Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images
Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifyi...
Saved in:
Published in | PeerJ (San Francisco, CA) Vol. 6; p. e4568 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
PeerJ. Ltd
16.04.2018
PeerJ, Inc PeerJ Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Malaria is a blood disease caused by the
Plasmodium
parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose. |
---|---|
AbstractList | Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose. Malaria is a blood disease caused by the parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose. Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose. Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose.Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose. |
ArticleNumber | e4568 |
Audience | Academic |
Author | Thoma, George R. Maude, Richard J. Rajaraman, Sivaramakrishnan Antani, Sameer K. Hossain, Md. A. Jaeger, Stefan Silamut, Kamolrat Poostchi, Mahdieh |
Author_xml | – sequence: 1 givenname: Sivaramakrishnan surname: Rajaraman fullname: Rajaraman, Sivaramakrishnan organization: Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD, United States of America – sequence: 2 givenname: Sameer K. surname: Antani fullname: Antani, Sameer K. organization: Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD, United States of America – sequence: 3 givenname: Mahdieh surname: Poostchi fullname: Poostchi, Mahdieh organization: Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD, United States of America – sequence: 4 givenname: Kamolrat surname: Silamut fullname: Silamut, Kamolrat organization: Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand – sequence: 5 givenname: Md. A. surname: Hossain fullname: Hossain, Md. A. organization: Department of Medicine, Chittagong Medical Hospital, Chittagong, Bangladesh – sequence: 6 givenname: Richard J. surname: Maude fullname: Maude, Richard J. organization: Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, United States of America – sequence: 7 givenname: Stefan surname: Jaeger fullname: Jaeger, Stefan organization: Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD, United States of America – sequence: 8 givenname: George R. surname: Thoma fullname: Thoma, George R. organization: Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29682411$$D View this record in MEDLINE/PubMed |
BookMark | eNptkl1v0zAUhiM0xEbZDT8ARUJCCKnDTvx5M2ma-Jg0CS7g2nLsk9YliYvtdPAD-N84bRnttESKI_t5X9vnvM-Lk8EPUBQvMbrgHPP3a4CwuiCUiSfFWYUZn4uaypOD_9PiPMYVyo-oGBL1s-K0kkxUBOOz4s_XAPMUtBvAlsYPG9-NyflBd-UAY9gO6c6HH7HUsWxBpzFACb-yxCQfYpn8nQ62dP06-E326HWng9PlWgcdXYLSQgIzWZZuKNMyf5rOe1vGHnTIOr2A-KJ42uouwvl-nBXfP374dv15fvvl08311e3cUI7SnFAKuuFCilYQWteSSEBIUlZJrWtTI1tJ1FgOlFd1Y5luW4t42xjbMovrpp4VNztf6_VKrUPePfxWXju1nfBhoXRIznSgcAsYGAgkCSM1Jo2BpqmwIE1lqrbC2ety57Uemx6sgSHXpDsyPV4Z3FIt_EZRiTjPB5wVb_cGwf8cISbVu2ig6_QAfoyqQrlNBDGBMvr6AbryY8hN2lKUUcIk_08tdL6AG1o_dWkyVVe0JoJwyadzXzxC5ddC73ICoHV5_kjw5kCwBN2lZdzHJB6Drw4rcl-Kf2nLwLsdYIKPMUB7j2CkpjSrbZrVlOYMowewcUlPm05x7R6T_AXrs_lu |
CitedBy_id | crossref_primary_10_1080_1206212X_2019_1672277 crossref_primary_10_1155_2020_7627290 crossref_primary_10_1093_gigascience_giab040 crossref_primary_10_1186_s12879_020_05453_1 crossref_primary_10_1016_j_inffus_2021_09_012 crossref_primary_10_1093_femsre_fuab015 crossref_primary_10_1007_s00521_021_06604_4 crossref_primary_10_1016_j_cmi_2020_03_012 crossref_primary_10_1007_s13748_024_00346_9 crossref_primary_10_3390_jimaging8030066 crossref_primary_10_1007_s12553_020_00488_5 crossref_primary_10_1016_j_dajour_2023_100352 crossref_primary_10_1093_jrr_rraf004 crossref_primary_10_1007_s13042_018_0842_5 crossref_primary_10_3390_technologies12120247 crossref_primary_10_1016_j_optcom_2024_131302 crossref_primary_10_3389_fmed_2023_1117192 crossref_primary_10_1088_1742_6596_1869_1_012092 crossref_primary_10_1007_s11042_022_13008_6 crossref_primary_10_1186_s13000_020_01040_9 crossref_primary_10_1111_exsy_12695 crossref_primary_10_1007_s40747_024_01406_2 crossref_primary_10_35377_saucis___1197119 crossref_primary_10_1038_s41598_025_87979_5 crossref_primary_10_1088_2057_1976_ac0e74 crossref_primary_10_1111_exsy_12690 crossref_primary_10_4236_etsn_2021_102003 crossref_primary_10_1038_s41551_021_00733_w crossref_primary_10_32628_CSEIT2390283 crossref_primary_10_1038_s41598_021_96475_5 crossref_primary_10_1007_s12553_021_00620_z crossref_primary_10_1109_LSENS_2024_3373882 crossref_primary_10_1038_s41598_024_63831_0 crossref_primary_10_1016_j_compbiomed_2020_104151 crossref_primary_10_4236_jcc_2024_122011 crossref_primary_10_1155_2022_7776319 crossref_primary_10_32604_cmc_2023_033860 crossref_primary_10_1016_j_patter_2023_100806 crossref_primary_10_1016_j_knosys_2023_110907 crossref_primary_10_1007_s11517_023_02926_8 crossref_primary_10_7717_peerj_16773 crossref_primary_10_1109_ACCESS_2019_2925891 crossref_primary_10_1111_exsy_12906 crossref_primary_10_1109_ACCESS_2020_2990497 crossref_primary_10_1016_j_blre_2023_101144 crossref_primary_10_1038_s41598_025_90851_1 crossref_primary_10_1080_21681163_2022_2111715 crossref_primary_10_32604_cmc_2023_039515 crossref_primary_10_1016_j_patrec_2020_07_002 crossref_primary_10_1007_s00521_021_06602_6 crossref_primary_10_1002_ima_22739 crossref_primary_10_1016_j_scitotenv_2025_179018 crossref_primary_10_3390_math8091606 crossref_primary_10_1007_s11042_022_13737_8 crossref_primary_10_1016_j_pt_2024_05_005 crossref_primary_10_1080_1206212X_2024_2328492 crossref_primary_10_1007_s00521_021_06483_9 crossref_primary_10_3389_frabi_2024_1405296 crossref_primary_10_3390_jimaging9120266 crossref_primary_10_1016_j_aca_2022_339807 crossref_primary_10_7717_peerj_cs_1744 crossref_primary_10_1007_s00216_021_03179_w crossref_primary_10_1016_j_aei_2024_102441 crossref_primary_10_1049_itr2_12370 crossref_primary_10_1360_SSV_2022_0035 crossref_primary_10_1109_ACCESS_2021_3054735 crossref_primary_10_1016_j_bspc_2019_04_010 crossref_primary_10_33395_sinkron_v5i2_10713 crossref_primary_10_1002_ima_22953 crossref_primary_10_1007_s11042_023_14708_3 crossref_primary_10_3390_app11052284 crossref_primary_10_1007_s42452_020_3000_0 crossref_primary_10_1109_JBHI_2020_3034863 crossref_primary_10_1088_1742_6596_2622_1_012011 crossref_primary_10_1038_s41598_024_78260_2 crossref_primary_10_4108_eetpht_10_5439 crossref_primary_10_1016_j_jksuci_2019_02_004 crossref_primary_10_1038_s41598_023_40317_z crossref_primary_10_4015_S1016237221500228 crossref_primary_10_17671_gazibtd_1264480 crossref_primary_10_1155_2021_6633806 crossref_primary_10_1186_s12936_023_04446_0 crossref_primary_10_1186_s12859_019_2931_1 crossref_primary_10_1016_j_compbiomed_2024_109593 crossref_primary_10_1016_j_bspc_2023_105362 crossref_primary_10_3390_rs11232801 crossref_primary_10_1016_j_cmpb_2023_107789 crossref_primary_10_1007_s42979_021_00763_w crossref_primary_10_3390_s23187932 crossref_primary_10_1016_j_tice_2020_101473 crossref_primary_10_1038_s41598_022_19217_1 crossref_primary_10_54365_adyumbd_1033135 crossref_primary_10_7717_peerj_6977 crossref_primary_10_1177_01423312221147335 crossref_primary_10_3390_diagnostics12061442 crossref_primary_10_3390_e22060657 crossref_primary_10_1080_08839514_2022_2031826 crossref_primary_10_1109_ACCESS_2024_3459411 crossref_primary_10_1016_j_eswa_2021_115658 crossref_primary_10_1186_s12859_021_04036_4 crossref_primary_10_7717_peerj_7256 crossref_primary_10_1007_s10462_021_10001_7 crossref_primary_10_35193_bseufbd_1064187 crossref_primary_10_7717_peerj_9674 crossref_primary_10_1155_2021_6698176 crossref_primary_10_3390_app12115500 crossref_primary_10_1109_ACCESS_2020_2971257 crossref_primary_10_1016_j_jfranklin_2023_07_015 crossref_primary_10_1166_jmihi_2021_3757 crossref_primary_10_1109_ACCESS_2021_3055870 crossref_primary_10_1142_S0219622023300045 crossref_primary_10_1038_s41598_024_53631_x crossref_primary_10_1016_j_imu_2021_100743 crossref_primary_10_3389_fpubh_2022_969268 crossref_primary_10_1002_ima_23205 crossref_primary_10_1109_ACCESS_2019_2930177 crossref_primary_10_1128_spectrum_01440_23 crossref_primary_10_1007_s00521_019_04114_y crossref_primary_10_1109_ACCESS_2023_3234279 crossref_primary_10_1016_j_csbj_2022_02_005 crossref_primary_10_3390_asi4040082 crossref_primary_10_21605_cukurovaumfd_1460434 crossref_primary_10_1016_j_imu_2022_100911 crossref_primary_10_1007_s11042_020_09977_1 crossref_primary_10_1109_TUFFC_2021_3087949 crossref_primary_10_3389_fcimb_2022_882995 crossref_primary_10_1016_j_bspc_2024_106289 crossref_primary_10_1016_j_knosys_2020_105596 crossref_primary_10_1007_s12539_020_00367_7 crossref_primary_10_7717_peerj_cs_422 crossref_primary_10_1016_j_tice_2024_102677 crossref_primary_10_3390_bioengineering8110150 crossref_primary_10_1016_j_compbiomed_2021_105134 crossref_primary_10_1002_prep_202400234 crossref_primary_10_1007_s00521_024_10780_4 crossref_primary_10_32604_cmc_2021_016114 crossref_primary_10_3390_electronics13163174 crossref_primary_10_54021_seesv5n2_750 crossref_primary_10_3390_info15030166 crossref_primary_10_1080_13102818_2024_2349587 crossref_primary_10_1016_j_mjafi_2023_10_007 crossref_primary_10_1007_s11042_023_17866_6 crossref_primary_10_3390_diagnostics11111994 crossref_primary_10_1109_ACCESS_2024_3393410 crossref_primary_10_1111_vru_13413 crossref_primary_10_3390_app9122404 crossref_primary_10_1093_clinchem_hvab165 crossref_primary_10_1007_s44163_023_00049_5 crossref_primary_10_1016_j_artmed_2021_102020 crossref_primary_10_1109_ACCESS_2023_3245025 crossref_primary_10_3390_diagnostics14232738 crossref_primary_10_1007_s00340_020_7399_1 crossref_primary_10_1016_j_mmifmc_2023_06_003 crossref_primary_10_3390_jimaging10050121 crossref_primary_10_1017_S2633903X21000015 crossref_primary_10_3390_diagnostics10050329 crossref_primary_10_1016_j_compbiomed_2025_109704 crossref_primary_10_1007_s42486_020_00026_2 crossref_primary_10_1155_2022_3626726 crossref_primary_10_1109_ACCESS_2020_2980798 crossref_primary_10_1155_2022_3922763 crossref_primary_10_32604_cmc_2022_025577 crossref_primary_10_3390_app12199908 crossref_primary_10_3390_s22124358 crossref_primary_10_36548_jucct_2021_2_005 crossref_primary_10_1016_j_csbj_2024_04_029 crossref_primary_10_3233_JIFS_201985 crossref_primary_10_1186_s13071_024_06215_7 crossref_primary_10_1038_s41598_021_84219_4 crossref_primary_10_1007_s00521_024_10219_w crossref_primary_10_7717_peerj_13470 crossref_primary_10_1177_2472555219857715 crossref_primary_10_3390_diagnostics12112702 crossref_primary_10_3324_haematol_2021_280209 crossref_primary_10_1016_j_bspc_2024_106869 crossref_primary_10_1016_j_compbiomed_2023_107268 crossref_primary_10_1007_s11042_019_7162_y crossref_primary_10_1109_TDSC_2024_3355165 crossref_primary_10_4108_eetpht_10_5269 crossref_primary_10_3390_e24091264 crossref_primary_10_1109_JPHOT_2021_3109016 crossref_primary_10_1128_msystems_00445_19 crossref_primary_10_1007_s12639_019_01163_x crossref_primary_10_3390_diagnostics10100744 crossref_primary_10_3390_brainsci11070902 crossref_primary_10_1155_2020_8895429 crossref_primary_10_3390_diagnostics11081373 crossref_primary_10_1080_03772063_2022_2101552 crossref_primary_10_1371_journal_pdig_0000286 crossref_primary_10_1038_s41427_023_00516_6 crossref_primary_10_1109_ACCESS_2020_2994810 crossref_primary_10_4015_S1016237223500047 crossref_primary_10_1016_j_imavis_2023_104894 |
Cites_doi | 10.1016/j.micron.2012.11.002 10.1016/j.neunet.2014.09.003 10.1007/978-3-319-10590-1_53 10.1109/CVPR.2016.308 10.1109/CVPR.2016.90 10.1109/BIBM.2016.7822567 10.1214/09-STS301 10.1109/ACCESS.2017.2705642 10.1016/j.ebobgyn.2003.11.001 10.1038/srep05052 10.1109/5.726791 10.1007/s12194-017-0406-5 10.1109/CVPRW.2014.131 10.1109/BHI.2017.7897215 10.1007/s11517-006-0044-2 10.1016/0005-2795(75)90109-9 10.1002/jbio.201700003 10.1186/s13040-017-0155-3 10.1186/1475-2875-8-308 10.1038/nature14539 10.1109/IJCNN.2017.7966082 10.1016/j.trsl.2017.12.004 10.1109/CVPRW.2009.5206848 10.1016/j.ijcard.2015.11.061 10.1109/ISBI.2012.6235656 10.1007/978-3-662-44851-9_15 10.1177/0013164487471004 10.1007/978-3-319-27863-6_35 10.2307/1165320 10.1109/LSC.2017.8268146 10.1007/BF01891203 10.1016/j.protcy.2014.09.007 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 PeerJ. Ltd. This is an open access article, free of all copyright, made available under the Creative Commons Public Domain Dedication: http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). This work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 |
Copyright_xml | – notice: COPYRIGHT 2018 PeerJ. Ltd. – notice: This is an open access article, free of all copyright, made available under the Creative Commons Public Domain Dedication: http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). This work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7717/peerj.4568 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2167-8359 |
ExternalDocumentID | oai_doaj_org_article_1fe1e6e809464314bcebb2184b2c2f21 PMC5907772 A534847971 29682411 10_7717_peerj_4568 |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GrantInformation_xml | – fundername: Lister Hill National Center for Biomedical Communications (LHNCBC) – fundername: National Institutes of Health (NIH) – fundername: Intramural Research Program of the National Library of Medicine (NLM) – fundername: Wellcome Trust of Great Britain |
GroupedDBID | 53G 5VS 88I 8FE 8FH AAFWJ AAYXX ABUWG ADBBV ADRAZ AENEX AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO ECGQY GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HYE IAO IEA IHR IHW ITC KQ8 LK8 M2P M48 M7P M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC RPM W2D YAO NPM PMFND 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c570t-455eab7898f84533949e0095629aa3c30d290bd7e5723bd6affd07fbcdf6d13b3 |
IEDL.DBID | M48 |
ISSN | 2167-8359 |
IngestDate | Wed Aug 27 01:28:22 EDT 2025 Thu Aug 21 13:43:57 EDT 2025 Fri Jul 11 11:22:21 EDT 2025 Fri Jul 25 11:41:21 EDT 2025 Tue Jun 17 20:56:00 EDT 2025 Tue Jun 10 20:30:21 EDT 2025 Thu May 22 21:20:55 EDT 2025 Thu Apr 03 07:03:06 EDT 2025 Thu Apr 24 23:05:10 EDT 2025 Tue Jul 01 03:52:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Screening Blood smear Malaria Pre-trained models Feature extraction Convolutional Neural Networks Machine Learning Computer-aided diagnosis Deep Learning |
Language | English |
License | http://creativecommons.org/publicdomain/zero/1.0 This is an open access article, free of all copyright, made available under the Creative Commons Public Domain Dedication. This work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c570t-455eab7898f84533949e0095629aa3c30d290bd7e5723bd6affd07fbcdf6d13b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.7717/peerj.4568 |
PMID | 29682411 |
PQID | 2025654697 |
PQPubID | 2045935 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1fe1e6e809464314bcebb2184b2c2f21 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5907772 proquest_miscellaneous_2029640680 proquest_journals_2025654697 gale_infotracmisc_A534847971 gale_infotracacademiconefile_A534847971 gale_healthsolutions_A534847971 pubmed_primary_29682411 crossref_primary_10_7717_peerj_4568 crossref_citationtrail_10_7717_peerj_4568 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-16 |
PublicationDateYYYYMMDD | 2018-04-16 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Diego – name: San Francisco, USA |
PublicationTitle | PeerJ (San Francisco, CA) |
PublicationTitleAlternate | PeerJ |
PublicationYear | 2018 |
Publisher | PeerJ. Ltd PeerJ, Inc PeerJ Inc |
Publisher_xml | – name: PeerJ. Ltd – name: PeerJ, Inc – name: PeerJ Inc |
References | Howard (10.7717/peerj.4568/ref-19) 2017 Zeiler (10.7717/peerj.4568/ref-47) 2014; vol. 8689 Hawkes (10.7717/peerj.4568/ref-16) 2009; 8 Szegedy (10.7717/peerj.4568/ref-42) 2014 Kucuk (10.7717/peerj.4568/ref-22) 2016; 209 Centers for Disease Control and Prevention (10.7717/peerj.4568/ref-5) 2012 Gastwirth (10.7717/peerj.4568/ref-13) 2009; 24 Schmidhuber (10.7717/peerj.4568/ref-36) 2015; 61 Matthews (10.7717/peerj.4568/ref-28) 1975; 405 Liang (10.7717/peerj.4568/ref-26) 2017 Dong (10.7717/peerj.4568/ref-12) 2017 LeCun (10.7717/peerj.4568/ref-23) 1995 Krizhevsky (10.7717/peerj.4568/ref-21) 2012 Yu (10.7717/peerj.4568/ref-46) 2016 Rajaraman (10.7717/peerj.4568/ref-31) 2017 Bousetouane (10.7717/peerj.4568/ref-4) 2015; vol. 9475 Poostchi (10.7717/peerj.4568/ref-30) 2018; 194 Chollet (10.7717/peerj.4568/ref-8) 2017 Das (10.7717/peerj.4568/ref-9) 2013; 45 LeCun (10.7717/peerj.4568/ref-25) 1998; 86 Shang (10.7717/peerj.4568/ref-37) 2016 Chicco (10.7717/peerj.4568/ref-6) 2017; 10 Ersoy (10.7717/peerj.4568/ref-14) 2012 Vargha (10.7717/peerj.4568/ref-44) 1998; 23 Bergstra (10.7717/peerj.4568/ref-1) 2012; 13 Hommelsheim (10.7717/peerj.4568/ref-18) 2014; 4 Rossi (10.7717/peerj.4568/ref-34) 1987; 47 Botev (10.7717/peerj.4568/ref-3) 2017; 189 Razavian (10.7717/peerj.4568/ref-32) 2014 Szegedy (10.7717/peerj.4568/ref-43) 2016 Srivastava (10.7717/peerj.4568/ref-39) 2014; 15 Suzuki (10.7717/peerj.4568/ref-41) 2017; 10 WHO (10.7717/peerj.4568/ref-45) 2016 Huang (10.7717/peerj.4568/ref-20) 2016 LeCun (10.7717/peerj.4568/ref-24) 2015; 521 He (10.7717/peerj.4568/ref-17) 2016 Ross (10.7717/peerj.4568/ref-33) 2006; 44 Stevenson (10.7717/peerj.4568/ref-40) 2015 Daya (10.7717/peerj.4568/ref-10) 2003; 5 Royston (10.7717/peerj.4568/ref-35) 1992; 2 Chollet (10.7717/peerj.4568/ref-7) 2016 Mitiku (10.7717/peerj.4568/ref-29) 2003; 17 Bibin (10.7717/peerj.4568/ref-2) 2017; 5 Gopakumar (10.7717/peerj.4568/ref-15) 2018; 11 Lipton (10.7717/peerj.4568/ref-27) 2014; 8725 Deng (10.7717/peerj.4568/ref-11) 2009 Simonyan (10.7717/peerj.4568/ref-38) 2015 |
References_xml | – volume: 45 start-page: 97 year: 2013 ident: 10.7717/peerj.4568/ref-9 article-title: Machine learning approach for automated screening of malaria parasite using light microscopic images publication-title: Micron doi: 10.1016/j.micron.2012.11.002 – volume: 61 start-page: 85 year: 2015 ident: 10.7717/peerj.4568/ref-36 article-title: Deep Learning in neural networks: an overview publication-title: Neural Networks doi: 10.1016/j.neunet.2014.09.003 – volume: vol. 8689 volume-title: Computer vision—ECCV 2014 year: 2014 ident: 10.7717/peerj.4568/ref-47 article-title: Visualizing and understanding convolutional networks doi: 10.1007/978-3-319-10590-1_53 – year: 2016 ident: 10.7717/peerj.4568/ref-43 article-title: Rethinking the inception architecture for computer vision doi: 10.1109/CVPR.2016.308 – start-page: 770 year: 2016 ident: 10.7717/peerj.4568/ref-17 article-title: Deep residual learning for image recognition doi: 10.1109/CVPR.2016.90 – start-page: 493 year: 2017 ident: 10.7717/peerj.4568/ref-26 article-title: CNN-based image analysis for malaria diagnosis doi: 10.1109/BIBM.2016.7822567 – volume: 24 start-page: 343 year: 2009 ident: 10.7717/peerj.4568/ref-13 article-title: The impact of Levene’s test of equality of variances on statistical theory and practice publication-title: Statistical Science doi: 10.1214/09-STS301 – year: 2017 ident: 10.7717/peerj.4568/ref-19 article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications – volume: 5 start-page: 9099 year: 2017 ident: 10.7717/peerj.4568/ref-2 article-title: Malaria parasite detection from peripheral blood smear images using deep belief networks publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2705642 – volume: 5 start-page: 153 year: 2003 ident: 10.7717/peerj.4568/ref-10 article-title: One-way analysis of variance publication-title: Evidence-based Obstetrics and Gynecology doi: 10.1016/j.ebobgyn.2003.11.001 – volume: 15 start-page: 1929 year: 2014 ident: 10.7717/peerj.4568/ref-39 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: Journal of Machine Learning Research – volume: 4 start-page: 5052 year: 2014 ident: 10.7717/peerj.4568/ref-18 article-title: PCR amplification of repetitive DNA: a limitation to genome editing technologies and many other applications publication-title: Scientific Reports doi: 10.1038/srep05052 – start-page: 2217 year: 2016 ident: 10.7717/peerj.4568/ref-37 article-title: Understanding and improving convolutional neural networks via concatenated rectified linear units – volume: 86 start-page: 2278 year: 1998 ident: 10.7717/peerj.4568/ref-25 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.726791 – volume: 10 start-page: 257 year: 2017 ident: 10.7717/peerj.4568/ref-41 article-title: Overview of deep learning in medical imaging publication-title: Radiological Physics and Technology doi: 10.1007/s12194-017-0406-5 – year: 2016 ident: 10.7717/peerj.4568/ref-7 article-title: Xception: deep learning with separable convolutions – start-page: 512 year: 2014 ident: 10.7717/peerj.4568/ref-32 article-title: CNN features off-the-shelf: an astounding baseline for recognition doi: 10.1109/CVPRW.2014.131 – year: 2016 ident: 10.7717/peerj.4568/ref-20 article-title: Densely connected convolutional networks – start-page: 101 year: 2017 ident: 10.7717/peerj.4568/ref-12 article-title: Evaluations of deep convolutional neural networks for automatic identification of malaria infected cells doi: 10.1109/BHI.2017.7897215 – year: 2012 ident: 10.7717/peerj.4568/ref-5 article-title: CDC—Malaria – volume: 44 start-page: 427 year: 2006 ident: 10.7717/peerj.4568/ref-33 article-title: Automated image processing method for the diagnosis and classification of malaria on thin blood smears publication-title: Medical & Biological Engineering & Computing doi: 10.1007/s11517-006-0044-2 – year: 2015 ident: 10.7717/peerj.4568/ref-40 article-title: Tools for the analysis of epidemiological data – volume: 405 start-page: 442 year: 1975 ident: 10.7717/peerj.4568/ref-28 article-title: Comparison of the predicted and observed secondary structure of T4 phage lysozyme publication-title: BBA—Protein Structure doi: 10.1016/0005-2795(75)90109-9 – volume: 11 start-page: e201700003 year: 2018 ident: 10.7717/peerj.4568/ref-15 article-title: Convolutional neural network-based malaria diagnosis from focus stack of blood smear images acquired using custom-built slide scanner publication-title: Journal of Biophotonics doi: 10.1002/jbio.201700003 – volume: 17 start-page: 197 year: 2003 ident: 10.7717/peerj.4568/ref-29 article-title: The reliability of blood film examination for malaria at the peripheral health unit publication-title: Ethiopian Journal of Health Development – volume: 13 start-page: 281 year: 2012 ident: 10.7717/peerj.4568/ref-1 article-title: Random search for hyper-parameter optimization publication-title: Journal of Machine Learning Research – volume: 10 year: 2017 ident: 10.7717/peerj.4568/ref-6 article-title: Ten quick tips for machine learning in computational biology publication-title: BioData Mining doi: 10.1186/s13040-017-0155-3 – volume: 8 start-page: 308 issue: 1 year: 2009 ident: 10.7717/peerj.4568/ref-16 article-title: Use and limitations of malaria rapid diagnostic testing by community health workers in war-torn Democratic Republic of Congo publication-title: Malaria Journal doi: 10.1186/1475-2875-8-308 – volume: 521 start-page: 436 year: 2015 ident: 10.7717/peerj.4568/ref-24 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 189 start-page: 189 year: 2017 ident: 10.7717/peerj.4568/ref-3 article-title: Nesterov’s accelerated gradient and momentum as approximations to regularised update descent doi: 10.1109/IJCNN.2017.7966082 – volume: 194 start-page: 36 year: 2018 ident: 10.7717/peerj.4568/ref-30 article-title: Image analysis and machine learning for detecting malaria publication-title: Translational Research doi: 10.1016/j.trsl.2017.12.004 – start-page: 248 year: 2009 ident: 10.7717/peerj.4568/ref-11 article-title: ImageNet: a large-scale hierarchical image database doi: 10.1109/CVPRW.2009.5206848 – volume: 209 start-page: 346 year: 2016 ident: 10.7717/peerj.4568/ref-22 article-title: Importance of using proper post hoc test with ANOVA publication-title: International Journal of Cardiology doi: 10.1016/j.ijcard.2015.11.061 – year: 2015 ident: 10.7717/peerj.4568/ref-38 article-title: Very deep convolutional networks for large-scale image recognition – year: 2017 ident: 10.7717/peerj.4568/ref-8 article-title: Deep learning models – start-page: 748 year: 2012 ident: 10.7717/peerj.4568/ref-14 article-title: Coupled edge profile geodesic active contours for red blood cell flow analysis doi: 10.1109/ISBI.2012.6235656 – year: 2016 ident: 10.7717/peerj.4568/ref-45 article-title: World malaria report – volume: 8725 start-page: 225 year: 2014 ident: 10.7717/peerj.4568/ref-27 article-title: Optimal thresholding of classifiers to maximize F1 measure publication-title: Machine Learning and Knowledge Discovery in Databases doi: 10.1007/978-3-662-44851-9_15 – volume: 47 start-page: 37 year: 1987 ident: 10.7717/peerj.4568/ref-34 article-title: One-way anova from summary statistics publication-title: Educational and Psychological Measurement doi: 10.1177/0013164487471004 – volume: vol. 9475 start-page: 379 volume-title: Advances in visual computing year: 2015 ident: 10.7717/peerj.4568/ref-4 article-title: Off-the-shelf CNN features for fine-grained classification of vessels in a maritime environment doi: 10.1007/978-3-319-27863-6_35 – volume: 23 start-page: 170 year: 1998 ident: 10.7717/peerj.4568/ref-44 article-title: The Kruskal–Wallis test and stochastic homogeneity publication-title: Journal of Educational and Behavioral Statistics doi: 10.2307/1165320 – year: 2014 ident: 10.7717/peerj.4568/ref-42 article-title: Going deeper with convoltions – start-page: 71 year: 2017 ident: 10.7717/peerj.4568/ref-31 article-title: Visualizing abnormalities in chest radiographs through salient network activations in Deep Learning doi: 10.1109/LSC.2017.8268146 – volume: 2 start-page: 117 year: 1992 ident: 10.7717/peerj.4568/ref-35 article-title: Approximating the Shapiro-Wilk W-test for non-normality publication-title: Statistics and Computing doi: 10.1007/BF01891203 – year: 2016 ident: 10.7717/peerj.4568/ref-46 article-title: Fine-tune CNN in Keras – volume-title: Advances in neural information processing systems year: 2012 ident: 10.7717/peerj.4568/ref-21 article-title: ImageNet classification with deep convolutional neural networks doi: 10.1016/j.protcy.2014.09.007 – volume-title: The handbook of brain theory and neural networks year: 1995 ident: 10.7717/peerj.4568/ref-23 article-title: Convolutional networks for images, speech, and time series |
SSID | ssj0000826083 |
Score | 2.5934954 |
Snippet | Malaria is a blood disease caused by the
Plasmodium
parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick... Malaria is a blood disease caused by the parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin... Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e4568 |
SubjectTerms | Analysis Artificial intelligence Artificial neural networks Automation Blood Blood smear Computational Science Convolutional Neural Networks Data Mining and Machine Learning Data Science Decision making Deep Learning Diagnosis Diagnostic imaging Disease transmission Health aspects Health screening Image processing Infectious Diseases Learning algorithms Machine Learning Malaria Medicine Methods Neural networks Parasitemia Parasites Plasmodium falciparum Pre-trained models |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEF6kD-KLeDdadUVBfIjNZS_ZxyqWIlR8sNC3ZS-z9IhNy0n6E_zfzmzScIKCL77kQHY2JDOzczk7-w1jb0E4NHoSyoxAKEQ0pUmhKVsIokN_79pcm3PyVR2fii9n8myn1RfVhE3wwBPjDuoENSjoMA1B51kLH8B7ykt8E5qUj5A36PN2kqlsgzFqxuBiwiPVmLIcXAFsf3zAcKFbeaAM1P-nOd7xR-tayR3nc3SP3Z2jRn44ve19dgv6B-z2ybwv_pD9-raFMnd7gMipkHxWKJxDgJX5J5d7D9wNPEFG8-Rol7dTux0-5upZvsl_MeAzLhxmvBvHCRmc9pd5hDEXbfV80_PxHC-55J0PF7hUcB6apeEROz36_P3TcTk3WCiD1NVYCinBed2ZLqG82tYIAxRzqcY414a2io2pfNQgddP6qFxKsdLJh5hUrFvfPmZ7_WUPTxkXCkDXJnZViAKS7HQTq4DhAKZjILQq2Psbptswo48TW35azEJIQDYLyJKACvZmob2aMDf-SvWRZLdQEE52voHaY2ftsf_SnoK9Isnb6dDpstrtoWwF-m2jkeJdpqD1TkJx87EF_GxCzlpR7q8ocZ2G9fCNdtnZTgy2oZBTCmV0wV4vwzSTat96uLzONEYJ6pFSsCeTMi4fjSMdxmD4cL1S0xVX1iP95jyjiEtTaUytnv0PNj5ndzCQ7GiXrVb7bG_cXsMLDNZG_zKvy9_B80Ex priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyEuiDeBAkYgIQ6BPBw_TqhFrSqkVhWiUm9RbE_oIppdNulP4H8z43hDIxCXXWk9jjaetz3-hrE3IBo0ehWkAYFQCG9S07oiLcEJjf6-KUNtzvGJPDoTn8-r87jh1seyyq1NDIbarxztkVOSXtHFG6M-rn-m1DWKTldjC42bbAdNsNYLtrN_cHL6ZdplQQcnMcgYcUkVpi4f1gCb7-8xbNAzTxQA-_82y9f80rxm8poTOrzL7sToke-N7L7HbkB3n906jufjD9iv0w2koesDeE4F5VGwcA4BV4avUPbd86bnLQRUT472eTO23eFDqKLly7DVgM-4bDDzXTacEMJpJbiHIRRvdXzZ8eECP0LpO-8vUWVwHpqn_iE7Ozz4-ukojY0WUlepbEhFVUFjlTa6Rb6VpREGKPaShWma0pWZL0xmvYJKFaX1smlbn6nWOt9Kn5e2fMQW3aqDJ4wLCaBy43XmvIC20qrwmcOwANMyEEom7N120WsXUchpWX7UmI0Qg-rAoJoYlLDXE-16xN74J9U-8W6iILzs8MNq862O6lfnLeQgQWMyiyFYLqwDaym7tYUr2iJP2EvifD1ePp20vt6rSoH-2yikeBsoSO-JKU28voCvTQhaM8rdGSXqq5sPb6Wrjvair_9Id8JeTcM0k2rgOlhdBRojBfVKSdjjURinl8YRjbEYPlzNxHS2KvORbnkR0MQrkylMsZ7-_289Y7cxVNR0jpbLXbYYNlfwHMOxwb6IOvcbRDk6JQ priority: 102 providerName: ProQuest |
Title | Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29682411 https://www.proquest.com/docview/2025654697 https://www.proquest.com/docview/2029640680 https://pubmed.ncbi.nlm.nih.gov/PMC5907772 https://doaj.org/article/1fe1e6e809464314bcebb2184b2c2f21 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF9qC-KL-G3aeq4oiA85k-wmm32SVlqLcKWIB_e2JLsTe9LmapKC_gH-385sckejxZcc3M6GZOdjf5NMfsPYG5AFBr0UQs9AKKXToa5sEgqwMsf9vhC-Nmd2mp3M5edFuthi6_6dwwK2t6Z21E9q3lxMf_749QEdHvHrVGE28v4KoPk-RSSQ32E7uCMp6mQwG2C-j8iIoSPPyJkQzTeCDt0zlf41fbQ3eQr_fwP1jZ1qXEV5Y1s6fsDuD3iSH_QG8JBtQf2I3Z0Nb8wfs99nDYS-DwQ4TiXmg6nhHKKy9D--ELzlRcsr8DyfHCN20zfi4Z2vq-VL__ABz3FZ4IItC06c4fTmmTvofDlXzZc1787x4IvheXuJToTzMGC1T9j8-Ojrx5NwaL0Q2lRFXSjTFIpS5TqvUJNCaKmB0FiW6KIQVkQu0VHpFKQqEaXLiqpykapK66rMxaIUT9l2varhOeMyA1CxdnlknYQqzVXiIotAARM1kCoL2Lv1ohs78JLTslwYzE9IQcYryJCCAvZ6I3vVs3HcKnVIuttIEIO2_2PVfDODQ5q4ghgyyDG9RVAWy9JCWVK-WyY2qZI4YC9J86b_HHUTB8xBKiTu6FqhxFsvQbZJSimGDxrwtolTayS5P5JED7bj4bV1mbUDmITAaCozrQL2ajNMM6kqrobVtZfRmaTuKQF71hvj5qZxJEdfwJOrkZmOVmU8Ui_PPb94qiOFSdfu_696j91D8JjTm7U422fbXXMNLxCgdeWE7RwenZ59mfgHHHj8tIgn3iP_AIfHQFo |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVoJeEG8WCjUChDgE8nDi-IBQC622tLuqUCv15ib2pF1Es8smFeIH8Hf4jcw42dAIxK2XjbQeW4lnPA97_A1jL0BkqPRi8BwCoRBWeaowoReBESna-yxyuTnjSTI6Ep-O4-MV9mt5F4bSKpc60SlqOzO0R05BekwXb5R8P__mUdUoOl1dltBoxGIPfnzHkK16t_sR-fsyDHe2Dz-MvLaqgGdi6deeiGPIcpmqtMCXjCIlFJCjkYQqyyIT-TZUfm4lxDKMcptkRWF9WeTGFokNojzCca-xVRElfjhgq1vbk4PP3a4OGtQEnZoGB1ViqPR2DrD48gbdlLRn-VyBgL_NwCU72M_RvGT0dm6xm623yjcb8brNVqC8w66P2_P4u-znwQI8V2UCLKcE9laQsQ8BZbqHSzOveFbxAhyKKEd7sGjK_PDaZe3yqdvawDHOM4y0pxknRHKaeW6hdsliJZ-WvD7DH5dqz6tz5AX2Q3VY3WNHV8KC-2xQzkp4yLhIAGSgbOobK6CIUxla36AbgmEgCJkM2evlpGvTop7TtHzVGP0Qg7RjkCYGDdnzjnbeYH38k2qLeNdRED63-2O2ONXtctdBAQEkkGLwjC5fIHIDeU7RdB6asAiDIdsgzuvmsmunZfRmHAn0F5REileOgvQMMSVrr0vgZxNiV49yvUeJ-sH0m5fSpVv9VOk_q2nInnXN1JNy7kqYXTgalQiqzTJkDxph7D4aW1L0_XBw2RPT3qz0W8rpmUMvj5UvMaR79P_X2mA3Rofjfb2_O9l7zNbQTU3pDC9I1tmgXlzAE3QF6_xpu_44O7nqJf8bLnp3RA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpbqeKCeLOlUCNAiENoHk4cHxBqaVctpasVolJvbmJP6FY0u2xSIT6An-LrmHGyoRGIWy8baT22knmPPZ5h7AWIDJVeDJ6rQCiEVZ4qTOhFYESK9j6LXG7O0TjZPxYfTuKTFfZreReG0iqXOtEpajsztEdOQXpMF2-U3CratIjJ7ujd_JtHHaTopHXZTqNhkUP48R3Dt-rtwS7S-mUYjvY-v9_32g4DnomlX3sijiHLZarSAl84ipRQQE5HEqosi0zk21D5uZUQyzDKbZIVhfVlkRtbJDaI8gjXvcFWJUVFA7a6szeefOp2eNC4JujgNDVRJYZNW3OAxfkbdFnSnhV0zQL-NglXbGI_X_OKARzdZrdaz5VvN6x2h61AeZetHbVn8_fYz8kCPNdxAiynZPaWqXEOFc10D5dyXvGs4gW4iqIcEbxoWv7w2mXw8qnb5sA1LjKMuqcZp-rkhHluoXaJYyWflrw-wx-Xds-rC6QFzkPVWN1nx9dCggdsUM5KeMS4SABkoGzqGyugiFMZWt-gS4IhIQiZDNnrJdK1aSugE1q-aoyEiEDaEUgTgYbseQc7b-p-_BNqh2jXQVCtbvfHbPFFt6KvgwICSCDFQBrdv0DkBvKcIus8NGERBkO2SZTXzcXXTuPo7TgS6DsoiRCvHATpHCJK1l6dwM-m6l09yI0eJOoK0x9ecpdudVWl_0jWkD3rhmkm5d-VMLt0MCoR1KdlyB42zNh9NI6k6Afi4rLHpj2s9EfK6ZmrZB4rX2J4t_7_19pkayjq-uPB-PAxu4kea0rHeUGywQb14hKeoFdY509b8ePs9Lol_jdpUXt5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pre-trained+convolutional+neural+networks+as+feature+extractors+toward+improved+malaria+parasite+detection+in+thin+blood+smear+images&rft.jtitle=PeerJ+%28San+Francisco%2C+CA%29&rft.au=Rajaraman%2C+Sivaramakrishnan&rft.au=Antani%2C+Sameer+K&rft.au=Poostchi%2C+Mahdieh&rft.au=Silamut%2C+Kamolrat&rft.date=2018-04-16&rft.pub=PeerJ.+Ltd&rft.issn=2167-8359&rft.eissn=2167-8359&rft.volume=6&rft.spage=e4568&rft_id=info:doi/10.7717%2Fpeerj.4568&rft.externalDocID=A534847971 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-8359&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-8359&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-8359&client=summon |