Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.)
Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought tolerance by reducing root metabolic costs, permitting greater root growth and water acquisition from drying soil. To test this hypothesis,...
Saved in:
Published in | Plant, cell and environment Vol. 33; no. 5; pp. 740 - 749 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.05.2010
Blackwell Publishing Ltd Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought tolerance by reducing root metabolic costs, permitting greater root growth and water acquisition from drying soil. To test this hypothesis, recombinant inbred lines with high and low RCA were observed under water stress in the field and in soil mesocosms in a greenhouse. In the field, lines with high RCA had 30% more shoot biomass at flowering compared with lines with low RCA under water stress. Root length density in deep soil was significantly greater in the high RCA lines compared with the low RCA lines. Mid-day leaf relative water content in the high RCA lines was 10% greater than in the low RCA lines under water stress. The high RCA lines averaged eight times the yield of the low RCA lines under water stress. In mesocosms, high RCA lines had less seminal root respiration, deeper rooting, and greater shoot biomass compared with low RCA lines under water stress. These results support the hypothesis that RCA is beneficial for drought tolerance in maize by reducing the metabolic cost of soil exploration. |
---|---|
AbstractList | Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought tolerance by reducing root metabolic costs, permitting greater root growth and water acquisition from drying soil. To test this hypothesis, recombinant inbred lines with high and low RCA were observed under water stress in the field and in soil mesocosms in a greenhouse. In the field, lines with high RCA had 30% more shoot biomass at flowering compared with lines with low RCA under water stress. Root length density in deep soil was significantly greater in the high RCA lines compared with the low RCA lines. Mid-day leaf relative water content in the high RCA lines was 10% greater than in the low RCA lines under water stress. The high RCA lines averaged eight times the yield of the low RCA lines under water stress. In mesocosms, high RCA lines had less seminal root respiration, deeper rooting, and greater shoot biomass compared with low RCA lines under water stress. These results support the hypothesis that RCA is beneficial for drought tolerance in maize by reducing the metabolic cost of soil exploration. Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought tolerance by reducing root metabolic costs, permitting greater root growth and water acquisition from drying soil. To test this hypothesis, recombinant inbred lines with high and low RCA were observed under water stress in the field and in soil mesocosms in a greenhouse. In the field, lines with high RCA had 30% more shoot biomass at flowering compared with lines with low RCA under water stress. Root length density in deep soil was significantly greater in the high RCA lines compared with the low RCA lines. Mid-day leaf relative water content in the high RCA lines was 10% greater than in the low RCA lines under water stress. The high RCA lines averaged eight times the yield of the low RCA lines under water stress. In mesocosms, high RCA lines had less seminal root respiration, deeper rooting, and greater shoot biomass compared with low RCA lines under water stress. These results support the hypothesis that RCA is beneficial for drought tolerance in maize by reducing the metabolic cost of soil exploration.Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought tolerance by reducing root metabolic costs, permitting greater root growth and water acquisition from drying soil. To test this hypothesis, recombinant inbred lines with high and low RCA were observed under water stress in the field and in soil mesocosms in a greenhouse. In the field, lines with high RCA had 30% more shoot biomass at flowering compared with lines with low RCA under water stress. Root length density in deep soil was significantly greater in the high RCA lines compared with the low RCA lines. Mid-day leaf relative water content in the high RCA lines was 10% greater than in the low RCA lines under water stress. The high RCA lines averaged eight times the yield of the low RCA lines under water stress. In mesocosms, high RCA lines had less seminal root respiration, deeper rooting, and greater shoot biomass compared with low RCA lines under water stress. These results support the hypothesis that RCA is beneficial for drought tolerance in maize by reducing the metabolic cost of soil exploration. ABSTRACT Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought tolerance by reducing root metabolic costs, permitting greater root growth and water acquisition from drying soil. To test this hypothesis, recombinant inbred lines with high and low RCA were observed under water stress in the field and in soil mesocosms in a greenhouse. In the field, lines with high RCA had 30% more shoot biomass at flowering compared with lines with low RCA under water stress. Root length density in deep soil was significantly greater in the high RCA lines compared with the low RCA lines. Mid‐day leaf relative water content in the high RCA lines was 10% greater than in the low RCA lines under water stress. The high RCA lines averaged eight times the yield of the low RCA lines under water stress. In mesocosms, high RCA lines had less seminal root respiration, deeper rooting, and greater shoot biomass compared with low RCA lines under water stress. These results support the hypothesis that RCA is beneficial for drought tolerance in maize by reducing the metabolic cost of soil exploration. |
Author | ZHU, JINMING BROWN, KATHLEEN M LYNCH, JONATHAN P |
Author_xml | – sequence: 1 fullname: ZHU, JINMING – sequence: 2 fullname: BROWN, KATHLEEN M – sequence: 3 fullname: LYNCH, JONATHAN P |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22554702$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20519019$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1vFCEYxompsdvqv6BcjHqY8eVrGA41MZv6kWzUqL14IchAl83MUGFWu_71Mu5WEy-WCy_wex7gfU7Q0RhHhxAmUJMynm9qwhpRMeBQUwBVAwWl6us7aPHn4AgtgHCopFTkGJ3kvAEoG1LdQ8cUBFFA1AK9-xjjhG1MU7Cmx8YlN9r1bjA4DFcpfncZT2uHuxS3l-sJT7F3yYzW4ejxYMJPh59-caaUu4xX9bP76K43fXYPDvMpunh1_nn5plq9f_12-XJVWSFBVaThVrSiU8QSKqxjIIzwnDcdY7IzkjsilBFcULBeecuM9G1X1l3TGN84doqe7H3LG79tXZ70ELJ1fW9GF7dZS06blgrZ_J9kjHAqG1nIhwdy-3Vwnb5KYTBpp2-aVYDHB8Dk0iw_NyLkvxwVgkughXux52yKOSfntQ2TmUIcp2RCrwnoOUW90XNYeg5Lzynq3ynq62LQ_mNwc8ctpGd76Y_Qu92tdfrD8nyuiv7RXu9N1OYylf9dfKJAGJCWSkYZ-wXairpX |
CODEN | PLCEDV |
CitedBy_id | crossref_primary_10_1016_j_pmpp_2019_101443 crossref_primary_10_1186_s12870_022_03972_4 crossref_primary_10_1007_s11104_013_1769_y crossref_primary_10_1104_pp_111_175489 crossref_primary_10_3389_fpls_2017_01721 crossref_primary_10_1007_s10681_015_1449_5 crossref_primary_10_1111_ppl_13958 crossref_primary_10_1270_jsbbs_20119 crossref_primary_10_1093_jxb_erab406 crossref_primary_10_1111_jac_12307 crossref_primary_10_1111_pce_15085 crossref_primary_10_1016_j_envexpbot_2020_104333 crossref_primary_10_1111_tpj_15560 crossref_primary_10_3390_ijms22116058 crossref_primary_10_1111_pce_12933 crossref_primary_10_1093_aob_mcy059 crossref_primary_10_1111_nph_16807 crossref_primary_10_2134_agronj14_0551 crossref_primary_10_1007_s10681_015_1572_3 crossref_primary_10_1093_aob_mcs075 crossref_primary_10_1071_FP19002 crossref_primary_10_3389_fpls_2018_01928 crossref_primary_10_34133_plantphenomics_0203 crossref_primary_10_1111_ppl_13044 crossref_primary_10_2135_cropsci2012_07_0440 crossref_primary_10_1093_aob_mct160 crossref_primary_10_1093_aob_mcaa068 crossref_primary_10_1016_j_envexpbot_2016_04_001 crossref_primary_10_1016_j_tplants_2021_10_012 crossref_primary_10_1016_j_envexpbot_2018_10_031 crossref_primary_10_3389_fpls_2019_01805 crossref_primary_10_1111_pce_13683 crossref_primary_10_3389_fpls_2020_01235 crossref_primary_10_1016_j_celrep_2024_113971 crossref_primary_10_1016_j_plaphy_2024_108386 crossref_primary_10_3389_fpls_2022_827369 crossref_primary_10_1270_jsbbs_22088 crossref_primary_10_1007_s00425_019_03242_y crossref_primary_10_1126_science_abj2327 crossref_primary_10_1007_s11104_010_0623_8 crossref_primary_10_1007_s42535_023_00787_y crossref_primary_10_1080_1343943X_2018_1439757 crossref_primary_10_1080_23311932_2024_2319157 crossref_primary_10_1111_aab_12807 crossref_primary_10_1111_nph_12786 crossref_primary_10_1007_s11104_022_05331_6 crossref_primary_10_1093_aob_mct069 crossref_primary_10_1073_pnas_2012087118 crossref_primary_10_1111_pbi_12011 crossref_primary_10_1071_FP15308 crossref_primary_10_3390_agriculture12101677 crossref_primary_10_1016_j_ecoenv_2020_111252 crossref_primary_10_1093_pcp_pcs003 crossref_primary_10_1093_jxb_ery048 crossref_primary_10_1002_agj2_20039 crossref_primary_10_1016_j_flora_2024_152562 crossref_primary_10_1186_s12284_016_0102_9 crossref_primary_10_1007_s11104_024_06892_4 crossref_primary_10_1111_pce_12451 crossref_primary_10_1590_S0100_204X2016000400005 crossref_primary_10_1111_pce_15161 crossref_primary_10_1093_jxb_eru496 crossref_primary_10_1007_s00122_014_2414_8 crossref_primary_10_1007_s11104_023_06299_7 crossref_primary_10_1007_s11104_012_1483_1 crossref_primary_10_1016_j_plantsci_2017_09_016 crossref_primary_10_3389_fpls_2021_760863 crossref_primary_10_1186_s12870_023_04469_4 crossref_primary_10_3389_fpls_2018_00752 crossref_primary_10_1016_j_tplants_2014_08_005 crossref_primary_10_1093_jxb_erz271 crossref_primary_10_3390_plants12203543 crossref_primary_10_1016_j_chemosphere_2019_05_268 crossref_primary_10_1007_s11738_013_1355_1 crossref_primary_10_1016_j_fcr_2016_11_004 crossref_primary_10_1016_j_rhisph_2022_100644 crossref_primary_10_1111_pbi_12673 crossref_primary_10_1007_s11104_024_07006_w crossref_primary_10_1016_j_pbi_2011_03_020 crossref_primary_10_1007_s12298_022_01192_6 crossref_primary_10_1111_nph_17474 crossref_primary_10_1002_agg2_20080 crossref_primary_10_1038_s41467_024_55485_3 crossref_primary_10_1007_s10681_019_2472_8 crossref_primary_10_1002_fes3_369 crossref_primary_10_1016_j_cj_2015_04_008 crossref_primary_10_1111_pce_12439 crossref_primary_10_3390_agronomy8110241 crossref_primary_10_1007_s10722_015_0279_6 crossref_primary_10_1038_nplants_2015_118 crossref_primary_10_3389_fpls_2019_00400 crossref_primary_10_1002_csc2_20241 crossref_primary_10_1016_j_fcr_2022_108461 crossref_primary_10_1016_j_plantsci_2022_111340 crossref_primary_10_1111_nph_15738 crossref_primary_10_1007_s10457_024_01092_6 crossref_primary_10_1111_eva_13673 crossref_primary_10_7868_S0002188117070122 crossref_primary_10_1111_pce_13615 crossref_primary_10_1111_pce_12766 crossref_primary_10_3389_fpls_2017_00117 crossref_primary_10_1007_s00425_023_04327_5 crossref_primary_10_1007_s11032_010_9532_z crossref_primary_10_1111_ppl_13313 crossref_primary_10_1016_j_fcr_2023_109006 crossref_primary_10_1093_jxb_erw472 crossref_primary_10_1111_pce_14270 crossref_primary_10_1093_aob_mcae131 crossref_primary_10_1111_j_1469_8137_2010_03496_x crossref_primary_10_1007_s11104_021_05186_3 crossref_primary_10_1016_j_sajb_2022_06_039 crossref_primary_10_1111_pce_12778 crossref_primary_10_3390_plants11172256 crossref_primary_10_52547_jcb_12_36_136 crossref_primary_10_1007_s10265_021_01348_7 crossref_primary_10_1111_pce_13197 crossref_primary_10_1111_nph_16524 crossref_primary_10_1038_s41598_019_41922_7 crossref_primary_10_1071_CP17060 crossref_primary_10_1007_s11104_022_05711_y crossref_primary_10_1080_0972060X_2020_1869105 crossref_primary_10_1007_s00344_022_10807_x crossref_primary_10_1007_s00122_016_2823_y crossref_primary_10_2136_vzj2017_05_0107 crossref_primary_10_1093_plcell_koae055 crossref_primary_10_1002_ajb2_1530 crossref_primary_10_1111_1365_2745_13641 crossref_primary_10_1007_s11104_012_1138_2 crossref_primary_10_1111_pce_14256 crossref_primary_10_1111_tpj_14722 crossref_primary_10_3389_fpls_2020_00546 crossref_primary_10_1111_ppl_13332 crossref_primary_10_1093_jxb_eraa165 crossref_primary_10_1093_jxb_erv121 crossref_primary_10_3389_fpls_2021_725915 crossref_primary_10_1093_jxb_erv241 crossref_primary_10_1590_2236_8906_106_2020 crossref_primary_10_36783_18069657rbcs20240079 crossref_primary_10_1093_plphys_kiac550 crossref_primary_10_1073_pnas_2219668120 crossref_primary_10_1093_aob_mcq199 crossref_primary_10_3389_fpls_2017_00900 crossref_primary_10_1093_jxb_erv007 crossref_primary_10_1007_s00468_018_1739_3 crossref_primary_10_3390_ijms24087406 crossref_primary_10_1016_j_fcr_2022_108547 crossref_primary_10_1007_s40502_021_00570_8 crossref_primary_10_1016_j_fcr_2014_03_017 crossref_primary_10_1038_srep03194 crossref_primary_10_3389_fpls_2021_776971 crossref_primary_10_1093_jxb_eru162 crossref_primary_10_1111_ppl_12255 crossref_primary_10_1007_s11104_013_1641_0 crossref_primary_10_1016_j_envexpbot_2014_09_007 crossref_primary_10_1016_j_plantsci_2013_10_016 crossref_primary_10_1071_FP23133 crossref_primary_10_1016_j_biombioe_2023_106805 crossref_primary_10_1093_jxb_erad221 crossref_primary_10_3389_fpls_2023_1133009 crossref_primary_10_1007_s00468_019_01947_x crossref_primary_10_1155_2014_818797 crossref_primary_10_3390_plants13081075 crossref_primary_10_1007_s11104_021_05010_y crossref_primary_10_3390_plants10061121 crossref_primary_10_1080_15592324_2016_1268311 crossref_primary_10_1080_10426507_2021_1920588 crossref_primary_10_1007_s11240_019_01654_y crossref_primary_10_1111_nph_17093 crossref_primary_10_3389_fpls_2020_565339 crossref_primary_10_1007_s11104_018_3792_5 crossref_primary_10_1007_s11104_011_0950_4 crossref_primary_10_1111_jipb_12470 crossref_primary_10_1111_pce_13399 crossref_primary_10_9787_PBB_2019_7_4_326 crossref_primary_10_1093_aob_mct123 crossref_primary_10_1111_jac_12339 crossref_primary_10_1093_aobpla_plac050 crossref_primary_10_1093_jxb_erv074 crossref_primary_10_1007_s11104_012_1453_7 crossref_primary_10_1007_s10681_015_1533_x crossref_primary_10_1016_j_gene_2022_146692 crossref_primary_10_3389_fpls_2015_00835 crossref_primary_10_1093_jxb_erw243 crossref_primary_10_1071_FP23231 crossref_primary_10_1007_s11104_022_05527_w crossref_primary_10_1016_j_aquabot_2016_10_002 crossref_primary_10_1093_aob_mct259 crossref_primary_10_1093_jxb_eru508 crossref_primary_10_5433_1679_0359_2020v41n4p1093 crossref_primary_10_3389_fpls_2022_1010165 crossref_primary_10_1111_pbr_12777 crossref_primary_10_1016_j_flora_2015_09_010 crossref_primary_10_1111_ppl_13415 crossref_primary_10_1002_tpg2_20003 crossref_primary_10_1093_plphys_kiad214 crossref_primary_10_1093_plphys_kiae425 crossref_primary_10_1007_s11104_019_04349_7 crossref_primary_10_1093_plphys_kiad213 crossref_primary_10_3389_fpls_2019_00237 crossref_primary_10_1093_jxb_erv289 crossref_primary_10_1007_s10886_017_0904_2 crossref_primary_10_1093_jxb_erz403 crossref_primary_10_3389_fpls_2023_1061503 crossref_primary_10_1016_j_tplants_2021_03_011 crossref_primary_10_1002_jpln_201800560 crossref_primary_10_1016_j_limno_2014_06_002 crossref_primary_10_1111_j_1467_7652_2012_00697_x crossref_primary_10_1016_j_fcr_2014_10_009 crossref_primary_10_1093_aob_mcs293 crossref_primary_10_1016_j_plaphy_2020_02_037 crossref_primary_10_1007_s11104_016_3150_4 crossref_primary_10_1071_FP16154 crossref_primary_10_1016_j_tplants_2024_10_014 crossref_primary_10_1016_j_jgg_2024_05_001 crossref_primary_10_1007_s11104_013_1643_y crossref_primary_10_1111_jipb_13222 crossref_primary_10_1007_s00299_023_03133_3 crossref_primary_10_3390_ijms242015167 |
Cites_doi | 10.1007/BF02357889 10.1071/FP03046 10.1007/BF00024010 10.1007/s11104-005-4268-y 10.1111/j.1469-8137.1991.tb00965.x 10.1046/j.1469-8137.2003.00907.x 10.1104/pp.91.1.266 10.1016/j.agwat.2005.07.013 10.1111/j.1399-3054.1980.tb02661.x 10.1201/9780203909423.pt6 10.1016/j.fcr.2007.07.004 10.1093/jexbot/51.342.61 10.1007/s11104-004-1697-y 10.1093/aob/mcl024 10.1126/science.289.5487.2068 10.2135/cropsci2000.402358x 10.1016/S0065-2113(01)74034-5 10.1007/BF00194070 10.2135/cropsci1990.0011183X003000030043x 10.1071/FP04046 10.2134/agronj2001.9351097x 10.2135/cropsci1996.0011183X003600060043x 10.1093/jxb/erh219 10.1111/j.1744-7909.2007.00450.x 10.1071/FP05043 10.1071/BI9620413 10.1126/science.218.4571.443 10.1104/pp.107.107250 10.1007/BF00395973 10.1073/pnas.0707193104 10.1093/jexbot/53.366.13 10.1016/S0038-0717(97)00050-3 10.2135/cropsci2007.04.0001IPBS 10.1016/0378-4290(84)90060-1 10.1016/S0959-3780(99)00017-5 10.1093/jxb/erh276 10.1104/pp.98.1.137 10.1007/BF00384595 10.1111/j.1438-8677.1999.tb00253.x 10.1017/CBO9780511661587.006 10.1007/s00122-006-0260-z 10.1007/s11104-004-1096-4 10.1007/s00122-005-2051-3 10.1071/FP05005 |
ContentType | Journal Article |
Copyright | 2010 Blackwell Publishing Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1111/j.1365-3040.2009.02099.x |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
EISSN | 1365-3040 |
EndPage | 749 |
ExternalDocumentID | 20519019 22554702 10_1111_j_1365_3040_2009_02099_x PCE2099 US201301827323 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT 24P AEUQT AFPWT ESX FIJ IPNFZ WRC AAYXX CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c5709-164c585d91c125ce305a5f446d337da74e159a54520cf9fc3a7f8d545d66af6e3 |
IEDL.DBID | DR2 |
ISSN | 0140-7791 1365-3040 |
IngestDate | Thu Jul 10 21:53:02 EDT 2025 Thu Jul 10 21:13:42 EDT 2025 Mon Jul 21 05:39:26 EDT 2025 Mon Jul 21 09:13:56 EDT 2025 Tue Jul 01 04:28:28 EDT 2025 Thu Apr 24 23:06:22 EDT 2025 Wed Jan 22 16:59:45 EST 2025 Mon May 19 05:25:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Monocotyledones Zea mays Root Growth Soil moisture Plant ecology Tolerance Aerenchyma root growth Cereal crop root respiration Gramineae Drought resistance Angiospermae yield soil water content Spermatophyta Respiration Drought |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5709-164c585d91c125ce305a5f446d337da74e159a54520cf9fc3a7f8d545d66af6e3 |
Notes | http://dx.doi.org/10.1111/j.1365-3040.2009.02099.x ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-3040.2009.02099.x |
PMID | 20519019 |
PQID | 733142767 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_742682576 proquest_miscellaneous_733142767 pubmed_primary_20519019 pascalfrancis_primary_22554702 crossref_citationtrail_10_1111_j_1365_3040_2009_02099_x crossref_primary_10_1111_j_1365_3040_2009_02099_x wiley_primary_10_1111_j_1365_3040_2009_02099_x_PCE2099 fao_agris_US201301827323 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2010 |
PublicationDateYYYYMMDD | 2010-05-01 |
PublicationDate_xml | – month: 05 year: 2010 text: May 2010 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: United States |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2010 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell |
References | 1979; 147 1980; 49 2007; 104 1990; 30 2001; 93 2007; 145 2006; 97 2002; 53 2010 2005a; 111 2004; 161 1998 2000; 51 1997; 29 1996 1962; 15 2008; 105 1999; 1 2002 1996; 36 1992; 98 1991; 117 2003; 30 1985; 164 2005b; 270 1999; 9 1977 2006; 113 2004; 55 1991; 185 2006; 80 2004; 31 2005c; 32 1982; 218 2000; 289 1984; 8 1989; 91 2005; 269 2000; 40 2005; 32 2006; 281 1996; 20 2001; 74 2007; 47 1989 2007; 49 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 Lambers H. (e_1_2_7_28_1) 1996 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Lynch J.P. (e_1_2_7_31_1) 1998 |
References_xml | – volume: 91 start-page: 266 year: 1989 end-page: 271 article-title: Decreased ethylene biosynthesis and induction of aerenchyma by nitrogen‐starvation or phosphorus‐starvation in adventitious roots of L publication-title: Plant Physiology – volume: 117 start-page: 607 year: 1991 end-page: 618 article-title: A reassessment of the influence of NAA on aerenchyma formation in maize roots publication-title: New Physiologist – volume: 270 start-page: 299 year: 2005b end-page: 310 article-title: Mapping of QTL controlling root hair length in maize ( ) under phosphorus deficiency publication-title: Plant and Soil – volume: 36 start-page: 1676 year: 1996 end-page: 1683 article-title: Simple sequence repeat markers developed from maize sequences found in Genbank database: map construction publication-title: Crop Science – volume: 74 start-page: 193 year: 2001 end-page: 246 article-title: The management of wheat, barley and oat root systems publication-title: Advances in Agronomy – volume: 47 start-page: S120 issue: 3 year: 2007 end-page: S141 article-title: Genome‐wide approaches to investigate and improve maize response to drought publication-title: Crop Science – volume: 93 start-page: 1097 year: 2001 end-page: 1104 article-title: Minirhizotron observations of the spatial distribution of the maize root system publication-title: Agronomy Journal – volume: 97 start-page: 695 year: 2006 end-page: 704 article-title: Dynamics of aerenchyma distribution in the cortex of sulfate‐deprived adventitious roots of maize publication-title: Annals of Botany – volume: 98 start-page: 137 year: 1992 end-page: 142 article-title: Enhanced sensitivity to ethylene in nitrogen‐starved or phosphate‐starved roots of L. during aerenchyma formation publication-title: Plant Physiology – volume: 111 start-page: 688 year: 2005a end-page: 695 article-title: Mapping of QTL for lateral root branching and length in maize ( ) under differential phosphorus supply publication-title: Theoretical and Applied Genetics – volume: 32 start-page: 749 year: 2005c end-page: 762 article-title: Topsoil foraging and phosphorus acquisition efficiency in maize ( ) publication-title: Functional Plant Biology – volume: 30 start-page: 690 year: 1990 end-page: 693 article-title: Relative sensitivity of grain yield and biomass accumulation to drought in field‐grown maize publication-title: Crop Science – volume: 29 start-page: 1395 year: 1997 end-page: 1403 article-title: Drought affects the fluxes of carbon to roots and soil in 13C pulse‐labelled plants of wheat publication-title: Soil Biology and Biochemistry – volume: 9 start-page: 31 year: 1999 end-page: 49 article-title: Climate change and global water resources publication-title: Global Environmental Change – start-page: 148 year: 1998 end-page: 156 – volume: 30 start-page: 493 year: 2003 end-page: 506 article-title: Physiological roles for aerenchyma in phosphorus‐stressed roots publication-title: Functional Plant Biology – volume: 1 start-page: 274 year: 1999 end-page: 287 article-title: Formation of aerenchyma and the process of plant ventilation in relation to soil flooding and submergence publication-title: Plant Biology – volume: 281 start-page: 269 year: 2006 end-page: 279 article-title: Variation for root aerenchyma formation in flooded an non‐flooded maize and teosinte seedlings publication-title: Plant and Soil – year: 1977 – volume: 40 start-page: 358 year: 2000 end-page: 364 article-title: Variation among maize inbred lines and detection of quantitative trait loci for growth at low P and responsiveness to arbuscularmycorrhizal fungi publication-title: Crop Science – volume: 164 start-page: 540 year: 1985 end-page: 549 article-title: Osmotic adjustment and the inhibition of leaf, root, stem, and silk growth at low water potentials in maize publication-title: Planta – volume: 20 start-page: 135 year: 1996 end-page: 148 article-title: Crop responses to drought and the interpretation of adaptation publication-title: Plant Growth Regulation – year: 2010 – volume: 185 start-page: 269 year: 1991 end-page: 278 article-title: Sulphate deprivation depresses the transport of nitrogen to the xylem and hydraulic conductivity of barley ( L.) roots publication-title: Planta – volume: 15 start-page: 413 year: 1962 end-page: 428 article-title: A re‐examination of the relative turgidity technique for estimating water deficit in leaves publication-title: Australian Journal of Biological Science – volume: 8 start-page: 169 year: 1984 end-page: 176 article-title: Effect of soil surface water content on sorghum root distribution in the soil publication-title: Field Crops Research – volume: 104 start-page: 16450 year: 2007 end-page: 16455 article-title: Plant nuclear factor Y (NF‐Y) B subunits confer drought tolerance and lead to improved corn yields on water‐limited acres publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 218 start-page: 443 year: 1982 end-page: 448 article-title: Plant productivity and environment publication-title: Science – volume: 161 start-page: 35 year: 2004 end-page: 49 article-title: Aerenchyma formation publication-title: New Phytologist – volume: 31 start-page: 949 year: 2004 end-page: 958 article-title: The contribution of lateral rooting to phosphorus acquisition efficiency in maize ( ) seedlings publication-title: Functional Plant Biology – volume: 55 start-page: 2385 year: 2004 end-page: 2394 article-title: Grain yields with limited water publication-title: Journal of Experimental Botany – volume: 105 start-page: 1 year: 2008 end-page: 14 article-title: Drought tolerance improvement in crop plants: an integrated view from breeding to genomics publication-title: Field Crops Research – start-page: 323 year: 1996 end-page: 362 – volume: 55 start-page: 2343 year: 2004 end-page: 2351 article-title: Root growth maintenance during water deficits: physiology to functional genomics publication-title: Journal of Experimental Botany – volume: 147 start-page: 83 year: 1979 end-page: 88 article-title: Ethylene‐promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding L publication-title: Planta – volume: 269 start-page: 45 year: 2005 end-page: 56 article-title: Rhizoeconomics: carbon costs of phosphorus acquisition publication-title: Plant