The ORF8 protein of SARS-CoV-2 induced endoplasmic reticulum stress and mediated immune evasion by antagonizing production of interferon beta

•SARS-CoV-2 orf8 genotypes, orf8L and orf8S induced ER stress pathways.•SARS-CoV-2 orf8 genotypes, orf8L and orf8S antagonized interferon Beta production.•SARS-CoV-2 orf8 genotypes, orf8L and orf8S decrease the nuclear translocation of IRF3 induced by poly (I:C).•The effects of orf8L and orf8S are i...

Full description

Saved in:
Bibliographic Details
Published inVirus research Vol. 296; p. 198350
Main Authors Rashid, Farooq, Dzakah, Emmanuel Enoch, Wang, Haiying, Tang, Shixing
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •SARS-CoV-2 orf8 genotypes, orf8L and orf8S induced ER stress pathways.•SARS-CoV-2 orf8 genotypes, orf8L and orf8S antagonized interferon Beta production.•SARS-CoV-2 orf8 genotypes, orf8L and orf8S decrease the nuclear translocation of IRF3 induced by poly (I:C).•The effects of orf8L and orf8S are in the context of ER stress pathways regulation and interferon Beta antagonizing were same. The open reading frame 8 (orf8) is an accessory protein of SARS-CoV-2. It has 121 amino acids with two genotypes, orf8L and orf8S. In this study, we overexpressed the orf8L and orf8S of SARS-CoV-2 as well as the orf8b of SARS-CoV to investigate their roles in the regulation of endoplasmic reticulum (ER) stress and the inhibition of interferon beta (IFNß) production. We found that the two genotypes of SARS-CoV-2 orf8 are capable of inducing ER stress without significant difference by triggering the activating transcription factor 6 (ATF6) and inositol-requiring enzymes 1 (IRE1) branches of the ER stress pathway. However, the third branch of ER stress pathway, i.e. the protein kinase-like ER kinase (PERK), was unaffected by the overexpression of SARS-CoV-2 orf8L or orf8S. Moreover, both orf8L and orf8S of SARS-CoV-2 are capable of down regulating the production of IFNß and interferon-stimulated genes (ISG), ISG15 and ISG56 induced by polyinosinic-polycytidylic acid (poly (I:C)). Moreover, we also found decreased nuclear translocation of Interferon regulatory factor 3 (IRF3), after overexpressing orf8L and orf8S induced by poly (I:C). Our data demonstrated that SARS-CoV-2 orf8 protein could induce ER stress by activating the ATF6 and IRE1 pathways, but not the PERK pathway, and functions as an interferon antagonist to inhibit the production of IFNß. However, these functions appeared not to be affected by the genotypes of SARS-CoV-2 orf8L and orf8S.
AbstractList The open reading frame 8 (orf8) is an accessory protein of SARS-CoV-2. It has 121 amino acids with two genotypes, orf8L and orf8S. In this study, we overexpressed the orf8L and orf8S of SARS-CoV-2 as well as the orf8b of SARS-CoV to investigate their roles in the regulation of endoplasmic reticulum (ER) stress and the inhibition of interferon beta (IFNß) production. We found that the two genotypes of SARS-CoV-2 orf8 are capable of inducing ER stress without significant difference by triggering the activating transcription factor 6 (ATF6) and inositol-requiring enzymes 1 (IRE1) branches of the ER stress pathway. However, the third branch of ER stress pathway, i.e. the protein kinase-like ER kinase (PERK), was unaffected by the overexpression of SARS-CoV-2 orf8L or orf8S. Moreover, both orf8L and orf8S of SARS-CoV-2 are capable of down regulating the production of IFNß and interferon-stimulated genes (ISG), ISG15 and ISG56 induced by polyinosinic-polycytidylic acid (poly (I:C)). Moreover, we also found decreased nuclear translocation of Interferon regulatory factor 3 (IRF3), after overexpressing orf8L and orf8S induced by poly (I:C). Our data demonstrated that SARS-CoV-2 orf8 protein could induce ER stress by activating the ATF6 and IRE1 pathways, but not the PERK pathway, and functions as an interferon antagonist to inhibit the production of IFNß. However, these functions appeared not to be affected by the genotypes of SARS-CoV-2 orf8L and orf8S.
•SARS-CoV-2 orf8 genotypes, orf8L and orf8S induced ER stress pathways.•SARS-CoV-2 orf8 genotypes, orf8L and orf8S antagonized interferon Beta production.•SARS-CoV-2 orf8 genotypes, orf8L and orf8S decrease the nuclear translocation of IRF3 induced by poly (I:C).•The effects of orf8L and orf8S are in the context of ER stress pathways regulation and interferon Beta antagonizing were same. The open reading frame 8 (orf8) is an accessory protein of SARS-CoV-2. It has 121 amino acids with two genotypes, orf8L and orf8S. In this study, we overexpressed the orf8L and orf8S of SARS-CoV-2 as well as the orf8b of SARS-CoV to investigate their roles in the regulation of endoplasmic reticulum (ER) stress and the inhibition of interferon beta (IFNß) production. We found that the two genotypes of SARS-CoV-2 orf8 are capable of inducing ER stress without significant difference by triggering the activating transcription factor 6 (ATF6) and inositol-requiring enzymes 1 (IRE1) branches of the ER stress pathway. However, the third branch of ER stress pathway, i.e. the protein kinase-like ER kinase (PERK), was unaffected by the overexpression of SARS-CoV-2 orf8L or orf8S. Moreover, both orf8L and orf8S of SARS-CoV-2 are capable of down regulating the production of IFNß and interferon-stimulated genes (ISG), ISG15 and ISG56 induced by polyinosinic-polycytidylic acid (poly (I:C)). Moreover, we also found decreased nuclear translocation of Interferon regulatory factor 3 (IRF3), after overexpressing orf8L and orf8S induced by poly (I:C). Our data demonstrated that SARS-CoV-2 orf8 protein could induce ER stress by activating the ATF6 and IRE1 pathways, but not the PERK pathway, and functions as an interferon antagonist to inhibit the production of IFNß. However, these functions appeared not to be affected by the genotypes of SARS-CoV-2 orf8L and orf8S.
The open reading frame 8 (orf8) is an accessory protein of SARS-CoV-2. It has 121 amino acids with two genotypes, orf8L and orf8S. In this study, we overexpressed the orf8L and orf8S of SARS-CoV-2 as well as the orf8b of SARS-CoV to investigate their roles in the regulation of endoplasmic reticulum (ER) stress and the inhibition of interferon beta (IFNß) production. We found that the two genotypes of SARS-CoV-2 orf8 are capable of inducing ER stress without significant difference by triggering the activating transcription factor 6 (ATF6) and inositol-requiring enzymes 1 (IRE1) branches of the ER stress pathway. However, the third branch of ER stress pathway, i.e. the protein kinase-like ER kinase (PERK), was unaffected by the overexpression of SARS-CoV-2 orf8L or orf8S. Moreover, both orf8L and orf8S of SARS-CoV-2 are capable of down regulating the production of IFNß and interferon-stimulated genes (ISG), ISG15 and ISG56 induced by polyinosinic-polycytidylic acid (poly (I:C)). Moreover, we also found decreased nuclear translocation of Interferon regulatory factor 3 (IRF3), after overexpressing orf8L and orf8S induced by poly (I:C). Our data demonstrated that SARS-CoV-2 orf8 protein could induce ER stress by activating the ATF6 and IRE1 pathways, but not the PERK pathway, and functions as an interferon antagonist to inhibit the production of IFNß. However, these functions appeared not to be affected by the genotypes of SARS-CoV-2 orf8L and orf8S.The open reading frame 8 (orf8) is an accessory protein of SARS-CoV-2. It has 121 amino acids with two genotypes, orf8L and orf8S. In this study, we overexpressed the orf8L and orf8S of SARS-CoV-2 as well as the orf8b of SARS-CoV to investigate their roles in the regulation of endoplasmic reticulum (ER) stress and the inhibition of interferon beta (IFNß) production. We found that the two genotypes of SARS-CoV-2 orf8 are capable of inducing ER stress without significant difference by triggering the activating transcription factor 6 (ATF6) and inositol-requiring enzymes 1 (IRE1) branches of the ER stress pathway. However, the third branch of ER stress pathway, i.e. the protein kinase-like ER kinase (PERK), was unaffected by the overexpression of SARS-CoV-2 orf8L or orf8S. Moreover, both orf8L and orf8S of SARS-CoV-2 are capable of down regulating the production of IFNß and interferon-stimulated genes (ISG), ISG15 and ISG56 induced by polyinosinic-polycytidylic acid (poly (I:C)). Moreover, we also found decreased nuclear translocation of Interferon regulatory factor 3 (IRF3), after overexpressing orf8L and orf8S induced by poly (I:C). Our data demonstrated that SARS-CoV-2 orf8 protein could induce ER stress by activating the ATF6 and IRE1 pathways, but not the PERK pathway, and functions as an interferon antagonist to inhibit the production of IFNß. However, these functions appeared not to be affected by the genotypes of SARS-CoV-2 orf8L and orf8S.
ArticleNumber 198350
Author Dzakah, Emmanuel Enoch
Tang, Shixing
Wang, Haiying
Rashid, Farooq
Author_xml – sequence: 1
  givenname: Farooq
  orcidid: 0000-0002-8812-3827
  surname: Rashid
  fullname: Rashid, Farooq
  email: farooq12@mail.ustc.edu.cn
  organization: Dermatology Hospital, Southern Medical University, Guangzhou, China
– sequence: 2
  givenname: Emmanuel Enoch
  surname: Dzakah
  fullname: Dzakah, Emmanuel Enoch
  email: edzakah@mail.ustc.edu.cn
  organization: Dermatology Hospital, Southern Medical University, Guangzhou, China
– sequence: 3
  givenname: Haiying
  surname: Wang
  fullname: Wang, Haiying
  email: yingzi224926@smu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
– sequence: 4
  givenname: Shixing
  orcidid: 0000-0001-9637-1874
  surname: Tang
  fullname: Tang, Shixing
  email: tamgshixing@smu.edu.cn
  organization: Dermatology Hospital, Southern Medical University, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33626380$$D View this record in MEDLINE/PubMed
BookMark eNqFUstq3DAUNSWlmaT9haBlN57qYUk2lNIwJGkhEEjSboUsX0802NJUkgfSf-g_R2aS0HYzKy3O4x5xzklx5LyDojgjeEkwEZ82y50NUwwQlxRTsiRNzTh-UyxILWkpq4YeFYtMrEsiMT0uTmLcYIwFk-JdccyYoILVeFH8uX8AdHN7WaNt8AmsQ75Hd-e3d-XK_ywpsq6bDHQIXOe3g46jNShAsmYaphHFlANEpF2HRuisTplpx3FygGCno_UOtY8ZTnrtnf1t3Xo-kx3TDOVL1iUIPYSZCEm_L972eojw4fk9LX5cXtyvvpXXN1ffV-fXpeESp5Ib1nZCEsoJ7Y0xfVNz2rcaG9F3rCK9aGvaADSY11w2YBhUhDe8N1BJQVt2WnzZ-26nNgc34FLQg9oGO-rwqLy26l_E2Qe19jsl60ZWuM4GH58Ngv81QUxqtNHAMGgHfoqKclkxwXkjD1OrhlWckmp2Pfs71muel7oyQewJJviYy-9fKQSreRdqo152oeZdqP0usvDzf0Jjk55byN-zw2H5170ccik7C0FFY8HlYdgAJqnO20MWT_wx2-U
CitedBy_id crossref_primary_10_3390_cells13020123
crossref_primary_10_1128_jvi_02216_21
crossref_primary_10_7717_peerj_13136
crossref_primary_10_1016_j_chom_2021_05_004
crossref_primary_10_3390_ijerph19010112
crossref_primary_10_3390_pathogens13121117
crossref_primary_10_1002_rmv_2346
crossref_primary_10_3390_biom13091338
crossref_primary_10_1007_s40618_021_01693_3
crossref_primary_10_1016_j_lfs_2022_120624
crossref_primary_10_1128_mbio_00540_23
crossref_primary_10_1007_s11030_022_10405_9
crossref_primary_10_1186_s13065_024_01185_4
crossref_primary_10_1128_jvi_00754_24
crossref_primary_10_1128_spectrum_05064_22
crossref_primary_10_1016_j_jbc_2022_101724
crossref_primary_10_1038_s41467_024_47599_5
crossref_primary_10_1083_jcb_202402062
crossref_primary_10_3390_v16010161
crossref_primary_10_3389_fimmu_2024_1339660
crossref_primary_10_3390_ijms25021157
crossref_primary_10_1089_hs_2023_0008
crossref_primary_10_3390_ijms23158285
crossref_primary_10_3390_v15020290
crossref_primary_10_1186_s12964_023_01104_5
crossref_primary_10_3389_fgene_2021_693227
crossref_primary_10_1007_s12275_022_1525_1
crossref_primary_10_1091_mbc_E23_04_0147
crossref_primary_10_3389_fmed_2022_824622
crossref_primary_10_1002_jmv_27855
crossref_primary_10_1038_s41419_022_05250_5
crossref_primary_10_3389_fmicb_2021_665041
crossref_primary_10_3389_fmicb_2021_703145
crossref_primary_10_1371_journal_ppat_1009705
crossref_primary_10_3390_pathogens11080940
crossref_primary_10_3389_fimmu_2022_1035559
crossref_primary_10_3390_vaccines11050991
crossref_primary_10_1186_s12929_024_01062_1
crossref_primary_10_3389_fmolb_2023_1270511
crossref_primary_10_2174_0115680096272663231121100515
crossref_primary_10_3389_fbioe_2022_1052436
crossref_primary_10_1038_s44298_024_00076_8
crossref_primary_10_1128_mbio_02415_22
crossref_primary_10_3390_ijms24098290
crossref_primary_10_3390_v15040871
crossref_primary_10_1016_j_isci_2022_103934
crossref_primary_10_1080_22221751_2023_2209208
crossref_primary_10_1038_s41423_023_01104_y
crossref_primary_10_3389_fcimb_2022_899546
crossref_primary_10_1016_j_csbj_2021_07_023
crossref_primary_10_1016_j_intimp_2022_108922
crossref_primary_10_1007_s10522_023_10019_0
crossref_primary_10_3390_v13122467
crossref_primary_10_4014_jmb_2206_06064
crossref_primary_10_3390_microorganisms11102378
crossref_primary_10_3390_v15010095
crossref_primary_10_1016_j_virusres_2024_199478
crossref_primary_10_1128_mbio_00451_23
crossref_primary_10_3389_fcimb_2023_1166839
crossref_primary_10_1128_jvi_00011_23
crossref_primary_10_3390_cimb46050261
crossref_primary_10_1126_scisignal_add0082
crossref_primary_10_3390_jor1040021
crossref_primary_10_1038_d41586_022_02930_2
crossref_primary_10_1002_jmv_70145
crossref_primary_10_1038_s41586_022_05282_z
crossref_primary_10_3389_fimmu_2024_1363572
crossref_primary_10_3389_fviro_2021_815388
crossref_primary_10_1093_intimm_dxac044
crossref_primary_10_1039_D2CP01724E
crossref_primary_10_3390_ijms23179739
crossref_primary_10_1007_s43440_022_00394_9
crossref_primary_10_1016_j_compbiomed_2022_105436
crossref_primary_10_1242_jcs_260682
crossref_primary_10_1080_1040841X_2023_2274840
crossref_primary_10_3390_biomedicines10061339
crossref_primary_10_3389_fimmu_2022_871276
crossref_primary_10_1038_s41598_021_99014_4
crossref_primary_10_1016_j_ecoenv_2022_114440
crossref_primary_10_3389_fmicb_2022_883597
crossref_primary_10_3389_fmicb_2021_789062
crossref_primary_10_1016_j_compbiomed_2021_105170
Cites_doi 10.1016/j.virol.2009.02.021
10.1128/JVI.00702-07
10.1128/JVI.00659-06
10.4049/jimmunol.1303090
10.1371/journal.ppat.1002433
10.1038/s41586-020-2286-9
10.1038/ni.1857
10.1038/nri3581
10.1002/jmv.25700
10.1093/nsr/nwaa036
10.1093/nar/gkx1095
10.3390/ijms18071375
10.21873/invivo.11956
10.1016/S0140-6736(20)30251-8
10.1128/JVI.01631-07
10.1016/j.meegid.2020.104445
10.1371/journal.ppat.1008737
10.1016/j.antiviral.2014.06.013
10.1016/j.virol.2006.06.026
10.1007/s13238-014-0026-3
10.1086/519166
10.1038/nsmb.1680
10.1038/s41420-019-0181-7
10.1093/jb/mvm032
10.1016/j.virol.2019.08.029
10.1080/22221751.2020.1719902
10.1016/j.virol.2017.12.028
10.1080/22221751.2020.1780953
10.1007/978-1-60761-756-3_22
10.1128/mBio.01610-20
10.1371/journal.pone.0008342
10.1007/s12275-019-9272-7
10.1146/annurev-immunol-032713-120231
10.3390/v4060980
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
– notice: 2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.virusres.2021.198350
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1872-7492
EndPage 198350
ExternalDocumentID PMC7897408
33626380
10_1016_j_virusres_2021_198350
S0168170221000575
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
0SF
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARKO
AAXUO
ABBQC
ABFRF
ABJNI
ABLVK
ABMAC
ABMZM
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
CJTIS
CNWQP
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IH2
IHE
J1W
KOM
LCYCR
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPM
RPZ
SCC
SDF
SDG
SDP
SES
SIN
SPCBC
SSH
SSI
SSZ
T5K
WH7
~G-
.GJ
29Q
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACIEU
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HMG
HVGLF
HZ~
R2-
RIG
SEW
WUQ
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c570t-5c3bd6712512fcccf9852fba0c6fd341f6b829ee9058579ec3e41595fce4762b3
IEDL.DBID .~1
ISSN 0168-1702
1872-7492
IngestDate Thu Aug 21 14:13:54 EDT 2025
Fri Jul 11 11:51:32 EDT 2025
Sun Aug 24 03:41:46 EDT 2025
Thu Apr 03 07:08:36 EDT 2025
Tue Jul 01 01:45:29 EDT 2025
Thu Apr 24 22:55:37 EDT 2025
Fri Feb 23 02:47:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Open reading frame 8
SARS-CoV-2
Open reading frame 8 genotypes
Interferon beta
Endoplasmic reticulum stress
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c570t-5c3bd6712512fcccf9852fba0c6fd341f6b829ee9058579ec3e41595fce4762b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9637-1874
0000-0002-8812-3827
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7897408
PMID 33626380
PQID 2493452148
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897408
proquest_miscellaneous_2574365597
proquest_miscellaneous_2493452148
pubmed_primary_33626380
crossref_primary_10_1016_j_virusres_2021_198350
crossref_citationtrail_10_1016_j_virusres_2021_198350
elsevier_sciencedirect_doi_10_1016_j_virusres_2021_198350
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-15
PublicationDateYYYYMMDD 2021-04-15
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Virus research
PublicationTitleAlternate Virus Res
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Ping, Lee, Chen, Lee, Chan, Lien, Jap, Lin, Kao, Chen (bib0020) 2007; 196
Kawai, Akira (bib0055) 2007; 141
Mitzel, Lowry, Shirali, Liu, Stout-Delgado (bib0105) 2014; 192
Mohammad, Bouchama, Alharbi, Rashid (bib0110) 2020
Martinon, Chen, Lee, Glimcher (bib0095) 2010; 11
Sung, Chao, Jeng, Yang, Lai (bib0155) 2009; 387
Laha, Chakraborty, Das, Manna, Biswas, Chatterjee (bib0070) 2020; 85
Lu, Zhao, Li, Niu, Yang, Wu, Wang, Song, Huang, Zhu, Bi, Ma, Zhan, Wang, Hu, Zhou, Hu, Zhou, Zhao, Chen, Meng, Wang, Lin, Yuan, Xie, Ma, Liu, Wang, Xu, Holmes, Gao, Wu, Chen, Shi, Tan (bib0090) 2020; 395
Oostra, de Haan, Rottier (bib0120) 2007; 81
Wathelet, Orr, Frieman, Baric (bib0165) 2007; 81
Schneider, Chevillotte, Rice (bib0135) 2014; 32
Zhang, Zhang, Chen, Luo, Yuan, Huang, Yang, Yu, Liu, Liu, Song, Chen, Pan, Zhang, Li, Li, Huang, Xiao, Zhang (bib0185) 2020
Kamitani, Huang, Narayanan, Lokugamage, Makino (bib0050) 2009; 16
Chen, Yang, Zheng, Yang, Xing, Chen (bib0025) 2014; 5
Lee, Bae, Myoung (bib0075) 2019; 57
Gordon, Jang, Bouhaddou, Xu, Obernier, White, O’Meara, Rezelj, Guo, Swaney, Tummino, Hüttenhain, Kaake, Richards, Tutuncuoglu, Foussard, Batra, Haas, Modak, Kim, Haas, Polacco, Braberg, Fabius, Eckhardt, Soucheray, Bennett, Cakir, McGregor, Li, Meyer, Roesch, Vallet, Mac Kain, Miorin, Moreno, Naing, Zhou, Peng, Shi, Zhang, Shen, Kirby, Melnyk, Chorba, Lou, Dai, Barrio-Hernandez, Memon, Hernandez-Armenta, Lyu, Mathy, Perica, Pilla, Ganesan, Saltzberg, Rakesh, Liu, Rosenthal, Calviello, Venkataramanan, Liboy-Lugo, Lin, Huang, Liu, Wankowicz, Bohn, Safari, Ugur, Koh, Savar, Tran, Shengjuler, Fletcher, O’Neal, Cai, Chang, Broadhurst, Klippsten, Sharp, Wenzell, Kuzuoglu-Ozturk, Wang, Trenker, Young, Cavero, Hiatt, Roth, Rathore, Subramanian, Noack, Hubert, Stroud, Frankel, Rosenberg, Verba, Agard, Ott (bib0030) 2020; 583
Chan, Siu, Chin, Yuen, Zheng, Jin (bib0010) 2006; 80
Zhong, Tan, Liu (bib0190) 2012; 4
Rashid, Awan, Shah, Chen, Shan (bib0125) 2017; 18
Wong, Ye, Lui, Zheng, Yuan, Zhu, Fung, Yuen, Siu, Yeung, Cai, Woo, Yuen, Chan, Jin (bib0175) 2020
Stevens, Sancho, Martinez (bib0145) 2010; 648
Wong, Fung, Fang, Huang, Le, Liu (bib0170) 2018; 515
Chan, Kok, Zhu, Chu, To, Yuan, Yuen (bib0015) 2020; 9
Keng, Choi, Welkers, Chan, Shen, Gee Lim, Hong, Tan (bib0060) 2006; 354
Liu, Fung, Chong, Shukla, Hilgenfeld (bib0085) 2014; 109
Huang, Lokugamage, Rozovics, Narayanan, Semler, Makino (bib0040) 2011; 7
Ivashkiv, Donlin (bib0045) 2014; 14
Lim, Ng, Tam, Liu (bib0080) 2016; 4
Ribero, Jouvenet, Dreux, Nisole (bib0130) 2020; 16
Tang, Wu, Li, Song, Yao, Wu, Duan, Zhang, Wang, Qian, Cui, Lu (bib0160) 2020; 7
Shi, Nabar, Huang, Kehrl (bib0140) 2019; 5
Yuen, Lam, Wong, Mak, Wang, Chu, Cai, Jin, To, Chan, Yuen, Kok (bib0180) 2020; 9
Hou, Dong, Zhu, Yuan, Wei, Wang, Quan, Chu, Wang, Jiang, Xi, Li, Song, Guo, Lv, Liu (bib0035) 2019; 537
Ceraolo, Giorgi (bib0005) 2020; 92
Köseler, Sabirli, Gören, Türkçüer, Kurt (bib0065) 2020; 34
Minakshi, Padhan, Rani, Khan, Ahmad, Jameel (bib0100) 2009; 4
NCBI Resource Coordinators (bib0115) 2018; 46
Su, Anderson, Young, Linster, Zhu, Jayakumar, Zhuang, Kalimuddin, Low, Tan, Chia, Mak, Octavia, Chavatte, Lee, Pada, Tan, Sun, Yan, Maurer-Stroh, Mendenhall, Leo, Lye, Wang, Smith (bib0150) 2020; 11
Kawai (10.1016/j.virusres.2021.198350_bib0055) 2007; 141
Martinon (10.1016/j.virusres.2021.198350_bib0095) 2010; 11
Shi (10.1016/j.virusres.2021.198350_bib0140) 2019; 5
Sung (10.1016/j.virusres.2021.198350_bib0155) 2009; 387
Chen (10.1016/j.virusres.2021.198350_bib0025) 2014; 5
Mohammad (10.1016/j.virusres.2021.198350_bib0110) 2020
Chan (10.1016/j.virusres.2021.198350_bib0010) 2006; 80
Hou (10.1016/j.virusres.2021.198350_bib0035) 2019; 537
Yuen (10.1016/j.virusres.2021.198350_bib0180) 2020; 9
Köseler (10.1016/j.virusres.2021.198350_bib0065) 2020; 34
Liu (10.1016/j.virusres.2021.198350_bib0085) 2014; 109
Rashid (10.1016/j.virusres.2021.198350_bib0125) 2017; 18
Gordon (10.1016/j.virusres.2021.198350_bib0030) 2020; 583
Zhong (10.1016/j.virusres.2021.198350_bib0190) 2012; 4
Huang (10.1016/j.virusres.2021.198350_bib0040) 2011; 7
Mitzel (10.1016/j.virusres.2021.198350_bib0105) 2014; 192
Minakshi (10.1016/j.virusres.2021.198350_bib0100) 2009; 4
Keng (10.1016/j.virusres.2021.198350_bib0060) 2006; 354
Su (10.1016/j.virusres.2021.198350_bib0150) 2020; 11
NCBI Resource Coordinators (10.1016/j.virusres.2021.198350_bib0115) 2018; 46
Tang (10.1016/j.virusres.2021.198350_bib0160) 2020; 7
Chen (10.1016/j.virusres.2021.198350_bib0020) 2007; 196
Lee (10.1016/j.virusres.2021.198350_bib0075) 2019; 57
Ceraolo (10.1016/j.virusres.2021.198350_bib0005) 2020; 92
Wong (10.1016/j.virusres.2021.198350_bib0175) 2020
Laha (10.1016/j.virusres.2021.198350_bib0070) 2020; 85
Ivashkiv (10.1016/j.virusres.2021.198350_bib0045) 2014; 14
Wathelet (10.1016/j.virusres.2021.198350_bib0165) 2007; 81
Stevens (10.1016/j.virusres.2021.198350_bib0145) 2010; 648
Zhang (10.1016/j.virusres.2021.198350_bib0185) 2020
Lu (10.1016/j.virusres.2021.198350_bib0090) 2020; 395
Chan (10.1016/j.virusres.2021.198350_bib0015) 2020; 9
Oostra (10.1016/j.virusres.2021.198350_bib0120) 2007; 81
Kamitani (10.1016/j.virusres.2021.198350_bib0050) 2009; 16
Schneider (10.1016/j.virusres.2021.198350_bib0135) 2014; 32
Ribero (10.1016/j.virusres.2021.198350_bib0130) 2020; 16
Lim (10.1016/j.virusres.2021.198350_bib0080) 2016; 4
Wong (10.1016/j.virusres.2021.198350_bib0170) 2018; 515
References_xml – volume: 11
  start-page: 411
  year: 2010
  end-page: 418
  ident: bib0095
  article-title: TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages
  publication-title: Nat. Immunol.
– volume: 9
  start-page: 1418
  year: 2020
  end-page: 1428
  ident: bib0180
  article-title: SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists
  publication-title: Emerg. Microbes Infect.
– volume: 81
  start-page: 13876
  year: 2007
  end-page: 13888
  ident: bib0120
  article-title: The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8
  publication-title: J. Virol.
– volume: 81
  start-page: 11620
  year: 2007
  end-page: 11633
  ident: bib0165
  article-title: Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain
  publication-title: J. Virol.
– year: 2020
  ident: bib0110
  article-title: SARS-CoV-2 ORF8 and SARS-CoV ORF8ab: Genomic Divergence and Functional Convergence
– volume: 16
  start-page: 1
  year: 2020
  end-page: 22
  ident: bib0130
  article-title: Interplay between SARS-CoV-2 and the type I interferon response
  publication-title: PLoS Pathog.
– volume: 109
  start-page: 97
  year: 2014
  end-page: 109
  ident: bib0085
  article-title: Accessory proteins of SARS-CoV and other coronaviruses
  publication-title: Antiviral Res.
– volume: 7
  year: 2011
  ident: bib0040
  article-title: SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage
  publication-title: PLoS Pathog.
– volume: 92
  start-page: 522
  year: 2020
  end-page: 528
  ident: bib0005
  article-title: Genomic variance of the 2019-nCoV coronavirus
  publication-title: J. Med. Virol.
– volume: 4
  start-page: 1
  year: 2009
  end-page: 10
  ident: bib0100
  article-title: The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor
  publication-title: PLoS One
– volume: 192
  start-page: 4273
  year: 2014
  end-page: 4283
  ident: bib0105
  article-title: Age-enhanced endoplasmic reticulum stress contributes to increased Atg9A inhibition of STING-mediated IFN-β production during Streptococcus pneumoniae infection
  publication-title: J. Immunol.
– volume: 7
  start-page: 1012
  year: 2020
  end-page: 1023
  ident: bib0160
  article-title: On the origin and continuing evolution of SARS-CoV-2
  publication-title: Natl. Sci. Rev.
– volume: 14
  start-page: 36
  year: 2014
  end-page: 49
  ident: bib0045
  article-title: Regulation of type I interferon responses
  publication-title: Nat. Rev. Immunol.
– volume: 57
  start-page: 803
  year: 2019
  end-page: 811
  ident: bib0075
  article-title: Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-β promoter activation: its implication for vaccine design
  publication-title: J. Microbiol.
– volume: 4
  year: 2016
  ident: bib0080
  article-title: Human coronaviruses: a review of virus-host interactions
  publication-title: Dis. (Basel, Switzerland)
– volume: 395
  start-page: 565
  year: 2020
  end-page: 574
  ident: bib0090
  article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding
  publication-title: Lancet (Lond., Engl.)
– volume: 537
  start-page: 254
  year: 2019
  end-page: 263
  ident: bib0035
  article-title: Seneca valley virus activates autophagy through the PERK and ATF6 UPR pathways
  publication-title: Virology
– volume: 34
  start-page: 1645
  year: 2020
  end-page: 1650
  ident: bib0065
  article-title: Endoplasmic reticulum stress markers in SARS-COV-2 infection and pneumonia: case-control study
  publication-title: In Vivo (Brooklyn)
– volume: 4
  start-page: 980
  year: 2012
  end-page: 1010
  ident: bib0190
  article-title: Recent progress in studies of arterivirus- and coronavirus-host interactions
  publication-title: Viruses
– volume: 583
  start-page: 459
  year: 2020
  end-page: 468
  ident: bib0030
  article-title: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
  publication-title: Nature
– volume: 46
  start-page: D8
  year: 2018
  end-page: D13
  ident: bib0115
  article-title: Database resources of the national center for biotechnology information
  publication-title: Nucleic Acids Res.
– year: 2020
  ident: bib0175
  article-title: Middle east respiratory syndrome coronavirus ORF8b accessory protein suppresses type I IFN expression by impeding HSP70-dependent activation of IRF3 kinase IKKε
  publication-title: J. Immunol.
– volume: 16
  start-page: 1134
  year: 2009
  end-page: 1140
  ident: bib0050
  article-title: A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein
  publication-title: Nat. Struct. Mol. Biol.
– volume: 196
  start-page: 405
  year: 2007
  end-page: 415
  ident: bib0020
  article-title: Open reading frame 8a of the human severe acute respiratory syndrome coronavirus not only promotes viral replication but also induces apoptosis
  publication-title: J. Infect. Dis.
– volume: 18
  year: 2017
  ident: bib0125
  article-title: Induction of miR-3648 upon ER stress and its regulatory role in cell proliferation
  publication-title: Int. J. Mol. Sci.
– volume: 85
  year: 2020
  ident: bib0070
  article-title: Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission
  publication-title: Infect. Genet. Evol.
– year: 2020
  ident: bib0185
  article-title: The ORF8 Protein of SARS-CoV-2 Mediates Immune Evasion Through Potently Downregulating MHC-I
– volume: 5
  start-page: 101
  year: 2019
  ident: bib0140
  article-title: SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes
  publication-title: Cell Death Discov.
– volume: 5
  start-page: 369
  year: 2014
  end-page: 381
  ident: bib0025
  article-title: SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex
  publication-title: Protein Cell
– volume: 354
  start-page: 132
  year: 2006
  end-page: 142
  ident: bib0060
  article-title: The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV and down-regulates the expression of the envelope protein in infected cells
  publication-title: Virology
– volume: 515
  start-page: 165
  year: 2018
  end-page: 175
  ident: bib0170
  article-title: Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3
  publication-title: Virology
– volume: 141
  start-page: 137
  year: 2007
  end-page: 145
  ident: bib0055
  article-title: Antiviral signaling through pattern recognition receptors
  publication-title: J. Biochem.
– volume: 387
  start-page: 402
  year: 2009
  end-page: 413
  ident: bib0155
  article-title: The 8ab protein of SARS-CoV is a luminal ER membrane-associated protein and induces the activation of ATF6
  publication-title: Virology
– volume: 80
  start-page: 9279
  year: 2006
  end-page: 9287
  ident: bib0010
  article-title: Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein
  publication-title: J. Virol.
– volume: 648
  start-page: 313
  year: 2010
  end-page: 324
  ident: bib0145
  article-title: Protein misfolding and cellular stress in disease and aging
  publication-title: Methods Mol. Biol.
– volume: 32
  start-page: 513
  year: 2014
  end-page: 545
  ident: bib0135
  article-title: Interferon-stimulated genes: a complex web of host defenses
  publication-title: Annu. Rev. Immunol.
– volume: 9
  start-page: 221
  year: 2020
  end-page: 236
  ident: bib0015
  article-title: Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan
  publication-title: Emerg. Microbes Infect.
– volume: 11
  year: 2020
  ident: bib0150
  article-title: Discovery and genomic characterization of a 382-nucleotide deletion in ORF7b and ORF8 during the early evolution of SARS-CoV-2
  publication-title: MBio
– volume: 387
  start-page: 402
  year: 2009
  ident: 10.1016/j.virusres.2021.198350_bib0155
  article-title: The 8ab protein of SARS-CoV is a luminal ER membrane-associated protein and induces the activation of ATF6
  publication-title: Virology
  doi: 10.1016/j.virol.2009.02.021
– volume: 81
  start-page: 11620
  year: 2007
  ident: 10.1016/j.virusres.2021.198350_bib0165
  article-title: Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain
  publication-title: J. Virol.
  doi: 10.1128/JVI.00702-07
– volume: 80
  start-page: 9279
  year: 2006
  ident: 10.1016/j.virusres.2021.198350_bib0010
  article-title: Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein
  publication-title: J. Virol.
  doi: 10.1128/JVI.00659-06
– volume: 192
  start-page: 4273
  year: 2014
  ident: 10.1016/j.virusres.2021.198350_bib0105
  article-title: Age-enhanced endoplasmic reticulum stress contributes to increased Atg9A inhibition of STING-mediated IFN-β production during Streptococcus pneumoniae infection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1303090
– volume: 7
  year: 2011
  ident: 10.1016/j.virusres.2021.198350_bib0040
  article-title: SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002433
– year: 2020
  ident: 10.1016/j.virusres.2021.198350_bib0175
  article-title: Middle east respiratory syndrome coronavirus ORF8b accessory protein suppresses type I IFN expression by impeding HSP70-dependent activation of IRF3 kinase IKKε
  publication-title: J. Immunol.
– volume: 583
  start-page: 459
  year: 2020
  ident: 10.1016/j.virusres.2021.198350_bib0030
  article-title: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing
  publication-title: Nature
  doi: 10.1038/s41586-020-2286-9
– volume: 11
  start-page: 411
  year: 2010
  ident: 10.1016/j.virusres.2021.198350_bib0095
  article-title: TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1857
– volume: 14
  start-page: 36
  year: 2014
  ident: 10.1016/j.virusres.2021.198350_bib0045
  article-title: Regulation of type I interferon responses
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3581
– volume: 92
  start-page: 522
  year: 2020
  ident: 10.1016/j.virusres.2021.198350_bib0005
  article-title: Genomic variance of the 2019-nCoV coronavirus
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.25700
– volume: 7
  start-page: 1012
  year: 2020
  ident: 10.1016/j.virusres.2021.198350_bib0160
  article-title: On the origin and continuing evolution of SARS-CoV-2
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwaa036
– volume: 46
  start-page: D8
  year: 2018
  ident: 10.1016/j.virusres.2021.198350_bib0115
  article-title: Database resources of the national center for biotechnology information
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1095
– volume: 18
  year: 2017
  ident: 10.1016/j.virusres.2021.198350_bib0125
  article-title: Induction of miR-3648 upon ER stress and its regulatory role in cell proliferation
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18071375
– volume: 34
  start-page: 1645
  year: 2020
  ident: 10.1016/j.virusres.2021.198350_bib0065
  article-title: Endoplasmic reticulum stress markers in SARS-COV-2 infection and pneumonia: case-control study
  publication-title: In Vivo (Brooklyn)
  doi: 10.21873/invivo.11956
– volume: 395
  start-page: 565
  year: 2020
  ident: 10.1016/j.virusres.2021.198350_bib0090
  article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding
  publication-title: Lancet (Lond., Engl.)
  doi: 10.1016/S0140-6736(20)30251-8
– volume: 81
  start-page: 13876
  year: 2007
  ident: 10.1016/j.virusres.2021.198350_bib0120
  article-title: The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8
  publication-title: J. Virol.
  doi: 10.1128/JVI.01631-07
– volume: 85
  year: 2020
  ident: 10.1016/j.virusres.2021.198350_bib0070
  article-title: Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2020.104445
– volume: 16
  start-page: 1
  year: 2020
  ident: 10.1016/j.virusres.2021.198350_bib0130
  article-title: Interplay between SARS-CoV-2 and the type I interferon response
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1008737
– volume: 109
  start-page: 97
  year: 2014
  ident: 10.1016/j.virusres.2021.198350_bib0085
  article-title: Accessory proteins of SARS-CoV and other coronaviruses
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2014.06.013
– volume: 354
  start-page: 132
  year: 2006
  ident: 10.1016/j.virusres.2021.198350_bib0060
  article-title: The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV and down-regulates the expression of the envelope protein in infected cells
  publication-title: Virology
  doi: 10.1016/j.virol.2006.06.026
– volume: 5
  start-page: 369
  year: 2014
  ident: 10.1016/j.virusres.2021.198350_bib0025
  article-title: SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex
  publication-title: Protein Cell
  doi: 10.1007/s13238-014-0026-3
– volume: 196
  start-page: 405
  year: 2007
  ident: 10.1016/j.virusres.2021.198350_bib0020
  article-title: Open reading frame 8a of the human severe acute respiratory syndrome coronavirus not only promotes viral replication but also induces apoptosis
  publication-title: J. Infect. Dis.
  doi: 10.1086/519166
– volume: 16
  start-page: 1134
  year: 2009
  ident: 10.1016/j.virusres.2021.198350_bib0050
  article-title: A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1680
– volume: 4
  year: 2016
  ident: 10.1016/j.virusres.2021.198350_bib0080
  article-title: Human coronaviruses: a review of virus-host interactions
  publication-title: Dis. (Basel, Switzerland)
– volume: 5
  start-page: 101
  year: 2019
  ident: 10.1016/j.virusres.2021.198350_bib0140
  article-title: SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes
  publication-title: Cell Death Discov.
  doi: 10.1038/s41420-019-0181-7
– volume: 141
  start-page: 137
  year: 2007
  ident: 10.1016/j.virusres.2021.198350_bib0055
  article-title: Antiviral signaling through pattern recognition receptors
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvm032
– volume: 537
  start-page: 254
  year: 2019
  ident: 10.1016/j.virusres.2021.198350_bib0035
  article-title: Seneca valley virus activates autophagy through the PERK and ATF6 UPR pathways
  publication-title: Virology
  doi: 10.1016/j.virol.2019.08.029
– year: 2020
  ident: 10.1016/j.virusres.2021.198350_bib0110
– volume: 9
  start-page: 221
  year: 2020
  ident: 10.1016/j.virusres.2021.198350_bib0015
  article-title: Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2020.1719902
– volume: 515
  start-page: 165
  year: 2018
  ident: 10.1016/j.virusres.2021.198350_bib0170
  article-title: Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3
  publication-title: Virology
  doi: 10.1016/j.virol.2017.12.028
– volume: 9
  start-page: 1418
  year: 2020
  ident: 10.1016/j.virusres.2021.198350_bib0180
  article-title: SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2020.1780953
– volume: 648
  start-page: 313
  year: 2010
  ident: 10.1016/j.virusres.2021.198350_bib0145
  article-title: Protein misfolding and cellular stress in disease and aging
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60761-756-3_22
– volume: 11
  year: 2020
  ident: 10.1016/j.virusres.2021.198350_bib0150
  article-title: Discovery and genomic characterization of a 382-nucleotide deletion in ORF7b and ORF8 during the early evolution of SARS-CoV-2
  publication-title: MBio
  doi: 10.1128/mBio.01610-20
– volume: 4
  start-page: 1
  year: 2009
  ident: 10.1016/j.virusres.2021.198350_bib0100
  article-title: The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0008342
– volume: 57
  start-page: 803
  year: 2019
  ident: 10.1016/j.virusres.2021.198350_bib0075
  article-title: Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-β promoter activation: its implication for vaccine design
  publication-title: J. Microbiol.
  doi: 10.1007/s12275-019-9272-7
– volume: 32
  start-page: 513
  year: 2014
  ident: 10.1016/j.virusres.2021.198350_bib0135
  article-title: Interferon-stimulated genes: a complex web of host defenses
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032713-120231
– volume: 4
  start-page: 980
  year: 2012
  ident: 10.1016/j.virusres.2021.198350_bib0190
  article-title: Recent progress in studies of arterivirus- and coronavirus-host interactions
  publication-title: Viruses
  doi: 10.3390/v4060980
– year: 2020
  ident: 10.1016/j.virusres.2021.198350_bib0185
SSID ssj0006376
Score 2.5864167
Snippet •SARS-CoV-2 orf8 genotypes, orf8L and orf8S induced ER stress pathways.•SARS-CoV-2 orf8 genotypes, orf8L and orf8S antagonized interferon Beta...
The open reading frame 8 (orf8) is an accessory protein of SARS-CoV-2. It has 121 amino acids with two genotypes, orf8L and orf8S. In this study, we...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 198350
SubjectTerms Activating Transcription Factor 6 - physiology
antagonists
eIF-2 Kinase - physiology
endoplasmic reticulum
Endoplasmic reticulum stress
Endoplasmic Reticulum Stress - physiology
Endoribonucleases - physiology
HEK293 Cells
Humans
Immune Evasion
Interferon beta
interferon regulatory factor-3
Interferon-beta - antagonists & inhibitors
Interferon-beta - biosynthesis
interferons
Open reading frame 8
Open reading frame 8 genotypes
polyinosinic-polycytidylic acid
Protein Serine-Threonine Kinases - physiology
SARS-CoV-2
Sequence Alignment
Severe acute respiratory syndrome coronavirus 2
Signal Transduction - physiology
Unfolded Protein Response
Viral Proteins - chemistry
Viral Proteins - physiology
viruses
X-Box Binding Protein 1 - physiology
Title The ORF8 protein of SARS-CoV-2 induced endoplasmic reticulum stress and mediated immune evasion by antagonizing production of interferon beta
URI https://dx.doi.org/10.1016/j.virusres.2021.198350
https://www.ncbi.nlm.nih.gov/pubmed/33626380
https://www.proquest.com/docview/2493452148
https://www.proquest.com/docview/2574365597
https://pubmed.ncbi.nlm.nih.gov/PMC7897408
Volume 296
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELamTUi8IH5TYJOReHWbJnHiPFbVqgJiSCtDe4v84ywyjaSq2knjgf-A_5k7J-lWQOyBxyZnOc1dfN_Z_j4z9tYoaSLrC6F0BiJ1UgtlDAintZKR9gWkRE7-eJLNz9L35_J8j017Lgxtq-zG_nZMD6N1d2XUvc3RsqpGCwQrpC4XxzRFjaiDGOxpTlE-_HGzzSNLwgFzZCzI-hZL-GJ4Va02mIlItjseD7H-Toh___cE9ScA_X0f5a3ENHvIHnSIkk_ah37E9qB-zO61Z0xeP2E_MRD4p9OZ4kGSoap54_licroQ0-aLiDnW5Ohdx6F2zRKh9LfK8sBspGlB3lJJuK4dDxwTxKe8IkoJcLjSNNPGzTXeprWtuvqOeZC6ca0kLfVEchQrDysyhLV-ys5mx5-nc9GdwSCszKO1kDYxLssDDPLWoleVjL3Rkc28wwzoM6PiAqCIsO7IC7AJICQopLeAvohN8ozt100NLxjHarhwYzPGiyYFGZnYJZBgrnB5ZF0UD5jsX3xpO4FyOifjsux3ol2UvcNKcljZOmzARtt2y1ai484WRe_XcifYSswjd7Z90wdCiV8iLa_oGpoNGqVFkiIaStU_bCQitoyquAF73gbP9pmToAyksId8J6y2BqQEvnunrr4GRfBcYVkYqZf_8b9esfv0ixbKxvI121-vNnCIeGttjsIHdcQOJu8-zE9-AVdOMEs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYIL4k14GgmOTja7613vgUNViFL6QGpa1Nvix6zYqnWikBSFA_-AX8MfZGYfoQFED6jXtR07nvHMN_Y8GHtplDSBLTKhdAIidlILZQwIp7WSgS4yiCk4eXcvGR7G747k0Rr70cbCkFtlI_trmV5J6-ZLr9nN3qQseyMEK5RdLgzpihpRR-NZuQ2LL2i3fX699QaJ_CoMB28PNoeiKS0grEyDmZA2Mi5JK-1eWIuLVTIsjA5sUjgU7EViVJgBZAHC6TQDGwFqukwWFmIUHybC373CrsYoLqhsQvfbL7-SJKoq2tHqBC3vXFjycfesnM5R9VGe8LDfRYM_ooD_v2vEPxHv746b5zTh4Ba72UBYvlHv0m22Bv4Ou1YXtVzcZd-R8_j7_YHiVQ6I0vNxwUcb-yOxOf4gQl56h-zkOHg3niB2Py0tr0Ip6R6S17ErXHvHq6AWBMS8pBgW4HCm6WqPmwU202OaL7-i4qVpXJ0Dl2ai_BfTAqbUEWb6Hju8FMrcZ-t-7OEh42h-Z65v-vjRxCADE7oIIlROLg2sC8IOk-3G57bJiE6FOU7y1vXtOG8JlhPB8ppgHdZbjpvUOUEuHJG1dM1XuDtHxXXh2BctI-R49Ok9R3sYz7FTnEUxwq9Y_aOPRIiYkNnYYQ9q5lmuOapSESmcIV1hq2UHSj2-2uLLT1UK8lShHRqoR__xv56z68OD3Z18Z2tv-zG7QS30SteXT9j6bDqHpwj2ZuZZdbg4-3jZp_kny4FsPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ORF8+protein+of+SARS-CoV-2+induced+endoplasmic+reticulum+stress+and+mediated+immune+evasion+by+antagonizing+production+of+interferon+beta&rft.jtitle=Virus+research&rft.au=Rashid%2C+Farooq&rft.au=Dzakah%2C+Emmanuel+Enoch&rft.au=Wang%2C+Haiying&rft.au=Tang%2C+Shixing&rft.date=2021-04-15&rft.issn=1872-7492&rft.eissn=1872-7492&rft.volume=296&rft.spage=198350&rft_id=info:doi/10.1016%2Fj.virusres.2021.198350&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1702&client=summon