bib5
  article-title: Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications
  publication-title: Cell. Mol. Immunol.
– volume: 15
  start-page: 243
  year: 2014
  end-page: 256
  ident: bib10
  article-title: Metabolic requirements for the maintenance of self-renewing stem cells
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 33
  year: 2021
  ident: bib28
  article-title: Electroactive biomaterials and systems for cell fate determination and tissue regeneration: design and applications
  publication-title: Adv. Mater.
– volume: 88
  start-page: 33
  year: 2014
  end-page: 41
  ident: bib48
  article-title: Osteogenic differentiation regulated by Rho-kinase in periodontal ligament cells
  publication-title: Differentiation
– volume: 46
  start-page: 245
  year: 2020
  end-page: 264
  ident: bib21
  article-title: Electrical stimulation-based bone fracture treatment, if it works so well why do not more surgeons use it?
  publication-title: Eur. J. Trauma Emerg. Surg.
– volume: 64
  start-page: 139
  year: 2000
  end-page: 153
  ident: bib8
  article-title: Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: a shared pathology via oxidative stress and mitochondrial dysfunction?
  publication-title: Periodontology
– volume: 21
  start-page: 426
  year: 2021
  end-page: 440
  ident: bib3
  article-title: Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities
  publication-title: Nat. Rev. Immunol.
– volume: 33
  start-page: 2398
  year: 2021
  end-page: 2414 e9
  ident: bib11
  article-title: Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing
  publication-title: Cell Metabol.
– volume: 11
  start-page: 504
  year: 2011
  end-page: 512
  ident: bib7
  article-title: Mitochondrial dysfunction and genetic heterogeneity in chronic periodontitis
  publication-title: Mitochondrion
– volume: 56
  year: 2021
  ident: bib52
  article-title: Increasing cytosolic Ca(2+) levels restore cell proliferation and stem cell potency in aged MSCs
  publication-title: Stem Cell Res.
– volume: 22
  issue: 4
  year: 2021
  ident: 10.1016/j.bioactmat.2024.02.011_bib59
  article-title: OXPHOS deficiency activates global adaptation pathways to maintain mitochondrial membrane potential
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202051606
– volume: 11
  start-page: 504
  issue: 3
  year: 2011
  ident: 10.1016/j.bioactmat.2024.02.011_bib7
  article-title: Mitochondrial dysfunction and genetic heterogeneity in chronic periodontitis
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2011.01.009
– volume: 6
  issue: 19
  year: 2019
  ident: 10.1016/j.bioactmat.2024.02.011_bib15
  article-title: Biomaterial-based metabolic regulation in regenerative engineering
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900819
– volume: 10
  start-page: 17842
  issue: 21
  year: 2018
  ident: 10.1016/j.bioactmat.2024.02.011_bib35
  article-title: Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01991
– volume: 180
  start-page: 91
  year: 2018
  ident: 10.1016/j.bioactmat.2024.02.011_bib30
  article-title: Cartilage repair in degenerative osteoarthritis mediated by squid type II collagen via immunomodulating activation of M2 macrophages, inhibiting apoptosis and hypertrophy of chondrocytes
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.07.011
– volume: 14
  issue: 19
  year: 2018
  ident: 10.1016/j.bioactmat.2024.02.011_bib43
  article-title: Lead‐free perovskite nanowire‐employed piezopolymer for highly efficient flexible nanocomposite energy harvester
  publication-title: Small
  doi: 10.1002/smll.201704022
– volume: 11
  start-page: 27297
  issue: 30
  year: 2019
  ident: 10.1016/j.bioactmat.2024.02.011_bib41
  article-title: Tailoring bacteria response by piezoelectric stimulation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b05013
– volume: 8
  issue: 13
  year: 2021
  ident: 10.1016/j.bioactmat.2024.02.011_bib29
  article-title: Wireless localized electrical stimulation generated by an ultrasound-driven piezoelectric discharge regulates proinflammatory macrophage polarization
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202100962
– volume: 215
  start-page: 2097
  issue: 8
  year: 2018
  ident: 10.1016/j.bioactmat.2024.02.011_bib51
  article-title: Ca(2+)-mitochondria axis drives cell division in hematopoietic stem cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20180421
– volume: 10
  start-page: 7279
  issue: 8
  year: 2016
  ident: 10.1016/j.bioactmat.2024.02.011_bib25
  article-title: Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02247
– volume: 8
  start-page: 87
  year: 2020
  ident: 10.1016/j.bioactmat.2024.02.011_bib60
  article-title: Energy metabolism regulates stem cell pluripotency
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2020.00087