and Soil – volume: 49 start-page: 598 year: 2007 end-page: 604 article-title: Aerenchyma formed under phosphorus deficiency contributes to the reduced root hydraulic conductivity in maize roots publication-title: Journal of Integrative Plant Biology – volume: 80 start-page: 197 year: 2006 end-page: 211 article-title: Physiological traits used in the breeding of new cultivars for water‐scarce environments publication-title: Agricultural Water Management – start-page: 71 year: 1989 end-page: 93 – volume: 289 start-page: 2068 year: 2000 end-page: 2074 article-title: Climate extremes: observations, modeling, and impacts publication-title: Science – volume: 113 start-page: 1 year: 2006 end-page: 10 article-title: Detection of quantitative trait loci for seminal root traits in maize ( L.) seedlings grown under differential phosphorus levels publication-title: Theoretical and Applied Genetics – volume: 49 start-page: 265 year: 1980 end-page: 279 article-title: Formation of aerenchyma in roots of in aerated solutions, and its relation to nutrient supply publication-title: Physiologia Plantarum – volume: 145 start-page: 1533 year: 2007 end-page: 1548 article-title: Cell wall proteome in the maize primary root elongation zone. II. Region‐specific changes in water soluble and lightly ionically bound proteins under water deficit publication-title: Plant Physiology – volume: 53 start-page: 13 year: 2002 end-page: 25 article-title: Molecular and physiological approaches to maize improvement for drought tolerance publication-title: Journal of Experimental Botany – volume: 32 start-page: 737 year: 2005 end-page: 748 article-title: Root architectural tradeoffs for water and phosphorus acquisition publication-title: Functional Plant Biology – volume: 51 start-page: 61 year: 2000 end-page: 70 article-title: Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress publication-title: Journal of Experimental Botany – start-page: 521 year: 2002 end-page: 552 – ident: e_1_2_7_15_1 doi: 10.1007/BF02357889 – ident: e_1_2_7_18_1 doi: 10.1071/FP03046 – ident: e_1_2_7_4_1 doi: 10.1007/BF00024010 – ident: e_1_2_7_33_1 doi: 10.1007/s11104-005-4268-y – ident: e_1_2_7_24_1 doi: 10.1111/j.1469-8137.1991.tb00965.x – ident: e_1_2_7_16_1 doi: 10.1046/j.1469-8137.2003.00907.x – ident: e_1_2_7_12_1 doi: 10.1104/pp.91.1.266 – ident: e_1_2_7_36_1 doi: 10.1016/j.agwat.2005.07.013 – ident: e_1_2_7_27_1 doi: 10.1111/j.1399-3054.1980.tb02661.x – ident: e_1_2_7_29_1 doi: 10.1201/9780203909423.pt6 – ident: e_1_2_7_10_1 doi: 10.1016/j.fcr.2007.07.004 – ident: e_1_2_7_11_1 doi: 10.1093/jexbot/51.342.61 – ident: e_1_2_7_45_1 doi: 10.1007/s11104-004-1697-y – ident: e_1_2_7_6_1 doi: 10.1093/aob/mcl024 – ident: e_1_2_7_14_1 doi: 10.1126/science.289.5487.2068 – ident: e_1_2_7_25_1 doi: 10.2135/cropsci2000.402358x – ident: e_1_2_7_21_1 doi: 10.1016/S0065-2113(01)74034-5 – ident: e_1_2_7_26_1 doi: 10.1007/BF00194070 – ident: e_1_2_7_40_1 doi: 10.2135/cropsci1990.0011183X003000030043x – ident: e_1_2_7_43_1 doi: 10.1071/FP04046 – ident: e_1_2_7_30_1 doi: 10.2134/agronj2001.9351097x – ident: e_1_2_7_37_1 doi: 10.2135/cropsci1996.0011183X003600060043x – ident: e_1_2_7_8_1 doi: 10.1093/jxb/erh219 – ident: e_1_2_7_17_1 doi: 10.1111/j.1744-7909.2007.00450.x – start-page: 323 volume-title: Plant Roots, the Hidden Half year: 1996 ident: e_1_2_7_28_1 – ident: e_1_2_7_20_1 doi: 10.1071/FP05043 – ident: e_1_2_7_3_1 doi: 10.1071/BI9620413 – ident: e_1_2_7_7_1 doi: 10.1126/science.218.4571.443 – ident: e_1_2_7_48_1 doi: 10.1104/pp.107.107250 – ident: e_1_2_7_42_1 doi: 10.1007/BF00395973 – ident: e_1_2_7_34_1 doi: 10.1073/pnas.0707193104 – ident: e_1_2_7_9_1 doi: 10.1093/jexbot/53.366.13 – ident: e_1_2_7_35_1 doi: 10.1016/S0038-0717(97)00050-3 – ident: e_1_2_7_41_1 doi: 10.2135/cropsci2007.04.0001IPBS – ident: e_1_2_7_5_1 doi: 10.1016/0378-4290(84)90060-1 – ident: e_1_2_7_2_1 doi: 10.1016/S0959-3780(99)00017-5 – ident: e_1_2_7_39_1 doi: 10.1093/jxb/erh276 – ident: e_1_2_7_19_1 doi: 10.1104/pp.98.1.137 – ident: e_1_2_7_13_1 doi: 10.1007/BF00384595 – ident: e_1_2_7_22_1 doi: 10.1111/j.1438-8677.1999.tb00253.x – start-page: 148 volume-title: Phosphorus in Plant Biology: Regulatory Roles in Ecosystem, Organismic, Cellular, and Molecular Processses year: 1998 ident: e_1_2_7_31_1 – ident: e_1_2_7_38_1 doi: 10.1017/CBO9780511661587.006 – ident: e_1_2_7_47_1 doi: 10.1007/s00122-006-0260-z – ident: e_1_2_7_23_1 – ident: e_1_2_7_32_1 doi: 10.1007/s11104-004-1096-4 – ident: e_1_2_7_44_1 doi: 10.1007/s00122-005-2051-3 – ident: e_1_2_7_46_1 doi: 10.1071/FP05005 |
SSID | ssj0001479 |
Score | 2.4588397 |
Snippet | Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought... ABSTRACT Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA... |
SourceID | proquest pubmed pascalfrancis crossref wiley fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 740 |
SubjectTerms | aerenchyma anatomy & histology Biological and medical sciences Biomass corn drought drought tolerance Droughts drying flowering Fundamental and applied biological sciences. Psychology greenhouses growth & development inbred lines leaves metabolism physiology Plant Roots Plant Roots - anatomy & histology Plant Roots - growth & development Plant Roots - physiology Plant Shoots Plant Shoots - growth & development Plant Transpiration root growth root respiration rooting soil soil water content Water Water - metabolism water content water stress yield yields Zea mays Zea mays - growth & development Zea mays - physiology |
Title | Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.) |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-3040.2009.02099.x https://www.ncbi.nlm.nih.gov/pubmed/20519019 https://www.proquest.com/docview/733142767 https://www.proquest.com/docview/742682576 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RRKVe-qAPQlvkQw_tIas8nHhzbBEIoYIqYCXUizVx7BYBm6rJSiy_vjNOdmkqVCHEzVFiS57MjL-xx_MBfOBFF5XLwpiUIZRlypeVZRkqsq48IZeYeS6Cg8N8byL3T7PTPv-J78J09SGWG25sGd5fs4Fj2QyNnDO0KByP-rKTfAt0xHiSXzA-OrqpJBXLruweZzMqVcTDpJ5bBxqsVI8c1pw3iQ2JznWcF7eB0iHG9YvU7jM4X0yvy005H83acmSu_6n8-DDzfw5PeywrPnfK9wJW7HQdHnfslvN1WPtSE_Kcv4TDo7puBYW5ft9coL9h-HN-ieLMb2nYRhAMFZVnDGpFW19YnroVtROXeHZtxcfvFqk5b8TX0adXMNndOdneC3seh9BkitkWcmkoKqmK2BCcMpZcDGaO4tAqTVWFSlrCVMhk55FxhTMpKc-4oucqz9HlNn0Nq9N6ajdAuAoTlKYYo5WyLMgMioQgVFQSTDMOVQBq8c-06YucM9fGhf4r2CGxaRYbU3AW2otNXwUQL3v-6gp93KHPBqmFxh_kj_XkOOFTYIrXVJqkAWwNdGU5JvnPTKooCUAslEeTRfMxDU5tPWs0s2jKROXqP58QrhpzqBjAm07vbsZnTE64PYDca8-dJ6O_be9wa_O-Hd_Ck0VqRRS_g9X298y-J8TWllveFv8ABdcqVQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5R2goufVAe6YP60EN7yCoPJ94cKQJt22VVUVZCvViOYwNi2SA2K7H8emac7NIgVKGqt0SKLXkyM_7GnpkP4BNtukrYxA9RGXyex1SszHNfoHWlEbrExHERHAzS3pB_P06OGzogqoWp-0MsDtzIMpy_JgOnA-m2lVOKFsbjQdN3kspAOwgonxLBt4uvDu96SYW8brxH-YxCZGE7refBmVp71ROrSsqcVBMUnq1ZLx6CpW2U67ap_Zcwmi-wzk4570yrvKNv7vV-_E8SeAUvGjjLdmr9ew1LZrwGz2uCy9kaPPtaIvicvYHBYVlWDCNdd3TOlCsyPJ1dKHbmTjXMhCESZYUjDapYVY4Mrd2w0rILdXZj2OffRuHjbML6nS_rMNzfO9rt-Q2Vg68TQYQLKdcYmBRZqBFRaYNeRiUWQ9EijkWhBDcIqxTxnQfaZlbHqD_dAt-LNFU2NfEGLI_LsdkCZgsVKa6zrjKc5xlaQhYhigpyRGraKuGBmP80qZs-50S3MZJ_xDsoNkliIxbOTDqxyWsPwsXIy7rXxyPGbKFeSHWCLlkOf0V0EYwhm4ij2IPtlrIs5kQXmnARRB6wufZINGq6qVFjU04nkog0eSRS8ZdPEFp1KVr0YLNWvLv5CZYjdPcgderz6MXIn7t79PT2Xwd-hJXe0UFf9r8NfryD1XmmRRC-h-Xqamo-IICr8m1nmLe70y5w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fTxQxEJ4IivHFH4iyqNgHH_RhL_uj294-InBBxQtBLyG-NN1uiwS4Jd5e4vHXO9PdO1xCCDG-7SXXJp39ZvpNdzofwDvadLV0WRgjGEJepHRZmRehRO8SCYbEzGsRfB2KvRH_fJQdtfVPdBem6Q-xOHAjz_Dxmhz8onRdJ6cKLUzHo7btJN0C7SGfvM9F1CeE7xxetZKKedN3j8oZpczjblXPjTN1tqolpysqnNQTtJ1rRC9uYqVdkut3qcETOJ2vrylOOe1N66JnLq-1fvw_BngKj1syy7Ya9D2De3a8CiuNvOVsFR58rJB6zp7D8LCqaoZ5rj84Z9pfMfw5O9fsxJ9p2AlDHspKLxlUs7o6s7R0yyrHzvXJpWXvf1iNj7MJ2-99WIPRYPf79l7YCjmEJpMktyC4wbSkzGODfMpYjDE6c5iIlmkqSy25RVKlSe08Mi53JkX09Ev8XQqhnbDpC1geV2O7DsyVOtHc5H1tOS9y9IM8QQ4VFcjTjNMyADl_Z8q0Xc5JbONM_ZXtoNkUmY00OHPlzaZ-BxAvRl40nT7uMGYdYaH0MQZkNfqW0GdgTNhkmqQBbHawspgTA2jGZZQEwObgUejS9J1Gj201nSiS0eSJFPKWvyCx6lOuGMDLBndX8xMpR-IegPDoufNi1MH2Lj1t_OvAt_DwYGeg9j8Nv7yCR_Myiyh-Dcv1r6l9g-ytLja9W_4BCrEtKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+cortical+aerenchyma+improves+the+drought+tolerance+of+maize+%28Zea+mays+L.%29&rft.jtitle=Plant%2C+cell+and+environment&rft.au=ZHU%2C+JINMING&rft.au=BROWN%2C+KATHLEEN+M&rft.au=LYNCH%2C+JONATHAN+P&rft.date=2010-05-01&rft.pub=Oxford%2C+UK+%3A+Blackwell+Publishing+Ltd&rft.issn=0140-7791&rft.volume=33&rft.issue=5&rft.spage=740&rft.epage=749&rft_id=info:doi/10.1111%2Fj.1365-3040.2009.02099.x&rft.externalDocID=US201301827323 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |