Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal

Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping the particles in the sludge and preventing their entrance into aquatic environments. Treatment plants are essentially taking the microplastics...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 671; pp. 411 - 420
Main Authors Corradini, Fabio, Meza, Pablo, Eguiluz, Raúl, Casado, Francisco, Huerta-Lwanga, Esperanza, Geissen, Violette
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 25.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping the particles in the sludge and preventing their entrance into aquatic environments. Treatment plants are essentially taking the microplastics out of the waste water and concentrating them in the sludge, however. It has become common practice to use this sludge on agricultural soils as a fertilizer. The aim of the current research was to evaluate the microplastic contamination of soils by this practice, assessing the implications of successive sludge applications by looking at the total count of microplastic particles in soil samples. Thirty-one agricultural fields with different sludge application records and similar edaphoclimatic conditions were evaluated. Field records of sludge application covered a ten year period. For all fields, historical disposal events used the same amount of sludge (40 ton ha−1 dry weight). Extraction of microplastics was done by flotation and particles were then counted and classified with the help of a microscope. Seven sludge samples were collected in the fields that underwent sludge applications during the study period. Soils where 1, 2, 3, 4, and 5 applications of sludge had been performed had a median of 1.1, 1.6, 1.7, 2.3, and 3.5 particles g−1 dry soil, respectively. There were statistical differences in the microplastic contents related to the number of applications that a field had undergone (1, 2, 3 < 4, 5). Microplastic content in sludge ranged from 18 to 41 particles g−1, with a median of 34 particles g−1. The majority of the observed microplastics were fibers (90% in sludge, and 97% in soil). Our results indicate that microplastic counts increase over time where successive sludge applications are performed. Microplastics observed in soil samples stress the relevance of sludge as a driver of soil microplastic contamination. [Display omitted] •Sludge holds microplastics that could enter soils by sludge disposal.•31 fields that underwent sludge applications at different rates were evaluated.•Microplastics were found in soil samples (0.6–10.4 p g−1).•Microplastic counts increased where increased rates of sludge were applied.•Sludge is proposed as a primal driver of soil microplastic pollution.
AbstractList Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping the particles in the sludge and preventing their entrance into aquatic environments. Treatment plants are essentially taking the microplastics out of the waste water and concentrating them in the sludge, however. It has become common practice to use this sludge on agricultural soils as a fertilizer. The aim of the current research was to evaluate the microplastic contamination of soils by this practice, assessing the implications of successive sludge applications by looking at the total count of microplastic particles in soil samples. Thirty-one agricultural fields with different sludge application records and similar edaphoclimatic conditions were evaluated. Field records of sludge application covered a ten year period. For all fields, historical disposal events used the same amount of sludge (40 ton ha-1 dry weight). Extraction of microplastics was done by flotation and particles were then counted and classified with the help of a microscope. Seven sludge samples were collected in the fields that underwent sludge applications during the study period. Soils where 1, 2, 3, 4, and 5 applications of sludge had been performed had a median of 1.1, 1.6, 1.7, 2.3, and 3.5 particles g-1 dry soil, respectively. There were statistical differences in the microplastic contents related to the number of applications that a field had undergone (1, 2, 3 < 4, 5). Microplastic content in sludge ranged from 18 to 41 particles g-1, with a median of 34 particles g-1. The majority of the observed microplastics were fibers (90% in sludge, and 97% in soil). Our results indicate that microplastic counts increase over time where successive sludge applications are performed. Microplastics observed in soil samples stress the relevance of sludge as a driver of soil microplastic contamination.Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping the particles in the sludge and preventing their entrance into aquatic environments. Treatment plants are essentially taking the microplastics out of the waste water and concentrating them in the sludge, however. It has become common practice to use this sludge on agricultural soils as a fertilizer. The aim of the current research was to evaluate the microplastic contamination of soils by this practice, assessing the implications of successive sludge applications by looking at the total count of microplastic particles in soil samples. Thirty-one agricultural fields with different sludge application records and similar edaphoclimatic conditions were evaluated. Field records of sludge application covered a ten year period. For all fields, historical disposal events used the same amount of sludge (40 ton ha-1 dry weight). Extraction of microplastics was done by flotation and particles were then counted and classified with the help of a microscope. Seven sludge samples were collected in the fields that underwent sludge applications during the study period. Soils where 1, 2, 3, 4, and 5 applications of sludge had been performed had a median of 1.1, 1.6, 1.7, 2.3, and 3.5 particles g-1 dry soil, respectively. There were statistical differences in the microplastic contents related to the number of applications that a field had undergone (1, 2, 3 < 4, 5). Microplastic content in sludge ranged from 18 to 41 particles g-1, with a median of 34 particles g-1. The majority of the observed microplastics were fibers (90% in sludge, and 97% in soil). Our results indicate that microplastic counts increase over time where successive sludge applications are performed. Microplastics observed in soil samples stress the relevance of sludge as a driver of soil microplastic contamination.
Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping the particles in the sludge and preventing their entrance into aquatic environments. Treatment plants are essentially taking the microplastics out of the waste water and concentrating them in the sludge, however. It has become common practice to use this sludge on agricultural soils as a fertilizer. The aim of the current research was to evaluate the microplastic contamination of soils by this practice, assessing the implications of successive sludge applications by looking at the total count of microplastic particles in soil samples. Thirty-one agricultural fields with different sludge application records and similar edaphoclimatic conditions were evaluated. Field records of sludge application covered a ten year period. For all fields, historical disposal events used the same amount of sludge (40 ton ha−1 dry weight). Extraction of microplastics was done by flotation and particles were then counted and classified with the help of a microscope. Seven sludge samples were collected in the fields that underwent sludge applications during the study period. Soils where 1, 2, 3, 4, and 5 applications of sludge had been performed had a median of 1.1, 1.6, 1.7, 2.3, and 3.5 particles g−1 dry soil, respectively. There were statistical differences in the microplastic contents related to the number of applications that a field had undergone (1, 2, 3 < 4, 5). Microplastic content in sludge ranged from 18 to 41 particles g−1, with a median of 34 particles g−1. The majority of the observed microplastics were fibers (90% in sludge, and 97% in soil). Our results indicate that microplastic counts increase over time where successive sludge applications are performed. Microplastics observed in soil samples stress the relevance of sludge as a driver of soil microplastic contamination.
Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping the particles in the sludge and preventing their entrance into aquatic environments. Treatment plants are essentially taking the microplastics out of the waste water and concentrating them in the sludge, however. It has become common practice to use this sludge on agricultural soils as a fertilizer. The aim of the current research was to evaluate the microplastic contamination of soils by this practice, assessing the implications of successive sludge applications by looking at the total count of microplastic particles in soil samples. Thirty-one agricultural fields with different sludge application records and similar edaphoclimatic conditions were evaluated. Field records of sludge application covered a ten year period. For all fields, historical disposal events used the same amount of sludge (40 ton ha dry weight). Extraction of microplastics was done by flotation and particles were then counted and classified with the help of a microscope. Seven sludge samples were collected in the fields that underwent sludge applications during the study period. Soils where 1, 2, 3, 4, and 5 applications of sludge had been performed had a median of 1.1, 1.6, 1.7, 2.3, and 3.5 particles g dry soil, respectively. There were statistical differences in the microplastic contents related to the number of applications that a field had undergone (1, 2, 3 < 4, 5). Microplastic content in sludge ranged from 18 to 41 particles g , with a median of 34 particles g . The majority of the observed microplastics were fibers (90% in sludge, and 97% in soil). Our results indicate that microplastic counts increase over time where successive sludge applications are performed. Microplastics observed in soil samples stress the relevance of sludge as a driver of soil microplastic contamination.
Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping the particles in the sludge and preventing their entrance into aquatic environments. Treatment plants are essentially taking the microplastics out of the waste water and concentrating them in the sludge, however. It has become common practice to use this sludge on agricultural soils as a fertilizer. The aim of the current research was to evaluate the microplastic contamination of soils by this practice, assessing the implications of successive sludge applications by looking at the total count of microplastic particles in soil samples. Thirty-one agricultural fields with different sludge application records and similar edaphoclimatic conditions were evaluated. Field records of sludge application covered a ten year period. For all fields, historical disposal events used the same amount of sludge (40 ton ha −1 dry weight). Extraction of microplastics was done by flotation and particles were then counted and classified with the help of a microscope. Seven sludge samples were collected in the fields that underwent sludge applications during the study period. Soils where 1, 2, 3, 4, and 5 applications of sludge had been performed had a median of 1.1, 1.6, 1.7, 2.3, and 3.5 particles g −1 dry soil, respectively. There were statistical differences in the microplastic contents related to the number of applications that a field had undergone (1, 2, 3 < 4, 5). Microplastic content in sludge ranged from 18 to 41 particles g −1 , with a median of 34 particles g −1 . The majority of the observed microplastics were fibers (90% in sludge, and 97% in soil). Our results indicate that microplastic counts increase over time where successive sludge applications are performed. Microplastics observed in soil samples stress the relevance of sludge as a driver of soil microplastic contamination.
Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping the particles in the sludge and preventing their entrance into aquatic environments. Treatment plants are essentially taking the microplastics out of the waste water and concentrating them in the sludge, however. It has become common practice to use this sludge on agricultural soils as a fertilizer. The aim of the current research was to evaluate the microplastic contamination of soils by this practice, assessing the implications of successive sludge applications by looking at the total count of microplastic particles in soil samples. Thirty-one agricultural fields with different sludge application records and similar edaphoclimatic conditions were evaluated. Field records of sludge application covered a ten year period. For all fields, historical disposal events used the same amount of sludge (40 ton ha−1 dry weight). Extraction of microplastics was done by flotation and particles were then counted and classified with the help of a microscope. Seven sludge samples were collected in the fields that underwent sludge applications during the study period. Soils where 1, 2, 3, 4, and 5 applications of sludge had been performed had a median of 1.1, 1.6, 1.7, 2.3, and 3.5 particles g−1 dry soil, respectively. There were statistical differences in the microplastic contents related to the number of applications that a field had undergone (1, 2, 3 < 4, 5). Microplastic content in sludge ranged from 18 to 41 particles g−1, with a median of 34 particles g−1. The majority of the observed microplastics were fibers (90% in sludge, and 97% in soil). Our results indicate that microplastic counts increase over time where successive sludge applications are performed. Microplastics observed in soil samples stress the relevance of sludge as a driver of soil microplastic contamination. [Display omitted] •Sludge holds microplastics that could enter soils by sludge disposal.•31 fields that underwent sludge applications at different rates were evaluated.•Microplastics were found in soil samples (0.6–10.4 p g−1).•Microplastic counts increased where increased rates of sludge were applied.•Sludge is proposed as a primal driver of soil microplastic pollution.