– volume: 33
  issue: 32
  year: 2021
  ident: 10.1016/j.bioactmat.2024.02.011_bib28
  article-title: Electroactive biomaterials and systems for cell fate determination and tissue regeneration: design and applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007429
– volume: 45
  start-page: 44
  year: 2018
  ident: 10.1016/j.bioactmat.2024.02.011_bib42
  article-title: Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.034
– volume: 33
  issue: 51
  year: 2021
  ident: 10.1016/j.bioactmat.2024.02.011_bib23
  article-title: Cell-Traction-triggered on-demand electrical stimulation for neuron-like differentiation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106317
– volume: 15
  start-page: 30
  issue: 1
  year: 2015
  ident: 10.1016/j.bioactmat.2024.02.011_bib4
  article-title: Periodontitis: from microbial immune subversion to systemic inflammation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3785
– volume: 133
  start-page: 168
  year: 2021
  ident: 10.1016/j.bioactmat.2024.02.011_bib64
  article-title: Immunomodulatory bioactive glasses for tissue regeneration
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2021.08.023
– volume: 25
  start-page: 701
  year: 2023
  ident: 10.1016/j.bioactmat.2024.02.011_bib32
  article-title: A bioinspired and high-strengthed hydrogel for regeneration of perforated temporomandibular joint disc: construction and pleiotropic immunomodulatory effects
  publication-title: Bioact. Mater.
– volume: 53
  start-page: 13
  year: 2017
  ident: 10.1016/j.bioactmat.2024.02.011_bib65
  article-title: Promoting tissue regeneration by modulating the immune system
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.01.056
– volume: 10
  start-page: 29
  issue: 1
  year: 2022
  ident: 10.1016/j.bioactmat.2024.02.011_bib9
  article-title: LncRNA GACAT2 binds with protein PKM1/2 to regulate cell mitochondrial function and cementogenesis in an inflammatory environment
  publication-title: Bone Res.
  doi: 10.1038/s41413-022-00197-x
– volume: 8
  year: 2020
  ident: 10.1016/j.bioactmat.2024.02.011_bib49
  article-title: Stem cell mechanobiology and the role of biomaterials in governing mechanotransduction and matrix production for tissue regeneration
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.597661
– volume: 27
  start-page: 6510
  issue: 24
  year: 2007
  ident: 10.1016/j.bioactmat.2024.02.011_bib54
  article-title: Purinergic receptor-stimulated IP3-mediated Ca2+ release enhances neuroprotection by increasing astrocyte mitochondrial metabolism during aging
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1256-07.2007
– volume: 21
  start-page: 426
  issue: 7
  year: 2021
  ident: 10.1016/j.bioactmat.2024.02.011_bib3
  article-title: Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-00488-6
– volume: 58
  year: 2022
  ident: 10.1016/j.bioactmat.2024.02.011_bib13
  article-title: Update on the effects of energy metabolism in bone marrow mesenchymal stem cells differentiation
  publication-title: Mol. Metabol.
  doi: 10.1016/j.molmet.2022.101450
– volume: 18
  start-page: 116
  year: 2022
  ident: 10.1016/j.bioactmat.2024.02.011_bib16
  article-title: Orchestration of energy metabolism and osteogenesis by Mg(2+) facilitates low-dose BMP-2-driven regeneration
  publication-title: Bioact. Mater.
– volume: 7
  start-page: 4370
  issue: 18
  year: 2017
  ident: 10.1016/j.bioactmat.2024.02.011_bib39
  article-title: Human umbilical cord MSCs as new cell sources for promoting periodontal regeneration in inflammatory periodontal defect
  publication-title: Theranostics
  doi: 10.7150/thno.19888
– volume: 9
  start-page: 357
  issue: 4
  year: 2012
  ident: 10.1016/j.bioactmat.2024.02.011_bib37
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 11
  start-page: 330
  year: 2020
  ident: 10.1016/j.bioactmat.2024.02.011_bib62
  article-title: Disruption of monocyte and macrophage homeostasis in periodontitis
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.00330
– volume: 110
  start-page: 17253
  issue: 43
  year: 2013
  ident: 10.1016/j.bioactmat.2024.02.011_bib55
  article-title: Modulation of macrophage phenotype by cell shape
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1308887110
– volume: 10
  start-page: 2588
  year: 2019
  ident: 10.1016/j.bioactmat.2024.02.011_bib63
  article-title: Spatial distribution of macrophages during callus formation and maturation reveals close crosstalk between macrophages and newly forming vessels
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.02588
– year: 2023
  ident: 10.1016/j.bioactmat.2024.02.011_bib26
  article-title: Piezocatalytic medicine: an emerging frontier using piezoelectric materials for biomedical applications
  publication-title: Adv. Mater.
