Optimization on machine learning based approaches for sentiment analysis on HPV vaccines related tweets
Background Analysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low vaccine coverage and come up with corresponding strategies to improve vaccine uptake. Objective To propose a machine learning system that is...
Saved in:
Published in | Journal of biomedical semantics Vol. 8; no. 1; p. 9 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
03.03.2017
BioMed Central Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1480 2041-1480 |
DOI | 10.1186/s13326-017-0120-6 |
Cover
Abstract | Background
Analysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low vaccine coverage and come up with corresponding strategies to improve vaccine uptake.
Objective
To propose a machine learning system that is able to extract comprehensive public sentiment on HPV vaccines on Twitter with satisfying performance.
Method
We collected and manually annotated 6,000 HPV vaccines related tweets as a gold standard. SVM model was chosen and a hierarchical classification method was proposed and evaluated. Additional feature sets evaluation and model parameters optimization was done to maximize the machine learning model performance.
Results
A hierarchical classification scheme that contains 10 categories was built to access public opinions toward HPV vaccines comprehensively. A 6,000 annotated tweets gold corpus with Kappa annotation agreement at 0.851 was created and made public available. The hierarchical classification model with optimized feature sets and model parameters has increased the micro-averaging and macro-averaging F score from 0.6732 and 0.3967 to 0.7442 and 0.5883 respectively, compared with baseline model.
Conclusions
Our work provides a systematical way to improve the machine learning model performance on the highly unbalanced HPV vaccines related tweets corpus. Our system can be further applied on a large tweets corpus to extract large-scale public opinion towards HPV vaccines. |
---|---|
AbstractList | Analysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low vaccine coverage and come up with corresponding strategies to improve vaccine uptake.
To propose a machine learning system that is able to extract comprehensive public sentiment on HPV vaccines on Twitter with satisfying performance.
We collected and manually annotated 6,000 HPV vaccines related tweets as a gold standard. SVM model was chosen and a hierarchical classification method was proposed and evaluated. Additional feature sets evaluation and model parameters optimization was done to maximize the machine learning model performance.
A hierarchical classification scheme that contains 10 categories was built to access public opinions toward HPV vaccines comprehensively. A 6,000 annotated tweets gold corpus with Kappa annotation agreement at 0.851 was created and made public available. The hierarchical classification model with optimized feature sets and model parameters has increased the micro-averaging and macro-averaging F score from 0.6732 and 0.3967 to 0.7442 and 0.5883 respectively, compared with baseline model.
Our work provides a systematical way to improve the machine learning model performance on the highly unbalanced HPV vaccines related tweets corpus. Our system can be further applied on a large tweets corpus to extract large-scale public opinion towards HPV vaccines. Background Analysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low vaccine coverage and come up with corresponding strategies to improve vaccine uptake. Objective To propose a machine learning system that is able to extract comprehensive public sentiment on HPV vaccines on Twitter with satisfying performance. Method We collected and manually annotated 6,000 HPV vaccines related tweets as a gold standard. SVM model was chosen and a hierarchical classification method was proposed and evaluated. Additional feature sets evaluation and model parameters optimization was done to maximize the machine learning model performance. Results A hierarchical classification scheme that contains 10 categories was built to access public opinions toward HPV vaccines comprehensively. A 6,000 annotated tweets gold corpus with Kappa annotation agreement at 0.851 was created and made public available. The hierarchical classification model with optimized feature sets and model parameters has increased the micro-averaging and macro-averaging F score from 0.6732 and 0.3967 to 0.7442 and 0.5883 respectively, compared with baseline model. Conclusions Our work provides a systematical way to improve the machine learning model performance on the highly unbalanced HPV vaccines related tweets corpus. Our system can be further applied on a large tweets corpus to extract large-scale public opinion towards HPV vaccines. Background Analysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low vaccine coverage and come up with corresponding strategies to improve vaccine uptake. Objective To propose a machine learning system that is able to extract comprehensive public sentiment on HPV vaccines on Twitter with satisfying performance. Method We collected and manually annotated 6,000 HPV vaccines related tweets as a gold standard. SVM model was chosen and a hierarchical classification method was proposed and evaluated. Additional feature sets evaluation and model parameters optimization was done to maximize the machine learning model performance. Results A hierarchical classification scheme that contains 10 categories was built to access public opinions toward HPV vaccines comprehensively. A 6,000 annotated tweets gold corpus with Kappa annotation agreement at 0.851 was created and made public available. The hierarchical classification model with optimized feature sets and model parameters has increased the micro-averaging and macro-averaging F score from 0.6732 and 0.3967 to 0.7442 and 0.5883 respectively, compared with baseline model. Conclusions Our work provides a systematical way to improve the machine learning model performance on the highly unbalanced HPV vaccines related tweets corpus. Our system can be further applied on a large tweets corpus to extract large-scale public opinion towards HPV vaccines. Analysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low vaccine coverage and come up with corresponding strategies to improve vaccine uptake.BACKGROUNDAnalysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low vaccine coverage and come up with corresponding strategies to improve vaccine uptake.To propose a machine learning system that is able to extract comprehensive public sentiment on HPV vaccines on Twitter with satisfying performance.OBJECTIVETo propose a machine learning system that is able to extract comprehensive public sentiment on HPV vaccines on Twitter with satisfying performance.We collected and manually annotated 6,000 HPV vaccines related tweets as a gold standard. SVM model was chosen and a hierarchical classification method was proposed and evaluated. Additional feature sets evaluation and model parameters optimization was done to maximize the machine learning model performance.METHODWe collected and manually annotated 6,000 HPV vaccines related tweets as a gold standard. SVM model was chosen and a hierarchical classification method was proposed and evaluated. Additional feature sets evaluation and model parameters optimization was done to maximize the machine learning model performance.A hierarchical classification scheme that contains 10 categories was built to access public opinions toward HPV vaccines comprehensively. A 6,000 annotated tweets gold corpus with Kappa annotation agreement at 0.851 was created and made public available. The hierarchical classification model with optimized feature sets and model parameters has increased the micro-averaging and macro-averaging F score from 0.6732 and 0.3967 to 0.7442 and 0.5883 respectively, compared with baseline model.RESULTSA hierarchical classification scheme that contains 10 categories was built to access public opinions toward HPV vaccines comprehensively. A 6,000 annotated tweets gold corpus with Kappa annotation agreement at 0.851 was created and made public available. The hierarchical classification model with optimized feature sets and model parameters has increased the micro-averaging and macro-averaging F score from 0.6732 and 0.3967 to 0.7442 and 0.5883 respectively, compared with baseline model.Our work provides a systematical way to improve the machine learning model performance on the highly unbalanced HPV vaccines related tweets corpus. Our system can be further applied on a large tweets corpus to extract large-scale public opinion towards HPV vaccines.CONCLUSIONSOur work provides a systematical way to improve the machine learning model performance on the highly unbalanced HPV vaccines related tweets corpus. Our system can be further applied on a large tweets corpus to extract large-scale public opinion towards HPV vaccines. |
ArticleNumber | 9 |
Audience | Academic |
Author | Song, Hsingyi Xu, Jun Tao, Cui Liu, Xiangyu Du, Jingcheng |
Author_xml | – sequence: 1 givenname: Jingcheng surname: Du fullname: Du, Jingcheng organization: The University of Texas School of Biomedical Informatics – sequence: 2 givenname: Jun surname: Xu fullname: Xu, Jun organization: The University of Texas School of Biomedical Informatics – sequence: 3 givenname: Hsingyi surname: Song fullname: Song, Hsingyi organization: The University of Texas School of Biomedical Informatics – sequence: 4 givenname: Xiangyu surname: Liu fullname: Liu, Xiangyu organization: The University of Texas School of Public Health – sequence: 5 givenname: Cui surname: Tao fullname: Tao, Cui email: cui.tao@uth.tmc.edu organization: The University of Texas School of Biomedical Informatics |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28253919$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1TAQhi1URC_0AdigSGzYpPgSx84GqaqAIlUqC2Br-TiT1FViBzunVXl6Jj1tOa0A4XiSyP6_8Xj075OdEAMQ8orRI8Z0_S4zIXhdUqYwOC3rZ2SP04qVrNJ0Z-t_lxzmfElxCMGoFi_ILtdcioY1e6Q_n2Y_-p929jEUOEfrLnyAYgCbgg99sbIZ2sJOU4q4BbnoYioyBMTwVdhgh5vs88KefvleXFnnkM9FgsHOSM7XAHN-SZ53dshwePc9IN8-fvh6clqenX_6fHJ8Vjqp6FxqQalqMJSi1tlOc22Br2rQdSN1JfHiTDSqZa3oWmGlklTJRipei0YwR8UBeb_JO61XI7QOS0x2MFPyo003JlpvHu8Ef2H6eGWkEFJphQne3iVI8cca8mxGnx0Mgw0Q19kwrZSWlZT_Ja2qSnKtUfrmifQyrhO27lYlFG80r36rejuA8aGLWKJbkprjSovl_s1y7NEfVPi0MHqHJuk8rj8CXm_35KEZ9y5AAdsIXIo5J-geJIyaxWxmYzaDZjOL2UyNjHrCOD_fugir8cM_Sb4hM54Sekhbvfgr9At2ceU4 |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e21723 crossref_primary_10_1177_1460458217740723 crossref_primary_10_2196_41319 