Optimization on machine learning based approaches for sentiment analysis on HPV vaccines related tweets

Background Analysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low vaccine coverage and come up with corresponding strategies to improve vaccine uptake. Objective To propose a machine learning system that is...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical semantics Vol. 8; no. 1; p. 9
Main Authors Du, Jingcheng, Xu, Jun, Song, Hsingyi, Liu, Xiangyu, Tao, Cui
Format Journal Article
LanguageEnglish
Published London BioMed Central 03.03.2017
BioMed Central Ltd
Subjects
Online AccessGet full text
ISSN2041-1480
2041-1480
DOI10.1186/s13326-017-0120-6

Cover

Abstract Background Analysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low vaccine coverage and come up with corresponding strategies to improve vaccine uptake. Objective To propose a machine learning system that is able to extract comprehensive public sentiment on HPV vaccines on Twitter with satisfying performance. Method We collected and manually annotated 6,000 HPV vaccines related tweets as a gold standard. SVM model was chosen and a hierarchical classification method was proposed and evaluated. Additional feature sets evaluation and model parameters optimization was done to maximize the machine learning model performance. Results A hierarchical classification scheme that contains 10 categories was built to access public opinions toward HPV vaccines comprehensively. A 6,000 annotated tweets gold corpus with Kappa annotation agreement at 0.851 was created and made public available. The hierarchical classification model with optimized feature sets and model parameters has increased the micro-averaging and macro-averaging F score from 0.6732 and 0.3967 to 0.7442 and 0.5883 respectively, compared with baseline model. Conclusions Our work provides a systematical way to improve the machine learning model performance on the highly unbalanced HPV vaccines related tweets corpus. Our system can be further applied on a large tweets corpus to extract large-scale public opinion towards HPV vaccines.
AbstractList Analysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low vaccine coverage and come up with corresponding strategies to improve vaccine uptake. To propose a machine learning system that is able to extract comprehensive public sentiment on HPV vaccines on Twitter with satisfying performance. We collected and manually annotated 6,000 HPV vaccines related tweets as a gold standard. SVM model was chosen and a hierarchical classification method was proposed and evaluated. Additional feature sets evaluation and model parameters optimization was done to maximize the machine learning model performance. A hierarchical classification scheme that contains 10 categories was built to access public opinions toward HPV vaccines comprehensively. A 6,000 annotated tweets gold corpus with Kappa annotation agreement at 0.851 was created and made public available. The hierarchical classification model with optimized feature sets and model parameters has increased the micro-averaging and macro-averaging F score from 0.6732 and 0.3967 to 0.7442 and 0.5883 respectively, compared with baseline model. Our work provides a systematical way to improve the machine learning model performance on the highly unbalanced HPV vaccines related tweets corpus. Our system can be further applied on a large tweets corpus to extract large-scale public opinion towards HPV vaccines.
Background Analysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low vaccine coverage and come up with corresponding strategies to improve vaccine uptake. Objective To propose a machine learning system that is able to extract comprehensive public sentiment on HPV vaccines on Twitter with satisfying performance. Method We collected and manually annotated 6,000 HPV vaccines related tweets as a gold standard. SVM model was chosen and a hierarchical classification method was proposed and evaluated. Additional feature sets evaluation and model parameters optimization was done to maximize the machine learning model performance. Results A hierarchical classification scheme that contains 10 categories was built to access public opinions toward HPV vaccines comprehensively. A 6,000 annotated tweets gold corpus with Kappa annotation agreement at 0.851 was created and made public available. The hierarchical classification model with optimized feature sets and model parameters has increased the micro-averaging and macro-averaging F score from 0.6732 and 0.3967 to 0.7442 and 0.5883 respectively, compared with baseline model. Conclusions Our work provides a systematical way to improve the machine learning model performance on the highly unbalanced HPV vaccines related tweets corpus. Our system can be further applied on a large tweets corpus to extract large-scale public opinion towards HPV vaccines.
Background Analysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low vaccine coverage and come up with corresponding strategies to improve vaccine uptake. Objective To propose a machine learning system that is able to extract comprehensive public sentiment on HPV vaccines on Twitter with satisfying performance. Method We collected and manually annotated 6,000 HPV vaccines related tweets as a gold standard. SVM model was chosen and a hierarchical classification method was proposed and evaluated. Additional feature sets evaluation and model parameters optimization was done to maximize the machine learning model performance. Results A hierarchical classification scheme that contains 10 categories was built to access public opinions toward HPV vaccines comprehensively. A 6,000 annotated tweets gold corpus with Kappa annotation agreement at 0.851 was created and made public available. The hierarchical classification model with optimized feature sets and model parameters has increased the micro-averaging and macro-averaging F score from 0.6732 and 0.3967 to 0.7442 and 0.5883 respectively, compared with baseline model. Conclusions Our work provides a systematical way to improve the machine learning model performance on the highly unbalanced HPV vaccines related tweets corpus. Our system can be further applied on a large tweets corpus to extract large-scale public opinion towards HPV vaccines.
Analysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low vaccine coverage and come up with corresponding strategies to improve vaccine uptake.BACKGROUNDAnalysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low vaccine coverage and come up with corresponding strategies to improve vaccine uptake.To propose a machine learning system that is able to extract comprehensive public sentiment on HPV vaccines on Twitter with satisfying performance.OBJECTIVETo propose a machine learning system that is able to extract comprehensive public sentiment on HPV vaccines on Twitter with satisfying performance.We collected and manually annotated 6,000 HPV vaccines related tweets as a gold standard. SVM model was chosen and a hierarchical classification method was proposed and evaluated. Additional feature sets evaluation and model parameters optimization was done to maximize the machine learning model performance.METHODWe collected and manually annotated 6,000 HPV vaccines related tweets as a gold standard. SVM model was chosen and a hierarchical classification method was proposed and evaluated. Additional feature sets evaluation and model parameters optimization was done to maximize the machine learning model performance.A hierarchical classification scheme that contains 10 categories was built to access public opinions toward HPV vaccines comprehensively. A 6,000 annotated tweets gold corpus with Kappa annotation agreement at 0.851 was created and made public available. The hierarchical classification model with optimized feature sets and model parameters has increased the micro-averaging and macro-averaging F score from 0.6732 and 0.3967 to 0.7442 and 0.5883 respectively, compared with baseline model.RESULTSA hierarchical classification scheme that contains 10 categories was built to access public opinions toward HPV vaccines comprehensively. A 6,000 annotated tweets gold corpus with Kappa annotation agreement at 0.851 was created and made public available. The hierarchical classification model with optimized feature sets and model parameters has increased the micro-averaging and macro-averaging F score from 0.6732 and 0.3967 to 0.7442 and 0.5883 respectively, compared with baseline model.Our work provides a systematical way to improve the machine learning model performance on the highly unbalanced HPV vaccines related tweets corpus. Our system can be further applied on a large tweets corpus to extract large-scale public opinion towards HPV vaccines.CONCLUSIONSOur work provides a systematical way to improve the machine learning model performance on the highly unbalanced HPV vaccines related tweets corpus. Our system can be further applied on a large tweets corpus to extract large-scale public opinion towards HPV vaccines.
ArticleNumber 9
Audience Academic
Author Song, Hsingyi
Xu, Jun
Tao, Cui
Liu, Xiangyu
Du, Jingcheng
Author_xml – sequence: 1
  givenname: Jingcheng
  surname: Du
  fullname: Du, Jingcheng
  organization: The University of Texas School of Biomedical Informatics
– sequence: 2
  givenname: Jun
  surname: Xu
  fullname: Xu, Jun
  organization: The University of Texas School of Biomedical Informatics
– sequence: 3
  givenname: Hsingyi
  surname: Song
  fullname: Song, Hsingyi
  organization: The University of Texas School of Biomedical Informatics
– sequence: 4
  givenname: Xiangyu
  surname: Liu
  fullname: Liu, Xiangyu
  organization: The University of Texas School of Public Health
– sequence: 5
  givenname: Cui
  surname: Tao
  fullname: Tao, Cui
  email: cui.tao@uth.tmc.edu
  organization: The University of Texas School of Biomedical Informatics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28253919$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1TAQhi1URC_0AdigSGzYpPgSx84GqaqAIlUqC2Br-TiT1FViBzunVXl6Jj1tOa0A4XiSyP6_8Xj075OdEAMQ8orRI8Z0_S4zIXhdUqYwOC3rZ2SP04qVrNJ0Z-t_lxzmfElxCMGoFi_ILtdcioY1e6Q_n2Y_-p929jEUOEfrLnyAYgCbgg99sbIZ2sJOU4q4BbnoYioyBMTwVdhgh5vs88KefvleXFnnkM9FgsHOSM7XAHN-SZ53dshwePc9IN8-fvh6clqenX_6fHJ8Vjqp6FxqQalqMJSi1tlOc22Br2rQdSN1JfHiTDSqZa3oWmGlklTJRipei0YwR8UBeb_JO61XI7QOS0x2MFPyo003JlpvHu8Ef2H6eGWkEFJphQne3iVI8cca8mxGnx0Mgw0Q19kwrZSWlZT_Ja2qSnKtUfrmifQyrhO27lYlFG80r36rejuA8aGLWKJbkprjSovl_s1y7NEfVPi0MHqHJuk8rj8CXm_35KEZ9y5AAdsIXIo5J-geJIyaxWxmYzaDZjOL2UyNjHrCOD_fugir8cM_Sb4hM54Sekhbvfgr9At2ceU4
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e21723
crossref_primary_10_1177_1460458217740723
crossref_primary_10_2196_41319
crossref_primary_10_1080_21645515_2019_1627821
crossref_primary_10_4236_ajc_2022_102012
crossref_primary_10_1080_21645515_2019_1611158
crossref_primary_10_1186_s12913_023_09260_7
crossref_primary_10_4018_IJESMA_313950
crossref_primary_10_1186_s12911_017_0469_6
crossref_primary_10_3389_fphar_2018_00539
crossref_primary_10_1186_s12911_018_0632_8
crossref_primary_10_1007_s12652_019_01399_8
crossref_primary_10_1109_ACCESS_2021_3076356
crossref_primary_10_2196_26478
crossref_primary_10_1093_jamia_ocz191
crossref_primary_10_2196_26953
crossref_primary_10_1080_00918369_2022_2132574
crossref_primary_10_32604_cmc_2023_039228
crossref_primary_10_2196_16023
crossref_primary_10_2196_17478
crossref_primary_10_1080_21645515_2021_1877597
crossref_primary_10_1016_j_jbi_2022_104142
crossref_primary_10_2105_AJPH_2020_305940
crossref_primary_10_3389_fdgth_2021_683034
crossref_primary_10_2196_50551
crossref_primary_10_12688_f1000research_52061_1
crossref_primary_10_1007_s10994_024_06562_7
crossref_primary_10_1109_JBHI_2020_3032479
crossref_primary_10_1038_s41537_021_00197_6
crossref_primary_10_1093_jamia_ocaa298
crossref_primary_10_1016_j_ijmedinf_2020_104302
crossref_primary_10_1186_s12911_020_1046_y
crossref_primary_10_1016_j_patcog_2021_108197
crossref_primary_10_1007_s13246_018_0676_1
crossref_primary_10_2196_17149
crossref_primary_10_1177_1073274819891442
crossref_primary_10_1186_s12859_019_3191_9
crossref_primary_10_36548_jei_2021_3_003
crossref_primary_10_3390_ijerph18084069
crossref_primary_10_1007_s11277_022_09981_8
crossref_primary_10_3390_healthcare8030307
crossref_primary_10_1371_journal_pone_0226921
crossref_primary_10_1016_j_jbi_2020_103396
crossref_primary_10_1177_08944393241275641
crossref_primary_10_2196_36871
crossref_primary_10_1001_jamanetworkopen_2020_22025
crossref_primary_10_1109_ACCESS_2020_3002176
crossref_primary_10_1007_s42001_024_00257_8
crossref_primary_10_1080_21645515_2019_1581555
crossref_primary_10_4103_jphpc_jphpc_13_21
crossref_primary_10_1080_1369118X_2024_2331756
crossref_primary_10_4236_health_2020_129081
crossref_primary_10_2196_jmir_9413
crossref_primary_10_3390_ijerph18126272
crossref_primary_10_2196_40133
crossref_primary_10_1016_j_chb_2021_106751
crossref_primary_10_1093_jamia_ocz183
Cites_doi 10.1542/peds.2015-2653
10.1145/1656274.1656278
10.2196/jmir.4343
10.1001/jamapediatrics.2013.2752
10.2196/jmir.6045
10.1007/s10995-012-1066-z
10.1186/1472-6874-10-27
10.3115/1611628.1611637
10.1371/journal.pcbi.1002199
ContentType Journal Article
Copyright The Author(s). 2017
COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
Copyright_xml – notice: The Author(s). 2017
– notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M1P
M7P
M7S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
7QO
8FD
FR3
P64
5PM
DOI 10.1186/s13326-017-0120-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
Engineering Research Database
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Mathematics
EISSN 2041-1480
ExternalDocumentID PMC5335787
4318107611
A483845197
28253919
10_1186_s13326_017_0120_6
Genre Journal Article
GrantInformation_xml – fundername: Cancer Prevention and Research Institute of Texas (US)
  grantid: RP160015
– fundername: U.S. National Library of Medicine (US)
  grantid: R01LM011829
– fundername: NLM NIH HHS
  grantid: R01 LM011829
– fundername: NIAID NIH HHS
  grantid: R01 AI130460
– fundername: ;
  grantid: R01LM011829
– fundername: ;
  grantid: RP160015
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
ML~
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMT
SOJ
TUS
UKHRP
AAYXX
ALIPV
CITATION
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
7QO
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c570t-830079007770acaf828ae2b6e86958451861397d1d3fd3a575075957263931c03
IEDL.DBID M48
ISSN 2041-1480
IngestDate Thu Aug 21 18:04:49 EDT 2025
Thu Sep 04 16:05:13 EDT 2025
Thu Sep 04 18:30:56 EDT 2025
Fri Jul 25 11:56:51 EDT 2025
Tue Jun 17 21:27:21 EDT 2025
Tue Jun 10 20:45:20 EDT 2025
Thu Jan 02 22:21:25 EST 2025
Tue Jul 01 03:54:47 EDT 2025
Thu Apr 24 23:07:40 EDT 2025
Sat Sep 06 07:20:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Support vector machines
Sentiment analysis
Twitter
Gold standard
Hierarchical classification
Social media
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c570t-830079007770acaf828ae2b6e86958451861397d1d3fd3a575075957263931c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1873729824?pq-origsite=%requestingapplication%
PMID 28253919
PQID 1873729824
PQPubID 2040220
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5335787
proquest_miscellaneous_1877854557
proquest_miscellaneous_1874445288
proquest_journals_1873729824
gale_infotracmisc_A483845197
gale_infotracacademiconefile_A483845197
pubmed_primary_28253919
crossref_primary_10_1186_s13326_017_0120_6
crossref_citationtrail_10_1186_s13326_017_0120_6
springer_journals_10_1186_s13326_017_0120_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-03
PublicationDateYYYYMMDD 2017-03-03
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-03
  day: 03
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Journal of biomedical semantics
PublicationTitleAbbrev J Biomed Semant
PublicationTitleAlternate J Biomed Semantics
PublicationYear 2017
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References 120_CR3
120_CR4
120_CR5
120_CR1
120_CR2
DM Holman (120_CR13) 2014; 168
120_CR20
120_CR10
120_CR22
120_CR8
D Surian (120_CR6) 2016; 18
120_CR16
120_CR17
LM Kester (120_CR11) 2013; 17
120_CR18
120_CR19
120_CR23
X Zhou (120_CR9) 2015; 216
120_CR14
120_CR15
M Salathé (120_CR7) 2011; 7
M Hall (120_CR21) 2009; 11
GD Zimet (120_CR12) 2010; 10
26063290 - J Med Internet Res. 2015 Jun 10;17(6):e144
27940751 - Pediatrics. 2016 Nov;138(5):null
26262154 - Stud Health Technol Inform. 2015 ;216:761-5
26958274 - AMIA Annu Symp Proc. 2015 Nov 05;2015 :1334-41
27573910 - J Med Internet Res. 2016 Aug 29;18(8):e232
24276343 - JAMA Pediatr. 2014 Jan;168(1):76-82
22729660 - Matern Child Health J. 2013 Jul;17(5):879-85
22022249 - PLoS Comput Biol. 2011 Oct;7(10):e1002199
20809965 - BMC Womens Health. 2010 Sep 01;10:27
References_xml – ident: 120_CR17
– ident: 120_CR2
  doi: 10.1542/peds.2015-2653
– ident: 120_CR20
– ident: 120_CR1
– ident: 120_CR4
– volume: 11
  start-page: 10
  year: 2009
  ident: 120_CR21
  publication-title: ACM SIGKDD Explor
  doi: 10.1145/1656274.1656278
– ident: 120_CR3
– ident: 120_CR8
  doi: 10.2196/jmir.4343
– ident: 120_CR10
– volume: 168
  start-page: 76
  year: 2014
  ident: 120_CR13
  publication-title: JAMA Pediatr
  doi: 10.1001/jamapediatrics.2013.2752
– ident: 120_CR14
– ident: 120_CR15
– ident: 120_CR18
– ident: 120_CR19
– volume: 18
  start-page: e232
  year: 2016
  ident: 120_CR6
  publication-title: J Med Internet Res
  doi: 10.2196/jmir.6045
– volume: 17
  start-page: 879
  year: 2013
  ident: 120_CR11
  publication-title: Matern Child Health J Springer
  doi: 10.1007/s10995-012-1066-z
– volume: 10
  start-page: 27
  year: 2010
  ident: 120_CR12
  publication-title: BMC Womens Health
  doi: 10.1186/1472-6874-10-27
– ident: 120_CR5
– ident: 120_CR16
  doi: 10.3115/1611628.1611637
– volume: 216
  start-page: 761
  year: 2015
  ident: 120_CR9
  publication-title: Stud Health Technol Inform
– ident: 120_CR23
– volume: 7
  start-page: e1002199
  year: 2011
  ident: 120_CR7
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002199
– ident: 120_CR22
– reference: 27573910 - J Med Internet Res. 2016 Aug 29;18(8):e232
– reference: 26958274 - AMIA Annu Symp Proc. 2015 Nov 05;2015 :1334-41
– reference: 27940751 - Pediatrics. 2016 Nov;138(5):null
– reference: 26262154 - Stud Health Technol Inform. 2015 ;216:761-5
– reference: 26063290 - J Med Internet Res. 2015 Jun 10;17(6):e144
– reference: 20809965 - BMC Womens Health. 2010 Sep 01;10:27
– reference: 24276343 - JAMA Pediatr. 2014 Jan;168(1):76-82
– reference: 22022249 - PLoS Comput Biol. 2011 Oct;7(10):e1002199
– reference: 22729660 - Matern Child Health J. 2013 Jul;17(5):879-85
SSID ssj0000331083
Score 2.3605287
Snippet Background Analysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low...
Analysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low vaccine...
Background Analysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9
SubjectTerms Algorithms
Attitude to Health
Bioinformatics
Combinatorial Libraries
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Data Mining
Data Mining and Knowledge Discovery
Emotions
Humans
Machine Learning
Mathematics
Mathematics and Statistics
Papillomavirus Vaccines
Public opinion
Social Media
Vaccination
Vaccine and drug ontology in the study of mechanism and effect (VDOSME)
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BbtQwEB1BuXBBpZQSKJUroSKBoiZ2YjsnVCG2K1RaDhT1ZnlttyDRbEu2fD8zXic0K7FSbraT2DNjP9szbwDeeIkmVvhZbiWlMAtS5No7OrfiUinhmlnMdfjlVE7Pq88X9UU6cOuSW2U_J8aJ2s8dnZEflpoSqjSaVx9ubnPKGkW3qymFxkN4VOJKQ3quJ8fDGUshELxokS4zSy0PO9yScdpCk78lbZxGy9HqpHxvVVr1mFy5No2r0WQTniQYyY6Wcn8KD0K7BTsn6fCxYwfsZOBL7p7B1RnODNcp5JLhcx19KANLSSOuGK1mnvUM4_gGBLOMApMi-z-zibuE2k6_fmd_rKMb-Y7FWBhsSd5ei24bziefvn2c5inFQu5qVSxyLRAjNMTpowrr7CXuv2zgMxm0bBCa1DhmBBF96cWlFxaxHUKMplYcgY0oXSGew0Y7b8MLYIhzhOXBIYQTVVVxK4QsgtKeKPUR52RQ9CNtXOIfpzQYv0zch2hplsIxKBxDwjEyg3dDk5sl-ca6ym9JfIYME9_rbIovwL8jiitzVGlBPWpUBrujmmhQblzcK4BJBt2Zf-qXwf5QTC3JSa0N87tYBztec63X1lEaUWuNn9lZ6tTQNQojFk3ZZKBG2jZUICrwcUn780ekBEfQTlNvBu97vbz36_8bsZfrO_oKHvNoKAKfXdhY_L4LrxGBLWZ70cz-AmVGK0w
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RTxQxEJ4ovuADUURcRFMTg4lm425nt-0-EiK5GFAfwPDW9LoFTWQh7MHvZ6bX29xelMRk3zrd3XY67dd25huA960iEyvaae4UpzALCnPTej63kkpr9M005jo8_qYmp9XXs_oskUVzLMzy_X1p1Oee9lCS97zsIMk7ncfwpC5RxXtZdTAcpxRIOMVgurf8a83RyrM6_y4tQKvOkSs3pHHhOXwGGwkxiv25ip_Do9BtwvZROmfsxZ44GqiR-014ejwQsfYv4OI7TQmXKdZS0HMZnSeDSNkiLgQvY61YUIvT-wjFCo5IirT_wiXSEq47-fFT3DnPV_G9iEEwVJPdvGb9Fpwefjk5mOQpt0Lua13McoMEDhom89GF8-6cNl4uyKkKRjWESWrqQcaGbdnieYuOQB1hi6bWkhANlr7Al7DWXXXhFQgCOOhk8ITdsKoq6RBVEbRpmUufAE4GxaLfrU_E45z_4o-NGxCj7FxVllRlWVVWZfBxqHI9Z914SPgDK9OyRdJ7vUuBBfR3zG1l9yuD3KJGZ7A7kiRL8uPixXCwyZJ7WxpO5NMYWWXwbijmmuyd1oWr2yhDDa-lMQ_KaENwtabPbM9H2NA0jh_Gpmwy0KOxNwgwB_i4pPv9K3KBE1rnOTeDT4tRuvTr_-qxnf-Sfg3rMloR0rMLa7Ob2_CGkNhs-jba4D1Udigq
  priority: 102
  providerName: Springer Nature
Title Optimization on machine learning based approaches for sentiment analysis on HPV vaccines related tweets
URI https://link.springer.com/article/10.1186/s13326-017-0120-6
https://www.ncbi.nlm.nih.gov/pubmed/28253919
https://www.proquest.com/docview/1873729824
https://www.proquest.com/docview/1874445288
https://www.proquest.com/docview/1877854557
https://pubmed.ncbi.nlm.nih.gov/PMC5335787
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rb9MwED_t8YUviOcIG5WREEigQBIntvMBoVKtVNU2JqCo3yzX8R7SlsHSIfjvuXOdaK3GhBS1Uv1obN_Zv7N9vwN4UQlUsaSaxUZQCDMneKwqS_tWmZCS23LmYx3uH4jRJB9Pi-katOGtQgc2N5p2FE9qcnn29vfPPx9Q4d97hVfiXYN2VkZ2MV2iJGtoHTZxYRJki-0HtO8nZo5YxhNzZkmexmgItOecN9aytFKtztfXFqzVy5QrJ6p-oRreg7sBYbL-QiTuw5qrH8DWXtiXbNhLttdRKTcP4fgzThrnwRuT4XPur1c6FuJJHDNa6CrWko9jDYhzGfks-cAAzARaEyo7OvzOfhlLh_UN824yWJIugs2bRzAZ7n4bjOIQfSG2hUzmseIIH0qi-5GJseYITTPjsplwSpSIWgrsM0KPVVrxo4obhH2IPspCZoh5eGoT_hg26ovaPQGGEIibzFlEdzzP88xwLhInVUVs-wiBIkjantY2UJNThIwz7U0UJfRicDQOjqbB0SKC112RHwtejtsyv6Lh0yRFWK81wfUA347Yr3Q_V5xaVMoIdpZyoq7Z5eRWAHQrqjpVFOqnVFkewfMumUrS_bXaXVz5PNjwIlPq1jxSIaAt8G-2FjLVNY08jHmZlhHIJWnrMhBL-HJKfXri2cIRz9OsHMGbVi6vvfq_euzpf7RkG-5kXls4PjuwMb-8cs8Qoc1nPViXU4mfavipB5v9_vjrGL8_7h4cfsFfB2LQ83sfPa-ffwGPEDjZ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKAS6IZwkUMBIPCRQ1sRPbOSBUAdWWbguHFu3NZB23VGqzhWxB_BTfyIzjhGYl9lYpp3jsxPY87XkAPKskklhSTeNSUgkzJ0WsK0vnVlwqJWwx9bUOd_fk6CD7OMknK_Cni4Uht8qOJ3pGXc0snZFvpJoKqhSaZ2_PvsdUNYpuV7sSGi1a7Ljfv9Bka95sv8f9fc751of9d6M4VBWIba6SeawFisWC0tiopLTlIZocpeNT6bQsUBrnqZakFVVpJQ4rUaI6g1K1yBVHWS5Smwgc9wpczehkHOlHTVR_ppMIfKlFuDzFgTYaNAE5mezk30mG2kD8LQqBC1Jw0UNz4ZrWS7-tm3AjqK1ss8WzW7Di6tuwNg6HnQ17wcZ9fubmDhx9Qk50GkI8GT6n3mfTsVCk4oiR9KxYl9EcR0DlmVEglK82wMqQK4X6jj5_YT9LSx4ADfOxN9iTvMvmzV04uJTFvwer9ax294GhXiVK7iyqjCLLMl4KIROndEUp_FGviiDpVtrYkO-cym6cGG_3aGnazTG4OYY2x8gIXvVdztpkH8uAX9L2GWIEOK4tQzwD_h2l1DKbmRY0o0JFsD6ARAK2w-YOAUxgII35h-4RPO2bqSc5xdVudu5hcOI513opjNKoJef4mbUWp_qpUdiyKNIiAjXAth6AUo8PW-rjbz4FORoJxOojeN3h5YVf_9-KPVg-0SdwbbS_Ozbj7b2dh3Cde6IR-KzD6vzHuXuE2t98-tiTHIOvl03jfwG_z2RV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BkRAcKihQQgsYCYEEipq1E8c5VoXVAtvSA0W9WV7b2yLRtCJpf39nHCdqVlAJKTePk_hj7Df2zBuAt06iimVukRpJKcy8FKlyls6tuCxLYatFyHW4fyBnR_nX4-I45jltem_3_kqyi2kglqa63blwy07Fldxp0LLiZAmT2yTZP3fhXk47H93Wyr3hkCUTiF6UiLeZf6052o9WV-Ub29Kqy-TKvWnYjqaPYD3iSLbbDfxjuOPrDdicx9PHhr1j84EwudmAh_sDPWvzBE6-40JxFiMwGT5nwaXSs5hD4oTR5uZYTziO70NsyyhOKSQDYCZSmVDd2eFPdmUsXdA3LITGYE1y_mqbp3A0_fxjb5bGjAupLcqsTZVAyFARxU-ZGWuWaI4ZzxfSK1khUimwBwkxuokTSycMQj1EHFVRcsQ5YmIz8QzW6vPaPweGsEcY7i0iOpHnOTdCyMyXyhHDPsKeBLK-37WNdOSUFeO3DmaJkrobKo1DpWmotEzgw1DlouPiuE34PQ2mJj3F91oTww3w74jxSu_mSlCLqjKB7ZEk6pcdF_fTQUf9bvREUXqfSvE8gTdDMdUkn7Xan18GGWx4wZW6VaZUCGIL_MxmN8OGplFUsagmVQLlaO4NAsQMPi6pf50GhnDE8LQSJ_Cxn6U3fv1fPfbiv6Rfw_3DT1M9_3LwbQse8KBQAp9tWGv_XPqXCNXaxaugjtc29jNe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+on+machine+learning+based+approaches+for+sentiment+analysis+on+HPV+vaccines+related+tweets&rft.jtitle=Journal+of+biomedical+semantics&rft.au=Du%2C+Jingcheng&rft.au=Xu%2C+Jun&rft.au=Song%2C+Hsingyi&rft.au=Liu%2C+Xiangyu&rft.date=2017-03-03&rft.issn=2041-1480&rft.eissn=2041-1480&rft.volume=8&rft.issue=1&rft.spage=9&rft_id=info:doi/10.1186%2Fs13326-017-0120-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1480&client=summon