– volume: 46
  start-page: 245
  issue: 2
  year: 2020
  ident: 10.1016/j.bioactmat.2024.02.011_bib21
  article-title: Electrical stimulation-based bone fracture treatment, if it works so well why do not more surgeons use it?
  publication-title: Eur. J. Trauma Emerg. Surg.
  doi: 10.1007/s00068-019-01127-z
– volume: 3
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.bioactmat.2024.02.011_bib1
  article-title: Periodontal diseases
  publication-title: Nat. Rev. Dis. Prim.
– volume: 12
  start-page: 357
  issue: 4
  year: 2015
  ident: 10.1016/j.bioactmat.2024.02.011_bib36
  article-title: HISAT: a fast spliced aligner with low memory requirements
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3317
– volume: 15
  start-page: 43441
  issue: 37
  year: 2023
  ident: 10.1016/j.bioactmat.2024.02.011_bib27
  article-title: A novel injectable piezoelectric hydrogel for periodontal disease treatment
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c08336
– volume: 55
  start-page: 713
  issue: 5
  year: 2020
  ident: 10.1016/j.bioactmat.2024.02.011_bib57
  article-title: Functional and cell surface characteristics of periodontal ligament cells (PDLCs) on RGD-synthetic polypeptide conjugate coatings
  publication-title: J. Periodontal. Res.
  doi: 10.1111/jre.12760
– volume: 113
  start-page: E3039
  issue: 21
  year: 2016
  ident: 10.1016/j.bioactmat.2024.02.011_bib50
  article-title: Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1602776113
– volume: 73
  start-page: 100
  year: 2017
  ident: 10.1016/j.bioactmat.2024.02.011_bib40
  article-title: Differential effects of total and partial sleep deprivation on salivary factors in Wistar rats
  publication-title: Arch. Oral Biol.
  doi: 10.1016/j.archoralbio.2016.09.002
– volume: 12
  start-page: 51885
  issue: 46
  year: 2020
  ident: 10.1016/j.bioactmat.2024.02.011_bib24
  article-title: Biological effects of a three-dimensionally printed Ti6Al4V scaffold coated with piezoelectric BaTiO(3) nanoparticles on bone formation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c10957
– volume: 8
  start-page: 439
  issue: 6
  year: 2017
  ident: 10.1016/j.bioactmat.2024.02.011_bib47
  article-title: The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells
  publication-title: Protein Cell
  doi: 10.1007/s13238-017-0385-7
– volume: 15
  start-page: 243
  issue: 4
  year: 2014
  ident: 10.1016/j.bioactmat.2024.02.011_bib10
  article-title: Metabolic requirements for the maintenance of self-renewing stem cells
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3772
– volume: 356
  start-page: 1026
  issue: 6342
  year: 2017
  ident: 10.1016/j.bioactmat.2024.02.011_bib12
  article-title: Inflammation and metabolism in tissue repair and regeneration
  publication-title: Science
  doi: 10.1126/science.aam7928
– volume: 107
  start-page: 4872
  issue: 11
  year: 2010
  ident: 10.1016/j.bioactmat.2024.02.011_bib61
  article-title: Geometric cues for directing the differentiation of mesenchymal stem cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0903269107
– start-page: 2
  year: 2017
  ident: 10.1016/j.bioactmat.2024.02.011_bib58
– volume: 118
  start-page: 464
  issue: 5
  year: 2016
  ident: 10.1016/j.bioactmat.2024.02.011_bib56
  article-title: Preventive effects of electrical stimulation on inflammation-induced muscle mitochondrial dysfunction
  publication-title: Acta Histochem.
