Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal
Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping the particles in the sludge and preventing their entrance into aquatic environments. Treatment plants are essentially taking the microplastics...
Saved in:
Published in | The Science of the total environment Vol. 671; pp. 411 - 420 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
25.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping the particles in the sludge and preventing their entrance into aquatic environments. Treatment plants are essentially taking the microplastics out of the waste water and concentrating them in the sludge, however. It has become common practice to use this sludge on agricultural soils as a fertilizer. The aim of the current research was to evaluate the microplastic contamination of soils by this practice, assessing the implications of successive sludge applications by looking at the total count of microplastic particles in soil samples. Thirty-one agricultural fields with different sludge application records and similar edaphoclimatic conditions were evaluated. Field records of sludge application covered a ten year period. For all fields, historical disposal events used the same amount of sludge (40 ton ha−1 dry weight). Extraction of microplastics was done by flotation and particles were then counted and classified with the help of a microscope. Seven sludge samples were collected in the fields that underwent sludge applications during the study period. Soils where 1, 2, 3, 4, and 5 applications of sludge had been performed had a median of 1.1, 1.6, 1.7, 2.3, and 3.5 particles g−1 dry soil, respectively. There were statistical differences in the microplastic contents related to the number of applications that a field had undergone (1, 2, 3 < 4, 5). Microplastic content in sludge ranged from 18 to 41 particles g−1, with a median of 34 particles g−1. The majority of the observed microplastics were fibers (90% in sludge, and 97% in soil). Our results indicate that microplastic counts increase over time where successive sludge applications are performed. Microplastics observed in soil samples stress the relevance of sludge as a driver of soil microplastic contamination.
[Display omitted]
•Sludge holds microplastics that could enter soils by sludge disposal.•31 fields that underwent sludge applications at different rates were evaluated.•Microplastics were found in soil samples (0.6–10.4 p g−1).•Microplastic counts increased where increased rates of sludge were applied.•Sludge is proposed as a primal driver of soil microplastic pollution. |
---|---|
AbstractList | Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping the particles in the sludge and preventing their entrance into aquatic environments. Treatment plants are essentially taking the microplastics out of the waste water and concentrating them in the sludge, however. It has become common practice to use this sludge on agricultural soils as a fertilizer. The aim of the current research was to evaluate the microplastic contamination of soils by this practice, assessing the implications of successive sludge applications by looking at the total count of microplastic particles in soil samples. Thirty-one agricultural fields with different sludge application records and similar edaphoclimatic conditions were evaluated. Field records of sludge application covered a ten year period. For all fields, historical disposal events used the same amount of sludge (40 ton ha-1 dry weight). Extraction of microplastics was done by flotation and particles were then counted and classified with the help of a microscope. Seven sludge samples were collected in the fields that underwent sludge applications during the study period. Soils where 1, 2, 3, 4, and 5 applications of sludge had been performed had a median of 1.1, 1.6, 1.7, 2.3, and 3.5 particles g-1 dry soil, respectively. There were statistical differences in the microplastic contents related to the number of applications that a field had undergone (1, 2, 3 < 4, 5). Microplastic content in sludge ranged from 18 to 41 particles g-1, with a median of 34 particles g-1. The majority of the observed microplastics were fibers (90% in sludge, and 97% in soil). Our results indicate that microplastic counts increase over time where successive sludge applications are performed. Microplastics observed in soil samples stress the relevance of sludge as a driver of soil microplastic contamination.Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping the particles in the sludge and preventing their entrance into aquatic environments. Treatment plants are essentially taking the microplastics out of the waste water and concentrating them in the sludge, however. It has become common practice to use this sludge on agricultural soils as a fertilizer. The aim of the current research was to evaluate the microplastic contamination of soils by this practice, assessing the implications of successive sludge applications by looking at the total count of microplastic particles in soil samples. Thirty-one agricultural fields with different sludge application records and similar edaphoclimatic conditions were evaluated. Field records of sludge application covered a ten year period. For all fields, historical disposal events used the same amount of sludge (40 ton ha-1 dry weight). Extraction of microplastics was done by flotation and particles were then counted and classified with the help of a microscope. Seven sludge samples were collected in the fields that underwent sludge applications during the study period. Soils where 1, 2, 3, 4, and 5 applications of sludge had been performed had a median of 1.1, 1.6, 1.7, 2.3, and 3.5 particles g-1 dry soil, respectively. There were statistical differences in the microplastic contents related to the number of applications that a field had undergone (1, 2, 3 < 4, 5). Microplastic content in sludge ranged from 18 to 41 particles g-1, with a median of 34 particles g-1. The majority of the observed microplastics were fibers (90% in sludge, and 97% in soil). Our results indicate that microplastic counts increase over time where successive sludge applications are performed. Microplastics observed in soil samples stress the relevance of sludge as a driver of soil microplastic contamination. Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping the particles in the sludge and preventing their entrance into aquatic environments. Treatment plants are essentially taking the microplastics out of the waste water and concentrating them in the sludge, however. It has become common practice to use this sludge on agricultural soils as a fertilizer. The aim of the current research was to evaluate the microplastic contamination of soils by this practice, assessing the implications of successive sludge applications by looking at the total count of microplastic particles in soil samples. Thirty-one agricultural fields with different sludge application records and similar edaphoclimatic conditions were evaluated. Field records of sludge application covered a ten year period. For all fields, historical disposal events used the same amount of sludge (40 ton ha−1 dry weight). Extraction of microplastics was done by flotation and particles were then counted and classified with the help of a microscope. Seven sludge samples were collected in the fields that underwent sludge applications during the study period. Soils where 1, 2, 3, 4, and 5 applications of sludge had been performed had a median of 1.1, 1.6, 1.7, 2.3, and 3.5 particles g−1 dry soil, respectively. There were statistical differences in the microplastic contents related to the number of applications that a field had undergone (1, 2, 3 < 4, 5). Microplastic content in sludge ranged from 18 to 41 particles g−1, with a median of 34 particles g−1. The majority of the observed microplastics were fibers (90% in sludge, and 97% in soil). Our results indicate that microplastic counts increase over time where successive sludge applications are performed. Microplastics observed in soil samples stress the relevance of sludge as a driver of soil microplastic contamination. Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping the particles in the sludge and preventing their entrance into aquatic environments. Treatment plants are essentially taking the microplastics out of the waste water and concentrating them in the sludge, however. It has become common practice to use this sludge on agricultural soils as a fertilizer. The aim of the current research was to evaluate the microplastic contamination of soils by this practice, assessing the implications of successive sludge applications by looking at the total count of microplastic particles in soil samples. Thirty-one agricultural fields with different sludge application records and similar edaphoclimatic conditions were evaluated. Field records of sludge application covered a ten year period. For all fields, historical disposal events used the same amount of sludge (40 ton ha dry weight). Extraction of microplastics was done by flotation and particles were then counted and classified with the help of a microscope. Seven sludge samples were collected in the fields that underwent sludge applications during the study period. Soils where 1, 2, 3, 4, and 5 applications of sludge had been performed had a median of 1.1, 1.6, 1.7, 2.3, and 3.5 particles g dry soil, respectively. There were statistical differences in the microplastic contents related to the number of applications that a field had undergone (1, 2, 3 < 4, 5). Microplastic content in sludge ranged from 18 to 41 particles g , with a median of 34 particles g . The majority of the observed microplastics were fibers (90% in sludge, and 97% in soil). Our results indicate that microplastic counts increase over time where successive sludge applications are performed. Microplastics observed in soil samples stress the relevance of sludge as a driver of soil microplastic contamination. Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping the particles in the sludge and preventing their entrance into aquatic environments. Treatment plants are essentially taking the microplastics out of the waste water and concentrating them in the sludge, however. It has become common practice to use this sludge on agricultural soils as a fertilizer. The aim of the current research was to evaluate the microplastic contamination of soils by this practice, assessing the implications of successive sludge applications by looking at the total count of microplastic particles in soil samples. Thirty-one agricultural fields with different sludge application records and similar edaphoclimatic conditions were evaluated. Field records of sludge application covered a ten year period. For all fields, historical disposal events used the same amount of sludge (40 ton ha −1 dry weight). Extraction of microplastics was done by flotation and particles were then counted and classified with the help of a microscope. Seven sludge samples were collected in the fields that underwent sludge applications during the study period. Soils where 1, 2, 3, 4, and 5 applications of sludge had been performed had a median of 1.1, 1.6, 1.7, 2.3, and 3.5 particles g −1 dry soil, respectively. There were statistical differences in the microplastic contents related to the number of applications that a field had undergone (1, 2, 3 < 4, 5). Microplastic content in sludge ranged from 18 to 41 particles g −1 , with a median of 34 particles g −1 . The majority of the observed microplastics were fibers (90% in sludge, and 97% in soil). Our results indicate that microplastic counts increase over time where successive sludge applications are performed. Microplastics observed in soil samples stress the relevance of sludge as a driver of soil microplastic contamination. Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping the particles in the sludge and preventing their entrance into aquatic environments. Treatment plants are essentially taking the microplastics out of the waste water and concentrating them in the sludge, however. It has become common practice to use this sludge on agricultural soils as a fertilizer. The aim of the current research was to evaluate the microplastic contamination of soils by this practice, assessing the implications of successive sludge applications by looking at the total count of microplastic particles in soil samples. Thirty-one agricultural fields with different sludge application records and similar edaphoclimatic conditions were evaluated. Field records of sludge application covered a ten year period. For all fields, historical disposal events used the same amount of sludge (40 ton ha−1 dry weight). Extraction of microplastics was done by flotation and particles were then counted and classified with the help of a microscope. Seven sludge samples were collected in the fields that underwent sludge applications during the study period. Soils where 1, 2, 3, 4, and 5 applications of sludge had been performed had a median of 1.1, 1.6, 1.7, 2.3, and 3.5 particles g−1 dry soil, respectively. There were statistical differences in the microplastic contents related to the number of applications that a field had undergone (1, 2, 3 < 4, 5). Microplastic content in sludge ranged from 18 to 41 particles g−1, with a median of 34 particles g−1. The majority of the observed microplastics were fibers (90% in sludge, and 97% in soil). Our results indicate that microplastic counts increase over time where successive sludge applications are performed. Microplastics observed in soil samples stress the relevance of sludge as a driver of soil microplastic contamination. [Display omitted] •Sludge holds microplastics that could enter soils by sludge disposal.•31 fields that underwent sludge applications at different rates were evaluated.•Microplastics were found in soil samples (0.6–10.4 p g−1).•Microplastic counts increased where increased rates of sludge were applied.•Sludge is proposed as a primal driver of soil microplastic pollution. |
Author | Huerta-Lwanga, Esperanza Geissen, Violette Meza, Pablo Casado, Francisco Corradini, Fabio Eguiluz, Raúl |
Author_xml | – sequence: 1 givenname: Fabio orcidid: 0000-0001-9696-7643 surname: Corradini fullname: Corradini, Fabio email: fabio.corradini@inia.cl organization: Instituto de Investigaciones Agropecuarias, INIA La Platina, Casilla 439, Correo 3, Santiago, Chile – sequence: 2 givenname: Pablo surname: Meza fullname: Meza, Pablo organization: Instituto de Investigaciones Agropecuarias, INIA La Platina, Casilla 439, Correo 3, Santiago, Chile – sequence: 3 givenname: Raúl surname: Eguiluz fullname: Eguiluz, Raúl organization: Instituto de Investigaciones Agropecuarias, INIA La Platina, Casilla 439, Correo 3, Santiago, Chile – sequence: 4 givenname: Francisco surname: Casado fullname: Casado, Francisco organization: Instituto de Investigaciones Agropecuarias, INIA La Platina, Casilla 439, Correo 3, Santiago, Chile – sequence: 5 givenname: Esperanza surname: Huerta-Lwanga fullname: Huerta-Lwanga, Esperanza organization: Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands – sequence: 6 givenname: Violette surname: Geissen fullname: Geissen, Violette organization: Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30933797$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi1URLeFvwA5ckmw14k_kDhUVfmQKnEBcbQce1J55djBjrfi3-OwpQcu1Bp5Ls87Gs1zgc5CDIDQG4I7ggl7d-iycWtcIRy7PSayw7SjTDxDOyK4bAneszO0w7gXrWSSn6OLnA-4Pi7IC3ROsaSUS75DP26OzkIw0MSpmZ1JcfE6r8402pgyF69XF0PjQqPvkjPFryVp3-TofG6mFOcmw72-gyb7YmuzLi8xa_8SPZ-0z_DqoV-i7x9vvl1_bm-_fvpyfXXbmoHjtSW9lUyDIAQGbagFLjWVgHspe0bkNFg9cA6gJ4kFnTAhjImBTWIcAVtG6CV6f5q7LRFcqJ8KOhmXVdROeTcmnX6p-5JU8FtbypjV0EvBWA2_PYWXFH8WyKuaXTbgvQ4QS1b7PeUD6SmmT0DxVoTwir5-QMs4g1VLcvO2w9-jV4CfgHrtnBNMjwjBatOrDupRr9r0KkxV1VuTH_5JVuyPoTVp55-QvzrloSo5Okgbt9m3LoFZlY3uvzN-A-27yYs |
CitedBy_id | crossref_primary_10_1007_s10653_024_02324_5 crossref_primary_10_3389_feart_2022_1054926 crossref_primary_10_3389_ftox_2023_1154538 crossref_primary_10_1007_s11356_023_30963_1 crossref_primary_10_1016_j_scitotenv_2022_160665 crossref_primary_10_1016_j_chemosphere_2023_138928 crossref_primary_10_1016_j_jhazmat_2025_137892 crossref_primary_10_1016_j_watres_2022_119293 crossref_primary_10_3390_toxics9110305 crossref_primary_10_1016_j_chemosphere_2020_127199 crossref_primary_10_3390_agronomy14061193 crossref_primary_10_1016_j_jece_2022_107421 crossref_primary_10_1021_acs_est_1c05614 crossref_primary_10_1021_acs_est_2c05026 crossref_primary_10_3390_nano12152699 crossref_primary_10_1111_gcb_15724 crossref_primary_10_1016_j_cofs_2021_01_004 crossref_primary_10_1016_j_envpol_2019_113570 crossref_primary_10_1016_j_jconhyd_2024_104345 crossref_primary_10_1016_j_pce_2024_103800 crossref_primary_10_1016_j_aquatox_2023_106480 crossref_primary_10_1016_j_envpol_2021_118520 crossref_primary_10_1016_j_scitotenv_2023_164068 crossref_primary_10_3389_fsoil_2022_941837 crossref_primary_10_1002_wer_11054 crossref_primary_10_1007_s11696_022_02505_5 crossref_primary_10_1186_s12302_020_00447_x crossref_primary_10_1016_j_envres_2021_111867 crossref_primary_10_1016_j_chemosphere_2022_136455 crossref_primary_10_1016_j_scitotenv_2020_139296 crossref_primary_10_1038_s41893_020_0583_9 crossref_primary_10_1007_s11157_022_09621_4 crossref_primary_10_1016_j_scitotenv_2023_168883 crossref_primary_10_1016_j_ecolind_2023_111010 crossref_primary_10_1016_j_scitotenv_2024_176322 crossref_primary_10_1007_s11356_022_21530_1 crossref_primary_10_1038_s44221_023_00065_w crossref_primary_10_3390_molecules27051744 crossref_primary_10_1016_j_scitotenv_2020_141368 crossref_primary_10_1016_j_jclepro_2021_130248 crossref_primary_10_1016_j_scitotenv_2023_164049 crossref_primary_10_1016_j_jhazmat_2023_132636 crossref_primary_10_1016_j_wasman_2022_11_017 crossref_primary_10_3390_w13070933 crossref_primary_10_3390_agronomy15010047 crossref_primary_10_1002_ppp3_10430 crossref_primary_10_1016_j_impact_2024_100525 crossref_primary_10_1016_j_scitotenv_2021_147133 crossref_primary_10_1016_j_scitotenv_2024_177226 crossref_primary_10_3390_nano11102747 crossref_primary_10_1016_j_dwt_2025_101132 crossref_primary_10_1016_j_oneear_2020_10_020 crossref_primary_10_1021_acs_estlett_3c00850 crossref_primary_10_1016_j_scitotenv_2020_140216 crossref_primary_10_1088_1755_1315_1035_1_012015 crossref_primary_10_1016_j_jenvman_2021_113028 crossref_primary_10_1016_j_envpol_2020_114096 crossref_primary_10_1016_j_jclepro_2022_131889 crossref_primary_10_1021_acs_est_0c00711 crossref_primary_10_1016_j_scitotenv_2022_157466 crossref_primary_10_1177_0734242X231155395 crossref_primary_10_3390_agriculture13091733 crossref_primary_10_1016_j_impact_2023_100474 crossref_primary_10_1016_j_scitotenv_2021_151641 crossref_primary_10_1016_j_envres_2024_118268 crossref_primary_10_1016_j_chemosphere_2022_136281 crossref_primary_10_1016_j_scitotenv_2021_147144 crossref_primary_10_1021_acs_estlett_4c00034 crossref_primary_10_1016_j_coesh_2022_100361 crossref_primary_10_1016_j_scitotenv_2021_149326 crossref_primary_10_1016_j_wasman_2025_02_002 crossref_primary_10_1016_j_envpol_2021_118564 crossref_primary_10_31025_2611_4135_2019_13873 crossref_primary_10_1016_j_scitotenv_2022_156385 crossref_primary_10_1016_j_scitotenv_2020_137287 crossref_primary_10_1016_j_scitotenv_2022_156387 crossref_primary_10_1016_j_envres_2022_113258 crossref_primary_10_1016_j_jconhyd_2024_104398 crossref_primary_10_1016_j_jhazmat_2022_129394 crossref_primary_10_1016_j_marpolbul_2022_114118 crossref_primary_10_1016_j_coesh_2021_100297 crossref_primary_10_1016_j_scitotenv_2021_149338 crossref_primary_10_1016_j_envpol_2024_123542 crossref_primary_10_1016_j_jece_2024_114974 crossref_primary_10_1016_j_jhazmat_2024_136263 crossref_primary_10_1016_j_scitotenv_2020_143987 crossref_primary_10_1016_j_energy_2023_127337 crossref_primary_10_1016_j_hazadv_2022_100215 crossref_primary_10_1016_j_envexpbot_2024_105666 crossref_primary_10_1016_j_jece_2025_116194 crossref_primary_10_1016_j_envpol_2024_123790 crossref_primary_10_1016_j_cscee_2023_100536 crossref_primary_10_1016_j_scitotenv_2021_147166 crossref_primary_10_1016_j_scitotenv_2024_175276 crossref_primary_10_1016_j_coesh_2022_100342 crossref_primary_10_1016_j_chemosphere_2020_128294 crossref_primary_10_1016_j_scitotenv_2020_142653 crossref_primary_10_1016_j_scitotenv_2022_158581 crossref_primary_10_1039_D0EM00312C crossref_primary_10_1016_j_jhazmat_2022_130596 crossref_primary_10_1007_s10653_025_02430_y crossref_primary_10_1007_s10661_024_13307_5 crossref_primary_10_1016_j_scitotenv_2022_159679 crossref_primary_10_1680_jenge_20_00179 crossref_primary_10_1016_j_scitotenv_2024_174311 crossref_primary_10_1016_j_jenvman_2022_115090 crossref_primary_10_1016_j_scitotenv_2021_148422 crossref_primary_10_1007_s00767_022_00533_2 crossref_primary_10_1021_acsestwater_0c00218 crossref_primary_10_1016_j_jhazmat_2024_135592 crossref_primary_10_1016_j_cbpc_2021_109196 crossref_primary_10_1002_aqc_3469 crossref_primary_10_1021_acs_estlett_0c00498 crossref_primary_10_5194_soil_6_649_2020 crossref_primary_10_1080_26395940_2023_2269315 crossref_primary_10_1016_j_hazadv_2025_100667 crossref_primary_10_1016_j_chemosphere_2024_142641 crossref_primary_10_1016_j_fct_2025_115355 crossref_primary_10_1016_j_scitotenv_2024_174324 crossref_primary_10_1111_1365_2435_13495 crossref_primary_10_1007_s11356_021_17681_2 crossref_primary_10_3390_land10101035 crossref_primary_10_3390_microplastics3010001 crossref_primary_10_1016_j_scitotenv_2020_138334 crossref_primary_10_1002_etc_5482 crossref_primary_10_1186_s43591_023_00063_5 crossref_primary_10_1016_j_scitotenv_2021_150745 