crossref_primary_10_1080_21645515_2019_1627821 crossref_primary_10_4236_ajc_2022_102012 crossref_primary_10_1080_21645515_2019_1611158 crossref_primary_10_1186_s12913_023_09260_7 crossref_primary_10_4018_IJESMA_313950 crossref_primary_10_1186_s12911_017_0469_6 crossref_primary_10_3389_fphar_2018_00539 crossref_primary_10_1186_s12911_018_0632_8 crossref_primary_10_1007_s12652_019_01399_8 crossref_primary_10_1109_ACCESS_2021_3076356 crossref_primary_10_2196_26478 crossref_primary_10_1093_jamia_ocz191 crossref_primary_10_2196_26953 crossref_primary_10_1080_00918369_2022_2132574 crossref_primary_10_32604_cmc_2023_039228 crossref_primary_10_2196_16023 crossref_primary_10_2196_17478 crossref_primary_10_1080_21645515_2021_1877597 crossref_primary_10_1016_j_jbi_2022_104142 crossref_primary_10_2105_AJPH_2020_305940 crossref_primary_10_3389_fdgth_2021_683034 crossref_primary_10_2196_50551 crossref_primary_10_12688_f1000research_52061_1 crossref_primary_10_1007_s10994_024_06562_7 crossref_primary_10_1109_JBHI_2020_3032479 crossref_primary_10_1038_s41537_021_00197_6 crossref_primary_10_1093_jamia_ocaa298 crossref_primary_10_1016_j_ijmedinf_2020_104302 crossref_primary_10_1186_s12911_020_1046_y crossref_primary_10_1016_j_patcog_2021_108197 crossref_primary_10_1007_s13246_018_0676_1 crossref_primary_10_2196_17149 crossref_primary_10_1177_1073274819891442 crossref_primary_10_1186_s12859_019_3191_9 crossref_primary_10_36548_jei_2021_3_003 crossref_primary_10_3390_ijerph18084069 crossref_primary_10_1007_s11277_022_09981_8 crossref_primary_10_3390_healthcare8030307 crossref_primary_10_1371_journal_pone_0226921 crossref_primary_10_1016_j_jbi_2020_103396 crossref_primary_10_1177_08944393241275641 crossref_primary_10_2196_36871 crossref_primary_10_1001_jamanetworkopen_2020_22025 crossref_primary_10_1109_ACCESS_2020_3002176 crossref_primary_10_1007_s42001_024_00257_8 crossref_primary_10_1080_21645515_2019_1581555 crossref_primary_10_4103_jphpc_jphpc_13_21 crossref_primary_10_1080_1369118X_2024_2331756 crossref_primary_10_4236_health_2020_129081 crossref_primary_10_2196_jmir_9413 crossref_primary_10_3390_ijerph18126272 crossref_primary_10_2196_40133 crossref_primary_10_1016_j_chb_2021_106751 crossref_primary_10_1093_jamia_ocz183 |
Cites_doi | 10.1542/peds.2015-2653 10.1145/1656274.1656278 10.2196/jmir.4343 10.1001/jamapediatrics.2013.2752 10.2196/jmir.6045 10.1007/s10995-012-1066-z 10.1186/1472-6874-10-27 10.3115/1611628.1611637 10.1371/journal.pcbi.1002199 |
ContentType | Journal Article |
Copyright | The Author(s). 2017 COPYRIGHT 2017 BioMed Central Ltd. Copyright BioMed Central 2017 |
Copyright_xml | – notice: The Author(s). 2017 – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: Copyright BioMed Central 2017 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M1P M7P M7S PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 7QO 8FD FR3 P64 5PM |
DOI | 10.1186/s13326-017-0120-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE Engineering Research Database Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Languages & Literatures Mathematics |
EISSN | 2041-1480 |
ExternalDocumentID | PMC5335787 4318107611 A483845197 28253919 10_1186_s13326_017_0120_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Cancer Prevention and Research Institute of Texas (US) grantid: RP160015 – fundername: U.S. National Library of Medicine (US) grantid: R01LM011829 – fundername: NLM NIH HHS grantid: R01 LM011829 – fundername: NIAID NIH HHS grantid: R01 AI130460 – fundername: ; grantid: R01LM011829 – fundername: ; grantid: RP160015 |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABJCF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEGXH AENEX AFKRA AFPKN AHBYD AHSBF AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU DIK E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IEA IHR INH INR ITC KQ8 L6V LK8 M1P M48 M7P M7S ML~ M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO RBZ RNS ROL RPM RSV SMT SOJ TUS UKHRP AAYXX ALIPV CITATION -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM PMFND 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 7QO 8FD FR3 P64 5PM |
ID | FETCH-LOGICAL-c570t-830079007770acaf828ae2b6e86958451861397d1d3fd3a575075957263931c03 |
IEDL.DBID | M48 |
ISSN | 2041-1480 |
IngestDate | Thu Aug 21 18:04:49 EDT 2025 Thu Sep 04 16:05:13 EDT 2025 Thu Sep 04 18:30:56 EDT 2025 Fri Jul 25 11:56:51 EDT 2025 Tue Jun 17 21:27:21 EDT 2025 Tue Jun 10 20:45:20 EDT 2025 Thu Jan 02 22:21:25 EST 2025 Tue Jul 01 03:54:47 EDT 2025 Thu Apr 24 23:07:40 EDT 2025 Sat Sep 06 07:20:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Support vector machines Sentiment analysis Gold standard Hierarchical classification Social media |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c570t-830079007770acaf828ae2b6e86958451861397d1d3fd3a575075957263931c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1873729824?pq-origsite=%requestingapplication% |
PMID | 28253919 |
PQID | 1873729824 |
PQPubID | 2040220 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5335787 proquest_miscellaneous_1877854557 proquest_miscellaneous_1874445288 proquest_journals_1873729824 gale_infotracmisc_A483845197 gale_infotracacademiconefile_A483845197 pubmed_primary_28253919 crossref_primary_10_1186_s13326_017_0120_6 crossref_citationtrail_10_1186_s13326_017_0120_6 springer_journals_10_1186_s13326_017_0120_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-03 |
PublicationDateYYYYMMDD | 2017-03-03 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Journal of biomedical semantics |
PublicationTitleAbbrev | J Biomed Semant |
PublicationTitleAlternate | J Biomed Semantics |
PublicationYear | 2017 |
Publisher | BioMed Central BioMed Central Ltd |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd |
References | 120_CR3 120_CR4 120_CR5 120_CR1 120_CR2 DM Holman (120_CR13) 2014; 168 120_CR20 120_CR10 120_CR22 120_CR8 D Surian (120_CR6) 2016; 18 120_CR16 120_CR17 LM Kester (120_CR11) 2013; 17 120_CR18 120_CR19 120_CR23 X Zhou (120_CR9) 2015; 216 120_CR14 120_CR15 M Salathé (120_CR7) 2011; 7 M Hall (120_CR21) 2009; 11 GD Zimet (120_CR12) 2010; 10 26063290 - J Med Internet Res. 2015 Jun 10;17(6):e144 27940751 - Pediatrics. 2016 Nov;138(5):null 26262154 - Stud Health Technol Inform. 2015 ;216:761-5 26958274 - AMIA Annu Symp Proc. 2015 Nov 05;2015 :1334-41 27573910 - J Med Internet Res. 2016 Aug 29;18(8):e232 24276343 - JAMA Pediatr. 2014 Jan;168(1):76-82 22729660 - Matern Child Health J. 2013 Jul;17(5):879-85 22022249 - PLoS Comput Biol. 2011 Oct;7(10):e1002199 20809965 - BMC Womens Health. 2010 Sep 01;10:27 |
References_xml | – ident: 120_CR17 – ident: 120_CR2 doi: 10.1542/peds.2015-2653 – ident: 120_CR20 – ident: 120_CR1 – ident: 120_CR4 – volume: 11 start-page: 10 year: 2009 ident: 120_CR21 publication-title: ACM SIGKDD Explor doi: 10.1145/1656274.1656278 – ident: 120_CR3 – ident: 120_CR8 doi: 10.2196/jmir.4343 – ident: 120_CR10 – volume: 168 start-page: 76 year: 2014 ident: 120_CR13 publication-title: JAMA Pediatr doi: 10.1001/jamapediatrics.2013.2752 – ident: 120_CR14 – ident: 120_CR15 – ident: 120_CR18 – ident: 120_CR19 – volume: 18 start-page: e232 year: 2016 ident: 120_CR6 publication-title: J Med Internet Res doi: 10.2196/jmir.6045 – volume: 17 start-page: 879 year: 2013 ident: 120_CR11 publication-title: Matern Child Health J Springer doi: 10.1007/s10995-012-1066-z – volume: 10 start-page: 27 year: 2010 ident: 120_CR12 publication-title: BMC Womens Health doi: 10.1186/1472-6874-10-27 – ident: 120_CR5 – ident: 120_CR16 doi: 10.3115/1611628.1611637 – volume: 216 start-page: 761 year: 2015 ident: 120_CR9 publication-title: Stud Health Technol Inform – ident: 120_CR23 – volume: 7 start-page: e1002199 year: 2011 ident: 120_CR7 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002199 – ident: 120_CR22 – reference: 27573910 - J Med Internet Res. 2016 Aug 29;18(8):e232 – reference: 26958274 - AMIA Annu Symp Proc. 2015 Nov 05;2015 :1334-41 – reference: 27940751 - Pediatrics. 2016 Nov;138(5):null – reference: 26262154 - Stud Health Technol Inform. 2015 ;216:761-5 – reference: 26063290 - J Med Internet Res. 2015 Jun 10;17(6):e144 – reference: 20809965 - BMC Womens Health. 2010 Sep 01;10:27 – reference: 24276343 - JAMA Pediatr. 2014 Jan;168(1):76-82 – reference: 22022249 - PLoS Comput Biol. 2011 Oct;7(10):e1002199 – reference: 22729660 - Matern Child Health J. 2013 Jul;17(5):879-85 |
SSID | ssj0000331083 |
Score | 2.3605287 |
Snippet | Background
Analysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low... Analysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low vaccine... Background Analysing public opinions on HPV vaccines on social media using machine learning based approaches will help us understand the reasons behind the low... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9 |
SubjectTerms | Algorithms Attitude to Health Bioinformatics Combinatorial Libraries Computational Biology/Bioinformatics Computer Appl. in Life Sciences Data Mining Data Mining and Knowledge Discovery Emotions Humans Machine Learning Mathematics Mathematics and Statistics Papillomavirus Vaccines Public opinion Social Media Vaccination Vaccine and drug ontology in the study of mechanism and effect (VDOSME) |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BbtQwEB1BuXBBpZQSKJUroSKBoiZ2YjsnVCG2K1RaDhT1ZnlttyDRbEu2fD8zXic0K7FSbraT2DNjP9szbwDeeIkmVvhZbiWlMAtS5No7OrfiUinhmlnMdfjlVE7Pq88X9UU6cOuSW2U_J8aJ2s8dnZEflpoSqjSaVx9ubnPKGkW3qymFxkN4VOJKQ3quJ8fDGUshELxokS4zSy0PO9yScdpCk78lbZxGy9HqpHxvVVr1mFy5No2r0WQTniQYyY6Wcn8KD0K7BTsn6fCxYwfsZOBL7p7B1RnODNcp5JLhcx19KANLSSOuGK1mnvUM4_gGBLOMApMi-z-zibuE2k6_fmd_rKMb-Y7FWBhsSd5ei24bziefvn2c5inFQu5qVSxyLRAjNMTpowrr7CXuv2zgMxm0bBCa1DhmBBF96cWlFxaxHUKMplYcgY0oXSGew0Y7b8MLYIhzhOXBIYQTVVVxK4QsgtKeKPUR52RQ9CNtXOIfpzQYv0zch2hplsIxKBxDwjEyg3dDk5sl-ca6ym9JfIYME9_rbIovwL8jiitzVGlBPWpUBrujmmhQblzcK4BJBt2Zf-qXwf5QTC3JSa0N87tYBztec63X1lEaUWuNn9lZ6tTQNQojFk3ZZKBG2jZUICrwcUn780ekBEfQTlNvBu97vbz36_8bsZfrO_oKHvNoKAKfXdhY_L4LrxGBLWZ70cz-AmVGK0w priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RTxQxEJ4ovuADUURcRFMTg4lm425nt-0-EiK5GFAfwPDW9LoFTWQh7MHvZ6bX29xelMRk3zrd3XY67dd25huA960iEyvaae4UpzALCnPTej63kkpr9M005jo8_qYmp9XXs_oskUVzLMzy_X1p1Oee9lCS97zsIMk7ncfwpC5RxXtZdTAcpxRIOMVgurf8a83RyrM6_y4tQKvOkSs3pHHhOXwGGwkxiv25ip_Do9BtwvZROmfsxZ44GqiR-014ejwQsfYv4OI7TQmXKdZS0HMZnSeDSNkiLgQvY61YUIvT-wjFCo5IirT_wiXSEq47-fFT3DnPV_G9iEEwVJPdvGb9Fpwefjk5mOQpt0Lua13McoMEDhom89GF8-6cNl4uyKkKRjWESWrqQcaGbdnieYuOQB1hi6bWkhANlr7Al7DWXXXhFQgCOOhk8ITdsKoq6RBVEbRpmUufAE4GxaLfrU_E45z_4o-NGxCj7FxVllRlWVVWZfBxqHI9Z914SPgDK9OyRdJ7vUuBBfR3zG1l9yuD3KJGZ7A7kiRL8uPixXCwyZJ7WxpO5NMYWWXwbijmmuyd1oWr2yhDDa-lMQ_KaENwtabPbM9H2NA0jh_Gpmwy0KOxNwgwB_i4pPv9K3KBE1rnOTeDT4tRuvTr_-qxnf-Sfg3rMloR0rMLa7Ob2_CGkNhs-jba4D1Udigq priority: 102 providerName: Springer Nature |
Title | Optimization on machine learning based approaches for sentiment analysis on HPV vaccines related tweets |
URI | https://link.springer.com/article/10.1186/s13326-017-0120-6 https://www.ncbi.nlm.nih.gov/pubmed/28253919 https://www.proquest.com/docview/1873729824 https://www.proquest.com/docview/1874445288 https://www.proquest.com/docview/1877854557 https://pubmed.ncbi.nlm.nih.gov/PMC5335787 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3rb9MwED_t8YUviOcIG5WREEigQBIntvMBoVKtVNU2JqCo3yzX8R7SlsHSIfjvuXOdaK3GhBS1Uv1obN_Zv7N9vwN4UQlUsaSaxUZQCDMneKwqS_tWmZCS23LmYx3uH4jRJB9Pi-katOGtQgc2N5p2FE9qcnn29vfPPx9Q4d97hVfiXYN2VkZ2MV2iJGtoHTZxYRJki-0HtO8nZo5YxhNzZkmexmgItOecN9aytFKtztfXFqzVy5QrJ6p-oRreg7sBYbL-QiTuw5qrH8DWXtiXbNhLttdRKTcP4fgzThrnwRuT4XPur1c6FuJJHDNa6CrWko9jDYhzGfks-cAAzARaEyo7OvzOfhlLh_UN824yWJIugs2bRzAZ7n4bjOIQfSG2hUzmseIIH0qi-5GJseYITTPjsplwSpSIWgrsM0KPVVrxo4obhH2IPspCZoh5eGoT_hg26ovaPQGGEIibzFlEdzzP88xwLhInVUVs-wiBIkjantY2UJNThIwz7U0UJfRicDQOjqbB0SKC112RHwtejtsyv6Lh0yRFWK81wfUA347Yr3Q_V5xaVMoIdpZyoq7Z5eRWAHQrqjpVFOqnVFkewfMumUrS_bXaXVz5PNjwIlPq1jxSIaAt8G-2FjLVNY08jHmZlhHIJWnrMhBL-HJKfXri2cIRz9OsHMGbVi6vvfq_euzpf7RkG-5kXls4PjuwMb-8cs8Qoc1nPViXU4mfavipB5v9_vjrGL8_7h4cfsFfB2LQ83sfPa-ffwGPEDjZ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKAS6IZwkUMBIPCRQ1sRPbOSBUAdWWbguHFu3NZB23VGqzhWxB_BTfyIzjhGYl9lYpp3jsxPY87XkAPKskklhSTeNSUgkzJ0WsK0vnVlwqJWwx9bUOd_fk6CD7OMknK_Cni4Uht8qOJ3pGXc0snZFvpJoKqhSaZ2_PvsdUNYpuV7sSGi1a7Ljfv9Bka95sv8f9fc751of9d6M4VBWIba6SeawFisWC0tiopLTlIZocpeNT6bQsUBrnqZakFVVpJQ4rUaI6g1K1yBVHWS5Smwgc9wpczehkHOlHTVR_ppMIfKlFuDzFgTYaNAE5mezk30mG2kD8LQqBC1Jw0UNz4ZrWS7-tm3AjqK1ss8WzW7Di6tuwNg6HnQ17wcZ9fubmDhx9Qk50GkI8GT6n3mfTsVCk4oiR9KxYl9EcR0DlmVEglK82wMqQK4X6jj5_YT9LSx4ADfOxN9iTvMvmzV04uJTFvwer9ax294GhXiVK7iyqjCLLMl4KIROndEUp_FGviiDpVtrYkO-cym6cGG_3aGnazTG4OYY2x8gIXvVdztpkH8uAX9L2GWIEOK4tQzwD_h2l1DKbmRY0o0JFsD6ARAK2w-YOAUxgII35h-4RPO2bqSc5xdVudu5hcOI513opjNKoJef4mbUWp_qpUdiyKNIiAjXAth6AUo8PW-rjbz4FORoJxOojeN3h5YVf_9-KPVg-0SdwbbS_Ozbj7b2dh3Cde6IR-KzD6vzHuXuE2t98-tiTHIOvl03jfwG_z2RV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BkRAcKihQQgsYCYEEipq1E8c5VoXVAtvSA0W9WV7b2yLRtCJpf39nHCdqVlAJKTePk_hj7Df2zBuAt06iimVukRpJKcy8FKlyls6tuCxLYatFyHW4fyBnR_nX4-I45jltem_3_kqyi2kglqa63blwy07Fldxp0LLiZAmT2yTZP3fhXk47H93Wyr3hkCUTiF6UiLeZf6052o9WV-Ub29Kqy-TKvWnYjqaPYD3iSLbbDfxjuOPrDdicx9PHhr1j84EwudmAh_sDPWvzBE6-40JxFiMwGT5nwaXSs5hD4oTR5uZYTziO70NsyyhOKSQDYCZSmVDd2eFPdmUsXdA3LITGYE1y_mqbp3A0_fxjb5bGjAupLcqsTZVAyFARxU-ZGWuWaI4ZzxfSK1khUimwBwkxuokTSycMQj1EHFVRcsQ5YmIz8QzW6vPaPweGsEcY7i0iOpHnOTdCyMyXyhHDPsKeBLK-37WNdOSUFeO3DmaJkrobKo1DpWmotEzgw1DlouPiuE34PQ2mJj3F91oTww3w74jxSu_mSlCLqjKB7ZEk6pcdF_fTQUf9bvREUXqfSvE8gTdDMdUkn7Xan18GGWx4wZW6VaZUCGIL_MxmN8OGplFUsagmVQLlaO4NAsQMPi6pf50GhnDE8LQSJ_Cxn6U3fv1fPfbiv6Rfw_3DT1M9_3LwbQse8KBQAp9tWGv_XPqXCNXaxaugjtc29jNe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+on+machine+learning+based+approaches+for+sentiment+analysis+on+HPV+vaccines+related+tweets&rft.jtitle=Journal+of+biomedical+semantics&rft.au=Du%2C+Jingcheng&rft.au=Xu%2C+Jun&rft.au=Song%2C+Hsingyi&rft.au=Liu%2C+Xiangyu&rft.date=2017-03-03&rft.issn=2041-1480&rft.eissn=2041-1480&rft.volume=8&rft.issue=1&rft.spage=9&rft_id=info:doi/10.1186%2Fs13326-017-0120-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1480&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1480&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1480&client=summon |