  doi: 10.1016/j.acthis.2016.04.011
– volume: 13
  start-page: 1194
  issue: 8
  year: 2020
  ident: 10.1016/j.bioactmat.2024.02.011_bib38
  article-title: TBtools: an integrative toolkit developed for interactive analyses of big biological data
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2020.06.009
– volume: 3
  issue: 4
  year: 2020
  ident: 10.1016/j.bioactmat.2024.02.011_bib22
  article-title: In situ electrical stimulation for enhanced bone growth: a mini‐review
  publication-title: Med. Devices Sens.
  doi: 10.1002/mds3.10090
– volume: 33
  start-page: 2398
  issue: 12
  year: 2021
  ident: 10.1016/j.bioactmat.2024.02.011_bib11
  article-title: Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2021.10.004
– volume: 2011
  year: 2011
  ident: 10.1016/j.bioactmat.2024.02.011_bib53
  article-title: IP3 receptors, mitochondria, and Ca2+ signaling: implications for aging
  publication-title: J. Aging Res.
  doi: 10.4061/2011/920178
– volume: 9
  issue: 4
  year: 2022
  ident: 10.1016/j.bioactmat.2024.02.011_bib6
  article-title: Nanorepairers rescue inflammation‐induced mitochondrial dysfunction in mesenchymal stem cells
  publication-title: Adv. Sci.
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.bioactmat.2024.02.011_bib20
  article-title: Electrical stimulation shifts healing/scarring towards regeneration in a rat limb amputation model
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-47389-w
– volume: 64
  start-page: 139
  issue: 1
  year: 2000
  ident: 10.1016/j.bioactmat.2024.02.011_bib8
  article-title: Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: a shared pathology via oxidative stress and mitochondrial dysfunction?
  publication-title: Periodontology
  doi: 10.1111/j.1600-0757.2012.00455.x
– volume: 6
  issue: 13
  year: 2020
  ident: 10.1016/j.bioactmat.2024.02.011_bib14
  article-title: Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay7608
– volume: 94
  year: 2020
  ident: 10.1016/j.bioactmat.2024.02.011_bib46
  article-title: Liraglutide regulates bone destruction and exhibits anti-inflammatory effects in periodontitis in vitro and in vivo
  publication-title: J. Dent.
  doi: 10.1016/j.jdent.2020.103310
– volume: 88
  start-page: 33
  issue: 2–3
  year: 2014
  ident: 10.1016/j.bioactmat.2024.02.011_bib48
  article-title: Osteogenic differentiation regulated by Rho-kinase in periodontal ligament cells
  publication-title: Differentiation
  doi: 10.1016/j.diff.2014.09.002
– volume: 11
  issue: 1
  year: 2021
  ident: 10.1016/j.bioactmat.2024.02.011_bib18
  article-title: Electromagnetic stimulation increases mitochondrial function in osteogenic cells and promotes bone fracture repair
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-98625-1
– volume: 392
  start-page: 1736
  issue: 10159
  year: 2018
  ident: 10.1016/j.bioactmat.2024.02.011_bib2
  article-title: Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)32203-7
– volume: 10
  start-page: 758
  issue: 4
  year: 2020
  ident: 10.1016/j.bioactmat.2024.02.011_bib45
  article-title: Determination of stress distribution on periodontal ligament and alveolar bone by various tooth movements–A 3D FEM study
  publication-title: J. Oral Biol. Craniofacial Res.
  doi: 10.1016/j.jobcr.2020.10.011
– volume: 6
  issue: 1
  year: 2016
  ident: 10.1016/j.bioactmat.2024.02.011_bib66
  article-title: Bioelectric modulation of macrophage polarization
  publication-title: Sci. Rep.
– volume: 183
  start-page: 918
  year: 2021
  ident: 10.1016/j.bioactmat.2024.02.011_bib34
  article-title: Synthesis and characterization of C2C12-laden gelatin methacryloyl (GelMA) from marine and mammalian sources
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.05.040
– volume: 46
  start-page: 231
  issue: 2
  year: 2020
  ident: 10.1016/j.bioactmat.2024.02.011_bib19
  article-title: Electrical stimulation in bone tissue engineering treatments
  publication-title: Eur. J. Trauma Emerg. Surg.
  doi: 10.1007/s00068-020-01324-1
– volume: 56
  year: 2021
  ident: 10.1016/j.bioactmat.2024.02.011_bib52
  article-title: Increasing cytosolic Ca(2+) levels restore cell proliferation and stem cell potency in aged MSCs
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2021.102560
– volume: 20
  start-page: 558
  issue: 6
  year: 2023
  ident: 10.1016/j.bioactmat.2024.02.011_bib5
  article-title: Immunomodulatory properties of mesenchymal stem cells/dental stem cells and their therapeutic applications
  publication-title: Cell. Mol. Immunol.
  doi: 10.1038/s41423-023-00998-y
– volume: 115
  start-page: E11741
  issue: 50
  year: 2018
  ident: 10.1016/j.bioactmat.2024.02.011_bib17
  article-title: Citrate-based materials fuel human stem cells by metabonegenic regulation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1813000115
– volume: 240
  year: 2020
  ident: 10.1016/j.bioactmat.2024.02.011_bib31
  article-title: A well defect-suitable and high-strength biomimetic squid type II gelatin hydrogel promoted in situ costal cartilage regeneration via dynamic immunomodulation and direct induction manners
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.119841
– volume: 9
  start-page: 518
  issue: 6
  year: 2010
  ident: 10.1016/j.bioactmat.2024.02.011_bib44
  article-title: Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2732
– volume: 95
  start-page: 2429
  issue: 8
  year: 2012
  ident: 10.1016/j.bioactmat.2024.02.011_bib33
  article-title: Synthesis and size control of tetragonal barium titanate nanopowders by facile solvothermal method
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2012.05085.x
SSID ssj0001700007
Score 2.481998
Snippet The impaired differentiation ability of resident cells and disordered immune microenvironment in periodontitis pose a huge challenge for bone regeneration....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 346
SubjectTerms Adenosine triphosphate
Bioenergetics
Biomedical materials
Bone growth
Bone regeneration
Cell activation
Cell differentiation
Defects
Differentiation (biology)
Dimensional analysis
Energy
Energy metabolism
Gelatin
Genotype & phenotype
Gum disease
Hydrogels
Immune system
Immunomodulation
Inflammation
Ligaments
Macrophage polarization
Macrophages
Metabolism
Microenvironments
Mitochondrial bioenergetics
NMR
Nuclear magnetic resonance
Periodontal ligament
Periodontitis
Phenotypes
Piezoelectric hydrogel
Piezoelectricity
Regeneration
Regeneration (physiology)
Simulation
Stem cells
Stimulation
Tilapia
Tissue engineering
Ultrasonic imaging
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQiFegICNxjXD8jLkBoqqQQBxYqTfLr9BUVYK620P59czE2WgDh71wjR3Lnow93zgz3xDylmeTskyhbpMAB6VNsOeiULVHciuuM7gUmI389Zs-38gvF-rioNQXxoQVeuAiuHeAX7xkoY0NZjLohAaGp5yFMl3QKuDpCzbvwJm6KqQwaP1WAV2hH33cAQ4Er5DLiamzaVbmaGLtX1mlf1Hn38GTB9bo7CF5MMNI-qFM_xG5l4fHZPO9z7_HUtimj_TyLt2MP_M1BVxKl4ByOnYU2Y3BHZ3oVLd0LtVDYebIQY15Z5FivkO5rX1CNmeff3w6r-eyCXVUhu1qbyJ4bUlJzkQUts2KMW-l4jk2yWYZjG8NnLcC0E7skta863jO2SK3XCeMeEpOhnHIzwltZPBeqo4lk6TJLBibNIwVEwzcNaoiei89F2dOcSxtce32wWNXbhG7Q7E7xh2IvSJsefFXodU4_spH_DxLd-TFnh6AtrhZW9wxbanI-_3HdTPEKNABhuqPz-B0rw5u3ulbB2ek5hbTjSvyZmmGPYo_XvyQx9ut44BBlYCTEPo8K9qzLANvCKy2tiLtSq9W61y3DP3lxAPeIJ2gbO2L_yGZl-Q-LrXEcp6Sk93NbX4FeGsXXk9b6w9e5CuH
  priority: 102
  providerName: Directory of Open Access Journals
Title Piezoelectric hydrogel for treatment of periodontitis through bioenergetic activation
URI https://dx.doi.org/10.1016/j.bioactmat.2024.02.011
https://www.ncbi.nlm.nih.gov/pubmed/38379699
https://www.proquest.com/docview/3076295821
https://www.proquest.com/docview/2929537931
https://pubmed.ncbi.nlm.nih.gov/PMC10876489
https://doaj.org/article/991a40b8c162426d81852dee357fb65b
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZo98IFgXgtlJWRuEY4jh8xF9RClwrRqgJW6s1KbKdNVSVld3uAX89M4qQEJHrNw_JjZvzNePwNIW940D4IXya5z8BByT3onMtkUiC5FVcBXAq8jXx8oo5W4vOZPIsBt01MqxxsYmeofeswRv4WZFFxg9c631__SLBqFJ6uxhIaO2QGJjgH52t2cHhy-vU2yqK7szqsMMeMTlLAM5Mkr7JuC7cFbAieIhcde2eaTraojsl_slP9i0T_Tqj8Y4daPiQPIrSk-70sPCL3QvOYrE7r8Kvti93Ujl789Ov2PFxRwKp0TDKnbUWR8Rhc1I5idUNj-R4KPUdearyL5ijegegjuE_Iann4_cNREkspJE5qtk0K7cCT81JwlrnM5EEyVhgheXCpN0GUusg12OAMEJCrvFK8qngIwSDfXJXp7CnZbdomPCc0FWVRCFkxr73QgZXaeAVtOQ8NV6mcEzXMnnWRZxzLXVzZIaHs0o7TbnHaLeMWpn1O2PjjdU-1cfcvB7g84-fIld09aNfnNqqeBQRcCFbmLsW7MMojROE-hEzqqlSynJN3w-LaCDt6OAFN1Xf3YG8QBxu1f2NvZXVOXo-vQW_xMKZoQnuzsRxwqczAOsI3z3rpGYeBUQOjjJmTfCJXk3FO3zT1RccNniLFoMjNi__36yW5j4PoMzf3yO52fRNeAbralguyky8_Lchs_-Pxl2-LqFCLLlbxG5ycKlQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwELZKOcAFgdhCCxgJjhGJ1xgJIbbHK13EoU_qzSS2076qStr3XoXKj-I3MpOtBCR66jWL5WVm_I098w0hL1nQPghfxJnn4KBkHnTOcRnnSG7FVACXArORd_fUdCa-HsiDNfKrz4XBsMreJjaG2tcOz8hfgywqZjCt893pWYxVo_B2tS-h0YrFdrj4AS7b8u3WJ1jfV4xNPu9_nMZdVYHYSZ2s4lw7cGq8FCzhjpssyCTJjZAsuNSbIAqdZxrMEQcw4EqvFCtLFkIwSL1Wcs2h3RvkpuDcoEZlky-XZzq6uRnEenaJ0XEK6GkUUlbM69ytAImCX8pEwxWapqMNsakbMNoX_8W9f4dv_rEfTu6SOx2Qpe9bybtH1kJ1n8y-zcPPui2tM3f06MIv6sNwQgEZ0yGkndYlRX5lcIgbQtcl7YoFUeg5smBj5pujmHHRnhc_ILNrmeKHZL2qq_CY0FQUeS5kmXjthQ5JoY1X0Jbz0HCZyoiofvas61jNsbjGie3D147tMO0Wp90mzMK0RyQZfjxtiT2u_uUDLs_wOTJzNw_qxaHtFN0C3s5FUmQuxcwb5REQMR8Cl7oslCwi8qZfXNuBnBa8QFPzq3uw2YuD7WzN0l5qRkReDK_BSuDVT16F-nxpGaBgycEWwzePWukZhoFnFEYZE5FsJFejcY7fVPOjhok8RUJDkZkn_-_Xc3Jrur-7Y3e29rY3yG0cUBszuknWV4vz8BRw3ap41igTJd-vW3t_A42KYj8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezoelectric+hydrogel+for+treatment+of+periodontitis+through+bioenergetic+activation&rft.jtitle=Bioactive+materials&rft.au=Liu%2C+Xin&rft.au=Wan%2C+Xingyi&rft.au=Sui%2C+Baiyan&rft.au=Hu%2C+Quanhong&rft.date=2024-05-01&rft.pub=KeAi+Publishing&rft.eissn=2452-199X&rft.volume=35&rft.spage=346&rft.epage=361&rft_id=info:doi/10.1016%2Fj.bioactmat.2024.02.011&rft.externalDocID=PMC10876489
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon