The ORF8 protein of SARS-CoV-2 induced endoplasmic reticulum stress and mediated immune evasion by antagonizing production of interferon beta
•SARS-CoV-2 orf8 genotypes, orf8L and orf8S induced ER stress pathways.•SARS-CoV-2 orf8 genotypes, orf8L and orf8S antagonized interferon Beta production.•SARS-CoV-2 orf8 genotypes, orf8L and orf8S decrease the nuclear translocation of IRF3 induced by poly (I:C).•The effects of orf8L and orf8S are i...
Saved in:
Published in | Virus research Vol. 296; p. 198350 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •SARS-CoV-2 orf8 genotypes, orf8L and orf8S induced ER stress pathways.•SARS-CoV-2 orf8 genotypes, orf8L and orf8S antagonized interferon Beta production.•SARS-CoV-2 orf8 genotypes, orf8L and orf8S decrease the nuclear translocation of IRF3 induced by poly (I:C).•The effects of orf8L and orf8S are in the context of ER stress pathways regulation and interferon Beta antagonizing were same.
The open reading frame 8 (orf8) is an accessory protein of SARS-CoV-2. It has 121 amino acids with two genotypes, orf8L and orf8S. In this study, we overexpressed the orf8L and orf8S of SARS-CoV-2 as well as the orf8b of SARS-CoV to investigate their roles in the regulation of endoplasmic reticulum (ER) stress and the inhibition of interferon beta (IFNß) production. We found that the two genotypes of SARS-CoV-2 orf8 are capable of inducing ER stress without significant difference by triggering the activating transcription factor 6 (ATF6) and inositol-requiring enzymes 1 (IRE1) branches of the ER stress pathway. However, the third branch of ER stress pathway, i.e. the protein kinase-like ER kinase (PERK), was unaffected by the overexpression of SARS-CoV-2 orf8L or orf8S. Moreover, both orf8L and orf8S of SARS-CoV-2 are capable of down regulating the production of IFNß and interferon-stimulated genes (ISG), ISG15 and ISG56 induced by polyinosinic-polycytidylic acid (poly (I:C)). Moreover, we also found decreased nuclear translocation of Interferon regulatory factor 3 (IRF3), after overexpressing orf8L and orf8S induced by poly (I:C). Our data demonstrated that SARS-CoV-2 orf8 protein could induce ER stress by activating the ATF6 and IRE1 pathways, but not the PERK pathway, and functions as an interferon antagonist to inhibit the production of IFNß. However, these functions appeared not to be affected by the genotypes of SARS-CoV-2 orf8L and orf8S. |
---|---|
AbstractList | The open reading frame 8 (orf8) is an accessory protein of SARS-CoV-2. It has 121 amino acids with two genotypes, orf8L and orf8S. In this study, we overexpressed the orf8L and orf8S of SARS-CoV-2 as well as the orf8b of SARS-CoV to investigate their roles in the regulation of endoplasmic reticulum (ER) stress and the inhibition of interferon beta (IFNß) production. We found that the two genotypes of SARS-CoV-2 orf8 are capable of inducing ER stress without significant difference by triggering the activating transcription factor 6 (ATF6) and inositol-requiring enzymes 1 (IRE1) branches of the ER stress pathway. However, the third branch of ER stress pathway, i.e. the protein kinase-like ER kinase (PERK), was unaffected by the overexpression of SARS-CoV-2 orf8L or orf8S. Moreover, both orf8L and orf8S of SARS-CoV-2 are capable of down regulating the production of IFNß and interferon-stimulated genes (ISG), ISG15 and ISG56 induced by polyinosinic-polycytidylic acid (poly (I:C)). Moreover, we also found decreased nuclear translocation of Interferon regulatory factor 3 (IRF3), after overexpressing orf8L and orf8S induced by poly (I:C). Our data demonstrated that SARS-CoV-2 orf8 protein could induce ER stress by activating the ATF6 and IRE1 pathways, but not the PERK pathway, and functions as an interferon antagonist to inhibit the production of IFNß. However, these functions appeared not to be affected by the genotypes of SARS-CoV-2 orf8L and orf8S. •SARS-CoV-2 orf8 genotypes, orf8L and orf8S induced ER stress pathways.•SARS-CoV-2 orf8 genotypes, orf8L and orf8S antagonized interferon Beta production.•SARS-CoV-2 orf8 genotypes, orf8L and orf8S decrease the nuclear translocation of IRF3 induced by poly (I:C).•The effects of orf8L and orf8S are in the context of ER stress pathways regulation and interferon Beta antagonizing were same. The open reading frame 8 (orf8) is an accessory protein of SARS-CoV-2. It has 121 amino acids with two genotypes, orf8L and orf8S. In this study, we overexpressed the orf8L and orf8S of SARS-CoV-2 as well as the orf8b of SARS-CoV to investigate their roles in the regulation of endoplasmic reticulum (ER) stress and the inhibition of interferon beta (IFNß) production. We found that the two genotypes of SARS-CoV-2 orf8 are capable of inducing ER stress without significant difference by triggering the activating transcription factor 6 (ATF6) and inositol-requiring enzymes 1 (IRE1) branches of the ER stress pathway. However, the third branch of ER stress pathway, i.e. the protein kinase-like ER kinase (PERK), was unaffected by the overexpression of SARS-CoV-2 orf8L or orf8S. Moreover, both orf8L and orf8S of SARS-CoV-2 are capable of down regulating the production of IFNß and interferon-stimulated genes (ISG), ISG15 and ISG56 induced by polyinosinic-polycytidylic acid (poly (I:C)). Moreover, we also found decreased nuclear translocation of Interferon regulatory factor 3 (IRF3), after overexpressing orf8L and orf8S induced by poly (I:C). Our data demonstrated that SARS-CoV-2 orf8 protein could induce ER stress by activating the ATF6 and IRE1 pathways, but not the PERK pathway, and functions as an interferon antagonist to inhibit the production of IFNß. However, these functions appeared not to be affected by the genotypes of SARS-CoV-2 orf8L and orf8S. The open reading frame 8 (orf8) is an accessory protein of SARS-CoV-2. It has 121 amino acids with two genotypes, orf8L and orf8S. In this study, we overexpressed the orf8L and orf8S of SARS-CoV-2 as well as the orf8b of SARS-CoV to investigate their roles in the regulation of endoplasmic reticulum (ER) stress and the inhibition of interferon beta (IFNß) production. We found that the two genotypes of SARS-CoV-2 orf8 are capable of inducing ER stress without significant difference by triggering the activating transcription factor 6 (ATF6) and inositol-requiring enzymes 1 (IRE1) branches of the ER stress pathway. However, the third branch of ER stress pathway, i.e. the protein kinase-like ER kinase (PERK), was unaffected by the overexpression of SARS-CoV-2 orf8L or orf8S. Moreover, both orf8L and orf8S of SARS-CoV-2 are capable of down regulating the production of IFNß and interferon-stimulated genes (ISG), ISG15 and ISG56 induced by polyinosinic-polycytidylic acid (poly (I:C)). Moreover, we also found decreased nuclear translocation of Interferon regulatory factor 3 (IRF3), after overexpressing orf8L and orf8S induced by poly (I:C). Our data demonstrated that SARS-CoV-2 orf8 protein could induce ER stress by activating the ATF6 and IRE1 pathways, but not the PERK pathway, and functions as an interferon antagonist to inhibit the production of IFNß. However, these functions appeared not to be affected by the genotypes of SARS-CoV-2 orf8L and orf8S.The open reading frame 8 (orf8) is an accessory protein of SARS-CoV-2. It has 121 amino acids with two genotypes, orf8L and orf8S. In this study, we overexpressed the orf8L and orf8S of SARS-CoV-2 as well as the orf8b of SARS-CoV to investigate their roles in the regulation of endoplasmic reticulum (ER) stress and the inhibition of interferon beta (IFNß) production. We found that the two genotypes of SARS-CoV-2 orf8 are capable of inducing ER stress without significant difference by triggering the activating transcription factor 6 (ATF6) and inositol-requiring enzymes 1 (IRE1) branches of the ER stress pathway. However, the third branch of ER stress pathway, i.e. the protein kinase-like ER kinase (PERK), was unaffected by the overexpression of SARS-CoV-2 orf8L or orf8S. Moreover, both orf8L and orf8S of SARS-CoV-2 are capable of down regulating the production of IFNß and interferon-stimulated genes (ISG), ISG15 and ISG56 induced by polyinosinic-polycytidylic acid (poly (I:C)). Moreover, we also found decreased nuclear translocation of Interferon regulatory factor 3 (IRF3), after overexpressing orf8L and orf8S induced by poly (I:C). Our data demonstrated that SARS-CoV-2 orf8 protein could induce ER stress by activating the ATF6 and IRE1 pathways, but not the PERK pathway, and functions as an interferon antagonist to inhibit the production of IFNß. However, these functions appeared not to be affected by the genotypes of SARS-CoV-2 orf8L and orf8S. |
ArticleNumber | 198350 |
Author | Dzakah, Emmanuel Enoch Tang, Shixing Wang, Haiying Rashid, Farooq |
Author_xml | – sequence: 1 givenname: Farooq orcidid: 0000-0002-8812-3827 surname: Rashid fullname: Rashid, Farooq email: farooq12@mail.ustc.edu.cn organization: Dermatology Hospital, Southern Medical University, Guangzhou, China – sequence: 2 givenname: Emmanuel Enoch surname: Dzakah fullname: Dzakah, Emmanuel Enoch email: edzakah@mail.ustc.edu.cn organization: Dermatology Hospital, Southern Medical University, Guangzhou, China – sequence: 3 givenname: Haiying surname: Wang fullname: Wang, Haiying email: yingzi224926@smu.edu.cn organization: Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China – sequence: 4 givenname: Shixing orcidid: 0000-0001-9637-1874 surname: Tang fullname: Tang, Shixing email: tamgshixing@smu.edu.cn organization: Dermatology Hospital, Southern Medical University, Guangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33626380$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstq3DAUNSWlmaT9haBlN57qYUk2lNIwJGkhEEjSboUsX0802NJUkgfSf-g_R2aS0HYzKy3O4x5xzklx5LyDojgjeEkwEZ82y50NUwwQlxRTsiRNzTh-UyxILWkpq4YeFYtMrEsiMT0uTmLcYIwFk-JdccyYoILVeFH8uX8AdHN7WaNt8AmsQ75Hd-e3d-XK_ywpsq6bDHQIXOe3g46jNShAsmYaphHFlANEpF2HRuisTplpx3FygGCno_UOtY8ZTnrtnf1t3Xo-kx3TDOVL1iUIPYSZCEm_L972eojw4fk9LX5cXtyvvpXXN1ffV-fXpeESp5Ib1nZCEsoJ7Y0xfVNz2rcaG9F3rCK9aGvaADSY11w2YBhUhDe8N1BJQVt2WnzZ-26nNgc34FLQg9oGO-rwqLy26l_E2Qe19jsl60ZWuM4GH58Ngv81QUxqtNHAMGgHfoqKclkxwXkjD1OrhlWckmp2Pfs71muel7oyQewJJviYy-9fKQSreRdqo152oeZdqP0usvDzf0Jjk55byN-zw2H5170ccik7C0FFY8HlYdgAJqnO20MWT_wx2-U |
CitedBy_id | crossref_primary_10_3390_cells13020123 crossref_primary_10_1128_jvi_02216_21 crossref_primary_10_7717_peerj_13136 crossref_primary_10_1016_j_chom_2021_05_004 crossref_primary_10_3390_ijerph19010112 crossref_primary_10_3390_pathogens13121117 crossref_primary_10_1002_rmv_2346 crossref_primary_10_3390_biom13091338 crossref_primary_10_1007_s40618_021_01693_3 crossref_primary_10_1016_j_lfs_2022_120624 crossref_primary_10_1128_mbio_00540_23 crossref_primary_10_1007_s11030_022_10405_9 crossref_primary_10_1186_s13065_024_01185_4 crossref_primary_10_1128_jvi_00754_24 crossref_primary_10_1128_spectrum_05064_22 crossref_primary_10_1016_j_jbc_2022_101724 crossref_primary_10_1038_s41467_024_47599_5 crossref_primary_10_1083_jcb_202402062 crossref_primary_10_3390_v16010161 crossref_primary_10_3389_fimmu_2024_1339660 crossref_primary_10_3390_ijms25021157 crossref_primary_10_1089_hs_2023_0008 crossref_primary_10_3390_ijms23158285 crossref_primary_10_3390_v15020290 crossref_primary_10_1186_s12964_023_01104_5 crossref_primary_10_3389_fgene_2021_693227 crossref_primary_10_1007_s12275_022_1525_1 crossref_primary_10_1091_mbc_E23_04_0147 crossref_primary_10_3389_fmed_2022_824622 crossref_primary_10_1002_jmv_27855 crossref_primary_10_1038_s41419_022_05250_5 crossref_primary_10_3389_fmicb_2021_665041 crossref_primary_10_3389_fmicb_2021_703145 crossref_primary_10_1371_journal_ppat_1009705 crossref_primary_10_3390_pathogens11080940 crossref_primary_10_3389_fimmu_2022_1035559 crossref_primary_10_3390_vaccines11050991 crossref_primary_10_1186_s12929_024_01062_1 crossref_primary_10_3389_fmolb_2023_1270511 crossref_primary_10_2174_0115680096272663231121100515 crossref_primary_10_3389_fbioe_2022_1052436 crossref_primary_10_1038_s44298_024_00076_8 crossref_primary_10_1128_mbio_02415_22 crossref_primary_10_3390_ijms24098290 crossref_primary_10_3390_v15040871 crossref_primary_10_1016_j_isci_2022_103934 crossref_primary_10_1080_22221751_2023_2209208 crossref_primary_10_1038_s41423_023_01104_y crossref_primary_10_3389_fcimb_2022_899546 crossref_primary_10_1016_j_csbj_2021_07_023 crossref_primary_10_1016_j_intimp_2022_108922 crossref_primary_10_1007_s10522_023_10019_0 crossref_primary_10_3390_v13122467 crossref_primary_10_4014_jmb_2206_06064 crossref_primary_10_3390_microorganisms11102378 crossref_primary_10_3390_v15010095 crossref_primary_10_1016_j_virusres_2024_199478 crossref_primary_10_1128_mbio_00451_23 crossref_primary_10_3389_fcimb_2023_1166839 crossref_primary_10_1128_jvi_00011_23 crossref_primary_10_3390_cimb46050261 crossref_primary_10_1126_scisignal_add0082 crossref_primary_10_3390_jor1040021 crossref_primary_10_1038_d41586_022_02930_2 crossref_primary_10_1002_jmv_70145 crossref_primary_10_1038_s41586_022_05282_z crossref_primary_10_3389_fimmu_2024_1363572 crossref_primary_10_3389_fviro_2021_815388 crossref_primary_10_1093_intimm_dxac044 crossref_primary_10_1039_D2CP01724E crossref_primary_10_3390_ijms23179739 crossref_primary_10_1007_s43440_022_00394_9 crossref_primary_10_1016_j_compbiomed_2022_105436 crossref_primary_10_1242_jcs_260682 crossref_primary_10_1080_1040841X_2023_2274840 crossref_primary_10_3390_biomedicines10061339 crossref_primary_10_3389_fimmu_2022_871276 crossref_primary_10_1038_s41598_021_99014_4 crossref_primary_10_1016_j_ecoenv_2022_114440 crossref_primary_10_3389_fmicb_2022_883597 crossref_primary_10_3389_fmicb_2021_789062 crossref_primary_10_1016_j_compbiomed_2021_105170 |
Cites_doi | 10.1016/j.virol.2009.02.021 10.1128/JVI.00702-07 10.1128/JVI.00659-06 10.4049/jimmunol.1303090 10.1371/journal.ppat.1002433 10.1038/s41586-020-2286-9 10.1038/ni.1857 10.1038/nri3581 10.1002/jmv.25700 10.1093/nsr/nwaa036 10.1093/nar/gkx1095 10.3390/ijms18071375 10.21873/invivo.11956 10.1016/S0140-6736(20)30251-8 10.1128/JVI.01631-07 10.1016/j.meegid.2020.104445 10.1371/journal.ppat.1008737 10.1016/j.antiviral.2014.06.013 10.1016/j.virol.2006.06.026 10.1007/s13238-014-0026-3 10.1086/519166 10.1038/nsmb.1680 10.1038/s41420-019-0181-7 10.1093/jb/mvm032 10.1016/j.virol.2019.08.029 10.1080/22221751.2020.1719902 10.1016/j.virol.2017.12.028 10.1080/22221751.2020.1780953 10.1007/978-1-60761-756-3_22 10.1128/mBio.01610-20 10.1371/journal.pone.0008342 10.1007/s12275-019-9272-7 10.1146/annurev-immunol-032713-120231 10.3390/v4060980 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. – notice: 2021 Elsevier B.V. All rights reserved. 2021 Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.virusres.2021.198350 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1872-7492 |
EndPage | 198350 |
ExternalDocumentID | PMC7897408 33626380 10_1016_j_virusres_2021_198350 S0168170221000575 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 0SF 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 8P~ 9JM AAAJQ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AAXUO ABBQC ABFRF ABJNI ABLVK ABMAC ABMZM ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV CJTIS CNWQP CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IH2 IHE J1W KOM LCYCR LUGTX M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPM RPZ SCC SDF SDG SDP SES SIN SPCBC SSH SSI SSZ T5K WH7 ~G- .GJ 29Q 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACIEU ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HMG HVGLF HZ~ R2- RIG SEW WUQ ZGI CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c570t-5c3bd6712512fcccf9852fba0c6fd341f6b829ee9058579ec3e41595fce4762b3 |
IEDL.DBID | .~1 |
ISSN | 0168-1702 1872-7492 |
IngestDate | Thu Aug 21 14:13:54 EDT 2025 Fri Jul 11 11:51:32 EDT 2025 Sun Aug 24 03:41:46 EDT 2025 Thu Apr 03 07:08:36 EDT 2025 Tue Jul 01 01:45:29 EDT 2025 Thu Apr 24 22:55:37 EDT 2025 Fri Feb 23 02:47:19 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Open reading frame 8 SARS-CoV-2 Open reading frame 8 genotypes Interferon beta Endoplasmic reticulum stress |
Language | English |
License | Copyright © 2021 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c570t-5c3bd6712512fcccf9852fba0c6fd341f6b829ee9058579ec3e41595fce4762b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9637-1874 0000-0002-8812-3827 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7897408 |
PMID | 33626380 |
PQID | 2493452148 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7897408 proquest_miscellaneous_2574365597 proquest_miscellaneous_2493452148 pubmed_primary_33626380 crossref_primary_10_1016_j_virusres_2021_198350 crossref_citationtrail_10_1016_j_virusres_2021_198350 elsevier_sciencedirect_doi_10_1016_j_virusres_2021_198350 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-15 |
PublicationDateYYYYMMDD | 2021-04-15 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Virus research |
PublicationTitleAlternate | Virus Res |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chen, Ping, Lee, Chen, Lee, Chan, Lien, Jap, Lin, Kao, Chen (bib0020) 2007; 196 Kawai, Akira (bib0055) 2007; 141 Mitzel, Lowry, Shirali, Liu, Stout-Delgado (bib0105) 2014; 192 Mohammad, Bouchama, Alharbi, Rashid (bib0110) 2020 Martinon, Chen, Lee, Glimcher (bib0095) 2010; 11 Sung, Chao, Jeng, Yang, Lai (bib0155) 2009; 387 Laha, Chakraborty, Das, Manna, Biswas, Chatterjee (bib0070) 2020; 85 Lu, Zhao, Li, Niu, Yang, Wu, Wang, Song, Huang, Zhu, Bi, Ma, Zhan, Wang, Hu, Zhou, Hu, Zhou, Zhao, Chen, Meng, Wang, Lin, Yuan, Xie, Ma, Liu, Wang, Xu, Holmes, Gao, Wu, Chen, Shi, Tan (bib0090) 2020; 395 Oostra, de Haan, Rottier (bib0120) 2007; 81 Wathelet, Orr, Frieman, Baric (bib0165) 2007; 81 Schneider, Chevillotte, Rice (bib0135) 2014; 32 Zhang, Zhang, Chen, Luo, Yuan, Huang, Yang, Yu, Liu, Liu, Song, Chen, Pan, Zhang, Li, Li, Huang, Xiao, Zhang (bib0185) 2020 Kamitani, Huang, Narayanan, Lokugamage, Makino (bib0050) 2009; 16 Chen, Yang, Zheng, Yang, Xing, Chen (bib0025) 2014; 5 Lee, Bae, Myoung (bib0075) 2019; 57 Gordon, Jang, Bouhaddou, Xu, Obernier, White, O’Meara, Rezelj, Guo, Swaney, Tummino, Hüttenhain, Kaake, Richards, Tutuncuoglu, Foussard, Batra, Haas, Modak, Kim, Haas, Polacco, Braberg, Fabius, Eckhardt, Soucheray, Bennett, Cakir, McGregor, Li, Meyer, Roesch, Vallet, Mac Kain, Miorin, Moreno, Naing, Zhou, Peng, Shi, Zhang, Shen, Kirby, Melnyk, Chorba, Lou, Dai, Barrio-Hernandez, Memon, Hernandez-Armenta, Lyu, Mathy, Perica, Pilla, Ganesan, Saltzberg, Rakesh, Liu, Rosenthal, Calviello, Venkataramanan, Liboy-Lugo, Lin, Huang, Liu, Wankowicz, Bohn, Safari, Ugur, Koh, Savar, Tran, Shengjuler, Fletcher, O’Neal, Cai, Chang, Broadhurst, Klippsten, Sharp, Wenzell, Kuzuoglu-Ozturk, Wang, Trenker, Young, Cavero, Hiatt, Roth, Rathore, Subramanian, Noack, Hubert, Stroud, Frankel, Rosenberg, Verba, Agard, Ott (bib0030) 2020; 583 Chan, Siu, Chin, Yuen, Zheng, Jin (bib0010) 2006; 80 Zhong, Tan, Liu (bib0190) 2012; 4 Rashid, Awan, Shah, Chen, Shan (bib0125) 2017; 18 Wong, Ye, Lui, Zheng, Yuan, Zhu, Fung, Yuen, Siu, Yeung, Cai, Woo, Yuen, Chan, Jin (bib0175) 2020 Stevens, Sancho, Martinez (bib0145) 2010; 648 Wong, Fung, Fang, Huang, Le, Liu (bib0170) 2018; 515 Chan, Kok, Zhu, Chu, To, Yuan, Yuen (bib0015) 2020; 9 Keng, Choi, Welkers, Chan, Shen, Gee Lim, Hong, Tan (bib0060) 2006; 354 Liu, Fung, Chong, Shukla, Hilgenfeld (bib0085) 2014; 109 Huang, Lokugamage, Rozovics, Narayanan, Semler, Makino (bib0040) 2011; 7 Ivashkiv, Donlin (bib0045) 2014; 14 Lim, Ng, Tam, Liu (bib0080) 2016; 4 Ribero, Jouvenet, Dreux, Nisole (bib0130) 2020; 16 Tang, Wu, Li, Song, Yao, Wu, Duan, Zhang, Wang, Qian, Cui, Lu (bib0160) 2020; 7 Shi, Nabar, Huang, Kehrl (bib0140) 2019; 5 Yuen, Lam, Wong, Mak, Wang, Chu, Cai, Jin, To, Chan, Yuen, Kok (bib0180) 2020; 9 Hou, Dong, Zhu, Yuan, Wei, Wang, Quan, Chu, Wang, Jiang, Xi, Li, Song, Guo, Lv, Liu (bib0035) 2019; 537 Ceraolo, Giorgi (bib0005) 2020; 92 Köseler, Sabirli, Gören, Türkçüer, Kurt (bib0065) 2020; 34 Minakshi, Padhan, Rani, Khan, Ahmad, Jameel (bib0100) 2009; 4 NCBI Resource Coordinators (bib0115) 2018; 46 Su, Anderson, Young, Linster, Zhu, Jayakumar, Zhuang, Kalimuddin, Low, Tan, Chia, Mak, Octavia, Chavatte, Lee, Pada, Tan, Sun, Yan, Maurer-Stroh, Mendenhall, Leo, Lye, Wang, Smith (bib0150) 2020; 11 Kawai (10.1016/j.virusres.2021.198350_bib0055) 2007; 141 Martinon (10.1016/j.virusres.2021.198350_bib0095) 2010; 11 Shi (10.1016/j.virusres.2021.198350_bib0140) 2019; 5 Sung (10.1016/j.virusres.2021.198350_bib0155) 2009; 387 Chen (10.1016/j.virusres.2021.198350_bib0025) 2014; 5 Mohammad (10.1016/j.virusres.2021.198350_bib0110) 2020 Chan (10.1016/j.virusres.2021.198350_bib0010) 2006; 80 Hou (10.1016/j.virusres.2021.198350_bib0035) 2019; 537 Yuen (10.1016/j.virusres.2021.198350_bib0180) 2020; 9 Köseler (10.1016/j.virusres.2021.198350_bib0065) 2020; 34 Liu (10.1016/j.virusres.2021.198350_bib0085) 2014; 109 Rashid (10.1016/j.virusres.2021.198350_bib0125) 2017; 18 Gordon (10.1016/j.virusres.2021.198350_bib0030) 2020; 583 Zhong (10.1016/j.virusres.2021.198350_bib0190) 2012; 4 Huang (10.1016/j.virusres.2021.198350_bib0040) 2011; 7 Mitzel (10.1016/j.virusres.2021.198350_bib0105) 2014; 192 Minakshi (10.1016/j.virusres.2021.198350_bib0100) 2009; 4 Keng (10.1016/j.virusres.2021.198350_bib0060) 2006; 354 Su (10.1016/j.virusres.2021.198350_bib0150) 2020; 11 NCBI Resource Coordinators (10.1016/j.virusres.2021.198350_bib0115) 2018; 46 Tang (10.1016/j.virusres.2021.198350_bib0160) 2020; 7 Chen (10.1016/j.virusres.2021.198350_bib0020) 2007; 196 Lee (10.1016/j.virusres.2021.198350_bib0075) 2019; 57 Ceraolo (10.1016/j.virusres.2021.198350_bib0005) 2020; 92 Wong (10.1016/j.virusres.2021.198350_bib0175) 2020 Laha (10.1016/j.virusres.2021.198350_bib0070) 2020; 85 Ivashkiv (10.1016/j.virusres.2021.198350_bib0045) 2014; 14 Wathelet (10.1016/j.virusres.2021.198350_bib0165) 2007; 81 Stevens (10.1016/j.virusres.2021.198350_bib0145) 2010; 648 Zhang (10.1016/j.virusres.2021.198350_bib0185) 2020 Lu (10.1016/j.virusres.2021.198350_bib0090) 2020; 395 Chan (10.1016/j.virusres.2021.198350_bib0015) 2020; 9 Oostra (10.1016/j.virusres.2021.198350_bib0120) 2007; 81 Kamitani (10.1016/j.virusres.2021.198350_bib0050) 2009; 16 Schneider (10.1016/j.virusres.2021.198350_bib0135) 2014; 32 Ribero (10.1016/j.virusres.2021.198350_bib0130) 2020; 16 Lim (10.1016/j.virusres.2021.198350_bib0080) 2016; 4 Wong (10.1016/j.virusres.2021.198350_bib0170) 2018; 515 |
References_xml | – volume: 11 start-page: 411 year: 2010 end-page: 418 ident: bib0095 article-title: TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages publication-title: Nat. Immunol. – volume: 9 start-page: 1418 year: 2020 end-page: 1428 ident: bib0180 article-title: SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists publication-title: Emerg. Microbes Infect. – volume: 81 start-page: 13876 year: 2007 end-page: 13888 ident: bib0120 article-title: The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8 publication-title: J. Virol. – volume: 81 start-page: 11620 year: 2007 end-page: 11633 ident: bib0165 article-title: Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain publication-title: J. Virol. – year: 2020 ident: bib0110 article-title: SARS-CoV-2 ORF8 and SARS-CoV ORF8ab: Genomic Divergence and Functional Convergence – volume: 16 start-page: 1 year: 2020 end-page: 22 ident: bib0130 article-title: Interplay between SARS-CoV-2 and the type I interferon response publication-title: PLoS Pathog. – volume: 109 start-page: 97 year: 2014 end-page: 109 ident: bib0085 article-title: Accessory proteins of SARS-CoV and other coronaviruses publication-title: Antiviral Res. – volume: 7 year: 2011 ident: bib0040 article-title: SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage publication-title: PLoS Pathog. – volume: 92 start-page: 522 year: 2020 end-page: 528 ident: bib0005 article-title: Genomic variance of the 2019-nCoV coronavirus publication-title: J. Med. Virol. – volume: 4 start-page: 1 year: 2009 end-page: 10 ident: bib0100 article-title: The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor publication-title: PLoS One – volume: 192 start-page: 4273 year: 2014 end-page: 4283 ident: bib0105 article-title: Age-enhanced endoplasmic reticulum stress contributes to increased Atg9A inhibition of STING-mediated IFN-β production during Streptococcus pneumoniae infection publication-title: J. Immunol. – volume: 7 start-page: 1012 year: 2020 end-page: 1023 ident: bib0160 article-title: On the origin and continuing evolution of SARS-CoV-2 publication-title: Natl. Sci. Rev. – volume: 14 start-page: 36 year: 2014 end-page: 49 ident: bib0045 article-title: Regulation of type I interferon responses publication-title: Nat. Rev. Immunol. – volume: 57 start-page: 803 year: 2019 end-page: 811 ident: bib0075 article-title: Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-β promoter activation: its implication for vaccine design publication-title: J. Microbiol. – volume: 4 year: 2016 ident: bib0080 article-title: Human coronaviruses: a review of virus-host interactions publication-title: Dis. (Basel, Switzerland) – volume: 395 start-page: 565 year: 2020 end-page: 574 ident: bib0090 article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding publication-title: Lancet (Lond., Engl.) – volume: 537 start-page: 254 year: 2019 end-page: 263 ident: bib0035 article-title: Seneca valley virus activates autophagy through the PERK and ATF6 UPR pathways publication-title: Virology – volume: 34 start-page: 1645 year: 2020 end-page: 1650 ident: bib0065 article-title: Endoplasmic reticulum stress markers in SARS-COV-2 infection and pneumonia: case-control study publication-title: In Vivo (Brooklyn) – volume: 4 start-page: 980 year: 2012 end-page: 1010 ident: bib0190 article-title: Recent progress in studies of arterivirus- and coronavirus-host interactions publication-title: Viruses – volume: 583 start-page: 459 year: 2020 end-page: 468 ident: bib0030 article-title: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing publication-title: Nature – volume: 46 start-page: D8 year: 2018 end-page: D13 ident: bib0115 article-title: Database resources of the national center for biotechnology information publication-title: Nucleic Acids Res. – year: 2020 ident: bib0175 article-title: Middle east respiratory syndrome coronavirus ORF8b accessory protein suppresses type I IFN expression by impeding HSP70-dependent activation of IRF3 kinase IKKε publication-title: J. Immunol. – volume: 16 start-page: 1134 year: 2009 end-page: 1140 ident: bib0050 article-title: A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein publication-title: Nat. Struct. Mol. Biol. – volume: 196 start-page: 405 year: 2007 end-page: 415 ident: bib0020 article-title: Open reading frame 8a of the human severe acute respiratory syndrome coronavirus not only promotes viral replication but also induces apoptosis publication-title: J. Infect. Dis. – volume: 18 year: 2017 ident: bib0125 article-title: Induction of miR-3648 upon ER stress and its regulatory role in cell proliferation publication-title: Int. J. Mol. Sci. – volume: 85 year: 2020 ident: bib0070 article-title: Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission publication-title: Infect. Genet. Evol. – year: 2020 ident: bib0185 article-title: The ORF8 Protein of SARS-CoV-2 Mediates Immune Evasion Through Potently Downregulating MHC-I – volume: 5 start-page: 101 year: 2019 ident: bib0140 article-title: SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes publication-title: Cell Death Discov. – volume: 5 start-page: 369 year: 2014 end-page: 381 ident: bib0025 article-title: SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex publication-title: Protein Cell – volume: 354 start-page: 132 year: 2006 end-page: 142 ident: bib0060 article-title: The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV and down-regulates the expression of the envelope protein in infected cells publication-title: Virology – volume: 515 start-page: 165 year: 2018 end-page: 175 ident: bib0170 article-title: Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3 publication-title: Virology – volume: 141 start-page: 137 year: 2007 end-page: 145 ident: bib0055 article-title: Antiviral signaling through pattern recognition receptors publication-title: J. Biochem. – volume: 387 start-page: 402 year: 2009 end-page: 413 ident: bib0155 article-title: The 8ab protein of SARS-CoV is a luminal ER membrane-associated protein and induces the activation of ATF6 publication-title: Virology – volume: 80 start-page: 9279 year: 2006 end-page: 9287 ident: bib0010 article-title: Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein publication-title: J. Virol. – volume: 648 start-page: 313 year: 2010 end-page: 324 ident: bib0145 article-title: Protein misfolding and cellular stress in disease and aging publication-title: Methods Mol. Biol. – volume: 32 start-page: 513 year: 2014 end-page: 545 ident: bib0135 article-title: Interferon-stimulated genes: a complex web of host defenses publication-title: Annu. Rev. Immunol. – volume: 9 start-page: 221 year: 2020 end-page: 236 ident: bib0015 article-title: Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan publication-title: Emerg. Microbes Infect. – volume: 11 year: 2020 ident: bib0150 article-title: Discovery and genomic characterization of a 382-nucleotide deletion in ORF7b and ORF8 during the early evolution of SARS-CoV-2 publication-title: MBio – volume: 387 start-page: 402 year: 2009 ident: 10.1016/j.virusres.2021.198350_bib0155 article-title: The 8ab protein of SARS-CoV is a luminal ER membrane-associated protein and induces the activation of ATF6 publication-title: Virology doi: 10.1016/j.virol.2009.02.021 – volume: 81 start-page: 11620 year: 2007 ident: 10.1016/j.virusres.2021.198350_bib0165 article-title: Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain publication-title: J. Virol. doi: 10.1128/JVI.00702-07 – volume: 80 start-page: 9279 year: 2006 ident: 10.1016/j.virusres.2021.198350_bib0010 article-title: Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein publication-title: J. Virol. doi: 10.1128/JVI.00659-06 – volume: 192 start-page: 4273 year: 2014 ident: 10.1016/j.virusres.2021.198350_bib0105 article-title: Age-enhanced endoplasmic reticulum stress contributes to increased Atg9A inhibition of STING-mediated IFN-β production during Streptococcus pneumoniae infection publication-title: J. Immunol. doi: 10.4049/jimmunol.1303090 – volume: 7 year: 2011 ident: 10.1016/j.virusres.2021.198350_bib0040 article-title: SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002433 – year: 2020 ident: 10.1016/j.virusres.2021.198350_bib0175 article-title: Middle east respiratory syndrome coronavirus ORF8b accessory protein suppresses type I IFN expression by impeding HSP70-dependent activation of IRF3 kinase IKKε publication-title: J. Immunol. – volume: 583 start-page: 459 year: 2020 ident: 10.1016/j.virusres.2021.198350_bib0030 article-title: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing publication-title: Nature doi: 10.1038/s41586-020-2286-9 – volume: 11 start-page: 411 year: 2010 ident: 10.1016/j.virusres.2021.198350_bib0095 article-title: TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages publication-title: Nat. Immunol. doi: 10.1038/ni.1857 – volume: 14 start-page: 36 year: 2014 ident: 10.1016/j.virusres.2021.198350_bib0045 article-title: Regulation of type I interferon responses publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3581 – volume: 92 start-page: 522 year: 2020 ident: 10.1016/j.virusres.2021.198350_bib0005 article-title: Genomic variance of the 2019-nCoV coronavirus publication-title: J. Med. Virol. doi: 10.1002/jmv.25700 – volume: 7 start-page: 1012 year: 2020 ident: 10.1016/j.virusres.2021.198350_bib0160 article-title: On the origin and continuing evolution of SARS-CoV-2 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwaa036 – volume: 46 start-page: D8 year: 2018 ident: 10.1016/j.virusres.2021.198350_bib0115 article-title: Database resources of the national center for biotechnology information publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1095 – volume: 18 year: 2017 ident: 10.1016/j.virusres.2021.198350_bib0125 article-title: Induction of miR-3648 upon ER stress and its regulatory role in cell proliferation publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18071375 – volume: 34 start-page: 1645 year: 2020 ident: 10.1016/j.virusres.2021.198350_bib0065 article-title: Endoplasmic reticulum stress markers in SARS-COV-2 infection and pneumonia: case-control study publication-title: In Vivo (Brooklyn) doi: 10.21873/invivo.11956 – volume: 395 start-page: 565 year: 2020 ident: 10.1016/j.virusres.2021.198350_bib0090 article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding publication-title: Lancet (Lond., Engl.) doi: 10.1016/S0140-6736(20)30251-8 – volume: 81 start-page: 13876 year: 2007 ident: 10.1016/j.virusres.2021.198350_bib0120 article-title: The 29-nucleotide deletion present in human but not in animal severe acute respiratory syndrome coronaviruses disrupts the functional expression of open reading frame 8 publication-title: J. Virol. doi: 10.1128/JVI.01631-07 – volume: 85 year: 2020 ident: 10.1016/j.virusres.2021.198350_bib0070 article-title: Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2020.104445 – volume: 16 start-page: 1 year: 2020 ident: 10.1016/j.virusres.2021.198350_bib0130 article-title: Interplay between SARS-CoV-2 and the type I interferon response publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1008737 – volume: 109 start-page: 97 year: 2014 ident: 10.1016/j.virusres.2021.198350_bib0085 article-title: Accessory proteins of SARS-CoV and other coronaviruses publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2014.06.013 – volume: 354 start-page: 132 year: 2006 ident: 10.1016/j.virusres.2021.198350_bib0060 article-title: The human severe acute respiratory syndrome coronavirus (SARS-CoV) 8b protein is distinct from its counterpart in animal SARS-CoV and down-regulates the expression of the envelope protein in infected cells publication-title: Virology doi: 10.1016/j.virol.2006.06.026 – volume: 5 start-page: 369 year: 2014 ident: 10.1016/j.virusres.2021.198350_bib0025 article-title: SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex publication-title: Protein Cell doi: 10.1007/s13238-014-0026-3 – volume: 196 start-page: 405 year: 2007 ident: 10.1016/j.virusres.2021.198350_bib0020 article-title: Open reading frame 8a of the human severe acute respiratory syndrome coronavirus not only promotes viral replication but also induces apoptosis publication-title: J. Infect. Dis. doi: 10.1086/519166 – volume: 16 start-page: 1134 year: 2009 ident: 10.1016/j.virusres.2021.198350_bib0050 article-title: A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1680 – volume: 4 year: 2016 ident: 10.1016/j.virusres.2021.198350_bib0080 article-title: Human coronaviruses: a review of virus-host interactions publication-title: Dis. (Basel, Switzerland) – volume: 5 start-page: 101 year: 2019 ident: 10.1016/j.virusres.2021.198350_bib0140 article-title: SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes publication-title: Cell Death Discov. doi: 10.1038/s41420-019-0181-7 – volume: 141 start-page: 137 year: 2007 ident: 10.1016/j.virusres.2021.198350_bib0055 article-title: Antiviral signaling through pattern recognition receptors publication-title: J. Biochem. doi: 10.1093/jb/mvm032 – volume: 537 start-page: 254 year: 2019 ident: 10.1016/j.virusres.2021.198350_bib0035 article-title: Seneca valley virus activates autophagy through the PERK and ATF6 UPR pathways publication-title: Virology doi: 10.1016/j.virol.2019.08.029 – year: 2020 ident: 10.1016/j.virusres.2021.198350_bib0110 – volume: 9 start-page: 221 year: 2020 ident: 10.1016/j.virusres.2021.198350_bib0015 article-title: Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2020.1719902 – volume: 515 start-page: 165 year: 2018 ident: 10.1016/j.virusres.2021.198350_bib0170 article-title: Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3 publication-title: Virology doi: 10.1016/j.virol.2017.12.028 – volume: 9 start-page: 1418 year: 2020 ident: 10.1016/j.virusres.2021.198350_bib0180 article-title: SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2020.1780953 – volume: 648 start-page: 313 year: 2010 ident: 10.1016/j.virusres.2021.198350_bib0145 article-title: Protein misfolding and cellular stress in disease and aging publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60761-756-3_22 – volume: 11 year: 2020 ident: 10.1016/j.virusres.2021.198350_bib0150 article-title: Discovery and genomic characterization of a 382-nucleotide deletion in ORF7b and ORF8 during the early evolution of SARS-CoV-2 publication-title: MBio doi: 10.1128/mBio.01610-20 – volume: 4 start-page: 1 year: 2009 ident: 10.1016/j.virusres.2021.198350_bib0100 article-title: The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor publication-title: PLoS One doi: 10.1371/journal.pone.0008342 – volume: 57 start-page: 803 year: 2019 ident: 10.1016/j.virusres.2021.198350_bib0075 article-title: Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-β promoter activation: its implication for vaccine design publication-title: J. Microbiol. doi: 10.1007/s12275-019-9272-7 – volume: 32 start-page: 513 year: 2014 ident: 10.1016/j.virusres.2021.198350_bib0135 article-title: Interferon-stimulated genes: a complex web of host defenses publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032713-120231 – volume: 4 start-page: 980 year: 2012 ident: 10.1016/j.virusres.2021.198350_bib0190 article-title: Recent progress in studies of arterivirus- and coronavirus-host interactions publication-title: Viruses doi: 10.3390/v4060980 – year: 2020 ident: 10.1016/j.virusres.2021.198350_bib0185 |
SSID | ssj0006376 |
Score | 2.5864167 |
Snippet | •SARS-CoV-2 orf8 genotypes, orf8L and orf8S induced ER stress pathways.•SARS-CoV-2 orf8 genotypes, orf8L and orf8S antagonized interferon Beta... The open reading frame 8 (orf8) is an accessory protein of SARS-CoV-2. It has 121 amino acids with two genotypes, orf8L and orf8S. In this study, we... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 198350 |
SubjectTerms | Activating Transcription Factor 6 - physiology antagonists eIF-2 Kinase - physiology endoplasmic reticulum Endoplasmic reticulum stress Endoplasmic Reticulum Stress - physiology Endoribonucleases - physiology HEK293 Cells Humans Immune Evasion Interferon beta interferon regulatory factor-3 Interferon-beta - antagonists & inhibitors Interferon-beta - biosynthesis interferons Open reading frame 8 Open reading frame 8 genotypes polyinosinic-polycytidylic acid Protein Serine-Threonine Kinases - physiology SARS-CoV-2 Sequence Alignment Severe acute respiratory syndrome coronavirus 2 Signal Transduction - physiology Unfolded Protein Response Viral Proteins - chemistry Viral Proteins - physiology viruses X-Box Binding Protein 1 - physiology |
Title | The ORF8 protein of SARS-CoV-2 induced endoplasmic reticulum stress and mediated immune evasion by antagonizing production of interferon beta |
URI | https://dx.doi.org/10.1016/j.virusres.2021.198350 https://www.ncbi.nlm.nih.gov/pubmed/33626380 https://www.proquest.com/docview/2493452148 https://www.proquest.com/docview/2574365597 https://pubmed.ncbi.nlm.nih.gov/PMC7897408 |
Volume | 296 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELamTUi8IH5TYJOReHWbJnHiPFbVqgJiSCtDe4v84ywyjaSq2knjgf-A_5k7J-lWQOyBxyZnOc1dfN_Z_j4z9tYoaSLrC6F0BiJ1UgtlDAintZKR9gWkRE7-eJLNz9L35_J8j017Lgxtq-zG_nZMD6N1d2XUvc3RsqpGCwQrpC4XxzRFjaiDGOxpTlE-_HGzzSNLwgFzZCzI-hZL-GJ4Va02mIlItjseD7H-Toh___cE9ScA_X0f5a3ENHvIHnSIkk_ah37E9qB-zO61Z0xeP2E_MRD4p9OZ4kGSoap54_licroQ0-aLiDnW5Ohdx6F2zRKh9LfK8sBspGlB3lJJuK4dDxwTxKe8IkoJcLjSNNPGzTXeprWtuvqOeZC6ca0kLfVEchQrDysyhLV-ys5mx5-nc9GdwSCszKO1kDYxLssDDPLWoleVjL3Rkc28wwzoM6PiAqCIsO7IC7AJICQopLeAvohN8ozt100NLxjHarhwYzPGiyYFGZnYJZBgrnB5ZF0UD5jsX3xpO4FyOifjsux3ol2UvcNKcljZOmzARtt2y1ai484WRe_XcifYSswjd7Z90wdCiV8iLa_oGpoNGqVFkiIaStU_bCQitoyquAF73gbP9pmToAyksId8J6y2BqQEvnunrr4GRfBcYVkYqZf_8b9esfv0ixbKxvI121-vNnCIeGttjsIHdcQOJu8-zE9-AVdOMEs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYIL4k14GgmOTja7613vgUNViFL6QGpa1Nvix6zYqnWikBSFA_-AX8MfZGYfoQFED6jXtR07nvHMN_Y8GHtplDSBLTKhdAIidlILZQwIp7WSgS4yiCk4eXcvGR7G747k0Rr70cbCkFtlI_trmV5J6-ZLr9nN3qQseyMEK5RdLgzpihpRR-NZuQ2LL2i3fX699QaJ_CoMB28PNoeiKS0grEyDmZA2Mi5JK-1eWIuLVTIsjA5sUjgU7EViVJgBZAHC6TQDGwFqukwWFmIUHybC373CrsYoLqhsQvfbL7-SJKoq2tHqBC3vXFjycfesnM5R9VGe8LDfRYM_ooD_v2vEPxHv746b5zTh4Ba72UBYvlHv0m22Bv4Ou1YXtVzcZd-R8_j7_YHiVQ6I0vNxwUcb-yOxOf4gQl56h-zkOHg3niB2Py0tr0Ip6R6S17ErXHvHq6AWBMS8pBgW4HCm6WqPmwU202OaL7-i4qVpXJ0Dl2ai_BfTAqbUEWb6Hju8FMrcZ-t-7OEh42h-Z65v-vjRxCADE7oIIlROLg2sC8IOk-3G57bJiE6FOU7y1vXtOG8JlhPB8ppgHdZbjpvUOUEuHJG1dM1XuDtHxXXh2BctI-R49Ok9R3sYz7FTnEUxwq9Y_aOPRIiYkNnYYQ9q5lmuOapSESmcIV1hq2UHSj2-2uLLT1UK8lShHRqoR__xv56z68OD3Z18Z2tv-zG7QS30SteXT9j6bDqHpwj2ZuZZdbg4-3jZp_kny4FsPQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ORF8+protein+of+SARS-CoV-2+induced+endoplasmic+reticulum+stress+and+mediated+immune+evasion+by+antagonizing+production+of+interferon+beta&rft.jtitle=Virus+research&rft.au=Rashid%2C+Farooq&rft.au=Dzakah%2C+Emmanuel+Enoch&rft.au=Wang%2C+Haiying&rft.au=Tang%2C+Shixing&rft.date=2021-04-15&rft.issn=1872-7492&rft.eissn=1872-7492&rft.volume=296&rft.spage=198350&rft_id=info:doi/10.1016%2Fj.virusres.2021.198350&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1702&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1702&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1702&client=summon |