Author Huerta-Lwanga, Esperanza
Geissen, Violette
Meza, Pablo
Casado, Francisco
Corradini, Fabio
Eguiluz, Raúl
Author_xml – sequence: 1
  givenname: Fabio
  orcidid: 0000-0001-9696-7643
  surname: Corradini
  fullname: Corradini, Fabio
  email: fabio.corradini@inia.cl
  organization: Instituto de Investigaciones Agropecuarias, INIA La Platina, Casilla 439, Correo 3, Santiago, Chile
– sequence: 2
  givenname: Pablo
  surname: Meza
  fullname: Meza, Pablo
  organization: Instituto de Investigaciones Agropecuarias, INIA La Platina, Casilla 439, Correo 3, Santiago, Chile
– sequence: 3
  givenname: Raúl
  surname: Eguiluz
  fullname: Eguiluz, Raúl
  organization: Instituto de Investigaciones Agropecuarias, INIA La Platina, Casilla 439, Correo 3, Santiago, Chile
– sequence: 4
  givenname: Francisco
  surname: Casado
  fullname: Casado, Francisco
  organization: Instituto de Investigaciones Agropecuarias, INIA La Platina, Casilla 439, Correo 3, Santiago, Chile
– sequence: 5
  givenname: Esperanza
  surname: Huerta-Lwanga
  fullname: Huerta-Lwanga, Esperanza
  organization: Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
– sequence: 6
  givenname: Violette
  surname: Geissen
  fullname: Geissen, Violette
  organization: Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30933797$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URLeFvwA5ckmw14k_kDhUVfmQKnEBcbQce1J55djBjrfi3-OwpQcu1Bp5Ls87Gs1zgc5CDIDQG4I7ggl7d-iycWtcIRy7PSayw7SjTDxDOyK4bAneszO0w7gXrWSSn6OLnA-4Pi7IC3ROsaSUS75DP26OzkIw0MSpmZ1JcfE6r8402pgyF69XF0PjQqPvkjPFryVp3-TofG6mFOcmw72-gyb7YmuzLi8xa_8SPZ-0z_DqoV-i7x9vvl1_bm-_fvpyfXXbmoHjtSW9lUyDIAQGbagFLjWVgHspe0bkNFg9cA6gJ4kFnTAhjImBTWIcAVtG6CV6f5q7LRFcqJ8KOhmXVdROeTcmnX6p-5JU8FtbypjV0EvBWA2_PYWXFH8WyKuaXTbgvQ4QS1b7PeUD6SmmT0DxVoTwir5-QMs4g1VLcvO2w9-jV4CfgHrtnBNMjwjBatOrDupRr9r0KkxV1VuTH_5JVuyPoTVp55-QvzrloSo5Okgbt9m3LoFZlY3uvzN-A-27yYs
CitedBy_id crossref_primary_10_1007_s10653_024_02324_5
crossref_primary_10_3389_feart_2022_1054926
crossref_primary_10_3389_ftox_2023_1154538
crossref_primary_10_1007_s11356_023_30963_1
crossref_primary_10_1016_j_scitotenv_2022_160665
crossref_primary_10_1016_j_chemosphere_2023_138928
crossref_primary_10_1016_j_jhazmat_2025_137892
crossref_primary_10_1016_j_watres_2022_119293
crossref_primary_10_3390_toxics9110305
crossref_primary_10_1016_j_chemosphere_2020_127199
crossref_primary_10_3390_agronomy14061193
crossref_primary_10_1016_j_jece_2022_107421
crossref_primary_10_1021_acs_est_1c05614
crossref_primary_10_1021_acs_est_2c05026
crossref_primary_10_3390_nano12152699
crossref_primary_10_1111_gcb_15724
crossref_primary_10_1016_j_cofs_2021_01_004
crossref_primary_10_1016_j_envpol_2019_113570
crossref_primary_10_1016_j_jconhyd_2024_104345
crossref_primary_10_1016_j_pce_2024_103800
crossref_primary_10_1016_j_aquatox_2023_106480
crossref_primary_10_1016_j_envpol_2021_118520
crossref_primary_10_1016_j_scitotenv_2023_164068
crossref_primary_10_3389_fsoil_2022_941837
crossref_primary_10_1002_wer_11054
crossref_primary_10_1007_s11696_022_02505_5
crossref_primary_10_1186_s12302_020_00447_x
crossref_primary_10_1016_j_envres_2021_111867
crossref_primary_10_1016_j_chemosphere_2022_136455
crossref_primary_10_1016_j_scitotenv_2020_139296
crossref_primary_10_1038_s41893_020_0583_9
crossref_primary_10_1007_s11157_022_09621_4
crossref_primary_10_1016_j_scitotenv_2023_168883
crossref_primary_10_1016_j_ecolind_2023_111010
crossref_primary_10_1016_j_scitotenv_2024_176322
crossref_primary_10_1007_s11356_022_21530_1
crossref_primary_10_1038_s44221_023_00065_w
crossref_primary_10_3390_molecules27051744
crossref_primary_10_1016_j_scitotenv_2020_141368
crossref_primary_10_1016_j_jclepro_2021_130248
crossref_primary_10_1016_j_scitotenv_2023_164049
crossref_primary_10_1016_j_jhazmat_2023_132636
crossref_primary_10_1016_j_wasman_2022_11_017
crossref_primary_10_3390_w13070933
crossref_primary_10_3390_agronomy15010047
crossref_primary_10_1002_ppp3_10430
crossref_primary_10_1016_j_impact_2024_100525
crossref_primary_10_1016_j_scitotenv_2021_147133
crossref_primary_10_1016_j_scitotenv_2024_177226
crossref_primary_10_3390_nano11102747
crossref_primary_10_1016_j_dwt_2025_101132
crossref_primary_10_1016_j_oneear_2020_10_020
crossref_primary_10_1021_acs_estlett_3c00850
crossref_primary_10_1016_j_scitotenv_2020_140216
crossref_primary_10_1088_1755_1315_1035_1_012015
crossref_primary_10_1016_j_jenvman_2021_113028
crossref_primary_10_1016_j_envpol_2020_114096
crossref_primary_10_1016_j_jclepro_2022_131889
crossref_primary_10_1021_acs_est_0c00711
crossref_primary_10_1016_j_scitotenv_2022_157466
crossref_primary_10_1177_0734242X231155395
crossref_primary_10_3390_agriculture13091733
crossref_primary_10_1016_j_impact_2023_100474
crossref_primary_10_1016_j_scitotenv_2021_151641
crossref_primary_10_1016_j_envres_2024_118268
crossref_primary_10_1016_j_chemosphere_2022_136281
crossref_primary_10_1016_j_scitotenv_2021_147144
crossref_primary_10_1021_acs_estlett_4c00034
crossref_primary_10_1016_j_coesh_2022_100361
crossref_primary_10_1016_j_scitotenv_2021_149326
crossref_primary_10_1016_j_wasman_2025_02_002
crossref_primary_10_1016_j_envpol_2021_118564
crossref_primary_10_31025_2611_4135_2019_13873
crossref_primary_10_1016_j_scitotenv_2022_156385
crossref_primary_10_1016_j_scitotenv_2020_137287
crossref_primary_10_1016_j_scitotenv_2022_156387
crossref_primary_10_1016_j_envres_2022_113258
crossref_primary_10_1016_j_jconhyd_2024_104398
crossref_primary_10_1016_j_jhazmat_2022_129394
crossref_primary_10_1016_j_marpolbul_2022_114118
crossref_primary_10_1016_j_coesh_2021_100297
crossref_primary_10_1016_j_scitotenv_2021_149338
crossref_primary_10_1016_j_envpol_2024_123542
crossref_primary_10_1016_j_jece_2024_114974
crossref_primary_10_1016_j_jhazmat_2024_136263
crossref_primary_10_1016_j_scitotenv_2020_143987
crossref_primary_10_1016_j_energy_2023_127337
crossref_primary_10_1016_j_hazadv_2022_100215
crossref_primary_10_1016_j_envexpbot_2024_105666
crossref_primary_10_1016_j_jece_2025_116194
crossref_primary_10_1016_j_envpol_2024_123790
crossref_primary_10_1016_j_cscee_2023_100536
crossref_primary_10_1016_j_scitotenv_2021_147166
crossref_primary_10_1016_j_scitotenv_2024_175276
crossref_primary_10_1016_j_coesh_2022_100342
crossref_primary_10_1016_j_chemosphere_2020_128294
crossref_primary_10_1016_j_scitotenv_2020_142653
crossref_primary_10_1016_j_scitotenv_2022_158581
crossref_primary_10_1039_D0EM00312C
crossref_primary_10_1016_j_jhazmat_2022_130596
crossref_primary_10_1007_s10653_025_02430_y
crossref_primary_10_1007_s10661_024_13307_5
crossref_primary_10_1016_j_scitotenv_2022_159679
crossref_primary_10_1680_jenge_20_00179
crossref_primary_10_1016_j_scitotenv_2024_174311
crossref_primary_10_1016_j_jenvman_2022_115090
crossref_primary_10_1016_j_scitotenv_2021_148422
crossref_primary_10_1007_s00767_022_00533_2
crossref_primary_10_1021_acsestwater_0c00218
crossref_primary_10_1016_j_jhazmat_2024_135592
crossref_primary_10_1016_j_cbpc_2021_109196
crossref_primary_10_1002_aqc_3469
crossref_primary_10_1021_acs_estlett_0c00498
crossref_primary_10_5194_soil_6_649_2020
crossref_primary_10_1080_26395940_2023_2269315
crossref_primary_10_1016_j_hazadv_2025_100667
crossref_primary_10_1016_j_chemosphere_2024_142641
crossref_primary_10_1016_j_fct_2025_115355
crossref_primary_10_1016_j_scitotenv_2024_174324
crossref_primary_10_1111_1365_2435_13495
crossref_primary_10_1007_s11356_021_17681_2
crossref_primary_10_3390_land10101035
crossref_primary_10_3390_microplastics3010001
crossref_primary_10_1016_j_scitotenv_2020_138334
crossref_primary_10_1002_etc_5482
crossref_primary_10_1186_s43591_023_00063_5
crossref_primary_10_1016_j_scitotenv_2021_150745
crossref_primary_10_1016_j_chemosphere_2020_127578
crossref_primary_10_1186_s43591_022_00044_0
crossref_primary_10_1007_s10661_023_11990_4
crossref_primary_10_1016_j_envpol_2022_119718
crossref_primary_10_1007_s11270_025_07751_3
crossref_primary_10_25699_SSSB_2022_44_4_001
crossref_primary_10_1016_j_wasman_2022_05_013
crossref_primary_10_3390_agronomy9090542
crossref_primary_10_3390_en14196293
crossref_primary_10_1016_j_psep_2022_11_084
crossref_primary_10_1016_j_csbj_2022_02_008
crossref_primary_10_2139_ssrn_3998890
crossref_primary_10_1016_j_scitotenv_2021_148694
crossref_primary_10_1007_s11270_022_05837_w
crossref_primary_10_1016_j_envpol_2021_118586
crossref_primary_10_1016_j_jwpe_2022_102956
crossref_primary_10_1002_etc_5024
crossref_primary_10_1007_s00027_024_01112_8
crossref_primary_10_1016_j_cofs_2021_04_010
crossref_primary_10_1016_j_jenvman_2024_123055
crossref_primary_10_1016_j_jenvman_2024_123054
crossref_primary_10_1016_j_geodrs_2021_e00462
crossref_primary_10_1021_acs_est_2c03695
crossref_primary_10_3390_environments8090089
crossref_primary_10_1016_j_chemosphere_2023_141060
crossref_primary_10_1016_j_scitotenv_2019_135091
crossref_primary_10_1016_j_trac_2023_117292
crossref_primary_10_1016_j_scitotenv_2024_173265
crossref_primary_10_1080_03067319_2024_2309553
crossref_primary_10_5194_soil_6_413_2020
crossref_primary_10_1002_vzj2_20108
crossref_primary_10_1016_j_envpol_2022_119307
crossref_primary_10_1016_j_envpol_2021_118174
crossref_primary_10_3390_w16141988
crossref_primary_10_1016_j_scitotenv_2023_167786
crossref_primary_10_1007_s10666_022_09826_5
crossref_primary_10_1016_j_cofs_2021_04_001
crossref_primary_10_1016_j_scitotenv_2023_167785
crossref_primary_10_1021_acs_est_2c09822
crossref_primary_10_1007_s11270_024_07297_w
crossref_primary_10_1016_j_jhazmat_2023_131911
crossref_primary_10_1016_j_jhazmat_2022_128453
crossref_primary_10_1007_s11356_022_18501_x
crossref_primary_10_1016_j_scitotenv_2024_174109
crossref_primary_10_1038_s43247_023_00691_y
crossref_primary_10_1016_j_hazadv_2023_100341
crossref_primary_10_1016_j_jenvman_2023_118437
crossref_primary_10_1016_j_scitotenv_2024_177875
crossref_primary_10_1017_plc_2023_23
crossref_primary_10_1016_j_heliyon_2023_e23232
crossref_primary_10_1002_etc_5202
crossref_primary_10_1007_s42452_022_05206_6
crossref_primary_10_1007_s11104_024_06858_6
crossref_primary_10_1016_j_scitotenv_2023_164028
crossref_primary_10_1039_D2VA00233G
crossref_primary_10_1080_15320383_2023_2286524
crossref_primary_10_1371_journal_pone_0257734
crossref_primary_10_2139_ssrn_4198917
crossref_primary_10_31857_S0032180X24030098
crossref_primary_10_3390_nano11112935
crossref_primary_10_1016_j_hazadv_2022_100057
crossref_primary_10_1016_j_scitotenv_2024_176751
crossref_primary_10_1016_j_scitotenv_2021_148889
crossref_primary_10_1007_s10661_023_11890_7
crossref_primary_10_61186_shefa_12_4_97
crossref_primary_10_1016_j_scitotenv_2020_143902
crossref_primary_10_1080_1062936X_2023_2278074
crossref_primary_10_3390_su15064749
crossref_primary_10_1007_s44169_022_00012_y
crossref_primary_10_1016_j_scitotenv_2023_168609
crossref_primary_10_2166_wst_2020_582
crossref_primary_10_1007_s11356_024_31838_9
crossref_primary_10_3390_microorganisms12061147
crossref_primary_10_1007_s10661_023_11277_8
crossref_primary_10_1016_j_ecoenv_2023_115597
crossref_primary_10_3103_S1068373923050102
crossref_primary_10_1016_j_scitotenv_2020_141956
crossref_primary_10_3390_jof8121247
crossref_primary_10_1016_j_ecoenv_2024_116746
crossref_primary_10_1039_D1VA00012H
crossref_primary_10_1002_wer_1402
crossref_primary_10_1016_j_coesh_2023_100480
crossref_primary_10_52676_1729_7885_2024_1_34_44
crossref_primary_10_1016_j_envpol_2022_120513
crossref_primary_10_1016_j_jhazmat_2025_137803
crossref_primary_10_1016_j_trac_2024_117567
crossref_primary_10_3390_su12208739
crossref_primary_10_1016_j_scitotenv_2021_151816
crossref_primary_10_1016_j_scitotenv_2022_159834
crossref_primary_10_1016_j_chemosphere_2022_135573
crossref_primary_10_1016_j_watres_2019_115358
crossref_primary_10_1016_j_talanta_2023_124965
crossref_primary_10_3389_fmicb_2021_768297
crossref_primary_10_1016_j_eti_2022_102408
crossref_primary_10_1016_j_plaphy_2022_11_004
crossref_primary_10_1088_1748_9326_ac21e6
crossref_primary_10_1556_0088_2022_00120
crossref_primary_10_3390_su12030878
crossref_primary_10_1016_j_chemosphere_2022_135940
crossref_primary_10_1016_j_scitotenv_2023_166935
crossref_primary_10_1016_j_jwpe_2021_102128
crossref_primary_10_1680_jenge_21_00072
crossref_primary_10_1016_j_chemosphere_2022_135700
crossref_primary_10_1007_s11356_024_34615_w
crossref_primary_10_1021_acs_est_4c12546
crossref_primary_10_1016_j_jhazmat_2022_128306
crossref_primary_10_1007_s10311_023_01577_3
crossref_primary_10_1016_j_still_2024_106134
crossref_primary_10_1007_s11440_022_01767_3
crossref_primary_10_1021_acs_analchem_4c05827
crossref_primary_10_1016_j_jhazmat_2024_134777
crossref_primary_10_1016_j_wasman_2023_10_020
crossref_primary_10_1007_s11270_022_05901_5
crossref_primary_10_1039_D4EM00373J
crossref_primary_10_3390_su12187255
crossref_primary_10_1016_j_hazadv_2024_100445
crossref_primary_10_1007_s11368_022_03387_6
crossref_primary_10_1016_j_jhazmat_2020_123660
crossref_primary_10_1007_s40333_022_0025_9
crossref_primary_10_1016_j_scitotenv_2021_146546
crossref_primary_10_1016_j_heliyon_2020_e05572
crossref_primary_10_1016_j_indcrop_2024_119218
crossref_primary_10_1016_j_biteb_2025_102055
crossref_primary_10_1016_j_cscee_2024_101041
crossref_primary_10_1016_j_scitotenv_2023_169183
crossref_primary_10_1016_j_trac_2023_117474
crossref_primary_10_33409_tbbbd_997807
crossref_primary_10_1016_j_biortech_2019_122631
crossref_primary_10_1021_acs_est_9b07395
crossref_primary_10_1016_j_enmm_2023_100876
crossref_primary_10_1016_j_marpolbul_2025_117758
crossref_primary_10_20517_wecn_2024_65
crossref_primary_10_2166_wst_2021_502
crossref_primary_10_1016_j_scitotenv_2020_140943
crossref_primary_10_1007_s11368_022_03232_w
crossref_primary_10_1021_acssuschemeng_4c04124
crossref_primary_10_1080_01480545_2024_2433075
crossref_primary_10_1039_D4EW00278D
crossref_primary_10_1016_j_chemosphere_2023_139356
crossref_primary_10_1073_pnas_2413245121
crossref_primary_10_1016_j_jhazmat_2022_129610
crossref_primary_10_1080_1362704X_2022_2118671
crossref_primary_10_1016_j_chemosphere_2024_141727
crossref_primary_10_1016_j_hazadv_2024_100465
crossref_primary_10_1016_j_ese_2022_100222
crossref_primary_10_1029_2018JC014719
crossref_primary_10_1016_j_chemosphere_2025_144216
crossref_primary_10_1007_s11270_024_07506_6
crossref_primary_10_1038_s41598_020_80358_2
crossref_primary_10_1016_j_marpolbul_2020_111820
crossref_primary_10_1016_j_seppur_2021_118429
crossref_primary_10_1007_s00248_024_02422_y
crossref_primary_10_1016_j_ecoenv_2022_113958
crossref_primary_10_1016_j_envpol_2022_120369
crossref_primary_10_1007_s11356_020_09015_5
crossref_primary_10_1016_j_etap_2023_104248
crossref_primary_10_1016_j_scitotenv_2023_164313
crossref_primary_10_1016_j_geoderma_2022_116315
crossref_primary_10_1016_j_scitotenv_2019_134841
crossref_primary_10_1093_toxres_tfae106
crossref_primary_10_1016_j_chemosphere_2023_139389
crossref_primary_10_1016_j_envpol_2021_116833
crossref_primary_10_1007_s10653_025_02393_0
crossref_primary_10_3389_fenvs_2022_838455
crossref_primary_10_1016_j_jhazmat_2021_125178
crossref_primary_10_1016_j_jhazmat_2022_128503
crossref_primary_10_1016_j_apsoil_2022_104486
crossref_primary_10_1016_j_chemosphere_2020_127784
crossref_primary_10_3390_su142214841
crossref_primary_10_1016_j_teac_2022_e00159
crossref_primary_10_1039_D2EM00322H
crossref_primary_10_1016_j_seppur_2023_124432
crossref_primary_10_3389_fphys_2022_871149
crossref_primary_10_1016_j_scitotenv_2024_172675
crossref_primary_10_1016_j_jhazmat_2020_124312
crossref_primary_10_3390_su15065438
crossref_primary_10_1016_j_jhazmat_2020_123228
crossref_primary_10_1016_j_watres_2021_117011
crossref_primary_10_3390_w15162889
crossref_primary_10_1007_s11356_023_27461_9
crossref_primary_10_3390_w14203343
crossref_primary_10_1021_acs_est_0c05867
crossref_primary_10_3390_agriculture11040330
crossref_primary_10_1016_j_aquatox_2024_107119
crossref_primary_10_3390_soilsystems7010019
crossref_primary_10_1016_j_scitotenv_2020_137512
crossref_primary_10_1016_j_scitotenv_2024_171338
crossref_primary_10_3390_su132212591
crossref_primary_10_5334_aogh_4056
crossref_primary_10_1016_j_marpolbul_2021_113062
crossref_primary_10_1007_s10661_020_08641_3
crossref_primary_10_1016_j_jhazmat_2021_126486
crossref_primary_10_1016_j_marpolbul_2024_116568
crossref_primary_10_1016_j_ese_2023_100316
crossref_primary_10_1002_ldr_5090
crossref_primary_10_1007_s10653_024_02274_y
crossref_primary_10_1016_j_jwpe_2021_102344
crossref_primary_10_1039_D4EM00242C
crossref_primary_10_3389_fpls_2022_1075007
crossref_primary_10_3390_agronomy14092114
crossref_primary_10_3389_fenvs_2022_976237
crossref_primary_10_1016_j_ecoenv_2022_113715
crossref_primary_10_1016_j_envadv_2024_100558
crossref_primary_10_1016_j_scitotenv_2023_164523
crossref_primary_10_1016_j_envpol_2022_120357
crossref_primary_10_1016_j_envpol_2023_122833
crossref_primary_10_1016_j_chemosphere_2022_133557
crossref_primary_10_1111_sum_70028
crossref_primary_10_1016_j_envpol_2020_115653
crossref_primary_10_1016_j_gsd_2022_100889
crossref_primary_10_1186_s43591_023_00066_2
crossref_primary_10_3390_soilsystems7010007
crossref_primary_10_1007_s11783_023_1666_4
crossref_primary_10_1016_j_jhazmat_2021_126481
crossref_primary_10_3389_fmars_2021_774055
crossref_primary_10_1016_j_scitotenv_2023_166090
crossref_primary_10_1016_j_scitotenv_2023_168035
crossref_primary_10_3390_environments8040036
crossref_primary_10_1002_jpln_202200062
crossref_primary_10_3389_fpls_2023_1226484
crossref_primary_10_24857_rgsa_v19n3_021
crossref_primary_10_1016_j_jwpe_2025_107302
crossref_primary_10_1016_j_scitotenv_2023_161642
crossref_primary_10_1186_s12940_023_01008_4
crossref_primary_10_53623_tebt_v1i1_220
crossref_primary_10_1016_j_jclepro_2024_144093
crossref_primary_10_1016_j_scitotenv_2022_161123
crossref_primary_10_1016_j_chemosphere_2023_139743
crossref_primary_10_3390_w16182637
crossref_primary_10_1007_s10661_023_12111_x
crossref_primary_10_1039_D4VA00269E
crossref_primary_10_1016_j_scitotenv_2023_169596
crossref_primary_10_1016_j_scitotenv_2023_169356
crossref_primary_10_1016_j_envpol_2022_120183
crossref_primary_10_1016_j_scitotenv_2023_161867
crossref_primary_10_1111_sum_70009
crossref_primary_10_3390_app15063375
crossref_primary_10_1002_smll_202305467
crossref_primary_10_1007_s10653_022_01279_9
crossref_primary_10_1016_j_jwpe_2024_106159
crossref_primary_10_1016_j_apsoil_2022_104694
crossref_primary_10_3389_fenvs_2021_650155
crossref_primary_10_1016_j_plaphy_2023_108132
crossref_primary_10_1177_0003702820920652
crossref_primary_10_1016_j_jhazmat_2021_127787
crossref_primary_10_1007_s10661_021_08943_0
crossref_primary_10_1016_j_envpol_2023_122890
crossref_primary_10_3390_life13081686
crossref_primary_10_24057_2071_9388_2023_3022
crossref_primary_10_1016_j_greeac_2024_100191
crossref_primary_10_1016_j_envpol_2021_117943
crossref_primary_10_1016_j_envpol_2020_114198
crossref_primary_10_1016_j_heliyon_2023_e16434
crossref_primary_10_1016_j_jhazmat_2020_124364
crossref_primary_10_3389_fenvs_2022_964230
crossref_primary_10_1016_j_jhazmat_2021_127531
crossref_primary_10_1016_j_scitotenv_2021_152154
crossref_primary_10_1016_j_scitotenv_2023_168244
crossref_primary_10_1016_j_envint_2023_108360
crossref_primary_10_1016_j_scitotenv_2024_176163
crossref_primary_10_1039_D0AY02086A
crossref_primary_10_1021_envhealth_3c00052
crossref_primary_10_1038_s41598_022_10294_w
crossref_primary_10_1016_j_pedsph_2025_01_010
crossref_primary_10_1007_s11356_022_21474_6
crossref_primary_10_1016_j_copbio_2024_103226
crossref_primary_10_1016_j_envpol_2021_116600
crossref_primary_10_1016_j_jhazmat_2020_124132
crossref_primary_10_1016_j_scitotenv_2024_172851
crossref_primary_10_1016_j_psep_2020_10_014
crossref_primary_10_1016_j_rsma_2022_102766
crossref_primary_10_1002_jctb_6334
crossref_primary_10_1016_j_ecoenv_2024_117248
crossref_primary_10_1016_j_jhazmat_2025_137453
crossref_primary_10_1007_s44169_023_00026_0
crossref_primary_10_1007_s11270_024_06962_4
crossref_primary_10_1016_j_scitotenv_2020_143335
crossref_primary_10_1186_s40645_020_00405_4
crossref_primary_10_1016_j_ejsobi_2024_103666
crossref_primary_10_1016_j_jhazmat_2023_132686
crossref_primary_10_1016_j_ecoenv_2021_113045
crossref_primary_10_1016_j_scitotenv_2021_149390
crossref_primary_10_1186_s12302_023_00720_9
crossref_primary_10_1016_j_trac_2022_116882
crossref_primary_10_1016_j_aeolia_2024_100942
crossref_primary_10_1080_10408398_2024_2430749
crossref_primary_10_1021_acs_est_0c06087
crossref_primary_10_1016_j_device_2025_100725
crossref_primary_10_1016_j_scitotenv_2019_134451
crossref_primary_10_1016_j_scitotenv_2022_159251
crossref_primary_10_1016_j_apsoil_2022_104649
crossref_primary_10_1002_ldr_5026
crossref_primary_10_3390_app15010001
crossref_primary_10_1016_j_trac_2023_116993
crossref_primary_10_1016_j_scitotenv_2021_150168
crossref_primary_10_1016_j_scitotenv_2022_153511
crossref_primary_10_1016_j_envint_2023_108393
crossref_primary_10_1177_0003702820945713
crossref_primary_10_1016_j_envpol_2023_121368
crossref_primary_10_1016_j_scitotenv_2024_177045
crossref_primary_10_1016_j_apsoil_2022_104657
crossref_primary_10_1016_j_chemosphere_2025_144277
crossref_primary_10_1016_j_envint_2019_105263
crossref_primary_10_3390_su12219074
crossref_primary_10_1016_j_envres_2022_114961
crossref_primary_10_1016_j_scitotenv_2019_07_209
crossref_primary_10_3390_su16198704
crossref_primary_10_1007_s00128_023_03828_z
crossref_primary_10_1007_s11356_024_35472_3
crossref_primary_10_1016_j_coesh_2019_12_001
crossref_primary_10_1002_wer_11070
crossref_primary_10_1016_j_envpol_2021_117733
crossref_primary_10_1016_j_rsma_2021_102018
crossref_primary_10_1016_j_trac_2022_116670
crossref_primary_10_1016_j_scitotenv_2022_153735
crossref_primary_10_1016_j_jclepro_2022_135095
crossref_primary_10_3390_su142013405
crossref_primary_10_1016_j_sampre_2025_100178
crossref_primary_10_1080_10643389_2021_1915035
crossref_primary_10_1007_s11270_024_07731_z
crossref_primary_10_1007_s11270_024_07304_0
crossref_primary_10_2139_ssrn_4191121
crossref_primary_10_1186_s40538_021_00278_9
crossref_primary_10_1021_acs_est_0c01722
crossref_primary_10_1002_ldr_5231
crossref_primary_10_3389_fenvs_2022_855292
crossref_primary_10_1016_j_envres_2023_115891
crossref_primary_10_1016_j_envexpbot_2021_104635
crossref_primary_10_1016_j_enmm_2021_100530
crossref_primary_10_4491_KSEE_2022_44_11_453
crossref_primary_10_1016_j_biortech_2022_127984
crossref_primary_10_1016_j_envpol_2024_123854
crossref_primary_10_1016_j_jhazmat_2025_137540
crossref_primary_10_1016_j_envpol_2023_122464
crossref_primary_10_1016_j_scitotenv_2022_159573
crossref_primary_10_1016_j_jhazmat_2023_132537
crossref_primary_10_1016_j_trac_2025_118216
crossref_primary_10_1016_j_scitotenv_2021_150227
crossref_primary_10_1016_j_jconhyd_2024_104456
crossref_primary_10_1016_j_jconhyd_2024_104457
crossref_primary_10_1016_j_envpol_2021_118629
crossref_primary_10_1016_j_scitotenv_2023_169621
crossref_primary_10_3390_w15061195
crossref_primary_10_1007_s11783_021_1429_z
crossref_primary_10_1016_j_envpol_2019_05_037
crossref_primary_10_3390_w16010011
crossref_primary_10_1016_j_spc_2022_06_020
crossref_primary_10_1039_D1RA09072K
crossref_primary_10_1016_j_chemosphere_2023_139927
crossref_primary_10_3390_app112110109
crossref_primary_10_1016_j_scitotenv_2023_164177
crossref_primary_10_1038_s43247_025_02105_7
crossref_primary_10_1016_j_scitotenv_2024_173178
crossref_primary_10_1016_j_ecoenv_2023_115676
crossref_primary_10_1016_j_jclepro_2024_142153
crossref_primary_10_1016_j_envpol_2023_122243
crossref_primary_10_1016_j_jwpe_2020_101787
crossref_primary_10_1016_j_scitotenv_2020_139164
crossref_primary_10_1371_journal_pone_0237839
crossref_primary_10_1039_D4EN00140K
crossref_primary_10_1016_j_jhazmat_2023_132993
crossref_primary_10_1016_j_resconrec_2021_105961
crossref_primary_10_1016_j_scitotenv_2023_161718
crossref_primary_10_1016_j_scitotenv_2020_142516
crossref_primary_10_29121_granthaalayah_v10_i9_2022_4812
crossref_primary_10_1016_j_envpol_2020_116151
crossref_primary_10_1007_s11270_023_06507_1
crossref_primary_10_1016_j_envpol_2022_120804
crossref_primary_10_3390_w16091270
crossref_primary_10_1016_j_chemosphere_2021_130574
crossref_primary_10_1016_j_envpol_2022_120805
crossref_primary_10_1039_D4EW00160E
crossref_primary_10_1007_s00216_025_05810_6
crossref_primary_10_1016_j_scitotenv_2021_150431
crossref_primary_10_1016_j_jhazmat_2024_134176
crossref_primary_10_1016_j_scitotenv_2021_149447
crossref_primary_10_1016_j_scitotenv_2024_169977
crossref_primary_10_5194_soil_8_373_2022
crossref_primary_10_1016_j_ceja_2024_100649
crossref_primary_10_1016_j_eti_2025_104069
crossref_primary_10_1016_j_scitotenv_2022_158440
crossref_primary_10_1111_sum_12971
crossref_primary_10_3390_land12101888
crossref_primary_10_1088_1361_6501_ac5e5f
crossref_primary_10_1893_BIOS_D_23_00010
crossref_primary_10_1007_s11270_024_07664_7
crossref_primary_10_3390_agriculture12081162
crossref_primary_10_1016_j_scitotenv_2022_152941
crossref_primary_10_1111_ejss_13592
crossref_primary_10_3389_fmars_2021_672768
crossref_primary_10_1016_j_scitotenv_2023_169420
crossref_primary_10_1002_wat2_70004
crossref_primary_10_1016_j_envpol_2019_113284
crossref_primary_10_3390_agronomy13030701
crossref_primary_10_1016_j_scitotenv_2022_156270
crossref_primary_10_1002_er_7498
crossref_primary_10_1002_ldr_5410
crossref_primary_10_1002_etc_5173
crossref_primary_10_1016_j_mne_2023_100237
crossref_primary_10_1016_j_jhazmat_2023_130765
crossref_primary_10_1016_j_ecoenv_2025_118036
crossref_primary_10_1016_j_jhazmat_2023_131612
crossref_primary_10_1016_j_scitotenv_2021_151523
crossref_primary_10_1088_1742_6596_2066_1_012025
crossref_primary_10_1016_j_envres_2024_120250
crossref_primary_10_1016_j_jaap_2023_106159
crossref_primary_10_1021_acs_est_1c02695
crossref_primary_10_3390_environments10050070
crossref_primary_10_1016_j_chemosphere_2024_143271
crossref_primary_10_1016_j_heliyon_2021_e07105
crossref_primary_10_1016_j_jhazmat_2024_135041
crossref_primary_10_1016_j_ecoenv_2022_114009
crossref_primary_10_1186_s40538_021_00269_w
crossref_primary_10_1016_j_envpol_2022_118966
crossref_primary_10_1016_j_scitotenv_2020_143860
crossref_primary_10_2139_ssrn_4191347
crossref_primary_10_1111_wej_12949
crossref_primary_10_1016_j_scitotenv_2021_150620
crossref_primary_10_1007_s11356_021_15826_x
crossref_primary_10_1021_acs_est_4c05856
crossref_primary_10_1016_j_scitotenv_2022_159723
crossref_primary_10_1039_D3RA05620A
crossref_primary_10_1016_j_jhazmat_2023_132923
crossref_primary_10_1007_s11356_020_11702_2
crossref_primary_10_1111_mve_12710
crossref_primary_10_1186_s43591_024_00092_8
crossref_primary_10_1016_j_scitotenv_2021_151960
crossref_primary_10_1016_j_scitotenv_2024_176620
crossref_primary_10_1093_jme_tjad014
crossref_primary_10_2139_ssrn_3983076
crossref_primary_10_3389_feart_2022_915155
crossref_primary_10_1021_acs_est_3c02133
crossref_primary_10_1016_j_scitotenv_2022_158642
crossref_primary_10_1016_j_envadv_2021_100119
crossref_primary_10_1016_j_scitotenv_2022_158889
crossref_primary_10_1016_j_jhazmat_2022_130218
crossref_primary_10_1021_acs_jafc_1c07849
crossref_primary_10_1016_j_chemosphere_2024_142536
crossref_primary_10_3389_fpls_2023_1283852
crossref_primary_10_1016_j_earscirev_2024_104822
crossref_primary_10_1016_j_chemosphere_2020_126360
crossref_primary_10_1002_ldr_3676
crossref_primary_10_1007_s12665_024_11752_6
crossref_primary_10_1016_j_jhazmat_2022_128356
crossref_primary_10_1016_j_scitotenv_2022_156478
crossref_primary_10_1016_j_hazadv_2022_100146
crossref_primary_10_1111_sum_12709
crossref_primary_10_1016_j_scitotenv_2021_152830
crossref_primary_10_1016_j_emcon_2022_03_004
crossref_primary_10_3389_fenvs_2022_975904
crossref_primary_10_1016_j_jenvman_2025_124556
crossref_primary_10_1016_j_scitotenv_2021_148337
crossref_primary_10_1007_s10661_022_10769_3
crossref_primary_10_1016_j_scitotenv_2024_171394
crossref_primary_10_1016_j_scitotenv_2020_144900
crossref_primary_10_1016_j_chemosphere_2022_134321
crossref_primary_10_1016_j_scp_2022_100867
crossref_primary_10_1016_j_scitotenv_2023_163233
crossref_primary_10_1016_j_trac_2023_117184
crossref_primary_10_1016_j_jenvman_2023_119616
crossref_primary_10_1016_j_scitotenv_2024_176658
crossref_primary_10_1007_s44274_024_00135_0
crossref_primary_10_1002_etc_5315
crossref_primary_10_1016_j_scitotenv_2021_146569
crossref_primary_10_1007_s11356_021_13184_2
crossref_primary_10_1016_j_envadv_2022_100273
crossref_primary_10_1016_j_jhazmat_2024_134347
crossref_primary_10_1016_j_scitotenv_2023_165006
crossref_primary_10_3390_su152316464
crossref_primary_10_1080_10643389_2023_2301052
crossref_primary_10_1007_s11356_020_11700_4
crossref_primary_10_1007_s10311_023_01679_y
crossref_primary_10_1371_journal_pone_0291760
crossref_primary_10_1016_j_hazadv_2024_100528
crossref_primary_10_1080_10643389_2019_1694822
crossref_primary_10_1016_j_jclepro_2023_139082
crossref_primary_10_1016_j_pce_2025_103866
crossref_primary_10_1016_j_jenvman_2023_118792
crossref_primary_10_1016_j_envpol_2024_124343
crossref_primary_10_3390_ijerph22010045
crossref_primary_10_1002_jeq2_20264
crossref_primary_10_1021_acs_estlett_2c00417
crossref_primary_10_1080_02571862_2022_2119291
crossref_primary_10_3390_su151512057
crossref_primary_10_1016_j_scitotenv_2022_157991
crossref_primary_10_1016_j_scitotenv_2023_164389
crossref_primary_10_1016_j_chemosphere_2020_128590
crossref_primary_10_1080_10643389_2020_1845531
crossref_primary_10_1016_j_envres_2021_111938
crossref_primary_10_1016_j_scitotenv_2023_163294
crossref_primary_10_1007_s10661_024_13232_7
crossref_primary_10_1007_s11356_021_16106_4
crossref_primary_10_2139_ssrn_3924945
crossref_primary_10_1038_s43247_021_00267_8
crossref_primary_10_1016_j_chemosphere_2020_129430
crossref_primary_10_1016_j_envpol_2019_113449
crossref_primary_10_1016_j_chemosphere_2023_137946
crossref_primary_10_1080_15320383_2022_2096565
crossref_primary_10_1038_s43247_023_00820_7
crossref_primary_10_1007_s10661_024_13585_z
crossref_primary_10_1016_j_scitotenv_2022_156679
crossref_primary_10_1016_j_watres_2022_118254
crossref_primary_10_1016_j_scitotenv_2021_148774
crossref_primary_10_1016_j_jhazmat_2020_124967
crossref_primary_10_17159_sajs_2020_8115
crossref_primary_10_1016_j_scitotenv_2024_176881
crossref_primary_10_1016_j_psep_2024_07_002
crossref_primary_10_1016_j_jclepro_2022_132247
crossref_primary_10_22207_JPAM_15_3_36
crossref_primary_10_1016_j_envadv_2022_100236
crossref_primary_10_1016_j_teac_2021_e00151
crossref_primary_10_3389_fenvs_2022_989267
crossref_primary_10_1016_j_envpol_2020_115779
crossref_primary_10_3390_ijms23031801
crossref_primary_10_3390_w12092633
crossref_primary_10_3934_environsci_2022013
crossref_primary_10_3390_su14127024
crossref_primary_10_1016_j_trac_2023_117138
crossref_primary_10_1016_j_envpol_2023_121810
crossref_primary_10_1016_j_cscee_2020_100050
crossref_primary_10_1016_j_coesh_2021_100309
crossref_primary_10_1016_j_scitotenv_2022_161083
crossref_primary_10_1016_j_scitotenv_2022_154777
crossref_primary_10_3390_bioengineering10070855
crossref_primary_10_1016_j_ecoenv_2024_117332
crossref_primary_10_48130_VR_2023_0018
crossref_primary_10_3389_fenvs_2023_1297646
crossref_primary_10_3390_w16071051
crossref_primary_10_1016_j_arabjc_2023_104686
crossref_primary_10_1016_j_scitotenv_2022_158922
crossref_primary_10_3390_en17174219
crossref_primary_10_1177_0003702820921465
crossref_primary_10_1016_j_jhazmat_2020_122690
crossref_primary_10_2139_ssrn_4177710
crossref_primary_10_1007_s11356_024_35545_3
crossref_primary_10_51847_93t7FJrzKu
crossref_primary_10_1016_j_envpol_2024_125249
crossref_primary_10_1016_j_jclepro_2021_129941
crossref_primary_10_1016_j_jece_2023_110406
crossref_primary_10_1007_s10661_023_12219_0
crossref_primary_10_1016_j_heliyon_2022_e11666
crossref_primary_10_1360_SST_2024_0057
crossref_primary_10_1016_j_scitotenv_2020_136584
crossref_primary_10_3390_ijerph18147608
crossref_primary_10_1016_j_jenvman_2022_115347
crossref_primary_10_1016_j_scitotenv_2023_163760
crossref_primary_10_1016_j_jhazmat_2023_133279
crossref_primary_10_1016_j_jhazmat_2024_134445
crossref_primary_10_1080_00103624_2020_1849267
crossref_primary_10_3390_w17010102
crossref_primary_10_1360_SST_2024_0050
crossref_primary_10_3390_ijms232112978
crossref_primary_10_1016_j_ceja_2022_100310
crossref_primary_10_1039_C9EN01335K
crossref_primary_10_21697_seb_2022_29
crossref_primary_10_1016_j_ocecoaman_2021_105979
crossref_primary_10_1016_j_scitotenv_2020_141917
crossref_primary_10_1016_j_scitotenv_2023_169058
crossref_primary_10_1007_s10163_023_01614_x
crossref_primary_10_1016_j_wasman_2020_04_021
crossref_primary_10_3389_fmars_2022_900047
crossref_primary_10_1016_j_jece_2023_109671
crossref_primary_10_1021_acsestwater_0c00267
crossref_primary_10_1016_j_jenvman_2022_115364
crossref_primary_10_1186_s12302_022_00699_9
crossref_primary_10_1016_j_cej_2022_139217
crossref_primary_10_1016_j_scowo_2024_100013
crossref_primary_10_1016_j_scitotenv_2022_157857
crossref_primary_10_1039_D0EW00397B
crossref_primary_10_3390_polym15163356
crossref_primary_10_1016_j_envpol_2020_114889
crossref_primary_10_1016_j_envint_2020_106277
crossref_primary_10_1016_j_wsee_2024_02_001
crossref_primary_10_3390_polym13050771
crossref_primary_10_1016_j_trac_2024_117855
crossref_primary_10_1007_s11356_023_28513_w
crossref_primary_10_1016_j_jhazmat_2021_127241
crossref_primary_10_1016_j_jenvman_2023_118713
crossref_primary_10_1016_j_scitotenv_2023_164670
crossref_primary_10_2139_ssrn_3993180
crossref_primary_10_1016_j_envpol_2020_115507
crossref_primary_10_1080_15226514_2023_2275152
crossref_primary_10_1016_j_envpol_2021_116939
crossref_primary_10_1016_j_envpol_2020_115745
crossref_primary_10_1016_j_greeac_2022_100038
crossref_primary_10_1016_j_scitotenv_2024_171252
crossref_primary_10_1016_j_watres_2021_117367
crossref_primary_10_3389_frwa_2022_958130
crossref_primary_10_3390_su15097122
crossref_primary_10_1016_j_scitotenv_2024_170160
crossref_primary_10_1016_j_chemosphere_2023_140239
crossref_primary_10_61186_jrr_2403_1023
crossref_primary_10_21324_dacd_1279109
crossref_primary_10_3389_fmicb_2021_603967
crossref_primary_10_1016_j_chemosphere_2023_139011
crossref_primary_10_1016_j_cogsc_2021_100523
crossref_primary_10_1016_j_jenvman_2023_117412
crossref_primary_10_3390_chemengineering8050086
crossref_primary_10_1016_j_atmosenv_2023_119670
crossref_primary_10_1016_j_plana_2024_100083
crossref_primary_10_1016_j_ultsonch_2021_105627
crossref_primary_10_1016_j_scitotenv_2021_147716
crossref_primary_10_1016_j_jclepro_2025_145113
crossref_primary_10_1098_rsta_2019_0268
crossref_primary_10_1007_s11270_023_06546_8
crossref_primary_10_1007_s11368_023_03689_3
crossref_primary_10_1016_j_chemosphere_2022_134997
crossref_primary_10_1016_j_scitotenv_2020_138961
crossref_primary_10_1016_j_jenvman_2023_118971
crossref_primary_10_1186_s40068_024_00389_w
crossref_primary_10_1021_acssuschemeng_1c07749
crossref_primary_10_3390_microplastics1010007
crossref_primary_10_1038_s41467_024_52734_3
crossref_primary_10_3390_microplastics1010009
crossref_primary_10_1016_j_chemosphere_2024_142986
crossref_primary_10_1039_D4AY01276C
crossref_primary_10_1016_j_wasman_2023_04_047
crossref_primary_10_1073_pnas_2020719118
crossref_primary_10_3390_polym13234129
crossref_primary_10_3390_su16083401
crossref_primary_10_1016_j_jhazmat_2024_133544
crossref_primary_10_1016_j_pmatsci_2022_101035
crossref_primary_10_1016_j_scitotenv_2022_156723
crossref_primary_10_1016_j_envpol_2022_119016
crossref_primary_10_1016_j_epm_2024_11_002
crossref_primary_10_1016_j_chemosphere_2024_142079
crossref_primary_10_1016_j_impact_2022_100441
crossref_primary_10_1039_D4EM00605D
crossref_primary_10_1021_acs_estlett_4c00189
crossref_primary_10_1016_j_marpolbul_2021_112677
crossref_primary_10_3390_app12020595
crossref_primary_10_1016_j_ecoenv_2023_114618
crossref_primary_10_3390_w13192736
crossref_primary_10_1016_j_envint_2021_106504
crossref_primary_10_1007_s11356_020_11111_5
crossref_primary_10_1016_j_scitotenv_2020_144581
crossref_primary_10_1016_j_scitotenv_2024_170501
crossref_primary_10_1016_j_cej_2021_132913
crossref_primary_10_1039_D1EM00541C
crossref_primary_10_1177_00368504221126676
crossref_primary_10_1016_j_jhazmat_2024_137084
crossref_primary_10_1016_j_envpol_2024_125076
crossref_primary_10_1016_j_jhazmat_2024_137082
crossref_primary_10_1002_jeq2_20625
crossref_primary_10_4236_jep_2022_137034
crossref_primary_10_4491_KSEE_2022_44_10_375
crossref_primary_10_1016_j_envpol_2019_113174
crossref_primary_10_1186_s12302_020_00358_x
crossref_primary_10_1080_10807039_2023_2228414
crossref_primary_10_3390_su14010020
crossref_primary_10_1007_s10098_023_02679_w
crossref_primary_10_1016_j_jhazmat_2025_137384
crossref_primary_10_1016_j_envpol_2020_115390
crossref_primary_10_2139_ssrn_3938709
crossref_primary_10_1016_j_scitotenv_2025_178534
crossref_primary_10_1016_j_trac_2025_118176
crossref_primary_10_3390_w13010103
crossref_primary_10_1016_j_chemosphere_2022_137177
crossref_primary_10_1016_j_microc_2023_109708
crossref_primary_10_1016_j_jhazmat_2021_127665
crossref_primary_10_1371_journal_pone_0250346
crossref_primary_10_1002_etc_5812
crossref_primary_10_3390_toxics10100586
crossref_primary_10_1016_j_marpolbul_2021_113309
crossref_primary_10_1016_j_scitotenv_2024_177360
crossref_primary_10_1177_00368504221140766
crossref_primary_10_1002_2475_8876_70013
crossref_primary_10_3390_plants12030462
crossref_primary_10_1007_s10661_025_13874_1
crossref_primary_10_1016_j_cej_2020_128381
crossref_primary_10_1016_j_jclepro_2023_138215
crossref_primary_10_1016_j_scitotenv_2022_154912
crossref_primary_10_1038_s41598_025_89103_z
crossref_primary_10_3390_w12041219
crossref_primary_10_1016_j_scitotenv_2021_152039
crossref_primary_10_1016_j_heliyon_2023_e13296
crossref_primary_10_1016_j_jhazmat_2020_122067
crossref_primary_10_1186_s40068_024_00367_2
crossref_primary_10_1007_s00128_020_02900_2
crossref_primary_10_1016_j_jhazmat_2025_138015
crossref_primary_10_1016_j_chemosphere_2020_129185
crossref_primary_10_1016_j_seh_2023_100019
crossref_primary_10_1007_s11356_024_35758_6
crossref_primary_10_1016_j_envres_2022_114402
crossref_primary_10_1016_j_envpol_2020_116028
crossref_primary_10_1016_j_envres_2022_114404
crossref_primary_10_1016_j_jenvman_2022_116602
crossref_primary_10_1016_j_heliyon_2024_e37308
crossref_primary_10_3390_w12041210
crossref_primary_10_1016_j_jconhyd_2023_104271
crossref_primary_10_1016_j_scitotenv_2024_172975
crossref_primary_10_1007_s10661_023_11050_x
crossref_primary_10_1007_s42832_021_0092_4
crossref_primary_10_1016_j_envres_2021_111243
crossref_primary_10_3389_fmars_2023_1323477
crossref_primary_10_1016_j_envpol_2021_116790
crossref_primary_10_1016_j_jece_2024_112926
crossref_primary_10_3389_fmicb_2024_1468592
crossref_primary_10_1080_07388551_2024_2344572
crossref_primary_10_1088_1748_9326_ac652d
crossref_primary_10_1016_j_scitotenv_2024_174907
crossref_primary_10_1016_j_envpol_2021_116552
crossref_primary_10_1007_s11104_021_04869_1
crossref_primary_10_1016_j_scitotenv_2024_170564
crossref_primary_10_1016_j_etap_2023_104193
crossref_primary_10_15446_ga_v26n2_108714
crossref_primary_10_1016_j_scitotenv_2023_162885
crossref_primary_10_1016_j_scitotenv_2023_161795
crossref_primary_10_1111_pce_14248
crossref_primary_10_1016_j_jhazmat_2023_131483
crossref_primary_10_1051_bioconf_202410400024
crossref_primary_10_1134_S1064229323603025
crossref_primary_10_3389_fchem_2022_956547
crossref_primary_10_1016_j_scitotenv_2022_161211
crossref_primary_10_1016_j_scitotenv_2023_167099
crossref_primary_10_1186_s40793_022_00430_4
crossref_primary_10_1016_j_cej_2021_128692
crossref_primary_10_1016_j_ecoenv_2021_113150
crossref_primary_10_1016_j_scitotenv_2022_154720
crossref_primary_10_1016_j_jenvman_2024_122443
crossref_primary_10_1051_e3sconf_202126505003
crossref_primary_10_1080_15275922_2024_2366772
crossref_primary_10_1016_j_scitotenv_2024_177168
crossref_primary_10_1016_j_pnsc_2023_08_006
crossref_primary_10_1021_acs_est_9b03304
crossref_primary_10_3390_microplastics1040043
crossref_primary_10_1016_j_jenvman_2022_114698
crossref_primary_10_1021_acs_est_9b07905
crossref_primary_10_3390_microplastics1040042
crossref_primary_10_1007_s00244_021_00897_1
crossref_primary_10_1016_j_watres_2024_121231
crossref_primary_10_1016_j_envpol_2021_117862
crossref_primary_10_1080_03067319_2022_2148528
crossref_primary_10_1016_j_envpol_2022_119092
crossref_primary_10_1016_j_jhazmat_2019_121814
crossref_primary_10_1016_j_jenvman_2022_116411
crossref_primary_10_1016_j_pedobi_2025_151036
crossref_primary_10_1007_s11368_023_03663_z
crossref_primary_10_1080_10643389_2023_2259275
crossref_primary_10_1021_acs_macromol_3c01401
crossref_primary_10_1039_D1RA00880C
crossref_primary_10_1002_tqem_22035
crossref_primary_10_1016_j_cej_2021_131870
crossref_primary_10_1177_0036850419867204
crossref_primary_10_1021_acs_est_0c03712
crossref_primary_10_1007_s13762_024_05656_y
crossref_primary_10_3389_fsoil_2022_917490
crossref_primary_10_1007_s11270_024_07499_2
crossref_primary_10_1186_s12989_020_00387_7
crossref_primary_10_1007_s41207_025_00766_6
Cites_doi 10.1016/j.scitotenv.2016.01.153
10.1016/j.watres.2018.05.019
10.1016/j.scitotenv.2018.09.101
10.1016/j.marpolbul.2017.08.057
10.1016/j.trac.2018.10.006
10.1016/j.enconman.2017.06.046
10.1021/acs.est.8b02212
10.1016/j.scitotenv.2018.10.166
10.1016/j.marpolbul.2015.07.029
10.1016/j.watres.2017.01.042
10.1016/j.marpolbul.2016.09.004
10.1016/j.watres.2018.05.034
10.1186/s12302-015-0069-y
10.1021/acs.est.8b01517
10.1016/j.marpolbul.2016.09.025
10.1016/j.scitotenv.2017.10.213
10.1016/j.scitotenv.2017.08.086
10.1021/acs.est.6b04048
10.1205/psep.05168
10.1016/j.scitotenv.2016.03.226
10.1016/j.scitotenv.2018.01.341
10.1016/j.envpol.2005.04.013
10.1016/j.scitotenv.2018.06.004
10.1038/nmeth.2089
10.1038/s41598-017-14588-2
10.1016/j.envpol.2017.11.043
10.1021/acs.est.7b06003
10.1016/j.envsci.2016.12.014
10.1071/EN18150
10.1016/j.seppur.2016.05.039
10.3389/fpls.2017.01805
10.1016/j.envint.2017.02.013
10.1016/j.advwatres.2018.08.011
10.1016/j.envpol.2018.07.051
10.1021/acs.est.7b01750
10.1023/A:1004908110793
10.1021/acs.est.6b00816
ContentType Journal Article
Copyright 2019 The Authors
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.
Wageningen University & Research
Copyright_xml – notice: 2019 The Authors
– notice: Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: Wageningen University & Research
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
QVL
DOI 10.1016/j.scitotenv.2019.03.368
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
NARCIS:Publications
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 420
ExternalDocumentID oai_library_wur_nl_wurpubs_549866
30933797
10_1016_j_scitotenv_2019_03_368
S004896971931366X
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
NPM
7X8
7S9
L.6
AALMO
AAPBV
ABFLS
ABPIF
ABPTK
ABTAH
ADALY
AJBFU
IPNFZ
QVL
ID FETCH-LOGICAL-c570t-14d96ae811e5ac3de79a39e04994619f5da577eeaf9083f01166856f8bbe0d613
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Thu Oct 13 09:31:45 EDT 2022
Fri Jul 11 02:03:52 EDT 2025
Fri Jul 11 03:17:47 EDT 2025
Thu Apr 03 07:11:12 EDT 2025
Thu Apr 24 23:12:15 EDT 2025
Tue Jul 01 03:34:54 EDT 2025
Fri Feb 23 02:30:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Waste management
Diffuse pollution
Microplastics
Agricultural soil
Sludge
Language English
License This is an open access article under the CC BY license.
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c570t-14d96ae811e5ac3de79a39e04994619f5da577eeaf9083f01166856f8bbe0d613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9696-7643
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S004896971931366X
PMID 30933797
PQID 2202202117
PQPubID 23479
PageCount 10
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_549866
proquest_miscellaneous_2237514303
proquest_miscellaneous_2202202117
pubmed_primary_30933797
crossref_primary_10_1016_j_scitotenv_2019_03_368
crossref_citationtrail_10_1016_j_scitotenv_2019_03_368
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_03_368
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-25
PublicationDateYYYYMMDD 2019-06-25
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-25
  day: 25
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mahon, O'Connell, Healy, O'Connor, Officer, Nash, M. (bb0130) 2017; 51
Wang, Taylor, Sharma, Flury (bb0240) 2018; 13
Corradini, Bartholomeus, Lwanga, Gertsen, Geissen (bb0045) 2019; 650
Qin (bb0175) 2016
Hurley, Lusher, Olsen, Nizzetto (bb0100) 2018; 52
Napper, Thompson (bb0145) 2016; 112
Vaughan (bb0235) 2018
Soil Survey Staff. 2014. Kellogg soil survey laboratory methods manual. Soil Survey Investigations Report No. 42, Version 5.0. R. Burt and Soil Survey Staff (Eds.). U.S. Department of Agriculture, Natural Resources Conservation Service.
Coors, Edwards, Lorenz, Römbke, Schmelz, Topp, Waszak, Wilkes, Lapen (bb0040) 2016; 562
Liu, Ding, Weng, Hwang, Lin (bb0120) 2016; 169
Liu, Lu, Song, Lei, Hu, Lv, Zhou, Cao, Shi, Yang, He (bb0115) 2018; 242
Anuar Sharuddin, Abnisa, Wan Daud, Aroua (bb0015) 2017; 148
Schmidt, Christensen, Batstone, Trably, Lyberatos, Stamatelatou, Kornaros, Metzger, Amellal, Watson, García, Ayuso, Patureau (bb0200) 2006; 84
Henry, Laitala, Klepp (bb0080) 2019; 652
Lesnoff, Lancelot (bb0105) 2012
Habib, Locke, Cannone (bb0070) 1998; 103
Li, Chen, Mei, Dong, Dai, Ding, Zeng (bb0110) 2018; 142
Brodhagen, Goldberger, Hayes, Inglis, Marsh, Miles (bb0030) 2017; 69
McLain, Bumblauskas, White, Gransberg (bb0135) 2018; 3
Zubris, Richards (bb0260) 2005; 138
Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. and Ni, B.-J. 2019. Microplastics in wastewater treatment plants: Detection, occurrence and removal Water Research 152: 21–37.
de Souza Machado, Lau, Till, Werner, Lehmann, Becker, Rillig (bb0050) 2018; 52
MINSEGPRES (bb0140) 2009
Hernandez, Nowack, Mitrano (bb0085) 2017; 51
Simon, van Alst, Vollertsen (bb0210) 2018; 142
Zhang, Yang, Gertsen, Peters, Salánki, Geissen (bb0250) 2018; 616–617
Ng, Lwanga, Eldridge, Johnston, Hu, Geissen, Chen (bb0155) 2018; 627
Engdahl (bb0060) 2018; 121
Prata (bb0170) 2018; 234
CIREN. 1996. Estudio agrológico Región Metropolitana. Descripciones de suelos. Publicación No. 115. Centro de Información de Recursos Naturales. Santiago, Chile.
Bläsing, Amelung (bb0025) 2018; 612
Steinmetz, Wollmann, Schaefer, Buchmann, David, Tröger, Muñoz, Frör, Schaumann (bb0220) 2016; 550
Ziajahromi, Neale, Rintoul, Leusch (bb0255) 2017; 112
Scheurer, Bigalke (bb0195) 2018; 52
Rilling, Ingraffia, de Souza Machado (bb0190) 2018; 8
Pinto da Costa, Paço, Santos, Duarte, Rocha-Santos (bb0165) 2018; 16
Auta, Emenike, Fauziah (bb0020) 2017; 102
Reed, Lynn, Meade (bb0185) 2002; 9
Titow (bb0230) 2012
Fuller, Gautam (bb0065) 2016; 50
Huerta Lwanga, E., Mendoza Vega, J., Ku Quej, V., Chi, J. d. l. A., Sanchez del Cid, L., Chi, C., Escalona Segura, G., Gertsen, H., Salánki, T., van der Ploeg, M., Koelmans, A. A. and Geissen, V. 2017. Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports 7: 14071-.
Lots, Behrens, Vijver, Horton, Bosker (bb0125) 2017; 123
He, Luo, Lu, Liu, Song, Lei (bb0075) 2018; 109
Napper, Bakir, Rowland, Thompson (bb0150) 2015; 99
Duis, Coors (bb0055) 2016; 28
Paul, Wander, Becker, Goedecke, Braun (bb0160) 2018
R Core Team (bb0180) 2018
Zhang, Liu (bb0245) 2018; 642
Horton, Svendsen, Williams, Spurgeon, Lahive (bb0090) 2017; 114
Schneider, Rasband, Eliceiri (bb0205) 2012; 9
Anuar Sharuddin (10.1016/j.scitotenv.2019.03.368_bb0015) 2017; 148
Duis (10.1016/j.scitotenv.2019.03.368_bb0055) 2016; 28
Reed (10.1016/j.scitotenv.2019.03.368_bb0185) 2002; 9
Paul (10.1016/j.scitotenv.2019.03.368_bb0160) 2018
Corradini (10.1016/j.scitotenv.2019.03.368_bb0045) 2019; 650
Habib (10.1016/j.scitotenv.2019.03.368_bb0070) 1998; 103
Li (10.1016/j.scitotenv.2019.03.368_bb0110) 2018; 142
Hurley (10.1016/j.scitotenv.2019.03.368_bb0100) 2018; 52
Pinto da Costa (10.1016/j.scitotenv.2019.03.368_bb0165) 2018; 16
10.1016/j.scitotenv.2019.03.368_bb0095
MINSEGPRES (10.1016/j.scitotenv.2019.03.368_bb0140) 2009
Zhang (10.1016/j.scitotenv.2019.03.368_bb0245) 2018; 642
He (10.1016/j.scitotenv.2019.03.368_bb0075) 2018; 109
10.1016/j.scitotenv.2019.03.368_bb0215
Ziajahromi (10.1016/j.scitotenv.2019.03.368_bb0255) 2017; 112
de Souza Machado (10.1016/j.scitotenv.2019.03.368_bb0050) 2018; 52
Coors (10.1016/j.scitotenv.2019.03.368_bb0040) 2016; 562
R Core Team (10.1016/j.scitotenv.2019.03.368_bb0180) 2018
Wang (10.1016/j.scitotenv.2019.03.368_bb0240) 2018; 13
Bläsing (10.1016/j.scitotenv.2019.03.368_bb0025) 2018; 612
Hernandez (10.1016/j.scitotenv.2019.03.368_bb0085) 2017; 51
Horton (10.1016/j.scitotenv.2019.03.368_bb0090) 2017; 114
Schmidt (10.1016/j.scitotenv.2019.03.368_bb0200) 2006; 84
Napper (10.1016/j.scitotenv.2019.03.368_bb0150) 2015; 99
Henry (10.1016/j.scitotenv.2019.03.368_bb0080) 2019; 652
Fuller (10.1016/j.scitotenv.2019.03.368_bb0065) 2016; 50
Liu (10.1016/j.scitotenv.2019.03.368_bb0115) 2018; 242
10.1016/j.scitotenv.2019.03.368_bb0225
McLain (10.1016/j.scitotenv.2019.03.368_bb0135) 2018; 3
Brodhagen (10.1016/j.scitotenv.2019.03.368_bb0030) 2017; 69
Liu (10.1016/j.scitotenv.2019.03.368_bb0120) 2016; 169
Simon (10.1016/j.scitotenv.2019.03.368_bb0210) 2018; 142
Mahon (10.1016/j.scitotenv.2019.03.368_bb0130) 2017; 51
Lots (10.1016/j.scitotenv.2019.03.368_bb0125) 2017; 123
Qin (10.1016/j.scitotenv.2019.03.368_bb0175) 2016
Auta (10.1016/j.scitotenv.2019.03.368_bb0020) 2017; 102
Titow (10.1016/j.scitotenv.2019.03.368_bb0230) 2012
10.1016/j.scitotenv.2019.03.368_bb0035
Zhang (10.1016/j.scitotenv.2019.03.368_bb0250) 2018; 616–617
Zubris (10.1016/j.scitotenv.2019.03.368_bb0260) 2005; 138
Vaughan (10.1016/j.scitotenv.2019.03.368_bb0235)
Engdahl (10.1016/j.scitotenv.2019.03.368_bb0060) 2018; 121
Prata (10.1016/j.scitotenv.2019.03.368_bb0170) 2018; 234
Scheurer (10.1016/j.scitotenv.2019.03.368_bb0195) 2018; 52
Schneider (10.1016/j.scitotenv.2019.03.368_bb0205) 2012; 9
Lesnoff (10.1016/j.scitotenv.2019.03.368_bb0105)
Steinmetz (10.1016/j.scitotenv.2019.03.368_bb0220) 2016; 550
Ng (10.1016/j.scitotenv.2019.03.368_bb0155) 2018; 627
Napper (10.1016/j.scitotenv.2019.03.368_bb0145) 2016; 112
Rilling (10.1016/j.scitotenv.2019.03.368_bb0190) 2018; 8
References_xml – volume: 121
  start-page: 277
  year: 2018
  end-page: 284
  ident: bb0060
  article-title: Simulating the mobility of micro-plastics and other fiber-like objects in saturated porous media using constrained random walks
  publication-title: Adv. Water Resour.
– year: 2018
  ident: bb0235
  article-title: How to determine an accurate soil testing laboratory. Site-specific management guidelines 4 (SSMG-4). International Plant Nutrition Institute (IPNI). Lincoln, NE, USA. Available at
– volume: 52
  start-page: 7409
  year: 2018
  end-page: 7417
  ident: bb0100
  article-title: Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices
  publication-title: Environ. Sci. Technol.
– year: 2018
  ident: bb0180
  article-title: R: A Language and Environment for Statistical Computing
– volume: 13
  start-page: 1
  year: 2018
  end-page: 13
  ident: bb0240
  article-title: Poor extraction efficiencies of polystyrene nano- and microplastics from biosolids and soil
  publication-title: PLoS One
– volume: 652
  start-page: 483
  year: 2019
  end-page: 494
  ident: bb0080
  article-title: Microfibres from apparel and home textiles: prospects for including microplastics in environmental sustainability assessment
  publication-title: Sci. Total Environ.
– volume: 114
  start-page: 218
  year: 2017
  end-page: 226
  ident: bb0090
  article-title: Large microplastic particles in sediments of tributaries of the river Thames, UK – abundance, sources and methods for effective quantification
  publication-title: Mar. Pollut. Bull.
– volume: 28
  start-page: 2
  year: 2016
  ident: bb0055
  article-title: Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects
  publication-title: Environ. Sci. Eur.
– volume: 103
  start-page: 1
  year: 1998
  end-page: 8
  ident: bb0070
  article-title: Synthetic fibers as indicators of municipal sewage sludge, sludge products, and sewage treatment plant effluents
  publication-title: Water Air Soil Pollut.
– year: 2012
  ident: bb0105
  article-title: Aod: analysis of Overdispersed data. R package version 1.3. URL
– volume: 16
  start-page: 18
  year: 2018
  end-page: 30
  ident: bb0165
  article-title: Microplastics in soils: assessment, analytics and risks
  publication-title: Environ. Chem.
– volume: 234
  start-page: 115
  year: 2018
  end-page: 126
  ident: bb0170
  article-title: Airborne microplastics: consequences to human health?
  publication-title: Environ. Pollut.
– volume: 99
  start-page: 178
  year: 2015
  end-page: 185
  ident: bb0150
  article-title: Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics
  publication-title: Mar. Pollut. Bull.
– volume: 51
  start-page: 7036
  year: 2017
  end-page: 7046
  ident: bb0085
  article-title: Polyester textiles as a source of microplastics from households: a mechanistic study to understand microfiber release during washing
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 5774
  year: 2016
  end-page: 5780
  ident: bb0065
  article-title: A procedure for measuring microplastics using pressurized fluid extraction
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 810
  year: 2017
  end-page: 818
  ident: bb0130
  article-title: Microplastics in sewage sludge: effects of treatment
  publication-title: Environ. Sci. Technol.
– volume: 123
  start-page: 219
  year: 2017
  end-page: 226
  ident: bb0125
  article-title: A large-scale investigation of microplastic contamination: abundance and characteristics of microplastics in European beach sediment
  publication-title: Mar. Pollut. Bull.
– year: 2018
  ident: bb0160
  article-title: High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil
  publication-title: Environ. Sci. Pollut. Res.
– volume: 612
  start-page: 422
  year: 2018
  end-page: 435
  ident: bb0025
  article-title: Plastics in soil: analytical methods and possible sources
  publication-title: Sci. Total Environ.
– reference: Soil Survey Staff. 2014. Kellogg soil survey laboratory methods manual. Soil Survey Investigations Report No. 42, Version 5.0. R. Burt and Soil Survey Staff (Eds.). U.S. Department of Agriculture, Natural Resources Conservation Service.
– volume: 3
  start-page: 106
  year: 2018
  end-page: 113
  ident: bb0135
  article-title: Comparative analysis of repeatability and reproducibility of compaction testing
  publication-title: J. Struct. Integ. Maint.
– volume: 169
  start-page: 230
  year: 2016
  end-page: 240
  ident: bb0120
  article-title: Minimizing the interference of carbonate ions on degradation of SRF3B dye by Fe0-aggregate-activated persulfate process
  publication-title: Sep. Purif. Technol.
– volume: 138
  start-page: 201
  year: 2005
  end-page: 211
  ident: bb0260
  article-title: Synthetic fibers as an indicator of land application of sludge
  publication-title: Environ. Pollut.
– volume: 69
  start-page: 81
  year: 2017
  end-page: 84
  ident: bb0030
  article-title: Policy considerations for limiting unintended residual plastic in agricultural soils
  publication-title: Environ. Sci. Pol.
– volume: 242
  start-page: 855
  year: 2018
  end-page: 862
  ident: bb0115
  article-title: Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China
  publication-title: Environ. Pollut.
– volume: 148
  start-page: 925
  year: 2017
  end-page: 934
  ident: bb0015
  article-title: Energy recovery from pyrolysis of plastic waste: study on non-recycled plastics (NRP) data as the real measure of plastic waste
  publication-title: Energy Convers. Manag.
– volume: 627
  start-page: 1377
  year: 2018
  end-page: 1388
  ident: bb0155
  article-title: An overview of microplastic and nanoplastic pollution in agroecosystems
  publication-title: Sci. Total Environ.
– volume: 112
  start-page: 39
  year: 2016
  end-page: 45
  ident: bb0145
  article-title: Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions
  publication-title: Mar. Pollut. Bull.
– reference: Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C. and Ni, B.-J. 2019. Microplastics in wastewater treatment plants: Detection, occurrence and removal Water Research 152: 21–37.
– reference: Huerta Lwanga, E., Mendoza Vega, J., Ku Quej, V., Chi, J. d. l. A., Sanchez del Cid, L., Chi, C., Escalona Segura, G., Gertsen, H., Salánki, T., van der Ploeg, M., Koelmans, A. A. and Geissen, V. 2017. Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports 7: 14071-.
– volume: 52
  start-page: 9656
  year: 2018
  end-page: 9665
  ident: bb0050
  article-title: Impacts of microplastics on the soil biophysical environment
  publication-title: Environ. Sci. Technol.
– year: 2012
  ident: bb0230
  article-title: PVC Technology
– volume: 109
  start-page: 163
  year: 2018
  end-page: 172
  ident: bb0075
  article-title: Microplastics in soils: analytical methods, pollution characteristics and ecological risks
  publication-title: TrAC Trends Anal. Chem.
– volume: 52
  start-page: 3591
  year: 2018
  end-page: 3598
  ident: bb0195
  article-title: Microplastics in Swiss floodplain soils
  publication-title: Environ. Sci. Technol.
– volume: 142
  start-page: 1
  year: 2018
  end-page: 9
  ident: bb0210
  article-title: Quantification of microplastic mass and removal rates at wastewater treatment plants applying focal plane Array (FPA)-based Fourier transform infrared (FT-IR) imaging
  publication-title: Water Res.
– volume: 112
  start-page: 93
  year: 2017
  end-page: 99
  ident: bb0255
  article-title: Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics
  publication-title: Water Res.
– volume: 650
  start-page: 922
  year: 2019
  end-page: 932
  ident: bb0045
  article-title: Predicting soil microplastic concentration using Vis-NIR spectroscopy
  publication-title: Sci. Total Environ.
– volume: 84
  start-page: 253
  year: 2006
  end-page: 257
  ident: bb0200
  article-title: Safe recycling of sewage sludge on agricultural land-biowaste
  publication-title: Process Saf. Environ. Prot.
– volume: 642
  start-page: 12
  year: 2018
  end-page: 20
  ident: bb0245
  article-title: The distribution of microplastics in soil aggregate fractions in southwestern China
  publication-title: Sci. Total Environ.
– year: 2009
  ident: bb0140
  article-title: Decreto 4
  publication-title: Reglamento para el manejo de lodos generados en plantas de tratamiento de aguas servidas
– year: 2016
  ident: bb0175
  article-title: A brief description of textile fibers
  publication-title: Medical Textile Materials
– volume: 102
  start-page: 165
  year: 2017
  end-page: 176
  ident: bb0020
  article-title: Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions
  publication-title: Environ. Int.
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: bb0205
  article-title: NIH image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
– volume: 616–617
  start-page: 1056
  year: 2018
  end-page: 1065
  ident: bb0250
  article-title: A simple method for the extraction and identification of light density microplastics from soil
  publication-title: Sci. Total Environ.
– reference: CIREN. 1996. Estudio agrológico Región Metropolitana. Descripciones de suelos. Publicación No. 115. Centro de Información de Recursos Naturales. Santiago, Chile.
– volume: 562
  start-page: 312
  year: 2016
  end-page: 326
  ident: bb0040
  article-title: Biosolids applied to agricultural land: influence on structural and functional endpoints of soil fauna on a short- and long-term scale
  publication-title: Sci. Total Environ.
– volume: 142
  start-page: 75
  year: 2018
  end-page: 85
  ident: bb0110
  article-title: Microplastics in sewage sludge from the wastewater treatment plants in China
  publication-title: Water Res.
– volume: 550
  start-page: 690
  year: 2016
  end-page: 705
  ident: bb0220
  article-title: Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?
  publication-title: Sci. Total Environ.
– volume: 9
  start-page: 1235
  year: 2002
  end-page: 1239
  ident: bb0185
  article-title: Use of coefficient of variation in assessing variability of quantitative assays
  publication-title: Clin. Diagn. Lab. Immunol.
– volume: 8
  start-page: 1805
  year: 2018
  ident: bb0190
  article-title: Microplastic incorporation into soil in agroecosystems
  publication-title: Front. Plant Sci.
– year: 2012
  ident: 10.1016/j.scitotenv.2019.03.368_bb0230
– volume: 550
  start-page: 690
  year: 2016
  ident: 10.1016/j.scitotenv.2019.03.368_bb0220
  article-title: Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.01.153
– volume: 142
  start-page: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0210
  article-title: Quantification of microplastic mass and removal rates at wastewater treatment plants applying focal plane Array (FPA)-based Fourier transform infrared (FT-IR) imaging
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.05.019
– ident: 10.1016/j.scitotenv.2019.03.368_bb0215
– ident: 10.1016/j.scitotenv.2019.03.368_bb0235
– ident: 10.1016/j.scitotenv.2019.03.368_bb0035
– volume: 650
  start-page: 922
  year: 2019
  ident: 10.1016/j.scitotenv.2019.03.368_bb0045
  article-title: Predicting soil microplastic concentration using Vis-NIR spectroscopy
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.09.101
– volume: 123
  start-page: 219
  year: 2017
  ident: 10.1016/j.scitotenv.2019.03.368_bb0125
  article-title: A large-scale investigation of microplastic contamination: abundance and characteristics of microplastics in European beach sediment
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2017.08.057
– volume: 109
  start-page: 163
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0075
  article-title: Microplastics in soils: analytical methods, pollution characteristics and ecological risks
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2018.10.006
– volume: 148
  start-page: 925
  year: 2017
  ident: 10.1016/j.scitotenv.2019.03.368_bb0015
  article-title: Energy recovery from pyrolysis of plastic waste: study on non-recycled plastics (NRP) data as the real measure of plastic waste
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.06.046
– volume: 52
  start-page: 9656
  issue: 17
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0050
  article-title: Impacts of microplastics on the soil biophysical environment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02212
– volume: 652
  start-page: 483
  year: 2019
  ident: 10.1016/j.scitotenv.2019.03.368_bb0080
  article-title: Microfibres from apparel and home textiles: prospects for including microplastics in environmental sustainability assessment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.166
– volume: 3
  start-page: 106
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0135
  article-title: Comparative analysis of repeatability and reproducibility of compaction testing
  publication-title: J. Struct. Integ. Maint.
– volume: 99
  start-page: 178
  year: 2015
  ident: 10.1016/j.scitotenv.2019.03.368_bb0150
  article-title: Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2015.07.029
– volume: 112
  start-page: 93
  year: 2017
  ident: 10.1016/j.scitotenv.2019.03.368_bb0255
  article-title: Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.01.042
– volume: 114
  start-page: 218
  year: 2017
  ident: 10.1016/j.scitotenv.2019.03.368_bb0090
  article-title: Large microplastic particles in sediments of tributaries of the river Thames, UK – abundance, sources and methods for effective quantification
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2016.09.004
– volume: 142
  start-page: 75
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0110
  article-title: Microplastics in sewage sludge from the wastewater treatment plants in China
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.05.034
– volume: 28
  start-page: 2
  year: 2016
  ident: 10.1016/j.scitotenv.2019.03.368_bb0055
  article-title: Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects
  publication-title: Environ. Sci. Eur.
  doi: 10.1186/s12302-015-0069-y
– volume: 52
  start-page: 7409
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0100
  article-title: Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01517
– volume: 112
  start-page: 39
  year: 2016
  ident: 10.1016/j.scitotenv.2019.03.368_bb0145
  article-title: Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2016.09.025
– volume: 616–617
  start-page: 1056
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0250
  article-title: A simple method for the extraction and identification of light density microplastics from soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.10.213
– volume: 612
  start-page: 422
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0025
  article-title: Plastics in soil: analytical methods and possible sources
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.08.086
– volume: 51
  start-page: 810
  year: 2017
  ident: 10.1016/j.scitotenv.2019.03.368_bb0130
  article-title: Microplastics in sewage sludge: effects of treatment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b04048
– volume: 84
  start-page: 253
  year: 2006
  ident: 10.1016/j.scitotenv.2019.03.368_bb0200
  article-title: Safe recycling of sewage sludge on agricultural land-biowaste
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1205/psep.05168
– ident: 10.1016/j.scitotenv.2019.03.368_bb0225
– volume: 562
  start-page: 312
  year: 2016
  ident: 10.1016/j.scitotenv.2019.03.368_bb0040
  article-title: Biosolids applied to agricultural land: influence on structural and functional endpoints of soil fauna on a short- and long-term scale
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.03.226
– volume: 627
  start-page: 1377
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0155
  article-title: An overview of microplastic and nanoplastic pollution in agroecosystems
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.341
– volume: 138
  start-page: 201
  year: 2005
  ident: 10.1016/j.scitotenv.2019.03.368_bb0260
  article-title: Synthetic fibers as an indicator of land application of sludge
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2005.04.013
– volume: 642
  start-page: 12
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0245
  article-title: The distribution of microplastics in soil aggregate fractions in southwestern China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.004
– volume: 9
  start-page: 671
  year: 2012
  ident: 10.1016/j.scitotenv.2019.03.368_bb0205
  article-title: NIH image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– ident: 10.1016/j.scitotenv.2019.03.368_bb0095
  doi: 10.1038/s41598-017-14588-2
– volume: 234
  start-page: 115
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0170
  article-title: Airborne microplastics: consequences to human health?
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.11.043
– year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0180
– year: 2009
  ident: 10.1016/j.scitotenv.2019.03.368_bb0140
  article-title: Decreto 4
– volume: 52
  start-page: 3591
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0195
  article-title: Microplastics in Swiss floodplain soils
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b06003
– volume: 69
  start-page: 81
  year: 2017
  ident: 10.1016/j.scitotenv.2019.03.368_bb0030
  article-title: Policy considerations for limiting unintended residual plastic in agricultural soils
  publication-title: Environ. Sci. Pol.
  doi: 10.1016/j.envsci.2016.12.014
– volume: 16
  start-page: 18
  issue: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0165
  article-title: Microplastics in soils: assessment, analytics and risks
  publication-title: Environ. Chem.
  doi: 10.1071/EN18150
– volume: 9
  start-page: 1235
  year: 2002
  ident: 10.1016/j.scitotenv.2019.03.368_bb0185
  article-title: Use of coefficient of variation in assessing variability of quantitative assays
  publication-title: Clin. Diagn. Lab. Immunol.
– volume: 169
  start-page: 230
  year: 2016
  ident: 10.1016/j.scitotenv.2019.03.368_bb0120
  article-title: Minimizing the interference of carbonate ions on degradation of SRF3B dye by Fe0-aggregate-activated persulfate process
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.05.039
– volume: 8
  start-page: 1805
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0190
  article-title: Microplastic incorporation into soil in agroecosystems
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01805
– volume: 102
  start-page: 165
  year: 2017
  ident: 10.1016/j.scitotenv.2019.03.368_bb0020
  article-title: Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2017.02.013
– year: 2016
  ident: 10.1016/j.scitotenv.2019.03.368_bb0175
  article-title: A brief description of textile fibers
– ident: 10.1016/j.scitotenv.2019.03.368_bb0105
– volume: 121
  start-page: 277
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0060
  article-title: Simulating the mobility of micro-plastics and other fiber-like objects in saturated porous media using constrained random walks
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2018.08.011
– volume: 242
  start-page: 855
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0115
  article-title: Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.07.051
– volume: 51
  start-page: 7036
  year: 2017
  ident: 10.1016/j.scitotenv.2019.03.368_bb0085
  article-title: Polyester textiles as a source of microplastics from households: a mechanistic study to understand microfiber release during washing
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b01750
– year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0160
  article-title: High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil
  publication-title: Environ. Sci. Pollut. Res.
– volume: 103
  start-page: 1
  year: 1998
  ident: 10.1016/j.scitotenv.2019.03.368_bb0070
  article-title: Synthetic fibers as indicators of municipal sewage sludge, sludge products, and sewage treatment plant effluents
  publication-title: Water Air Soil Pollut.
  doi: 10.1023/A:1004908110793
– volume: 50
  start-page: 5774
  year: 2016
  ident: 10.1016/j.scitotenv.2019.03.368_bb0065
  article-title: A procedure for measuring microplastics using pressurized fluid extraction
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00816
– volume: 13
  start-page: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2019.03.368_bb0240
  article-title: Poor extraction efficiencies of polystyrene nano- and microplastics from biosolids and soil
  publication-title: PLoS One
SSID ssj0000781
Score 2.714787
Snippet Microplastics are emerging as a steadily increasing environmental threat. Wastewater treatment plants efficiently remove microplastics from sewage, trapping...
SourceID wageningen
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 411
SubjectTerms agricultural land
Agricultural soil
agricultural soils
aquatic environment
Diffuse pollution
fertilizers
Microplastics
sewage
sewage sludge
Sludge
soil pollution
soil sampling
Waste management
wastewater
wastewater treatment
Title Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal
URI https://dx.doi.org/10.1016/j.scitotenv.2019.03.368
https://www.ncbi.nlm.nih.gov/pubmed/30933797
https://www.proquest.com/docview/2202202117
https://www.proquest.com/docview/2237514303
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F549866
Volume 671
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NQ0hDCEFh0A0mI_EaltZfyd6maVOhYg-IaX2zHMdBmbKkahqmvexv312TtEwg9sCTlci2nNyd_TvfF8AnjkyQcSWQAjIMhOMuSFAPCaJMeTySEpt4uof8dq4mF-LrTM624KSPhSG3ym7vb_f01W7dvTns_ubhPM8pxldEsYo1QpARV2pGEexCE5d_vtu4eVAym9bKjIKNvR_4eOG8ywqx6S_y8VplO-WUc_XvJ9SfCPQZ7Nyg1JerMKjfjqWzl_Ciw5PsuF3yK9jy5QCethUmbwewe7oJZMNunSTXA3je3texNgzpNVz25UVZlbFr8tKbI67GSZl1rrnuinyxvGT252Kdr4PVVV7UjGJUWO1plawumhSbNCd_MFu8gYuz0x8nk6AruhA4qcNlMBJprKyPRiMvreOp17HlsSfNSKCylcnUSq29t1mM6C0jO46KpMqiJPFhiuBgF7bLqvTvgGXC-VBGNkUZF2FGeWZSVOQlV07ZRCdDUP2PNq7LSE6FMQrTu55dmTWFDFHIhNwghYYQrgfO26Qcjw856ilpHvCXwaPj8cEfe9oblD4yqdjSV01txmOKVEYlWv-rD9cES0M-hLct46xXTXZormMczTecZEoqI1Ubyvzd3eWZm2ZhyoIanKE2qNVHSu39z0ftww49kdvbWL6H7eWi8R8QYC2Tg5UEHcCT4y_TyTm10--X03spLSuM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NToghhKAwKJ9G4jVaWn8lvE3Tpo5tfdpE3ywncaagLKmahon_nrvGaZlA7IGnSInPcnx39u_s-wD4zFEIcq4EckCGgUh5GiRohwRRrhxuSYlNHJ1DXszU9Ep8ncv5Dhz1sTDkVunX_m5NX6_W_s2Bn82DRVFQjK-IYhVrhCBjrtT8AexSdio5gN3D07PpbLsg66grnCdQt5HgjpsXdr2qEZ7-IDevdcJTTmlX_75J_QlCH8PeLSp-tY6E-m1nOnkGTz2kZIfdqJ_DjquG8LArMvlzCPvH21g2bOaVuRnCk-7IjnWRSC_gW19hlNU5uyFHvQVCa-yU2TRtb3ydL1ZUzF4vNyk7WFMXZcMoTIU1jkbJmrLN8JEV5BJmy5dwdXJ8eTQNfN2FIJU6XAVjkcXKumg8dtKmPHM6tjx2ZBwJtLdymVmptXM2jxHA5XSVoyKp8ihJXJghPtiHQVVX7jWwXKQulJHNUM1FmFOqmQxteclVqmyikxGofqJN6pOSU22M0vTeZ9_NhkOGOGRCbpBDIwg3hIsuL8f9JF96Tpo7ImZw97if-FPPe4MKSLcqtnJ125jJhIKV0Y7W_2rDNSHTkI_gVSc4m1HTVTTXMVLzrSSZiipJNYaSf_vjPHPbLk1V0gN7aAwa9pFSb_7npz7Co-nlxbk5P52dvYU9-kJecBP5DgarZeveI95aJR-8Pv0C5N0smg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+of+microplastic+accumulation+in+agricultural+soils+from+sewage+sludge+disposal&rft.jtitle=The+Science+of+the+total+environment&rft.au=Corradini%2C+Fabio&rft.au=Meza%2C+Pablo&rft.au=Eguiluz%2C+Ra%C3%BAl&rft.au=Casado%2C+Francisco&rft.date=2019-06-25&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=671&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.03.368&rft.externalDBID=public&rft.externalDocID=oai_library_wur_nl_wurpubs_549866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon