Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images

Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifyi...

Full description

Saved in:
Bibliographic Details
Published inPeerJ (San Francisco, CA) Vol. 6; p. e4568
Main Authors Rajaraman, Sivaramakrishnan, Antani, Sameer K., Poostchi, Mahdieh, Silamut, Kamolrat, Hossain, Md. A., Maude, Richard J., Jaeger, Stefan, Thoma, George R.
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 16.04.2018
PeerJ, Inc
PeerJ Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose.
AbstractList Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose.
Malaria is a blood disease caused by the parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose.
Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose.
Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose.Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose.
ArticleNumber e4568
Audience Academic
Author Thoma, George R.
Maude, Richard J.
Rajaraman, Sivaramakrishnan
Antani, Sameer K.
Hossain, Md. A.
Jaeger, Stefan
Silamut, Kamolrat
Poostchi, Mahdieh
Author_xml – sequence: 1
  givenname: Sivaramakrishnan
  surname: Rajaraman
  fullname: Rajaraman, Sivaramakrishnan
  organization: Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD, United States of America
– sequence: 2
  givenname: Sameer K.
  surname: Antani
  fullname: Antani, Sameer K.
  organization: Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD, United States of America
– sequence: 3
  givenname: Mahdieh
  surname: Poostchi
  fullname: Poostchi, Mahdieh
  organization: Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD, United States of America
– sequence: 4
  givenname: Kamolrat
  surname: Silamut
  fullname: Silamut, Kamolrat
  organization: Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
– sequence: 5
  givenname: Md. A.
  surname: Hossain
  fullname: Hossain, Md. A.
  organization: Department of Medicine, Chittagong Medical Hospital, Chittagong, Bangladesh
– sequence: 6
  givenname: Richard J.
  surname: Maude
  fullname: Maude, Richard J.
  organization: Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, United States of America
– sequence: 7
  givenname: Stefan
  surname: Jaeger
  fullname: Jaeger, Stefan
  organization: Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD, United States of America
– sequence: 8
  givenname: George R.
  surname: Thoma
  fullname: Thoma, George R.
  organization: Lister Hill National Center for Biomedical Communications, National Library of Medicine, Bethesda, MD, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29682411$$D View this record in MEDLINE/PubMed
BookMark eNptkl1v0zAUhiM0xEbZDT8ARUJCCKnDTvx5M2ma-Jg0CS7g2nLsk9YliYvtdPAD-N84bRnttESKI_t5X9vnvM-Lk8EPUBQvMbrgHPP3a4CwuiCUiSfFWYUZn4uaypOD_9PiPMYVyo-oGBL1s-K0kkxUBOOz4s_XAPMUtBvAlsYPG9-NyflBd-UAY9gO6c6HH7HUsWxBpzFACb-yxCQfYpn8nQ62dP06-E326HWng9PlWgcdXYLSQgIzWZZuKNMyf5rOe1vGHnTIOr2A-KJ42uouwvl-nBXfP374dv15fvvl08311e3cUI7SnFAKuuFCilYQWteSSEBIUlZJrWtTI1tJ1FgOlFd1Y5luW4t42xjbMovrpp4VNztf6_VKrUPePfxWXju1nfBhoXRIznSgcAsYGAgkCSM1Jo2BpqmwIE1lqrbC2ety57Uemx6sgSHXpDsyPV4Z3FIt_EZRiTjPB5wVb_cGwf8cISbVu2ig6_QAfoyqQrlNBDGBMvr6AbryY8hN2lKUUcIk_08tdL6AG1o_dWkyVVe0JoJwyadzXzxC5ddC73ICoHV5_kjw5kCwBN2lZdzHJB6Drw4rcl-Kf2nLwLsdYIKPMUB7j2CkpjSrbZrVlOYMowewcUlPm05x7R6T_AXrs_lu
CitedBy_id crossref_primary_10_1080_1206212X_2019_1672277
crossref_primary_10_1155_2020_7627290
crossref_primary_10_1093_gigascience_giab040
crossref_primary_10_1186_s12879_020_05453_1
crossref_primary_10_1016_j_inffus_2021_09_012
crossref_primary_10_1093_femsre_fuab015
crossref_primary_10_1007_s00521_021_06604_4
crossref_primary_10_1016_j_cmi_2020_03_012
crossref_primary_10_1007_s13748_024_00346_9
crossref_primary_10_3390_jimaging8030066
crossref_primary_10_1007_s12553_020_00488_5
crossref_primary_10_1016_j_dajour_2023_100352
crossref_primary_10_1093_jrr_rraf004
crossref_primary_10_1007_s13042_018_0842_5
crossref_primary_10_3390_technologies12120247
crossref_primary_10_1016_j_optcom_2024_131302
crossref_primary_10_3389_fmed_2023_1117192
crossref_primary_10_1088_1742_6596_1869_1_012092
crossref_primary_10_1007_s11042_022_13008_6
crossref_primary_10_1186_s13000_020_01040_9
crossref_primary_10_1111_exsy_12695
crossref_primary_10_1007_s40747_024_01406_2
crossref_primary_10_35377_saucis___1197119
crossref_primary_10_1038_s41598_025_87979_5
crossref_primary_10_1088_2057_1976_ac0e74
crossref_primary_10_1111_exsy_12690
crossref_primary_10_4236_etsn_2021_102003
crossref_primary_10_1038_s41551_021_00733_w
crossref_primary_10_32628_CSEIT2390283
crossref_primary_10_1038_s41598_021_96475_5
crossref_primary_10_1007_s12553_021_00620_z
crossref_primary_10_1109_LSENS_2024_3373882
crossref_primary_10_1038_s41598_024_63831_0
crossref_primary_10_1016_j_compbiomed_2020_104151
crossref_primary_10_4236_jcc_2024_122011
crossref_primary_10_1155_2022_7776319
crossref_primary_10_32604_cmc_2023_033860
crossref_primary_10_1016_j_patter_2023_100806
crossref_primary_10_1016_j_knosys_2023_110907
crossref_primary_10_1007_s11517_023_02926_8
crossref_primary_10_7717_peerj_16773
crossref_primary_10_1109_ACCESS_2019_2925891
crossref_primary_10_1111_exsy_12906
crossref_primary_10_1109_ACCESS_2020_2990497
crossref_primary_10_1016_j_blre_2023_101144
crossref_primary_10_1038_s41598_025_90851_1
crossref_primary_10_1080_21681163_2022_2111715
crossref_primary_10_32604_cmc_2023_039515
crossref_primary_10_1016_j_patrec_2020_07_002
crossref_primary_10_1007_s00521_021_06602_6
crossref_primary_10_1002_ima_22739
crossref_primary_10_1016_j_scitotenv_2025_179018
crossref_primary_10_3390_math8091606
crossref_primary_10_1007_s11042_022_13737_8
crossref_primary_10_1016_j_pt_2024_05_005
crossref_primary_10_1080_1206212X_2024_2328492
crossref_primary_10_1007_s00521_021_06483_9
crossref_primary_10_3389_frabi_2024_1405296
crossref_primary_10_3390_jimaging9120266
crossref_primary_10_1016_j_aca_2022_339807
crossref_primary_10_7717_peerj_cs_1744
crossref_primary_10_1007_s00216_021_03179_w
crossref_primary_10_1016_j_aei_2024_102441
crossref_primary_10_1049_itr2_12370
crossref_primary_10_1360_SSV_2022_0035
crossref_primary_10_1109_ACCESS_2021_3054735
crossref_primary_10_1016_j_bspc_2019_04_010
crossref_primary_10_33395_sinkron_v5i2_10713
crossref_primary_10_1002_ima_22953
crossref_primary_10_1007_s11042_023_14708_3
crossref_primary_10_3390_app11052284
crossref_primary_10_1007_s42452_020_3000_0
crossref_primary_10_1109_JBHI_2020_3034863
crossref_primary_10_1088_1742_6596_2622_1_012011
crossref_primary_10_1038_s41598_024_78260_2
crossref_primary_10_4108_eetpht_10_5439
crossref_primary_10_1016_j_jksuci_2019_02_004
crossref_primary_10_1038_s41598_023_40317_z
crossref_primary_10_4015_S1016237221500228
crossref_primary_10_17671_gazibtd_1264480
crossref_primary_10_1155_2021_6633806
crossref_primary_10_1186_s12936_023_04446_0
crossref_primary_10_1186_s12859_019_2931_1
crossref_primary_10_1016_j_compbiomed_2024_109593
crossref_primary_10_1016_j_bspc_2023_105362
crossref_primary_10_3390_rs11232801
crossref_primary_10_1016_j_cmpb_2023_107789
crossref_primary_10_1007_s42979_021_00763_w
crossref_primary_10_3390_s23187932
crossref_primary_10_1016_j_tice_2020_101473
crossref_primary_10_1038_s41598_022_19217_1
crossref_primary_10_54365_adyumbd_1033135
crossref_primary_10_7717_peerj_6977
crossref_primary_10_1177_01423312221147335
crossref_primary_10_3390_diagnostics12061442
crossref_primary_10_3390_e22060657
crossref_primary_10_1080_08839514_2022_2031826
crossref_primary_10_1109_ACCESS_2024_3459411
crossref_primary_10_1016_j_eswa_2021_115658
crossref_primary_10_1186_s12859_021_04036_4
crossref_primary_10_7717_peerj_7256
crossref_primary_10_1007_s10462_021_10001_7
crossref_primary_10_35193_bseufbd_1064187
crossref_primary_10_7717_peerj_9674
crossref_primary_10_1155_2021_6698176
crossref_primary_10_3390_app12115500
crossref_primary_10_1109_ACCESS_2020_2971257
crossref_primary_10_1016_j_jfranklin_2023_07_015
crossref_primary_10_1166_jmihi_2021_3757
crossref_primary_10_1109_ACCESS_2021_3055870
crossref_primary_10_1142_S0219622023300045
crossref_primary_10_1038_s41598_024_53631_x
crossref_primary_10_1016_j_imu_2021_100743
crossref_primary_10_3389_fpubh_2022_969268
crossref_primary_10_1002_ima_23205
crossref_primary_10_1109_ACCESS_2019_2930177
crossref_primary_10_1128_spectrum_01440_23
crossref_primary_10_1007_s00521_019_04114_y
crossref_primary_10_1109_ACCESS_2023_3234279
crossref_primary_10_1016_j_csbj_2022_02_005
crossref_primary_10_3390_asi4040082
crossref_primary_10_21605_cukurovaumfd_1460434
crossref_primary_10_1016_j_imu_2022_100911
crossref_primary_10_1007_s11042_020_09977_1
crossref_primary_10_1109_TUFFC_2021_3087949
crossref_primary_10_3389_fcimb_2022_882995
crossref_primary_10_1016_j_bspc_2024_106289
crossref_primary_10_1016_j_knosys_2020_105596
crossref_primary_10_1007_s12539_020_00367_7
crossref_primary_10_7717_peerj_cs_422
crossref_primary_10_1016_j_tice_2024_102677
crossref_primary_10_3390_bioengineering8110150
crossref_primary_10_1016_j_compbiomed_2021_105134
crossref_primary_10_1002_prep_202400234
crossref_primary_10_1007_s00521_024_10780_4
crossref_primary_10_32604_cmc_2021_016114
crossref_primary_10_3390_electronics13163174
crossref_primary_10_54021_seesv5n2_750
crossref_primary_10_3390_info15030166
crossref_primary_10_1080_13102818_2024_2349587
crossref_primary_10_1016_j_mjafi_2023_10_007
crossref_primary_10_1007_s11042_023_17866_6
crossref_primary_10_3390_diagnostics11111994
crossref_primary_10_1109_ACCESS_2024_3393410
crossref_primary_10_1111_vru_13413
crossref_primary_10_3390_app9122404
crossref_primary_10_1093_clinchem_hvab165
crossref_primary_10_1007_s44163_023_00049_5
crossref_primary_10_1016_j_artmed_2021_102020
crossref_primary_10_1109_ACCESS_2023_3245025
crossref_primary_10_3390_diagnostics14232738
crossref_primary_10_1007_s00340_020_7399_1
crossref_primary_10_1016_j_mmifmc_2023_06_003
crossref_primary_10_3390_jimaging10050121
crossref_primary_10_1017_S2633903X21000015
crossref_primary_10_3390_diagnostics10050329
crossref_primary_10_1016_j_compbiomed_2025_109704
crossref_primary_10_1007_s42486_020_00026_2
crossref_primary_10_1155_2022_3626726
crossref_primary_10_1109_ACCESS_2020_2980798
crossref_primary_10_1155_2022_3922763
crossref_primary_10_32604_cmc_2022_025577
crossref_primary_10_3390_app12199908
crossref_primary_10_3390_s22124358
crossref_primary_10_36548_jucct_2021_2_005
crossref_primary_10_1016_j_csbj_2024_04_029
crossref_primary_10_3233_JIFS_201985
crossref_primary_10_1186_s13071_024_06215_7
crossref_primary_10_1038_s41598_021_84219_4
crossref_primary_10_1007_s00521_024_10219_w
crossref_primary_10_7717_peerj_13470
crossref_primary_10_1177_2472555219857715
crossref_primary_10_3390_diagnostics12112702
crossref_primary_10_3324_haematol_2021_280209
crossref_primary_10_1016_j_bspc_2024_106869
crossref_primary_10_1016_j_compbiomed_2023_107268
crossref_primary_10_1007_s11042_019_7162_y
crossref_primary_10_1109_TDSC_2024_3355165
crossref_primary_10_4108_eetpht_10_5269
crossref_primary_10_3390_e24091264
crossref_primary_10_1109_JPHOT_2021_3109016
crossref_primary_10_1128_msystems_00445_19
crossref_primary_10_1007_s12639_019_01163_x
crossref_primary_10_3390_diagnostics10100744
crossref_primary_10_3390_brainsci11070902
crossref_primary_10_1155_2020_8895429
crossref_primary_10_3390_diagnostics11081373
crossref_primary_10_1080_03772063_2022_2101552
crossref_primary_10_1371_journal_pdig_0000286
crossref_primary_10_1038_s41427_023_00516_6
crossref_primary_10_1109_ACCESS_2020_2994810
crossref_primary_10_4015_S1016237223500047
crossref_primary_10_1016_j_imavis_2023_104894
Cites_doi 10.1016/j.micron.2012.11.002
10.1016/j.neunet.2014.09.003
10.1007/978-3-319-10590-1_53
10.1109/CVPR.2016.308
10.1109/CVPR.2016.90
10.1109/BIBM.2016.7822567
10.1214/09-STS301
10.1109/ACCESS.2017.2705642
10.1016/j.ebobgyn.2003.11.001
10.1038/srep05052
10.1109/5.726791
10.1007/s12194-017-0406-5
10.1109/CVPRW.2014.131
10.1109/BHI.2017.7897215
10.1007/s11517-006-0044-2
10.1016/0005-2795(75)90109-9
10.1002/jbio.201700003
10.1186/s13040-017-0155-3
10.1186/1475-2875-8-308
10.1038/nature14539
10.1109/IJCNN.2017.7966082
10.1016/j.trsl.2017.12.004
10.1109/CVPRW.2009.5206848
10.1016/j.ijcard.2015.11.061
10.1109/ISBI.2012.6235656
10.1007/978-3-662-44851-9_15
10.1177/0013164487471004
10.1007/978-3-319-27863-6_35
10.2307/1165320
10.1109/LSC.2017.8268146
10.1007/BF01891203
10.1016/j.protcy.2014.09.007
ContentType Journal Article
Copyright COPYRIGHT 2018 PeerJ. Ltd.
This is an open access article, free of all copyright, made available under the Creative Commons Public Domain Dedication: http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). This work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018
Copyright_xml – notice: COPYRIGHT 2018 PeerJ. Ltd.
– notice: This is an open access article, free of all copyright, made available under the Creative Commons Public Domain Dedication: http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). This work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj.4568
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database



PubMed

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2167-8359
ExternalDocumentID oai_doaj_org_article_1fe1e6e809464314bcebb2184b2c2f21
PMC5907772
A534847971
29682411
10_7717_peerj_4568
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: Lister Hill National Center for Biomedical Communications (LHNCBC)
– fundername: National Institutes of Health (NIH)
– fundername: Intramural Research Program of the National Library of Medicine (NLM)
– fundername: Wellcome Trust of Great Britain
GroupedDBID 53G
5VS
88I
8FE
8FH
AAFWJ
AAYXX
ABUWG
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
ECGQY
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
IAO
IEA
IHR
IHW
ITC
KQ8
LK8
M2P
M48
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
W2D
YAO
NPM
PMFND
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c570t-455eab7898f84533949e0095629aa3c30d290bd7e5723bd6affd07fbcdf6d13b3
IEDL.DBID M48
ISSN 2167-8359
IngestDate Wed Aug 27 01:28:22 EDT 2025
Thu Aug 21 13:43:57 EDT 2025
Fri Jul 11 11:22:21 EDT 2025
Fri Jul 25 11:41:21 EDT 2025
Tue Jun 17 20:56:00 EDT 2025
Tue Jun 10 20:30:21 EDT 2025
Thu May 22 21:20:55 EDT 2025
Thu Apr 03 07:03:06 EDT 2025
Thu Apr 24 23:05:10 EDT 2025
Tue Jul 01 03:52:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Screening
Blood smear
Malaria
Pre-trained models
Feature extraction
Convolutional Neural Networks
Machine Learning
Computer-aided diagnosis
Deep Learning
Language English
License http://creativecommons.org/publicdomain/zero/1.0
This is an open access article, free of all copyright, made available under the Creative Commons Public Domain Dedication. This work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c570t-455eab7898f84533949e0095629aa3c30d290bd7e5723bd6affd07fbcdf6d13b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.7717/peerj.4568
PMID 29682411
PQID 2025654697
PQPubID 2045935
ParticipantIDs doaj_primary_oai_doaj_org_article_1fe1e6e809464314bcebb2184b2c2f21
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5907772
proquest_miscellaneous_2029640680
proquest_journals_2025654697
gale_infotracmisc_A534847971
gale_infotracacademiconefile_A534847971
gale_healthsolutions_A534847971
pubmed_primary_29682411
crossref_primary_10_7717_peerj_4568
crossref_citationtrail_10_7717_peerj_4568
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-16
PublicationDateYYYYMMDD 2018-04-16
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Francisco, USA
PublicationTitle PeerJ (San Francisco, CA)
PublicationTitleAlternate PeerJ
PublicationYear 2018
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Howard (10.7717/peerj.4568/ref-19) 2017
Zeiler (10.7717/peerj.4568/ref-47) 2014; vol. 8689
Hawkes (10.7717/peerj.4568/ref-16) 2009; 8
Szegedy (10.7717/peerj.4568/ref-42) 2014
Kucuk (10.7717/peerj.4568/ref-22) 2016; 209
Centers for Disease Control and Prevention (10.7717/peerj.4568/ref-5) 2012
Gastwirth (10.7717/peerj.4568/ref-13) 2009; 24
Schmidhuber (10.7717/peerj.4568/ref-36) 2015; 61
Matthews (10.7717/peerj.4568/ref-28) 1975; 405
Liang (10.7717/peerj.4568/ref-26) 2017
Dong (10.7717/peerj.4568/ref-12) 2017
LeCun (10.7717/peerj.4568/ref-23) 1995
Krizhevsky (10.7717/peerj.4568/ref-21) 2012
Yu (10.7717/peerj.4568/ref-46) 2016
Rajaraman (10.7717/peerj.4568/ref-31) 2017
Bousetouane (10.7717/peerj.4568/ref-4) 2015; vol. 9475
Poostchi (10.7717/peerj.4568/ref-30) 2018; 194
Chollet (10.7717/peerj.4568/ref-8) 2017
Das (10.7717/peerj.4568/ref-9) 2013; 45
LeCun (10.7717/peerj.4568/ref-25) 1998; 86
Shang (10.7717/peerj.4568/ref-37) 2016
Chicco (10.7717/peerj.4568/ref-6) 2017; 10
Ersoy (10.7717/peerj.4568/ref-14) 2012
Vargha (10.7717/peerj.4568/ref-44) 1998; 23
Bergstra (10.7717/peerj.4568/ref-1) 2012; 13
Hommelsheim (10.7717/peerj.4568/ref-18) 2014; 4
Rossi (10.7717/peerj.4568/ref-34) 1987; 47
Botev (10.7717/peerj.4568/ref-3) 2017; 189
Razavian (10.7717/peerj.4568/ref-32) 2014
Szegedy (10.7717/peerj.4568/ref-43) 2016
Srivastava (10.7717/peerj.4568/ref-39) 2014; 15
Suzuki (10.7717/peerj.4568/ref-41) 2017; 10
WHO (10.7717/peerj.4568/ref-45) 2016
Huang (10.7717/peerj.4568/ref-20) 2016
LeCun (10.7717/peerj.4568/ref-24) 2015; 521
He (10.7717/peerj.4568/ref-17) 2016
Ross (10.7717/peerj.4568/ref-33) 2006; 44
Stevenson (10.7717/peerj.4568/ref-40) 2015
Daya (10.7717/peerj.4568/ref-10) 2003; 5
Royston (10.7717/peerj.4568/ref-35) 1992; 2
Chollet (10.7717/peerj.4568/ref-7) 2016
Mitiku (10.7717/peerj.4568/ref-29) 2003; 17
Bibin (10.7717/peerj.4568/ref-2) 2017; 5
Gopakumar (10.7717/peerj.4568/ref-15) 2018; 11
Lipton (10.7717/peerj.4568/ref-27) 2014; 8725
Deng (10.7717/peerj.4568/ref-11) 2009
Simonyan (10.7717/peerj.4568/ref-38) 2015
References_xml – volume: 45
  start-page: 97
  year: 2013
  ident: 10.7717/peerj.4568/ref-9
  article-title: Machine learning approach for automated screening of malaria parasite using light microscopic images
  publication-title: Micron
  doi: 10.1016/j.micron.2012.11.002
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.7717/peerj.4568/ref-36
  article-title: Deep Learning in neural networks: an overview
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– volume: vol. 8689
  volume-title: Computer vision—ECCV 2014
  year: 2014
  ident: 10.7717/peerj.4568/ref-47
  article-title: Visualizing and understanding convolutional networks
  doi: 10.1007/978-3-319-10590-1_53
– year: 2016
  ident: 10.7717/peerj.4568/ref-43
  article-title: Rethinking the inception architecture for computer vision
  doi: 10.1109/CVPR.2016.308
– start-page: 770
  year: 2016
  ident: 10.7717/peerj.4568/ref-17
  article-title: Deep residual learning for image recognition
  doi: 10.1109/CVPR.2016.90
– start-page: 493
  year: 2017
  ident: 10.7717/peerj.4568/ref-26
  article-title: CNN-based image analysis for malaria diagnosis
  doi: 10.1109/BIBM.2016.7822567
– volume: 24
  start-page: 343
  year: 2009
  ident: 10.7717/peerj.4568/ref-13
  article-title: The impact of Levene’s test of equality of variances on statistical theory and practice
  publication-title: Statistical Science
  doi: 10.1214/09-STS301
– year: 2017
  ident: 10.7717/peerj.4568/ref-19
  article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications
– volume: 5
  start-page: 9099
  year: 2017
  ident: 10.7717/peerj.4568/ref-2
  article-title: Malaria parasite detection from peripheral blood smear images using deep belief networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2705642
– volume: 5
  start-page: 153
  year: 2003
  ident: 10.7717/peerj.4568/ref-10
  article-title: One-way analysis of variance
  publication-title: Evidence-based Obstetrics and Gynecology
  doi: 10.1016/j.ebobgyn.2003.11.001
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.7717/peerj.4568/ref-39
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– volume: 4
  start-page: 5052
  year: 2014
  ident: 10.7717/peerj.4568/ref-18
  article-title: PCR amplification of repetitive DNA: a limitation to genome editing technologies and many other applications
  publication-title: Scientific Reports
  doi: 10.1038/srep05052
– start-page: 2217
  year: 2016
  ident: 10.7717/peerj.4568/ref-37
  article-title: Understanding and improving convolutional neural networks via concatenated rectified linear units
– volume: 86
  start-page: 2278
  year: 1998
  ident: 10.7717/peerj.4568/ref-25
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– volume: 10
  start-page: 257
  year: 2017
  ident: 10.7717/peerj.4568/ref-41
  article-title: Overview of deep learning in medical imaging
  publication-title: Radiological Physics and Technology
  doi: 10.1007/s12194-017-0406-5
– year: 2016
  ident: 10.7717/peerj.4568/ref-7
  article-title: Xception: deep learning with separable convolutions
– start-page: 512
  year: 2014
  ident: 10.7717/peerj.4568/ref-32
  article-title: CNN features off-the-shelf: an astounding baseline for recognition
  doi: 10.1109/CVPRW.2014.131
– year: 2016
  ident: 10.7717/peerj.4568/ref-20
  article-title: Densely connected convolutional networks
– start-page: 101
  year: 2017
  ident: 10.7717/peerj.4568/ref-12
  article-title: Evaluations of deep convolutional neural networks for automatic identification of malaria infected cells
  doi: 10.1109/BHI.2017.7897215
– year: 2012
  ident: 10.7717/peerj.4568/ref-5
  article-title: CDC—Malaria
– volume: 44
  start-page: 427
  year: 2006
  ident: 10.7717/peerj.4568/ref-33
  article-title: Automated image processing method for the diagnosis and classification of malaria on thin blood smears
  publication-title: Medical & Biological Engineering & Computing
  doi: 10.1007/s11517-006-0044-2
– year: 2015
  ident: 10.7717/peerj.4568/ref-40
  article-title: Tools for the analysis of epidemiological data
– volume: 405
  start-page: 442
  year: 1975
  ident: 10.7717/peerj.4568/ref-28
  article-title: Comparison of the predicted and observed secondary structure of T4 phage lysozyme
  publication-title: BBA—Protein Structure
  doi: 10.1016/0005-2795(75)90109-9
– volume: 11
  start-page: e201700003
  year: 2018
  ident: 10.7717/peerj.4568/ref-15
  article-title: Convolutional neural network-based malaria diagnosis from focus stack of blood smear images acquired using custom-built slide scanner
  publication-title: Journal of Biophotonics
  doi: 10.1002/jbio.201700003
– volume: 17
  start-page: 197
  year: 2003
  ident: 10.7717/peerj.4568/ref-29
  article-title: The reliability of blood film examination for malaria at the peripheral health unit
  publication-title: Ethiopian Journal of Health Development
– volume: 13
  start-page: 281
  year: 2012
  ident: 10.7717/peerj.4568/ref-1
  article-title: Random search for hyper-parameter optimization
  publication-title: Journal of Machine Learning Research
– volume: 10
  year: 2017
  ident: 10.7717/peerj.4568/ref-6
  article-title: Ten quick tips for machine learning in computational biology
  publication-title: BioData Mining
  doi: 10.1186/s13040-017-0155-3
– volume: 8
  start-page: 308
  issue: 1
  year: 2009
  ident: 10.7717/peerj.4568/ref-16
  article-title: Use and limitations of malaria rapid diagnostic testing by community health workers in war-torn Democratic Republic of Congo
  publication-title: Malaria Journal
  doi: 10.1186/1475-2875-8-308
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.7717/peerj.4568/ref-24
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 189
  start-page: 189
  year: 2017
  ident: 10.7717/peerj.4568/ref-3
  article-title: Nesterov’s accelerated gradient and momentum as approximations to regularised update descent
  doi: 10.1109/IJCNN.2017.7966082
– volume: 194
  start-page: 36
  year: 2018
  ident: 10.7717/peerj.4568/ref-30
  article-title: Image analysis and machine learning for detecting malaria
  publication-title: Translational Research
  doi: 10.1016/j.trsl.2017.12.004
– start-page: 248
  year: 2009
  ident: 10.7717/peerj.4568/ref-11
  article-title: ImageNet: a large-scale hierarchical image database
  doi: 10.1109/CVPRW.2009.5206848
– volume: 209
  start-page: 346
  year: 2016
  ident: 10.7717/peerj.4568/ref-22
  article-title: Importance of using proper post hoc test with ANOVA
  publication-title: International Journal of Cardiology
  doi: 10.1016/j.ijcard.2015.11.061
– year: 2015
  ident: 10.7717/peerj.4568/ref-38
  article-title: Very deep convolutional networks for large-scale image recognition
– year: 2017
  ident: 10.7717/peerj.4568/ref-8
  article-title: Deep learning models
– start-page: 748
  year: 2012
  ident: 10.7717/peerj.4568/ref-14
  article-title: Coupled edge profile geodesic active contours for red blood cell flow analysis
  doi: 10.1109/ISBI.2012.6235656
– year: 2016
  ident: 10.7717/peerj.4568/ref-45
  article-title: World malaria report
– volume: 8725
  start-page: 225
  year: 2014
  ident: 10.7717/peerj.4568/ref-27
  article-title: Optimal thresholding of classifiers to maximize F1 measure
  publication-title: Machine Learning and Knowledge Discovery in Databases
  doi: 10.1007/978-3-662-44851-9_15
– volume: 47
  start-page: 37
  year: 1987
  ident: 10.7717/peerj.4568/ref-34
  article-title: One-way anova from summary statistics
  publication-title: Educational and Psychological Measurement
  doi: 10.1177/0013164487471004
– volume: vol. 9475
  start-page: 379
  volume-title: Advances in visual computing
  year: 2015
  ident: 10.7717/peerj.4568/ref-4
  article-title: Off-the-shelf CNN features for fine-grained classification of vessels in a maritime environment
  doi: 10.1007/978-3-319-27863-6_35
– volume: 23
  start-page: 170
  year: 1998
  ident: 10.7717/peerj.4568/ref-44
  article-title: The Kruskal–Wallis test and stochastic homogeneity
  publication-title: Journal of Educational and Behavioral Statistics
  doi: 10.2307/1165320
– year: 2014
  ident: 10.7717/peerj.4568/ref-42
  article-title: Going deeper with convoltions
– start-page: 71
  year: 2017
  ident: 10.7717/peerj.4568/ref-31
  article-title: Visualizing abnormalities in chest radiographs through salient network activations in Deep Learning
  doi: 10.1109/LSC.2017.8268146
– volume: 2
  start-page: 117
  year: 1992
  ident: 10.7717/peerj.4568/ref-35
  article-title: Approximating the Shapiro-Wilk W-test for non-normality
  publication-title: Statistics and Computing
  doi: 10.1007/BF01891203
– year: 2016
  ident: 10.7717/peerj.4568/ref-46
  article-title: Fine-tune CNN in Keras
– volume-title: Advances in neural information processing systems
  year: 2012
  ident: 10.7717/peerj.4568/ref-21
  article-title: ImageNet classification with deep convolutional neural networks
  doi: 10.1016/j.protcy.2014.09.007
– volume-title: The handbook of brain theory and neural networks
  year: 1995
  ident: 10.7717/peerj.4568/ref-23
  article-title: Convolutional networks for images, speech, and time series
SSID ssj0000826083
Score 2.5934954
Snippet Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick...
Malaria is a blood disease caused by the parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin...
Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e4568
SubjectTerms Analysis
Artificial intelligence
Artificial neural networks
Automation
Blood
Blood smear
Computational Science
Convolutional Neural Networks
Data Mining and Machine Learning
Data Science
Decision making
Deep Learning
Diagnosis
Diagnostic imaging
Disease transmission
Health aspects
Health screening
Image processing
Infectious Diseases
Learning algorithms
Machine Learning
Malaria
Medicine
Methods
Neural networks
Parasitemia
Parasites
Plasmodium falciparum
Pre-trained models
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEF6kD-KLeDdadUVBfIjNZS_ZxyqWIlR8sNC3ZS-z9IhNy0n6E_zfzmzScIKCL77kQHY2JDOzczk7-w1jb0E4NHoSyoxAKEQ0pUmhKVsIokN_79pcm3PyVR2fii9n8myn1RfVhE3wwBPjDuoENSjoMA1B51kLH8B7ykt8E5qUj5A36PN2kqlsgzFqxuBiwiPVmLIcXAFsf3zAcKFbeaAM1P-nOd7xR-tayR3nc3SP3Z2jRn44ve19dgv6B-z2ybwv_pD9-raFMnd7gMipkHxWKJxDgJX5J5d7D9wNPEFG8-Rol7dTux0-5upZvsl_MeAzLhxmvBvHCRmc9pd5hDEXbfV80_PxHC-55J0PF7hUcB6apeEROz36_P3TcTk3WCiD1NVYCinBed2ZLqG82tYIAxRzqcY414a2io2pfNQgddP6qFxKsdLJh5hUrFvfPmZ7_WUPTxkXCkDXJnZViAKS7HQTq4DhAKZjILQq2Psbptswo48TW35azEJIQDYLyJKACvZmob2aMDf-SvWRZLdQEE52voHaY2ftsf_SnoK9Isnb6dDpstrtoWwF-m2jkeJdpqD1TkJx87EF_GxCzlpR7q8ocZ2G9fCNdtnZTgy2oZBTCmV0wV4vwzSTat96uLzONEYJ6pFSsCeTMi4fjSMdxmD4cL1S0xVX1iP95jyjiEtTaUytnv0PNj5ndzCQ7GiXrVb7bG_cXsMLDNZG_zKvy9_B80Ex
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyEuiDeBAkYgIQ6BPBw_TqhFrSqkVhWiUm9RbE_oIppdNulP4H8z43hDIxCXXWk9jjaetz3-hrE3IBo0ehWkAYFQCG9S07oiLcEJjf6-KUNtzvGJPDoTn8-r87jh1seyyq1NDIbarxztkVOSXtHFG6M-rn-m1DWKTldjC42bbAdNsNYLtrN_cHL6ZdplQQcnMcgYcUkVpi4f1gCb7-8xbNAzTxQA-_82y9f80rxm8poTOrzL7sToke-N7L7HbkB3n906jufjD9iv0w2koesDeE4F5VGwcA4BV4avUPbd86bnLQRUT472eTO23eFDqKLly7DVgM-4bDDzXTacEMJpJbiHIRRvdXzZ8eECP0LpO-8vUWVwHpqn_iE7Ozz4-ukojY0WUlepbEhFVUFjlTa6Rb6VpREGKPaShWma0pWZL0xmvYJKFaX1smlbn6nWOt9Kn5e2fMQW3aqDJ4wLCaBy43XmvIC20qrwmcOwANMyEEom7N120WsXUchpWX7UmI0Qg-rAoJoYlLDXE-16xN74J9U-8W6iILzs8MNq862O6lfnLeQgQWMyiyFYLqwDaym7tYUr2iJP2EvifD1ePp20vt6rSoH-2yikeBsoSO-JKU28voCvTQhaM8rdGSXqq5sPb6Wrjvair_9Id8JeTcM0k2rgOlhdBRojBfVKSdjjURinl8YRjbEYPlzNxHS2KvORbnkR0MQrkylMsZ7-_289Y7cxVNR0jpbLXbYYNlfwHMOxwb6IOvcbRDk6JQ
  priority: 102
  providerName: ProQuest
Title Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images
URI https://www.ncbi.nlm.nih.gov/pubmed/29682411
https://www.proquest.com/docview/2025654697
https://www.proquest.com/docview/2029640680
https://pubmed.ncbi.nlm.nih.gov/PMC5907772
https://doaj.org/article/1fe1e6e809464314bcebb2184b2c2f21
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF9qC-KL-G3aeq4oiA85k-wmm32SVlqLcKWIB_e2JLsTe9LmapKC_gH-385sckejxZcc3M6GZOdjf5NMfsPYG5AFBr0UQs9AKKXToa5sEgqwMsf9vhC-Nmd2mp3M5edFuthi6_6dwwK2t6Z21E9q3lxMf_749QEdHvHrVGE28v4KoPk-RSSQ32E7uCMp6mQwG2C-j8iIoSPPyJkQzTeCDt0zlf41fbQ3eQr_fwP1jZ1qXEV5Y1s6fsDuD3iSH_QG8JBtQf2I3Z0Nb8wfs99nDYS-DwQ4TiXmg6nhHKKy9D--ELzlRcsr8DyfHCN20zfi4Z2vq-VL__ABz3FZ4IItC06c4fTmmTvofDlXzZc1787x4IvheXuJToTzMGC1T9j8-Ojrx5NwaL0Q2lRFXSjTFIpS5TqvUJNCaKmB0FiW6KIQVkQu0VHpFKQqEaXLiqpykapK66rMxaIUT9l2varhOeMyA1CxdnlknYQqzVXiIotAARM1kCoL2Lv1ohs78JLTslwYzE9IQcYryJCCAvZ6I3vVs3HcKnVIuttIEIO2_2PVfDODQ5q4ghgyyDG9RVAWy9JCWVK-WyY2qZI4YC9J86b_HHUTB8xBKiTu6FqhxFsvQbZJSimGDxrwtolTayS5P5JED7bj4bV1mbUDmITAaCozrQL2ajNMM6kqrobVtZfRmaTuKQF71hvj5qZxJEdfwJOrkZmOVmU8Ui_PPb94qiOFSdfu_696j91D8JjTm7U422fbXXMNLxCgdeWE7RwenZ59mfgHHHj8tIgn3iP_AIfHQFo
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVoJeEG8WCjUChDgE8nDi-IBQC622tLuqUCv15ib2pF1Es8smFeIH8Hf4jcw42dAIxK2XjbQeW4lnPA97_A1jL0BkqPRi8BwCoRBWeaowoReBESna-yxyuTnjSTI6Ep-O4-MV9mt5F4bSKpc60SlqOzO0R05BekwXb5R8P__mUdUoOl1dltBoxGIPfnzHkK16t_sR-fsyDHe2Dz-MvLaqgGdi6deeiGPIcpmqtMCXjCIlFJCjkYQqyyIT-TZUfm4lxDKMcptkRWF9WeTGFokNojzCca-xVRElfjhgq1vbk4PP3a4OGtQEnZoGB1ViqPR2DrD48gbdlLRn-VyBgL_NwCU72M_RvGT0dm6xm623yjcb8brNVqC8w66P2_P4u-znwQI8V2UCLKcE9laQsQ8BZbqHSzOveFbxAhyKKEd7sGjK_PDaZe3yqdvawDHOM4y0pxknRHKaeW6hdsliJZ-WvD7DH5dqz6tz5AX2Q3VY3WNHV8KC-2xQzkp4yLhIAGSgbOobK6CIUxla36AbgmEgCJkM2evlpGvTop7TtHzVGP0Qg7RjkCYGDdnzjnbeYH38k2qLeNdRED63-2O2ONXtctdBAQEkkGLwjC5fIHIDeU7RdB6asAiDIdsgzuvmsmunZfRmHAn0F5REileOgvQMMSVrr0vgZxNiV49yvUeJ-sH0m5fSpVv9VOk_q2nInnXN1JNy7kqYXTgalQiqzTJkDxph7D4aW1L0_XBw2RPT3qz0W8rpmUMvj5UvMaR79P_X2mA3Rofjfb2_O9l7zNbQTU3pDC9I1tmgXlzAE3QF6_xpu_44O7nqJf8bLnp3RA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpbqeKCeLOlUCNAiENoHk4cHxBqaVctpasVolJvbmJP6FY0u2xSIT6An-LrmHGyoRGIWy8baT22knmPPZ5h7AWIDJVeDJ6rQCiEVZ4qTOhFYESK9j6LXG7O0TjZPxYfTuKTFfZreReG0iqXOtEpajsztEdOQXpMF2-U3CratIjJ7ujd_JtHHaTopHXZTqNhkUP48R3Dt-rtwS7S-mUYjvY-v9_32g4DnomlX3sijiHLZarSAl84ipRQQE5HEqosi0zk21D5uZUQyzDKbZIVhfVlkRtbJDaI8gjXvcFWJUVFA7a6szeefOp2eNC4JujgNDVRJYZNW3OAxfkbdFnSnhV0zQL-NglXbGI_X_OKARzdZrdaz5VvN6x2h61AeZetHbVn8_fYz8kCPNdxAiynZPaWqXEOFc10D5dyXvGs4gW4iqIcEbxoWv7w2mXw8qnb5sA1LjKMuqcZp-rkhHluoXaJYyWflrw-wx-Xds-rC6QFzkPVWN1nx9dCggdsUM5KeMS4SABkoGzqGyugiFMZWt-gS4IhIQiZDNnrJdK1aSugE1q-aoyEiEDaEUgTgYbseQc7b-p-_BNqh2jXQVCtbvfHbPFFt6KvgwICSCDFQBrdv0DkBvKcIus8NGERBkO2SZTXzcXXTuPo7TgS6DsoiRCvHATpHCJK1l6dwM-m6l09yI0eJOoK0x9ecpdudVWl_0jWkD3rhmkm5d-VMLt0MCoR1KdlyB42zNh9NI6k6Afi4rLHpj2s9EfK6ZmrZB4rX2J4t_7_19pkayjq-uPB-PAxu4kea0rHeUGywQb14hKeoFdY509b8ePs9Lol_jdpUXt5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pre-trained+convolutional+neural+networks+as+feature+extractors+toward+improved+malaria+parasite+detection+in+thin+blood+smear+images&rft.jtitle=PeerJ+%28San+Francisco%2C+CA%29&rft.au=Rajaraman%2C+Sivaramakrishnan&rft.au=Antani%2C+Sameer+K&rft.au=Poostchi%2C+Mahdieh&rft.au=Silamut%2C+Kamolrat&rft.date=2018-04-16&rft.pub=PeerJ.+Ltd&rft.issn=2167-8359&rft.eissn=2167-8359&rft.volume=6&rft.spage=e4568&rft_id=info:doi/10.7717%2Fpeerj.4568&rft.externalDocID=A534847971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-8359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-8359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-8359&client=summon