crossref_primary_10_1016_j_chemosphere_2020_127578 crossref_primary_10_1186_s43591_022_00044_0 crossref_primary_10_1007_s10661_023_11990_4 crossref_primary_10_1016_j_envpol_2022_119718 crossref_primary_10_1007_s11270_025_07751_3 crossref_primary_10_25699_SSSB_2022_44_4_001 crossref_primary_10_1016_j_wasman_2022_05_013 crossref_primary_10_3390_agronomy9090542 crossref_primary_10_3390_en14196293 crossref_primary_10_1016_j_psep_2022_11_084 crossref_primary_10_1016_j_csbj_2022_02_008 crossref_primary_10_2139_ssrn_3998890 crossref_primary_10_1016_j_scitotenv_2021_148694 crossref_primary_10_1007_s11270_022_05837_w crossref_primary_10_1016_j_envpol_2021_118586 crossref_primary_10_1016_j_jwpe_2022_102956 crossref_primary_10_1002_etc_5024 crossref_primary_10_1007_s00027_024_01112_8 crossref_primary_10_1016_j_cofs_2021_04_010 crossref_primary_10_1016_j_jenvman_2024_123055 crossref_primary_10_1016_j_jenvman_2024_123054 crossref_primary_10_1016_j_geodrs_2021_e00462 crossref_primary_10_1021_acs_est_2c03695 crossref_primary_10_3390_environments8090089 crossref_primary_10_1016_j_chemosphere_2023_141060 crossref_primary_10_1016_j_scitotenv_2019_135091 crossref_primary_10_1016_j_trac_2023_117292 crossref_primary_10_1016_j_scitotenv_2024_173265 crossref_primary_10_1080_03067319_2024_2309553 crossref_primary_10_5194_soil_6_413_2020 crossref_primary_10_1002_vzj2_20108 crossref_primary_10_1016_j_envpol_2022_119307 crossref_primary_10_1016_j_envpol_2021_118174 crossref_primary_10_3390_w16141988 crossref_primary_10_1016_j_scitotenv_2023_167786 crossref_primary_10_1007_s10666_022_09826_5 crossref_primary_10_1016_j_cofs_2021_04_001 crossref_primary_10_1016_j_scitotenv_2023_167785 crossref_primary_10_1021_acs_est_2c09822 crossref_primary_10_1007_s11270_024_07297_w crossref_primary_10_1016_j_jhazmat_2023_131911 crossref_primary_10_1016_j_jhazmat_2022_128453 crossref_primary_10_1007_s11356_022_18501_x crossref_primary_10_1016_j_scitotenv_2024_174109 crossref_primary_10_1038_s43247_023_00691_y crossref_primary_10_1016_j_hazadv_2023_100341 crossref_primary_10_1016_j_jenvman_2023_118437 crossref_primary_10_1016_j_scitotenv_2024_177875 crossref_primary_10_1017_plc_2023_23 crossref_primary_10_1016_j_heliyon_2023_e23232 crossref_primary_10_1002_etc_5202 crossref_primary_10_1007_s42452_022_05206_6 crossref_primary_10_1007_s11104_024_06858_6 crossref_primary_10_1016_j_scitotenv_2023_164028 crossref_primary_10_1039_D2VA00233G crossref_primary_10_1080_15320383_2023_2286524 crossref_primary_10_1371_journal_pone_0257734 crossref_primary_10_2139_ssrn_4198917 crossref_primary_10_31857_S0032180X24030098 crossref_primary_10_3390_nano11112935 crossref_primary_10_1016_j_hazadv_2022_100057 crossref_primary_10_1016_j_scitotenv_2024_176751 crossref_primary_10_1016_j_scitotenv_2021_148889 crossref_primary_10_1007_s10661_023_11890_7 crossref_primary_10_61186_shefa_12_4_97 crossref_primary_10_1016_j_scitotenv_2020_143902 crossref_primary_10_1080_1062936X_2023_2278074 crossref_primary_10_3390_su15064749 crossref_primary_10_1007_s44169_022_00012_y crossref_primary_10_1016_j_scitotenv_2023_168609 crossref_primary_10_2166_wst_2020_582 crossref_primary_10_1007_s11356_024_31838_9 crossref_primary_10_3390_microorganisms12061147 crossref_primary_10_1007_s10661_023_11277_8 crossref_primary_10_1016_j_ecoenv_2023_115597 crossref_primary_10_3103_S1068373923050102 crossref_primary_10_1016_j_scitotenv_2020_141956 crossref_primary_10_3390_jof8121247 crossref_primary_10_1016_j_ecoenv_2024_116746 crossref_primary_10_1039_D1VA00012H crossref_primary_10_1002_wer_1402 crossref_primary_10_1016_j_coesh_2023_100480 crossref_primary_10_52676_1729_7885_2024_1_34_44 crossref_primary_10_1016_j_envpol_2022_120513 crossref_primary_10_1016_j_jhazmat_2025_137803 crossref_primary_10_1016_j_trac_2024_117567 crossref_primary_10_3390_su12208739 crossref_primary_10_1016_j_scitotenv_2021_151816 crossref_primary_10_1016_j_scitotenv_2022_159834 crossref_primary_10_1016_j_chemosphere_2022_135573 crossref_primary_10_1016_j_watres_2019_115358 crossref_primary_10_1016_j_talanta_2023_124965 crossref_primary_10_3389_fmicb_2021_768297 crossref_primary_10_1016_j_eti_2022_102408 crossref_primary_10_1016_j_plaphy_2022_11_004 crossref_primary_10_1088_1748_9326_ac21e6 crossref_primary_10_1556_0088_2022_00120 crossref_primary_10_3390_su12030878 crossref_primary_10_1016_j_chemosphere_2022_135940 crossref_primary_10_1016_j_scitotenv_2023_166935 crossref_primary_10_1016_j_jwpe_2021_102128 crossref_primary_10_1680_jenge_21_00072 crossref_primary_10_1016_j_chemosphere_2022_135700 crossref_primary_10_1007_s11356_024_34615_w crossref_primary_10_1021_acs_est_4c12546 crossref_primary_10_1016_j_jhazmat_2022_128306 crossref_primary_10_1007_s10311_023_01577_3 crossref_primary_10_1016_j_still_2024_106134 crossref_primary_10_1007_s11440_022_01767_3 crossref_primary_10_1021_acs_analchem_4c05827 crossref_primary_10_1016_j_jhazmat_2024_134777 crossref_primary_10_1016_j_wasman_2023_10_020 crossref_primary_10_1007_s11270_022_05901_5 crossref_primary_10_1039_D4EM00373J crossref_primary_10_3390_su12187255 crossref_primary_10_1016_j_hazadv_2024_100445 crossref_primary_10_1007_s11368_022_03387_6 crossref_primary_10_1016_j_jhazmat_2020_123660 crossref_primary_10_1007_s40333_022_0025_9 crossref_primary_10_1016_j_scitotenv_2021_146546 crossref_primary_10_1016_j_heliyon_2020_e05572 crossref_primary_10_1016_j_indcrop_2024_119218 crossref_primary_10_1016_j_biteb_2025_102055 crossref_primary_10_1016_j_cscee_2024_101041 crossref_primary_10_1016_j_scitotenv_2023_169183 crossref_primary_10_1016_j_trac_2023_117474 crossref_primary_10_33409_tbbbd_997807 crossref_primary_10_1016_j_biortech_2019_122631 crossref_primary_10_1021_acs_est_9b07395 crossref_primary_10_1016_j_enmm_2023_100876 crossref_primary_10_1016_j_marpolbul_2025_117758 crossref_primary_10_20517_wecn_2024_65 crossref_primary_10_2166_wst_2021_502 crossref_primary_10_1016_j_scitotenv_2020_140943 crossref_primary_10_1007_s11368_022_03232_w crossref_primary_10_1021_acssuschemeng_4c04124 crossref_primary_10_1080_01480545_2024_2433075 crossref_primary_10_1039_D4EW00278D crossref_primary_10_1016_j_chemosphere_2023_139356 crossref_primary_10_1073_pnas_2413245121 crossref_primary_10_1016_j_jhazmat_2022_129610 crossref_primary_10_1080_1362704X_2022_2118671 crossref_primary_10_1016_j_chemosphere_2024_141727 crossref_primary_10_1016_j_hazadv_2024_100465 crossref_primary_10_1016_j_ese_2022_100222 crossref_primary_10_1029_2018JC014719 crossref_primary_10_1016_j_chemosphere_2025_144216 crossref_primary_10_1007_s11270_024_07506_6 crossref_primary_10_1038_s41598_020_80358_2 crossref_primary_10_1016_j_marpolbul_2020_111820 crossref_primary_10_1016_j_seppur_2021_118429 crossref_primary_10_1007_s00248_024_02422_y crossref_primary_10_1016_j_ecoenv_2022_113958 crossref_primary_10_1016_j_envpol_2022_120369 crossref_primary_10_1007_s11356_020_09015_5 crossref_primary_10_1016_j_etap_2023_104248 crossref_primary_10_1016_j_scitotenv_2023_164313 crossref_primary_10_1016_j_geoderma_2022_116315 crossref_primary_10_1016_j_scitotenv_2019_134841 crossref_primary_10_1093_toxres_tfae106 crossref_primary_10_1016_j_chemosphere_2023_139389 crossref_primary_10_1016_j_envpol_2021_116833 crossref_primary_10_1007_s10653_025_02393_0 crossref_primary_10_3389_fenvs_2022_838455 crossref_primary_10_1016_j_jhazmat_2021_125178 crossref_primary_10_1016_j_jhazmat_2022_128503 crossref_primary_10_1016_j_apsoil_2022_104486 crossref_primary_10_1016_j_chemosphere_2020_127784 crossref_primary_10_3390_su142214841 crossref_primary_10_1016_j_teac_2022_e00159 crossref_primary_10_1039_D2EM00322H crossref_primary_10_1016_j_seppur_2023_124432 crossref_primary_10_3389_fphys_2022_871149 crossref_primary_10_1016_j_scitotenv_2024_172675 crossref_primary_10_1016_j_jhazmat_2020_124312 crossref_primary_10_3390_su15065438 crossref_primary_10_1016_j_jhazmat_2020_123228 crossref_primary_10_1016_j_watres_2021_117011 crossref_primary_10_3390_w15162889 crossref_primary_10_1007_s11356_023_27461_9 crossref_primary_10_3390_w14203343 crossref_primary_10_1021_acs_est_0c05867 crossref_primary_10_3390_agriculture11040330 crossref_primary_10_1016_j_aquatox_2024_107119 crossref_primary_10_3390_soilsystems7010019 crossref_primary_10_1016_j_scitotenv_2020_137512 crossref_primary_10_1016_j_scitotenv_2024_171338 crossref_primary_10_3390_su132212591 crossref_primary_10_5334_aogh_4056 crossref_primary_10_1016_j_marpolbul_2021_113062 crossref_primary_10_1007_s10661_020_08641_3 crossref_primary_10_1016_j_jhazmat_2021_126486 crossref_primary_10_1016_j_marpolbul_2024_116568 crossref_primary_10_1016_j_ese_2023_100316 crossref_primary_10_1002_ldr_5090 crossref_primary_10_1007_s10653_024_02274_y crossref_primary_10_1016_j_jwpe_2021_102344 crossref_primary_10_1039_D4EM00242C crossref_primary_10_3389_fpls_2022_1075007 crossref_primary_10_3390_agronomy14092114 crossref_primary_10_3389_fenvs_2022_976237 crossref_primary_10_1016_j_ecoenv_2022_113715 crossref_primary_10_1016_j_envadv_2024_100558 crossref_primary_10_1016_j_scitotenv_2023_164523 crossref_primary_10_1016_j_envpol_2022_120357 crossref_primary_10_1016_j_envpol_2023_122833 crossref_primary_10_1016_j_chemosphere_2022_133557 crossref_primary_10_1111_sum_70028 crossref_primary_10_1016_j_envpol_2020_115653 crossref_primary_10_1016_j_gsd_2022_100889 crossref_primary_10_1186_s43591_023_00066_2 crossref_primary_10_3390_soilsystems7010007 crossref_primary_10_1007_s11783_023_1666_4 crossref_primary_10_1016_j_jhazmat_2021_126481 crossref_primary_10_3389_fmars_2021_774055 crossref_primary_10_1016_j_scitotenv_2023_166090 crossref_primary_10_1016_j_scitotenv_2023_168035 crossref_primary_10_3390_environments8040036 crossref_primary_10_1002_jpln_202200062 crossref_primary_10_3389_fpls_2023_1226484 crossref_primary_10_24857_rgsa_v19n3_021 crossref_primary_10_1016_j_jwpe_2025_107302 crossref_primary_10_1016_j_scitotenv_2023_161642 crossref_primary_10_1186_s12940_023_01008_4 crossref_primary_10_53623_tebt_v1i1_220 crossref_primary_10_1016_j_jclepro_2024_144093 crossref_primary_10_1016_j_scitotenv_2022_161123 crossref_primary_10_1016_j_chemosphere_2023_139743 crossref_primary_10_3390_w16182637 crossref_primary_10_1007_s10661_023_12111_x crossref_primary_10_1039_D4VA00269E crossref_primary_10_1016_j_scitotenv_2023_169596 crossref_primary_10_1016_j_scitotenv_2023_169356 crossref_primary_10_1016_j_envpol_2022_120183 crossref_primary_10_1016_j_scitotenv_2023_161867 crossref_primary_10_1111_sum_70009 crossref_primary_10_3390_app15063375 crossref_primary_10_1002_smll_202305467 crossref_primary_10_1007_s10653_022_01279_9 crossref_primary_10_1016_j_jwpe_2024_106159 crossref_primary_10_1016_j_apsoil_2022_104694 crossref_primary_10_3389_fenvs_2021_650155 crossref_primary_10_1016_j_plaphy_2023_108132 crossref_primary_10_1177_0003702820920652 crossref_primary_10_1016_j_jhazmat_2021_127787 crossref_primary_10_1007_s10661_021_08943_0 crossref_primary_10_1016_j_envpol_2023_122890 crossref_primary_10_3390_life13081686 crossref_primary_10_24057_2071_9388_2023_3022 crossref_primary_10_1016_j_greeac_2024_100191 crossref_primary_10_1016_j_envpol_2021_117943 crossref_primary_10_1016_j_envpol_2020_114198 crossref_primary_10_1016_j_heliyon_2023_e16434 crossref_primary_10_1016_j_jhazmat_2020_124364 crossref_primary_10_3389_fenvs_2022_964230 crossref_primary_10_1016_j_jhazmat_2021_127531 crossref_primary_10_1016_j_scitotenv_2021_152154 crossref_primary_10_1016_j_scitotenv_2023_168244 crossref_primary_10_1016_j_envint_2023_108360 crossref_primary_10_1016_j_scitotenv_2024_176163 crossref_primary_10_1039_D0AY02086A crossref_primary_10_1021_envhealth_3c00052 crossref_primary_10_1038_s41598_022_10294_w crossref_primary_10_1016_j_pedsph_2025_01_010 crossref_primary_10_1007_s11356_022_21474_6 crossref_primary_10_1016_j_copbio_2024_103226 crossref_primary_10_1016_j_envpol_2021_116600 crossref_primary_10_1016_j_jhazmat_2020_124132 crossref_primary_10_1016_j_scitotenv_2024_172851 crossref_primary_10_1016_j_psep_2020_10_014 crossref_primary_10_1016_j_rsma_2022_102766 crossref_primary_10_1002_jctb_6334 crossref_primary_10_1016_j_ecoenv_2024_117248 crossref_primary_10_1016_j_jhazmat_2025_137453 crossref_primary_10_1007_s44169_023_00026_0 crossref_primary_10_1007_s11270_024_06962_4 crossref_primary_10_1016_j_scitotenv_2020_143335 crossref_primary_10_1186_s40645_020_00405_4 crossref_primary_10_1016_j_ejsobi_2024_103666 crossref_primary_10_1016_j_jhazmat_2023_132686 crossref_primary_10_1016_j_ecoenv_2021_113045 crossref_primary_10_1016_j_scitotenv_2021_149390 crossref_primary_10_1186_s12302_023_00720_9 crossref_primary_10_1016_j_trac_2022_116882 crossref_primary_10_1016_j_aeolia_2024_100942 crossref_primary_10_1080_10408398_2024_2430749 crossref_primary_10_1021_acs_est_0c06087 crossref_primary_10_1016_j_device_2025_100725 crossref_primary_10_1016_j_scitotenv_2019_134451 crossref_primary_10_1016_j_scitotenv_2022_159251 crossref_primary_10_1016_j_apsoil_2022_104649 crossref_primary_10_1002_ldr_5026 crossref_primary_10_3390_app15010001 crossref_primary_10_1016_j_trac_2023_116993 crossref_primary_10_1016_j_scitotenv_2021_150168 crossref_primary_10_1016_j_scitotenv_2022_153511 crossref_primary_10_1016_j_envint_2023_108393 crossref_primary_10_1177_0003702820945713 crossref_primary_10_1016_j_envpol_2023_121368 crossref_primary_10_1016_j_scitotenv_2024_177045 crossref_primary_10_1016_j_apsoil_2022_104657 crossref_primary_10_1016_j_chemosphere_2025_144277 crossref_primary_10_1016_j_envint_2019_105263 crossref_primary_10_3390_su12219074 crossref_primary_10_1016_j_envres_2022_114961 crossref_primary_10_1016_j_scitotenv_2019_07_209 crossref_primary_10_3390_su16198704 crossref_primary_10_1007_s00128_023_03828_z crossref_primary_10_1007_s11356_024_35472_3 crossref_primary_10_1016_j_coesh_2019_12_001 crossref_primary_10_1002_wer_11070 crossref_primary_10_1016_j_envpol_2021_117733 crossref_primary_10_1016_j_rsma_2021_102018 crossref_primary_10_1016_j_trac_2022_116670 crossref_primary_10_1016_j_scitotenv_2022_153735 crossref_primary_10_1016_j_jclepro_2022_135095 crossref_primary_10_3390_su142013405 crossref_primary_10_1016_j_sampre_2025_100178 crossref_primary_10_1080_10643389_2021_1915035 crossref_primary_10_1007_s11270_024_07731_z crossref_primary_10_1007_s11270_024_07304_0 crossref_primary_10_2139_ssrn_4191121 crossref_primary_10_1186_s40538_021_00278_9 crossref_primary_10_1021_acs_est_0c01722 crossref_primary_10_1002_ldr_5231 crossref_primary_10_3389_fenvs_2022_855292 crossref_primary_10_1016_j_envres_2023_115891 crossref_primary_10_1016_j_envexpbot_2021_104635 crossref_primary_10_1016_j_enmm_2021_100530 crossref_primary_10_4491_KSEE_2022_44_11_453 crossref_primary_10_1016_j_biortech_2022_127984 crossref_primary_10_1016_j_envpol_2024_123854 crossref_primary_10_1016_j_jhazmat_2025_137540 crossref_primary_10_1016_j_envpol_2023_122464 crossref_primary_10_1016_j_scitotenv_2022_159573 crossref_primary_10_1016_j_jhazmat_2023_132537 crossref_primary_10_1016_j_trac_2025_118216 crossref_primary_10_1016_j_scitotenv_2021_150227 crossref_primary_10_1016_j_jconhyd_2024_104456 crossref_primary_10_1016_j_jconhyd_2024_104457 crossref_primary_10_1016_j_envpol_2021_118629 crossref_primary_10_1016_j_scitotenv_2023_169621 crossref_primary_10_3390_w15061195 crossref_primary_10_1007_s11783_021_1429_z crossref_primary_10_1016_j_envpol_2019_05_037 crossref_primary_10_3390_w16010011 crossref_primary_10_1016_j_spc_2022_06_020 crossref_primary_10_1039_D1RA09072K crossref_primary_10_1016_j_chemosphere_2023_139927 crossref_primary_10_3390_app112110109 crossref_primary_10_1016_j_scitotenv_2023_164177 crossref_primary_10_1038_s43247_025_02105_7 crossref_primary_10_1016_j_scitotenv_2024_173178 crossref_primary_10_1016_j_ecoenv_2023_115676 crossref_primary_10_1016_j_jclepro_2024_142153 crossref_primary_10_1016_j_envpol_2023_122243 crossref_primary_10_1016_j_jwpe_2020_101787 crossref_primary_10_1016_j_scitotenv_2020_139164 crossref_primary_10_1371_journal_pone_0237839 crossref_primary_10_1039_D4EN00140K crossref_primary_10_1016_j_jhazmat_2023_132993 crossref_primary_10_1016_j_resconrec_2021_105961 crossref_primary_10_1016_j_scitotenv_2023_161718 crossref_primary_10_1016_j_scitotenv_2020_142516 crossref_primary_10_29121_granthaalayah_v10_i9_2022_4812 crossref_primary_10_1016_j_envpol_2020_116151 crossref_primary_10_1007_s11270_023_06507_1 crossref_primary_10_1016_j_envpol_2022_120804 crossref_primary_10_3390_w16091270 crossref_primary_10_1016_j_chemosphere_2021_130574 crossref_primary_10_1016_j_envpol_2022_120805 crossref_primary_10_1039_D4EW00160E crossref_primary_10_1007_s00216_025_05810_6 crossref_primary_10_1016_j_scitotenv_2021_150431 crossref_primary_10_1016_j_jhazmat_2024_134176 crossref_primary_10_1016_j_scitotenv_2021_149447 crossref_primary_10_1016_j_scitotenv_2024_169977 crossref_primary_10_5194_soil_8_373_2022 crossref_primary_10_1016_j_ceja_2024_100649 crossref_primary_10_1016_j_eti_2025_104069 crossref_primary_10_1016_j_scitotenv_2022_158440 crossref_primary_10_1111_sum_12971 crossref_primary_10_3390_land12101888 crossref_primary_10_1088_1361_6501_ac5e5f crossref_primary_10_1893_BIOS_D_23_00010 crossref_primary_10_1007_s11270_024_07664_7 crossref_primary_10_3390_agriculture12081162 crossref_primary_10_1016_j_scitotenv_2022_152941 crossref_primary_10_1111_ejss_13592 crossref_primary_10_3389_fmars_2021_672768 crossref_primary_10_1016_j_scitotenv_2023_169420 crossref_primary_10_1002_wat2_70004 crossref_primary_10_1016_j_envpol_2019_113284 crossref_primary_10_3390_agronomy13030701 crossref_primary_10_1016_j_scitotenv_2022_156270 crossref_primary_10_1002_er_7498 crossref_primary_10_1002_ldr_5410 crossref_primary_10_1002_etc_5173 crossref_primary_10_1016_j_mne_2023_100237 crossref_primary_10_1016_j_jhazmat_2023_130765 crossref_primary_10_1016_j_ecoenv_2025_118036 crossref_primary_10_1016_j_jhazmat_2023_131612 crossref_primary_10_1016_j_scitotenv_2021_151523 crossref_primary_10_1088_1742_6596_2066_1_012025 crossref_primary_10_1016_j_envres_2024_120250 crossref_primary_10_1016_j_jaap_2023_106159 crossref_primary_10_1021_acs_est_1c02695 crossref_primary_10_3390_environments10050070 crossref_primary_10_1016_j_chemosphere_2024_143271 crossref_primary_10_1016_j_heliyon_2021_e07105 crossref_primary_10_1016_j_jhazmat_2024_135041 crossref_primary_10_1016_j_ecoenv_2022_114009 crossref_primary_10_1186_s40538_021_00269_w crossref_primary_10_1016_j_envpol_2022_118966 crossref_primary_10_1016_j_scitotenv_2020_143860 crossref_primary_10_2139_ssrn_4191347 crossref_primary_10_1111_wej_12949 crossref_primary_10_1016_j_scitotenv_2021_150620 crossref_primary_10_1007_s11356_021_15826_x crossref_primary_10_1021_acs_est_4c05856 crossref_primary_10_1016_j_scitotenv_2022_159723 crossref_primary_10_1039_D3RA05620A crossref_primary_10_1016_j_jhazmat_2023_132923 crossref_primary_10_1007_s11356_020_11702_2 crossref_primary_10_1111_mve_12710 crossref_primary_10_1186_s43591_024_00092_8 crossref_primary_10_1016_j_scitotenv_2021_151960 crossref_primary_10_1016_j_scitotenv_2024_176620 crossref_primary_10_1093_jme_tjad014 crossref_primary_10_2139_ssrn_3983076 crossref_primary_10_3389_feart_2022_915155 crossref_primary_10_1021_acs_est_3c02133 crossref_primary_10_1016_j_scitotenv_2022_158642 crossref_primary_10_1016_j_envadv_2021_100119 crossref_primary_10_1016_j_scitotenv_2022_158889 crossref_primary_10_1016_j_jhazmat_2022_130218 crossref_primary_10_1021_acs_jafc_1c07849 crossref_primary_10_1016_j_chemosphere_2024_142536 crossref_primary_10_3389_fpls_2023_1283852 crossref_primary_10_1016_j_earscirev_2024_104822 crossref_primary_10_1016_j_chemosphere_2020_126360 crossref_primary_10_1002_ldr_3676 crossref_primary_10_1007_s12665_024_11752_6 crossref_primary_10_1016_j_jhazmat_2022_128356 crossref_primary_10_1016_j_scitotenv_2022_156478 crossref_primary_10_1016_j_hazadv_2022_100146 crossref_primary_10_1111_sum_12709 crossref_primary_10_1016_j_scitotenv_2021_152830 crossref_primary_10_1016_j_emcon_2022_03_004 crossref_primary_10_3389_fenvs_2022_975904 crossref_primary_10_1016_j_jenvman_2025_124556 crossref_primary_10_1016_j_scitotenv_2021_148337 crossref_primary_10_1007_s10661_022_10769_3 crossref_primary_10_1016_j_scitotenv_2024_171394 crossref_primary_10_1016_j_scitotenv_2020_144900 crossref_primary_10_1016_j_chemosphere_2022_134321 crossref_primary_10_1016_j_scp_2022_100867 crossref_primary_10_1016_j_scitotenv_2023_163233 crossref_primary_10_1016_j_trac_2023_117184 crossref_primary_10_1016_j_jenvman_2023_119616 crossref_primary_10_1016_j_scitotenv_2024_176658 crossref_primary_10_1007_s44274_024_00135_0 crossref_primary_10_1002_etc_5315 crossref_primary_10_1016_j_scitotenv_2021_146569 crossref_primary_10_1007_s11356_021_13184_2 crossref_primary_10_1016_j_envadv_2022_100273 crossref_primary_10_1016_j_jhazmat_2024_134347 crossref_primary_10_1016_j_scitotenv_2023_165006 crossref_primary_10_3390_su152316464 crossref_primary_10_1080_10643389_2023_2301052 crossref_primary_10_1007_s11356_020_11700_4 crossref_primary_10_1007_s10311_023_01679_y crossref_primary_10_1371_journal_pone_0291760 crossref_primary_10_1016_j_hazadv_2024_100528 crossref_primary_10_1080_10643389_2019_1694822 crossref_primary_10_1016_j_jclepro_2023_139082 crossref_primary_10_1016_j_pce_2025_103866 crossref_primary_10_1016_j_jenvman_2023_118792 crossref_primary_10_1016_j_envpol_2024_124343 crossref_primary_10_3390_ijerph22010045 crossref_primary_10_1002_jeq2_20264 crossref_primary_10_1021_acs_estlett_2c00417 crossref_primary_10_1080_02571862_2022_2119291 crossref_primary_10_3390_su151512057 crossref_primary_10_1016_j_scitotenv_2022_157991 crossref_primary_10_1016_j_scitotenv_2023_164389 crossref_primary_10_1016_j_chemosphere_2020_128590 crossref_primary_10_1080_10643389_2020_1845531 crossref_primary_10_1016_j_envres_2021_111938 crossref_primary_10_1016_j_scitotenv_2023_163294 crossref_primary_10_1007_s10661_024_13232_7 crossref_primary_10_1007_s11356_021_16106_4 crossref_primary_10_2139_ssrn_3924945 crossref_primary_10_1038_s43247_021_00267_8 crossref_primary_10_1016_j_chemosphere_2020_129430 crossref_primary_10_1016_j_envpol_2019_113449 crossref_primary_10_1016_j_chemosphere_2023_137946 crossref_primary_10_1080_15320383_2022_2096565 crossref_primary_10_1038_s43247_023_00820_7 crossref_primary_10_1007_s10661_024_13585_z crossref_primary_10_1016_j_scitotenv_2022_156679 crossref_primary_10_1016_j_watres_2022_118254 crossref_primary_10_1016_j_scitotenv_2021_148774 crossref_primary_10_1016_j_jhazmat_2020_124967 crossref_primary_10_17159_sajs_2020_8115 crossref_primary_10_1016_j_scitotenv_2024_176881 crossref_primary_10_1016_j_psep_2024_07_002 crossref_primary_10_1016_j_jclepro_2022_132247 crossref_primary_10_22207_JPAM_15_3_36 crossref_primary_10_1016_j_envadv_2022_100236 crossref_primary_10_1016_j_teac_2021_e00151 crossref_primary_10_3389_fenvs_2022_989267 crossref_primary_10_1016_j_envpol_2020_115779 crossref_primary_10_3390_ijms23031801 crossref_primary_10_3390_w12092633 crossref_primary_10_3934_environsci_2022013 crossref_primary_10_3390_su14127024 crossref_primary_10_1016_j_trac_2023_117138 crossref_primary_10_1016_j_envpol_2023_121810 crossref_primary_10_1016_j_cscee_2020_100050 crossref_primary_10_1016_j_coesh_2021_100309 crossref_primary_10_1016_j_scitotenv_2022_161083 crossref_primary_10_1016_j_scitotenv_2022_154777 crossref_primary_10_3390_bioengineering10070855 crossref_primary_10_1016_j_ecoenv_2024_117332 crossref_primary_10_48130_VR_2023_0018 crossref_primary_10_3389_fenvs_2023_1297646 crossref_primary_10_3390_w16071051 crossref_primary_10_1016_j_arabjc_2023_104686 crossref_primary_10_1016_j_scitotenv_2022_158922 crossref_primary_10_3390_en17174219 crossref_primary_10_1177_0003702820921465 crossref_primary_10_1016_j_jhazmat_2020_122690 crossref_primary_10_2139_ssrn_4177710 crossref_primary_10_1007_s11356_024_35545_3 crossref_primary_10_51847_93t7FJrzKu crossref_primary_10_1016_j_envpol_2024_125249 crossref_primary_10_1016_j_jclepro_2021_129941 crossref_primary_10_1016_j_jece_2023_110406 crossref_primary_10_1007_s10661_023_12219_0 crossref_primary_10_1016_j_heliyon_2022_e11666 crossref_primary_10_1360_SST_2024_0057 crossref_primary_10_1016_j_scitotenv_2020_136584 crossref_primary_10_3390_ijerph18147608 crossref_primary_10_1016_j_jenvman_2022_115347 crossref_primary_10_1016_j_scitotenv_2023_163760 crossref_primary_10_1016_j_jhazmat_2023_133279 crossref_primary_10_1016_j_jhazmat_2024_134445 crossref_primary_10_1080_00103624_2020_1849267 crossref_primary_10_3390_w17010102 crossref_primary_10_1360_SST_2024_0050 crossref_primary_10_3390_ijms232112978 crossref_primary_10_1016_j_ceja_2022_100310 crossref_primary_10_1039_C9EN01335K crossref_primary_10_21697_seb_2022_29 crossref_primary_10_1016_j_ocecoaman_2021_105979 crossref_primary_10_1016_j_scitotenv_2020_141917 crossref_primary_10_1016_j_scitotenv_2023_169058 crossref_primary_10_1007_s10163_023_01614_x crossref_primary_10_1016_j_wasman_2020_04_021 crossref_primary_10_3389_fmars_2022_900047 crossref_primary_10_1016_j_jece_2023_109671 crossref_primary_10_1021_acsestwater_0c00267 crossref_primary_10_1016_j_jenvman_2022_115364 crossref_primary_10_1186_s12302_022_00699_9 crossref_primary_10_1016_j_cej_2022_139217 crossref_primary_10_1016_j_scowo_2024_100013 crossref_primary_10_1016_j_scitotenv_2022_157857 crossref_primary_10_1039_D0EW00397B crossref_primary_10_3390_polym15163356 crossref_primary_10_1016_j_envpol_2020_114889 crossref_primary_10_1016_j_envint_2020_106277 crossref_primary_10_1016_j_wsee_2024_02_001 crossref_primary_10_3390_polym13050771 crossref_primary_10_1016_j_trac_2024_117855 crossref_primary_10_1007_s11356_023_28513_w crossref_primary_10_1016_j_jhazmat_2021_127241 crossref_primary_10_1016_j_jenvman_2023_118713 crossref_primary_10_1016_j_scitotenv_2023_164670 crossref_primary_10_2139_ssrn_3993180 crossref_primary_10_1016_j_envpol_2020_115507 crossref_primary_10_1080_15226514_2023_2275152 crossref_primary_10_1016_j_envpol_2021_116939 crossref_primary_10_1016_j_envpol_2020_115745 crossref_primary_10_1016_j_greeac_2022_100038 crossref_primary_10_1016_j_scitotenv_2024_171252 crossref_primary_10_1016_j_watres_2021_117367 crossref_primary_10_3389_frwa_2022_958130 crossref_primary_10_3390_su15097122 crossref_primary_10_1016_j_scitotenv_2024_170160 crossref_primary_10_1016_j_chemosphere_2023_140239 crossref_primary_10_61186_jrr_2403_1023 crossref_primary_10_21324_dacd_1279109 crossref_primary_10_3389_fmicb_2021_603967 crossref_primary_10_1016_j_chemosphere_2023_139011 crossref_primary_10_1016_j_cogsc_2021_100523 crossref_primary_10_1016_j_jenvman_2023_117412 crossref_primary_10_3390_chemengineering8050086 crossref_primary_10_1016_j_atmosenv_2023_119670 crossref_primary_10_1016_j_plana_2024_100083 crossref_primary_10_1016_j_ultsonch_2021_105627 crossref_primary_10_1016_j_scitotenv_2021_147716 crossref_primary_10_1016_j_jclepro_2025_145113 crossref_primary_10_1098_rsta_2019_0268 crossref_primary_10_1007_s11270_023_06546_8 crossref_primary_10_1007_s11368_023_03689_3 crossref_primary_10_1016_j_chemosphere_2022_134997 crossref_primary_10_1016_j_scitotenv_2020_138961 crossref_primary_10_1016_j_jenvman_2023_118971 crossref_primary_10_1186_s40068_024_00389_w crossref_primary_10_1021_acssuschemeng_1c07749 crossref_primary_10_3390_microplastics1010007 crossref_primary_10_1038_s41467_024_52734_3 crossref_primary_10_3390_microplastics1010009 crossref_primary_10_1016_j_chemosphere_2024_142986 crossref_primary_10_1039_D4AY01276C crossref_primary_10_1016_j_wasman_2023_04_047 crossref_primary_10_1073_pnas_2020719118 crossref_primary_10_3390_polym13234129 crossref_primary_10_3390_su16083401 crossref_primary_10_1016_j_jhazmat_2024_133544 crossref_primary_10_1016_j_pmatsci_2022_101035 crossref_primary_10_1016_j_scitotenv_2022_156723 crossref_primary_10_1016_j_envpol_2022_119016 crossref_primary_10_1016_j_epm_2024_11_002 crossref_primary_10_1016_j_chemosphere_2024_142079 crossref_primary_10_1016_j_impact_2022_100441 crossref_primary_10_1039_D4EM00605D crossref_primary_10_1021_acs_estlett_4c00189 crossref_primary_10_1016_j_marpolbul_2021_112677 crossref_primary_10_3390_app12020595 crossref_primary_10_1016_j_ecoenv_2023_114618 crossref_primary_10_3390_w13192736 crossref_primary_10_1016_j_envint_2021_106504 crossref_primary_10_1007_s11356_020_11111_5 crossref_primary_10_1016_j_scitotenv_2020_144581 crossref_primary_10_1016_j_scitotenv_2024_170501 crossref_primary_10_1016_j_cej_2021_132913 crossref_primary_10_1039_D1EM00541C crossref_primary_10_1177_00368504221126676 crossref_primary_10_1016_j_jhazmat_2024_137084 crossref_primary_10_1016_j_envpol_2024_125076 crossref_primary_10_1016_j_jhazmat_2024_137082 crossref_primary_10_1002_jeq2_20625 crossref_primary_10_4236_jep_2022_137034 crossref_primary_10_4491_KSEE_2022_44_10_375 crossref_primary_10_1016_j_envpol_2019_113174 crossref_primary_10_1186_s12302_020_00358_x crossref_primary_10_1080_10807039_2023_2228414 crossref_primary_10_3390_su14010020 crossref_primary_10_1007_s10098_023_02679_w crossref_primary_10_1016_j_jhazmat_2025_137384 crossref_primary_10_1016_j_envpol_2020_115390 crossref_primary_10_2139_ssrn_3938709 crossref_primary_10_1016_j_scitotenv_2025_178534 crossref_primary_10_1016_j_trac_2025_118176 crossref_primary_10_3390_w13010103 crossref_primary_10_1016_j_chemosphere_2022_137177 crossref_primary_10_1016_j_microc_2023_109708 crossref_primary_10_1016_j_jhazmat_2021_127665 crossref_primary_10_1371_journal_pone_0250346 crossref_primary_10_1002_etc_5812 crossref_primary_10_3390_toxics10100586 crossref_primary_10_1016_j_marpolbul_2021_113309 crossref_primary_10_1016_j_scitotenv_2024_177360 crossref_primary_10_1177_00368504221140766 crossref_primary_10_1002_2475_8876_70013 crossref_primary_10_3390_plants12030462 crossref_primary_10_1007_s10661_025_13874_1 crossref_primary_10_1016_j_cej_2020_128381 crossref_primary_10_1016_j_jclepro_2023_138215 crossref_primary_10_1016_j_scitotenv_2022_154912 crossref_primary_10_1038_s41598_025_89103_z crossref_primary_10_3390_w12041219 crossref_primary_10_1016_j_scitotenv_2021_152039 crossref_primary_10_1016_j_heliyon_2023_e13296 crossref_primary_10_1016_j_jhazmat_2020_122067 crossref_primary_10_1186_s40068_024_00367_2 crossref_primary_10_1007_s00128_020_02900_2 crossref_primary_10_1016_j_jhazmat_2025_138015 crossref_primary_10_1016_j_chemosphere_2020_129185 crossref_primary_10_1016_j_seh_2023_100019 crossref_primary_10_1007_s11356_024_35758_6 crossref_primary_10_1016_j_envres_2022_114402 crossref_primary_10_1016_j_envpol_2020_116028 crossref_primary_10_1016_j_envres_2022_114404 crossref_primary_10_1016_j_jenvman_2022_116602 crossref_primary_10_1016_j_heliyon_2024_e37308 crossref_primary_10_3390_w12041210 crossref_primary_10_1016_j_jconhyd_2023_104271 crossref_primary_10_1016_j_scitotenv_2024_172975 crossref_primary_10_1007_s10661_023_11050_x crossref_primary_10_1007_s42832_021_0092_4 crossref_primary_10_1016_j_envres_2021_111243 crossref_primary_10_3389_fmars_2023_1323477 crossref_primary_10_1016_j_envpol_2021_116790 crossref_primary_10_1016_j_jece_2024_112926 crossref_primary_10_3389_fmicb_2024_1468592 crossref_primary_10_1080_07388551_2024_2344572 crossref_primary_10_1088_1748_9326_ac652d crossref_primary_10_1016_j_scitotenv_2024_174907 crossref_primary_10_1016_j_envpol_2021_116552 crossref_primary_10_1007_s11104_021_04869_1 crossref_primary_10_1016_j_scitotenv_2024_170564 crossref_primary_10_1016_j_etap_2023_104193 crossref_primary_10_15446_ga_v26n2_108714 crossref_primary_10_1016_j_scitotenv_2023_162885 crossref_primary_10_1016_j_scitotenv_2023_161795 crossref_primary_10_1111_pce_14248 crossref_primary_10_1016_j_jhazmat_2023_131483 crossref_primary_10_1051_bioconf_202410400024 crossref_primary_10_1134_S1064229323603025 crossref_primary_10_3389_fchem_2022_956547 crossref_primary_10_1016_j_scitotenv_2022_161211 crossref_primary_10_1016_j_scitotenv_2023_167099 crossref_primary_10_1186_s40793_022_00430_4 crossref_primary_10_1016_j_cej_2021_128692 crossref_primary_10_1016_j_ecoenv_2021_113150 crossref_primary_10_1016_j_scitotenv_2022_154720 crossref_primary_10_1016_j_jenvman_2024_122443 crossref_primary_10_1051_e3sconf_202126505003 crossref_primary_10_1080_15275922_2024_2366772 crossref_primary_10_1016_j_scitotenv_2024_177168 crossref_primary_10_1016_j_pnsc_2023_08_006 crossref_primary_10_1021_acs_est_9b03304 crossref_primary_10_3390_microplastics1040043 crossref_primary_10_1016_j_jenvman_2022_114698 crossref_primary_10_1021_acs_est_9b07905 crossref_primary_10_3390_microplastics1040042 crossref_primary_10_1007_s00244_021_00897_1 crossref_primary_10_1016_j_watres_2024_121231 crossref_primary_10_1016_j_envpol_2021_117862 crossref_primary_10_1080_03067319_2022_2148528 crossref_primary_10_1016_j_envpol_2022_119092 crossref_primary_10_1016_j_jhazmat_2019_121814 crossref_primary_10_1016_j_jenvman_2022_116411 crossref_primary_10_1016_j_pedobi_2025_151036 crossref_primary_10_1007_s11368_023_03663_z crossref_primary_10_1080_10643389_2023_2259275 crossref_primary_10_1021_acs_macromol_3c01401 crossref_primary_10_1039_D1RA00880C crossref_primary_10_1002_tqem_22035 crossref_primary_10_1016_j_cej_2021_131870 crossref_primary_10_1177_0036850419867204 crossref_primary_10_1021_acs_est_0c03712 crossref_primary_10_1007_s13762_024_05656_y crossref_primary_10_3389_fsoil_2022_917490 crossref_primary_10_1007_s11270_024_07499_2 crossref_primary_10_1186_s12989_020_00387_7 crossref_primary_10_1007_s41207_025_00766_6 |
Cites_doi | 10.1016/j.scitotenv.2016.01.153 10.1016/j.watres.2018.05.019 10.1016/j.scitotenv.2018.09.101 10.1016/j.marpolbul.2017.08.057 10.1016/j.trac.2018.10.006 10.1016/j.enconman.2017.06.046 10.1021/acs.est.8b02212 10.1016/j.scitotenv.2018.10.166 10.1016/j.marpolbul.2015.07.029 10.1016/j.watres.2017.01.042 10.1016/j.marpolbul.2016.09.004 10.1016/j.watres.2018.05.034 10.1186/s12302-015-0069-y 10.1021/acs.est.8b01517 10.1016/j.marpolbul.2016.09.025 10.1016/j.scitotenv.2017.10.213 10.1016/j.scitotenv.2017.08.086 10.1021/acs.est.6b04048 10.1205/psep.05168 10.1016/j.scitotenv.2016.03.226 10.1016/j.scitotenv.2018.01.341 10.1016/j.envpol.2005.04.013 10.1016/j.scitotenv.2018.06.004 10.1038/nmeth.2089 10.1038/s41598-017-14588-2 10.1016/j.envpol.2017.11.043 10.1021/acs.est.7b06003 10.1016/j.envsci.2016.12.014 10.1071/EN18150 10.1016/j.seppur.2016.05.039 10.3389/fpls.2017.01805 10.1016/j.envint.2017.02.013 10.1016/j.advwatres.2018.08.011 10.1016/j.envpol.2018.07.051 10.1021/acs.est.7b01750 10.1023/A:1004908110793 10.1021/acs.est.6b00816 |
ContentType | Journal Article |
Copyright | 2019 The Authors Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved. Wageningen University & Research |
Copyright_xml | – notice: 2019 The Authors – notice: Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved. – notice: Wageningen University & Research |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 QVL |
DOI | 10.1016/j.scitotenv.2019.03.368 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic NARCIS:Publications |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
EndPage | 420 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_549866 30933797 10_1016_j_scitotenv_2019_03_368 S004896971931366X |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW SSH WUQ XPP ZXP ZY4 NPM 7X8 7S9 L.6 AALMO AAPBV ABFLS ABPIF ABPTK ABTAH ADALY AJBFU IPNFZ QVL |
ID | FETCH-LOGICAL-c570t-14d96ae811e5ac3de79a39e04994619f5da577eeaf9083f01166856f8bbe0d613 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Thu Oct 13 09:31:45 EDT 2022 Fri Jul 11 02:03:52 EDT 2025 Fri Jul 11 03:17:47 EDT 2025 Thu Apr 03 07:11:12 EDT 2025 Thu Apr 24 23:12:15 EDT 2025 Tue Jul 01 03:34:54 EDT 2025 Fri Feb 23 02:30:42 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Waste management Diffuse pollution Microplastics Agricultural soil Sludge |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c570t-14d96ae811e5ac3de79a39e04994619f5da577eeaf9083f01166856f8bbe0d613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9696-7643 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S004896971931366X |
PMID | 30933797 |
PQID | 2202202117 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_549866 proquest_miscellaneous_2237514303 proquest_miscellaneous_2202202117 pubmed_primary_30933797 crossref_primary_10_1016_j_scitotenv_2019_03_368 crossref_citationtrail_10_1016_j_scitotenv_2019_03_368 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_03_368 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-25 |
PublicationDateYYYYMMDD | 2019-06-25 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mahon, O'Connell, Healy, O'Connor, Officer, Nash, M. (bb0130) 2017; 51 Wang, Taylor, Sharma, Flury (bb0240) 2018; 13 Corradini, Bartholomeus, Lwanga, Gertsen, Geissen (bb0045) 2019; 650 Qin (bb0175) 2016 Hurley, Lusher, Olsen, Nizzetto (bb0100) 2018; 52 Napper, Thompson (bb0145) 2016; 112 Vaughan (bb0235) 2018 Soil Survey Staff. 2014. Kellogg soil survey laboratory methods manual. Soil Survey Investigations Report No. 42, Version 5.0. R. Burt and Soil Survey Staff (Eds.). U.S. Department of Agriculture, Natural Resources Conservation Service. Coors, Edwards, Lorenz, Römbke, Schmelz, Topp, Waszak, Wilkes, Lapen (bb0040) 2016; 562 Liu, Ding, Weng, Hwang, Lin (bb0120) 2016; 169 Liu, Lu, Song, Lei, Hu, Lv, Zhou, Cao, Shi, Yang, He (bb0115) 2018; 242 Anuar Sharuddin, Abnisa, Wan Daud, Aroua (bb0015) 2017; 148 Schmidt, Christensen, Batstone, Trably, Lyberatos, Stamatelatou, Kornaros, Metzger, Amellal, Watson, García, Ayuso, Patureau (bb0200) 2006; 84 Henry, Laitala, Klepp (bb0080) 2019; 652 Lesnoff, Lancelot (bb0105) 2012 Habib, Locke, Cannone (bb0070) 1998; 103 Li, Chen, Mei, Dong, Dai, Ding, Zeng (bb0110) 2018; 142 Brodhagen, Goldberger, Hayes, Inglis, Marsh, Miles (bb0030) 2017; 69 McLain, Bumblauskas, White, Gransberg (bb0135) 2018; 3 Zubris, Richards (bb0260) 2005; 138 Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. and Ni, B.-J. 2019. Microplastics in wastewater treatment plants: Detection, occurrence and removal Water Research 152: 21–37. de Souza Machado, Lau, Till, Werner, Lehmann, Becker, Rillig (bb0050) 2018; 52 MINSEGPRES (bb0140) 2009 Hernandez, Nowack, Mitrano (bb0085) 2017; 51 Simon, van Alst, Vollertsen (bb0210) 2018; 142 Zhang, Yang, Gertsen, Peters, Salánki, Geissen (bb0250) 2018; 616–617 Ng, Lwanga, Eldridge, Johnston, Hu, Geissen, Chen (bb0155) 2018; 627 Engdahl (bb0060) 2018; 121 Prata (bb0170) 2018; 234 CIREN. 1996. Estudio agrológico Región Metropolitana. Descripciones de suelos. Publicación No. 115. Centro de Información de Recursos Naturales. Santiago, Chile. Bläsing, Amelung (bb0025) 2018; 612 Steinmetz, Wollmann, Schaefer, Buchmann, David, Tröger, Muñoz, Frör, Schaumann (bb0220) 2016; 550 Ziajahromi, Neale, Rintoul, Leusch (bb0255) 2017; 112 Scheurer, Bigalke (bb0195) 2018; 52 Rilling, Ingraffia, de Souza Machado (bb0190) 2018; 8 Pinto da Costa, Paço, Santos, Duarte, Rocha-Santos (bb0165) 2018; 16 Auta, Emenike, Fauziah (bb0020) 2017; 102 Reed, Lynn, Meade (bb0185) 2002; 9 Titow (bb0230) 2012 Fuller, Gautam (bb0065) 2016; 50 Huerta Lwanga, E., Mendoza Vega, J., Ku Quej, V., Chi, J. d. l. A., Sanchez del Cid, L., Chi, C., Escalona Segura, G., Gertsen, H., Salánki, T., van der Ploeg, M., Koelmans, A. A. and Geissen, V. 2017. Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports 7: 14071-. Lots, Behrens, Vijver, Horton, Bosker (bb0125) 2017; 123 He, Luo, Lu, Liu, Song, Lei (bb0075) 2018; 109 Napper, Bakir, Rowland, Thompson (bb0150) 2015; 99 Duis, Coors (bb0055) 2016; 28 Paul, Wander, Becker, Goedecke, Braun (bb0160) 2018 R Core Team (bb0180) 2018 Zhang, Liu (bb0245) 2018; 642 Horton, Svendsen, Williams, Spurgeon, Lahive (bb0090) 2017; 114 Schneider, Rasband, Eliceiri (bb0205) 2012; 9 Anuar Sharuddin (10.1016/j.scitotenv.2019.03.368_bb0015) 2017; 148 Duis (10.1016/j.scitotenv.2019.03.368_bb0055) 2016; 28 Reed (10.1016/j.scitotenv.2019.03.368_bb0185) 2002; 9 Paul (10.1016/j.scitotenv.2019.03.368_bb0160) 2018 Corradini (10.1016/j.scitotenv.2019.03.368_bb0045) 2019; 650 Habib (10.1016/j.scitotenv.2019.03.368_bb0070) 1998; 103 Li (10.1016/j.scitotenv.2019.03.368_bb0110) 2018; 142 Hurley (10.1016/j.scitotenv.2019.03.368_bb0100) 2018; 52 Pinto da Costa (10.1016/j.scitotenv.2019.03.368_bb0165) 2018; 16 10.1016/j.scitotenv.2019.03.368_bb0095 MINSEGPRES (10.1016/j.scitotenv.2019.03.368_bb0140) 2009 Zhang (10.1016/j.scitotenv.2019.03.368_bb0245) 2018; 642 He (10.1016/j.scitotenv.2019.03.368_bb0075) 2018; 109 10.1016/j.scitotenv.2019.03.368_bb0215 Ziajahromi (10.1016/j.scitotenv.2019.03.368_bb0255) 2017; 112 de Souza Machado (10.1016/j.scitotenv.2019.03.368_bb0050) 2018; 52 Coors (10.1016/j.scitotenv.2019.03.368_bb0040) 2016; 562 R Core Team (10.1016/j.scitotenv.2019.03.368_bb0180) 2018 Wang (10.1016/j.scitotenv.2019.03.368_bb0240) 2018; 13 Bläsing (10.1016/j.scitotenv.2019.03.368_bb0025) 2018; 612 Hernandez (10.1016/j.scitotenv.2019.03.368_bb0085) 2017; 51 Horton (10.1016/j.scitotenv.2019.03.368_bb0090) 2017; 114 Schmidt (10.1016/j.scitotenv.2019.03.368_bb0200) 2006; 84 Napper (10.1016/j.scitotenv.2019.03.368_bb0150) 2015; 99 Henry (10.1016/j.scitotenv.2019.03.368_bb0080) 2019; 652 Fuller (10.1016/j.scitotenv.2019.03.368_bb0065) 2016; 50 Liu (10.1016/j.scitotenv.2019.03.368_bb0115) 2018; 242 10.1016/j.scitotenv.2019.03.368_bb0225 McLain (10.1016/j.scitotenv.2019.03.368_bb0135) 2018; 3 Brodhagen (10.1016/j.scitotenv.2019.03.368_bb0030) 2017; 69 Liu (10.1016/j.scitotenv.2019.03.368_bb0120) 2016; 169 Simon (10.1016/j.scitotenv.2019.03.368_bb0210) 2018; 142 Mahon (10.1016/j.scitotenv.2019.03.368_bb0130) 2017; 51 Lots (10.1016/j.scitotenv.2019.03.368_bb0125) 2017; 123 Qin (10.1016/j.scitotenv.2019.03.368_bb0175) 2016 Auta (10.1016/j.scitotenv.2019.03.368_bb0020) 2017; 102 Titow (10.1016/j.scitotenv.2019.03.368_bb0230) 2012 10.1016/j.scitotenv.2019.03.368_bb0035 Zhang (10.1016/j.scitotenv.2019.03.368_bb0250) 2018; 616–617 Zubris (10.1016/j.scitotenv.2019.03.368_bb0260) 2005; 138 Vaughan (10.1016/j.scitotenv.2019.03.368_bb0235) Engdahl (10.1016/j.scitotenv.2019.03.368_bb0060) 2018; 121 Prata (10.1016/j.scitotenv.2019.03.368_bb0170) 2018; 234 Scheurer (10.1016/j.scitotenv.2019.03.368_bb0195) 2018; 52 Schneider (10.1016/j.scitotenv.2019.03.368_bb0205) 2012; 9 Lesnoff (10.1016/j.scitotenv.2019.03.368_bb0105) Steinmetz (10.1016/j.scitotenv.2019.03.368_bb0220) 2016; 550 Ng (10.1016/j.scitotenv.2019.03.368_bb0155) 2018; 627 Napper (10.1016/j.scitotenv.2019.03.368_bb0145) 2016; 112 Rilling (10.1016/j.scitotenv.2019.03.368_bb0190) 2018; 8 |
References_xml | – volume: 121 start-page: 277 year: 2018 end-page: 284 ident: bb0060 article-title: Simulating the mobility of micro-plastics and other fiber-like objects in saturated porous media using constrained random walks publication-title: Adv. Water Resour. – year: 2018 ident: bb0235 article-title: How to determine an accurate soil testing laboratory. Site-specific management guidelines 4 (SSMG-4). International Plant Nutrition Institute (IPNI). Lincoln, NE, USA. Available at – volume: 52 start-page: 7409 year: 2018 end-page: 7417 ident: bb0100 article-title: Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices publication-title: Environ. Sci. Technol. – year: 2018 ident: bb0180 article-title: R: A Language and Environment for Statistical Computing – volume: 13 start-page: 1 year: 2018 end-page: 13 ident: bb0240 article-title: Poor extraction efficiencies of polystyrene nano- and microplastics from biosolids and soil publication-title: PLoS One – volume: 652 start-page: 483 year: 2019 end-page: 494 ident: bb0080 article-title: Microfibres from apparel and home textiles: prospects for including microplastics in environmental sustainability assessment publication-title: Sci. Total Environ. – volume: 114 start-page: 218 year: 2017 end-page: 226 ident: bb0090 article-title: Large microplastic particles in sediments of tributaries of the river Thames, UK – abundance, sources and methods for effective quantification publication-title: Mar. Pollut. Bull. – volume: 28 start-page: 2 year: 2016 ident: bb0055 article-title: Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects publication-title: Environ. Sci. Eur. – volume: 103 start-page: 1 year: 1998 end-page: 8 ident: bb0070 article-title: Synthetic fibers as indicators of municipal sewage sludge, sludge products, and sewage treatment plant effluents publication-title: Water Air Soil Pollut. – year: 2012 ident: bb0105 article-title: Aod: analysis of Overdispersed data. R package version 1.3. URL – volume: 16 start-page: 18 year: 2018 end-page: 30 ident: bb0165 article-title: Microplastics in soils: assessment, analytics and risks publication-title: Environ. Chem. – volume: 234 start-page: 115 year: 2018 end-page: 126 ident: bb0170 article-title: Airborne microplastics: consequences to human health? publication-title: Environ. Pollut. – volume: 99 start-page: 178 year: 2015 end-page: 185 ident: bb0150 article-title: Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics publication-title: Mar. Pollut. Bull. – volume: 51 start-page: 7036 year: 2017 end-page: 7046 ident: bb0085 article-title: Polyester textiles as a source of microplastics from households: a mechanistic study to understand microfiber release during washing publication-title: Environ. Sci. Technol. – volume: 50 start-page: 5774 year: 2016 end-page: 5780 ident: bb0065 article-title: A procedure for measuring microplastics using pressurized fluid extraction publication-title: Environ. Sci. Technol. – volume: 51 start-page: 810 year: 2017 end-page: 818 ident: bb0130 article-title: Microplastics in sewage sludge: effects of treatment publication-title: Environ. Sci. Technol. – volume: 123 start-page: 219 year: 2017 end-page: 226 ident: bb0125 article-title: A large-scale investigation of microplastic contamination: abundance and characteristics of microplastics in European beach sediment publication-title: Mar. Pollut. Bull. – year: 2018 ident: bb0160 article-title: High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil publication-title: Environ. Sci. Pollut. Res. – volume: 612 start-page: 422 year: 2018 end-page: 435 ident: bb0025 article-title: Plastics in soil: analytical methods and possible sources publication-title: Sci. Total Environ. – reference: Soil Survey Staff. 2014. Kellogg soil survey laboratory methods manual. Soil Survey Investigations Report No. 42, Version 5.0. R. Burt and Soil Survey Staff (Eds.). U.S. Department of Agriculture, Natural Resources Conservation Service. – volume: 3 start-page: 106 year: 2018 end-page: 113 ident: bb0135 article-title: Comparative analysis of repeatability and reproducibility of compaction testing publication-title: J. Struct. Integ. Maint. – volume: 169 start-page: 230 year: 2016 end-page: 240 ident: bb0120 article-title: Minimizing the interference of carbonate ions on degradation of SRF3B dye by Fe0-aggregate-activated persulfate process publication-title: Sep. Purif. Technol. – volume: 138 start-page: 201 year: 2005 end-page: 211 ident: bb0260 article-title: Synthetic fibers as an indicator of land application of sludge publication-title: Environ. Pollut. – volume: 69 start-page: 81 year: 2017 end-page: 84 ident: bb0030 article-title: Policy considerations for limiting unintended residual plastic in agricultural soils publication-title: Environ. Sci. Pol. – volume: 242 start-page: 855 year: 2018 end-page: 862 ident: bb0115 article-title: Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China publication-title: Environ. Pollut. – volume: 148 start-page: 925 year: 2017 end-page: 934 ident: bb0015 article-title: Energy recovery from pyrolysis of plastic waste: study on non-recycled plastics (NRP) data as the real measure of plastic waste publication-title: Energy Convers. Manag. – volume: 627 start-page: 1377 year: 2018 end-page: 1388 ident: bb0155 article-title: An overview of microplastic and nanoplastic pollution in agroecosystems publication-title: Sci. Total Environ. – volume: 112 start-page: 39 year: 2016 end-page: 45 ident: bb0145 article-title: Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions publication-title: Mar. Pollut. Bull. – reference: Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. and Ni, B.-J. 2019. Microplastics in wastewater treatment plants: Detection, occurrence and removal Water Research 152: 21–37. – reference: Huerta Lwanga, E., Mendoza Vega, J., Ku Quej, V., Chi, J. d. l. A., Sanchez del Cid, L., Chi, C., Escalona Segura, G., Gertsen, H., Salánki, T., van der Ploeg, M., Koelmans, A. A. and Geissen, V. 2017. Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports 7: 14071-. – volume: 52 start-page: 9656 year: 2018 end-page: 9665 ident: bb0050 article-title: Impacts of microplastics on the soil biophysical environment publication-title: Environ. Sci. Technol. – year: 2012 ident: bb0230 article-title: PVC Technology – volume: 109 start-page: 163 year: 2018 end-page: 172 ident: bb0075 article-title: Microplastics in soils: analytical methods, pollution characteristics and ecological risks publication-title: TrAC Trends Anal. Chem. – volume: 52 start-page: 3591 year: 2018 end-page: 3598 ident: bb0195 article-title: Microplastics in Swiss floodplain soils publication-title: Environ. Sci. Technol. – volume: 142 start-page: 1 year: 2018 end-page: 9 ident: bb0210 article-title: Quantification of microplastic mass and removal rates at wastewater treatment plants applying focal plane Array (FPA)-based Fourier transform infrared (FT-IR) imaging publication-title: Water Res. – volume: 112 start-page: 93 year: 2017 end-page: 99 ident: bb0255 article-title: Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics publication-title: Water Res. – volume: 650 start-page: 922 year: 2019 end-page: 932 ident: bb0045 article-title: Predicting soil microplastic concentration using Vis-NIR spectroscopy publication-title: Sci. Total Environ. – volume: 84 start-page: 253 year: 2006 end-page: 257 ident: bb0200 article-title: Safe recycling of sewage sludge on agricultural land-biowaste publication-title: Process Saf. Environ. Prot. – volume: 642 start-page: 12 year: 2018 end-page: 20 ident: bb0245 article-title: The distribution of microplastics in soil aggregate fractions in southwestern China publication-title: Sci. Total Environ. – year: 2009 ident: bb0140 article-title: Decreto 4 publication-title: Reglamento para el manejo de lodos generados en plantas de tratamiento de aguas servidas – year: 2016 ident: bb0175 article-title: A brief description of textile fibers publication-title: Medical Textile Materials – volume: 102 start-page: 165 year: 2017 end-page: 176 ident: bb0020 article-title: Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions publication-title: Environ. Int. – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: bb0205 article-title: NIH image to ImageJ: 25 years of image analysis publication-title: Nat. Methods – volume: 616–617 start-page: 1056 year: 2018 end-page: 1065 ident: bb0250 article-title: A simple method for the extraction and identification of light density microplastics from soil publication-title: Sci. Total Environ. – reference: CIREN. 1996. Estudio agrológico Región Metropolitana. Descripciones de suelos. Publicación No. 115. Centro de Información de Recursos Naturales. Santiago, Chile. – volume: 562 start-page: 312 year: 2016 end-page: 326 ident: bb0040 article-title: Biosolids applied to agricultural land: influence on structural and functional endpoints of soil fauna on a short- and long-term scale publication-title: Sci. Total Environ. – volume: 142 start-page: 75 year: 2018 end-page: 85 ident: bb0110 article-title: Microplastics in sewage sludge from the wastewater treatment plants in China publication-title: Water Res. – volume: 550 start-page: 690 year: 2016 end-page: 705 ident: bb0220 article-title: Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? publication-title: Sci. Total Environ. – volume: 9 start-page: 1235 year: 2002 end-page: 1239 ident: bb0185 article-title: Use of coefficient of variation in assessing variability of quantitative assays publication-title: Clin. Diagn. Lab. Immunol. – volume: 8 start-page: 1805 year: 2018 ident: bb0190 article-title: Microplastic incorporation into soil in agroecosystems publication-title: Front. Plant Sci. – year: 2012 ident: 10.1016/j.scitotenv.2019.03.368_bb0230 – volume: 550 start-page: 690 year: 2016 ident: 10.1016/j.scitotenv.2019.03.368_bb0220 article-title: Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.01.153 – volume: 142 start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0210 article-title: Quantification of microplastic mass and removal rates at wastewater treatment plants applying focal plane Array (FPA)-based Fourier transform infrared (FT-IR) imaging publication-title: Water Res. doi: 10.1016/j.watres.2018.05.019 – ident: 10.1016/j.scitotenv.2019.03.368_bb0215 – ident: 10.1016/j.scitotenv.2019.03.368_bb0235 – ident: 10.1016/j.scitotenv.2019.03.368_bb0035 – volume: 650 start-page: 922 year: 2019 ident: 10.1016/j.scitotenv.2019.03.368_bb0045 article-title: Predicting soil microplastic concentration using Vis-NIR spectroscopy publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.101 – volume: 123 start-page: 219 year: 2017 ident: 10.1016/j.scitotenv.2019.03.368_bb0125 article-title: A large-scale investigation of microplastic contamination: abundance and characteristics of microplastics in European beach sediment publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2017.08.057 – volume: 109 start-page: 163 year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0075 article-title: Microplastics in soils: analytical methods, pollution characteristics and ecological risks publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2018.10.006 – volume: 148 start-page: 925 year: 2017 ident: 10.1016/j.scitotenv.2019.03.368_bb0015 article-title: Energy recovery from pyrolysis of plastic waste: study on non-recycled plastics (NRP) data as the real measure of plastic waste publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.06.046 – volume: 52 start-page: 9656 issue: 17 year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0050 article-title: Impacts of microplastics on the soil biophysical environment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02212 – volume: 652 start-page: 483 year: 2019 ident: 10.1016/j.scitotenv.2019.03.368_bb0080 article-title: Microfibres from apparel and home textiles: prospects for including microplastics in environmental sustainability assessment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.166 – volume: 3 start-page: 106 year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0135 article-title: Comparative analysis of repeatability and reproducibility of compaction testing publication-title: J. Struct. Integ. Maint. – volume: 99 start-page: 178 year: 2015 ident: 10.1016/j.scitotenv.2019.03.368_bb0150 article-title: Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2015.07.029 – volume: 112 start-page: 93 year: 2017 ident: 10.1016/j.scitotenv.2019.03.368_bb0255 article-title: Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics publication-title: Water Res. doi: 10.1016/j.watres.2017.01.042 – volume: 114 start-page: 218 year: 2017 ident: 10.1016/j.scitotenv.2019.03.368_bb0090 article-title: Large microplastic particles in sediments of tributaries of the river Thames, UK – abundance, sources and methods for effective quantification publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2016.09.004 – volume: 142 start-page: 75 year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0110 article-title: Microplastics in sewage sludge from the wastewater treatment plants in China publication-title: Water Res. doi: 10.1016/j.watres.2018.05.034 – volume: 28 start-page: 2 year: 2016 ident: 10.1016/j.scitotenv.2019.03.368_bb0055 article-title: Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects publication-title: Environ. Sci. Eur. doi: 10.1186/s12302-015-0069-y – volume: 52 start-page: 7409 year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0100 article-title: Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01517 – volume: 112 start-page: 39 year: 2016 ident: 10.1016/j.scitotenv.2019.03.368_bb0145 article-title: Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2016.09.025 – volume: 616–617 start-page: 1056 year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0250 article-title: A simple method for the extraction and identification of light density microplastics from soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.213 – volume: 612 start-page: 422 year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0025 article-title: Plastics in soil: analytical methods and possible sources publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.086 – volume: 51 start-page: 810 year: 2017 ident: 10.1016/j.scitotenv.2019.03.368_bb0130 article-title: Microplastics in sewage sludge: effects of treatment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04048 – volume: 84 start-page: 253 year: 2006 ident: 10.1016/j.scitotenv.2019.03.368_bb0200 article-title: Safe recycling of sewage sludge on agricultural land-biowaste publication-title: Process Saf. Environ. Prot. doi: 10.1205/psep.05168 – ident: 10.1016/j.scitotenv.2019.03.368_bb0225 – volume: 562 start-page: 312 year: 2016 ident: 10.1016/j.scitotenv.2019.03.368_bb0040 article-title: Biosolids applied to agricultural land: influence on structural and functional endpoints of soil fauna on a short- and long-term scale publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.03.226 – volume: 627 start-page: 1377 year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0155 article-title: An overview of microplastic and nanoplastic pollution in agroecosystems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.341 – volume: 138 start-page: 201 year: 2005 ident: 10.1016/j.scitotenv.2019.03.368_bb0260 article-title: Synthetic fibers as an indicator of land application of sludge publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2005.04.013 – volume: 642 start-page: 12 year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0245 article-title: The distribution of microplastics in soil aggregate fractions in southwestern China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.004 – volume: 9 start-page: 671 year: 2012 ident: 10.1016/j.scitotenv.2019.03.368_bb0205 article-title: NIH image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – ident: 10.1016/j.scitotenv.2019.03.368_bb0095 doi: 10.1038/s41598-017-14588-2 – volume: 234 start-page: 115 year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0170 article-title: Airborne microplastics: consequences to human health? publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.11.043 – year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0180 – year: 2009 ident: 10.1016/j.scitotenv.2019.03.368_bb0140 article-title: Decreto 4 – volume: 52 start-page: 3591 year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0195 article-title: Microplastics in Swiss floodplain soils publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b06003 – volume: 69 start-page: 81 year: 2017 ident: 10.1016/j.scitotenv.2019.03.368_bb0030 article-title: Policy considerations for limiting unintended residual plastic in agricultural soils publication-title: Environ. Sci. Pol. doi: 10.1016/j.envsci.2016.12.014 – volume: 16 start-page: 18 issue: 1 year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0165 article-title: Microplastics in soils: assessment, analytics and risks publication-title: Environ. Chem. doi: 10.1071/EN18150 – volume: 9 start-page: 1235 year: 2002 ident: 10.1016/j.scitotenv.2019.03.368_bb0185 article-title: Use of coefficient of variation in assessing variability of quantitative assays publication-title: Clin. Diagn. Lab. Immunol. – volume: 169 start-page: 230 year: 2016 ident: 10.1016/j.scitotenv.2019.03.368_bb0120 article-title: Minimizing the interference of carbonate ions on degradation of SRF3B dye by Fe0-aggregate-activated persulfate process publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.05.039 – volume: 8 start-page: 1805 year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0190 article-title: Microplastic incorporation into soil in agroecosystems publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01805 – volume: 102 start-page: 165 year: 2017 ident: 10.1016/j.scitotenv.2019.03.368_bb0020 article-title: Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions publication-title: Environ. Int. doi: 10.1016/j.envint.2017.02.013 – year: 2016 ident: 10.1016/j.scitotenv.2019.03.368_bb0175 article-title: A brief description of textile fibers – ident: 10.1016/j.scitotenv.2019.03.368_bb0105 – volume: 121 start-page: 277 year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0060 article-title: Simulating the mobility of micro-plastics and other fiber-like objects in saturated porous media using constrained random walks publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2018.08.011 – volume: 242 start-page: 855 year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0115 article-title: Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.07.051 – volume: 51 start-page: 7036 year: 2017 ident: 10.1016/j.scitotenv.2019.03.368_bb0085 article-title: Polyester textiles as a source of microplastics from households: a mechanistic study to understand microfiber release during washing publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b01750 – year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0160 article-title: High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil publication-title: Environ. Sci. Pollut. Res. – volume: 103 start-page: 1 year: 1998 ident: 10.1016/j.scitotenv.2019.03.368_bb0070 article-title: Synthetic fibers as indicators of municipal sewage sludge, sludge products, and sewage treatment plant effluents publication-title: Water Air Soil Pollut. doi: 10.1023/A:1004908110793 – volume: 50 start-page: 5774 year: 2016 ident: 10.1016/j.scitotenv.2019.03.368_bb0065 article-title: A procedure for measuring microplastics using pressurized fluid extraction publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00816 – volume: 13 start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2019.03.368_bb0240 article-title: Poor extraction efficiencies of polystyrene nano- and microplastics from biosolids and soil publication-title: PLoS One |
SSID | ssj0000781 |
Score | 2.714787 |
Snippet | Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping... |
SourceID | wageningen proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 411 |
SubjectTerms | agricultural land Agricultural soil agricultural soils aquatic environment Diffuse pollution fertilizers Microplastics sewage sewage sludge Sludge soil pollution soil sampling Waste management wastewater wastewater treatment |
Title | Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal |
URI | https://dx.doi.org/10.1016/j.scitotenv.2019.03.368 https://www.ncbi.nlm.nih.gov/pubmed/30933797 https://www.proquest.com/docview/2202202117 https://www.proquest.com/docview/2237514303 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F549866 |
Volume | 671 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NQ0hDCEFh0A0mI_EaltZfyd6maVOhYg-IaX2zHMdBmbKkahqmvexv312TtEwg9sCTlci2nNyd_TvfF8AnjkyQcSWQAjIMhOMuSFAPCaJMeTySEpt4uof8dq4mF-LrTM624KSPhSG3ym7vb_f01W7dvTns_ubhPM8pxldEsYo1QpARV2pGEexCE5d_vtu4eVAym9bKjIKNvR_4eOG8ywqx6S_y8VplO-WUc_XvJ9SfCPQZ7Nyg1JerMKjfjqWzl_Ciw5PsuF3yK9jy5QCethUmbwewe7oJZMNunSTXA3je3texNgzpNVz25UVZlbFr8tKbI67GSZl1rrnuinyxvGT252Kdr4PVVV7UjGJUWO1plawumhSbNCd_MFu8gYuz0x8nk6AruhA4qcNlMBJprKyPRiMvreOp17HlsSfNSKCylcnUSq29t1mM6C0jO46KpMqiJPFhiuBgF7bLqvTvgGXC-VBGNkUZF2FGeWZSVOQlV07ZRCdDUP2PNq7LSE6FMQrTu55dmTWFDFHIhNwghYYQrgfO26Qcjw856ilpHvCXwaPj8cEfe9oblD4yqdjSV01txmOKVEYlWv-rD9cES0M-hLct46xXTXZormMczTecZEoqI1Ubyvzd3eWZm2ZhyoIanKE2qNVHSu39z0ftww49kdvbWL6H7eWi8R8QYC2Tg5UEHcCT4y_TyTm10--X03spLSuM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NToghhKAwKJ9G4jVaWn8lvE3Tpo5tfdpE3ywncaagLKmahon_nrvGaZlA7IGnSInPcnx39u_s-wD4zFEIcq4EckCGgUh5GiRohwRRrhxuSYlNHJ1DXszU9Ep8ncv5Dhz1sTDkVunX_m5NX6_W_s2Bn82DRVFQjK-IYhVrhCBjrtT8AexSdio5gN3D07PpbLsg66grnCdQt5HgjpsXdr2qEZ7-IDevdcJTTmlX_75J_QlCH8PeLSp-tY6E-m1nOnkGTz2kZIfdqJ_DjquG8LArMvlzCPvH21g2bOaVuRnCk-7IjnWRSC_gW19hlNU5uyFHvQVCa-yU2TRtb3ydL1ZUzF4vNyk7WFMXZcMoTIU1jkbJmrLN8JEV5BJmy5dwdXJ8eTQNfN2FIJU6XAVjkcXKumg8dtKmPHM6tjx2ZBwJtLdymVmptXM2jxHA5XSVoyKp8ihJXJghPtiHQVVX7jWwXKQulJHNUM1FmFOqmQxteclVqmyikxGofqJN6pOSU22M0vTeZ9_NhkOGOGRCbpBDIwg3hIsuL8f9JF96Tpo7ImZw97if-FPPe4MKSLcqtnJ125jJhIKV0Y7W_2rDNSHTkI_gVSc4m1HTVTTXMVLzrSSZiipJNYaSf_vjPHPbLk1V0gN7aAwa9pFSb_7npz7Co-nlxbk5P52dvYU9-kJecBP5DgarZeveI95aJR-8Pv0C5N0smg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+of+microplastic+accumulation+in+agricultural+soils+from+sewage+sludge+disposal&rft.jtitle=The+Science+of+the+total+environment&rft.au=Corradini%2C+Fabio&rft.au=Meza%2C+Pablo&rft.au=Eguiluz%2C+Ra%C3%BAl&rft.au=Casado%2C+Francisco&rft.date=2019-06-25&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=671&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.03.368&rft.externalDBID=public&rft.externalDocID=oai_library_wur_nl_wurpubs_549866 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |