Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.)

Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought tolerance by reducing root metabolic costs, permitting greater root growth and water acquisition from drying soil. To test this hypothesis,...

Full description

Saved in:
Bibliographic Details
Published inPlant, cell and environment Vol. 33; no. 5; pp. 740 - 749
Main Authors ZHU, JINMING, BROWN, KATHLEEN M, LYNCH, JONATHAN P
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.05.2010
Blackwell Publishing Ltd
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought tolerance by reducing root metabolic costs, permitting greater root growth and water acquisition from drying soil. To test this hypothesis, recombinant inbred lines with high and low RCA were observed under water stress in the field and in soil mesocosms in a greenhouse. In the field, lines with high RCA had 30% more shoot biomass at flowering compared with lines with low RCA under water stress. Root length density in deep soil was significantly greater in the high RCA lines compared with the low RCA lines. Mid-day leaf relative water content in the high RCA lines was 10% greater than in the low RCA lines under water stress. The high RCA lines averaged eight times the yield of the low RCA lines under water stress. In mesocosms, high RCA lines had less seminal root respiration, deeper rooting, and greater shoot biomass compared with low RCA lines under water stress. These results support the hypothesis that RCA is beneficial for drought tolerance in maize by reducing the metabolic cost of soil exploration.
AbstractList Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought tolerance by reducing root metabolic costs, permitting greater root growth and water acquisition from drying soil. To test this hypothesis, recombinant inbred lines with high and low RCA were observed under water stress in the field and in soil mesocosms in a greenhouse. In the field, lines with high RCA had 30% more shoot biomass at flowering compared with lines with low RCA under water stress. Root length density in deep soil was significantly greater in the high RCA lines compared with the low RCA lines. Mid-day leaf relative water content in the high RCA lines was 10% greater than in the low RCA lines under water stress. The high RCA lines averaged eight times the yield of the low RCA lines under water stress. In mesocosms, high RCA lines had less seminal root respiration, deeper rooting, and greater shoot biomass compared with low RCA lines under water stress. These results support the hypothesis that RCA is beneficial for drought tolerance in maize by reducing the metabolic cost of soil exploration.
Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought tolerance by reducing root metabolic costs, permitting greater root growth and water acquisition from drying soil. To test this hypothesis, recombinant inbred lines with high and low RCA were observed under water stress in the field and in soil mesocosms in a greenhouse. In the field, lines with high RCA had 30% more shoot biomass at flowering compared with lines with low RCA under water stress. Root length density in deep soil was significantly greater in the high RCA lines compared with the low RCA lines. Mid-day leaf relative water content in the high RCA lines was 10% greater than in the low RCA lines under water stress. The high RCA lines averaged eight times the yield of the low RCA lines under water stress. In mesocosms, high RCA lines had less seminal root respiration, deeper rooting, and greater shoot biomass compared with low RCA lines under water stress. These results support the hypothesis that RCA is beneficial for drought tolerance in maize by reducing the metabolic cost of soil exploration.Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought tolerance by reducing root metabolic costs, permitting greater root growth and water acquisition from drying soil. To test this hypothesis, recombinant inbred lines with high and low RCA were observed under water stress in the field and in soil mesocosms in a greenhouse. In the field, lines with high RCA had 30% more shoot biomass at flowering compared with lines with low RCA under water stress. Root length density in deep soil was significantly greater in the high RCA lines compared with the low RCA lines. Mid-day leaf relative water content in the high RCA lines was 10% greater than in the low RCA lines under water stress. The high RCA lines averaged eight times the yield of the low RCA lines under water stress. In mesocosms, high RCA lines had less seminal root respiration, deeper rooting, and greater shoot biomass compared with low RCA lines under water stress. These results support the hypothesis that RCA is beneficial for drought tolerance in maize by reducing the metabolic cost of soil exploration.
ABSTRACT Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought tolerance by reducing root metabolic costs, permitting greater root growth and water acquisition from drying soil. To test this hypothesis, recombinant inbred lines with high and low RCA were observed under water stress in the field and in soil mesocosms in a greenhouse. In the field, lines with high RCA had 30% more shoot biomass at flowering compared with lines with low RCA under water stress. Root length density in deep soil was significantly greater in the high RCA lines compared with the low RCA lines. Mid‐day leaf relative water content in the high RCA lines was 10% greater than in the low RCA lines under water stress. The high RCA lines averaged eight times the yield of the low RCA lines under water stress. In mesocosms, high RCA lines had less seminal root respiration, deeper rooting, and greater shoot biomass compared with low RCA lines under water stress. These results support the hypothesis that RCA is beneficial for drought tolerance in maize by reducing the metabolic cost of soil exploration.
Author ZHU, JINMING
BROWN, KATHLEEN M
LYNCH, JONATHAN P
Author_xml – sequence: 1
  fullname: ZHU, JINMING
– sequence: 2
  fullname: BROWN, KATHLEEN M
– sequence: 3
  fullname: LYNCH, JONATHAN P
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22554702$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20519019$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1vFCEYxompsdvqv6BcjHqY8eVrGA41MZv6kWzUqL14IchAl83MUGFWu_71Mu5WEy-WCy_wex7gfU7Q0RhHhxAmUJMynm9qwhpRMeBQUwBVAwWl6us7aPHn4AgtgHCopFTkGJ3kvAEoG1LdQ8cUBFFA1AK9-xjjhG1MU7Cmx8YlN9r1bjA4DFcpfncZT2uHuxS3l-sJT7F3yYzW4ejxYMJPh59-caaUu4xX9bP76K43fXYPDvMpunh1_nn5plq9f_12-XJVWSFBVaThVrSiU8QSKqxjIIzwnDcdY7IzkjsilBFcULBeecuM9G1X1l3TGN84doqe7H3LG79tXZ70ELJ1fW9GF7dZS06blgrZ_J9kjHAqG1nIhwdy-3Vwnb5KYTBpp2-aVYDHB8Dk0iw_NyLkvxwVgkughXux52yKOSfntQ2TmUIcp2RCrwnoOUW90XNYeg5Lzynq3ynq62LQ_mNwc8ctpGd76Y_Qu92tdfrD8nyuiv7RXu9N1OYylf9dfKJAGJCWSkYZ-wXairpX
CODEN PLCEDV
CitedBy_id crossref_primary_10_1016_j_pmpp_2019_101443
crossref_primary_10_1186_s12870_022_03972_4
crossref_primary_10_1007_s11104_013_1769_y
crossref_primary_10_1104_pp_111_175489
crossref_primary_10_3389_fpls_2017_01721
crossref_primary_10_1007_s10681_015_1449_5
crossref_primary_10_1111_ppl_13958
crossref_primary_10_1270_jsbbs_20119
crossref_primary_10_1093_jxb_erab406
crossref_primary_10_1111_jac_12307
crossref_primary_10_1111_pce_15085
crossref_primary_10_1016_j_envexpbot_2020_104333
crossref_primary_10_1111_tpj_15560
crossref_primary_10_3390_ijms22116058
crossref_primary_10_1111_pce_12933
crossref_primary_10_1093_aob_mcy059
crossref_primary_10_1111_nph_16807
crossref_primary_10_2134_agronj14_0551
crossref_primary_10_1007_s10681_015_1572_3
crossref_primary_10_1093_aob_mcs075
crossref_primary_10_1071_FP19002
crossref_primary_10_3389_fpls_2018_01928
crossref_primary_10_34133_plantphenomics_0203
crossref_primary_10_1111_ppl_13044
crossref_primary_10_2135_cropsci2012_07_0440
crossref_primary_10_1093_aob_mct160
crossref_primary_10_1093_aob_mcaa068
crossref_primary_10_1016_j_envexpbot_2016_04_001
crossref_primary_10_1016_j_tplants_2021_10_012
crossref_primary_10_1016_j_envexpbot_2018_10_031
crossref_primary_10_3389_fpls_2019_01805
crossref_primary_10_1111_pce_13683
crossref_primary_10_3389_fpls_2020_01235
crossref_primary_10_1016_j_celrep_2024_113971
crossref_primary_10_1016_j_plaphy_2024_108386
crossref_primary_10_3389_fpls_2022_827369
crossref_primary_10_1270_jsbbs_22088
crossref_primary_10_1007_s00425_019_03242_y
crossref_primary_10_1126_science_abj2327
crossref_primary_10_1007_s11104_010_0623_8
crossref_primary_10_1007_s42535_023_00787_y
crossref_primary_10_1080_1343943X_2018_1439757
crossref_primary_10_1080_23311932_2024_2319157
crossref_primary_10_1111_aab_12807
crossref_primary_10_1111_nph_12786
crossref_primary_10_1007_s11104_022_05331_6
crossref_primary_10_1093_aob_mct069
crossref_primary_10_1073_pnas_2012087118
crossref_primary_10_1111_pbi_12011
crossref_primary_10_1071_FP15308
crossref_primary_10_3390_agriculture12101677
crossref_primary_10_1016_j_ecoenv_2020_111252
crossref_primary_10_1093_pcp_pcs003
crossref_primary_10_1093_jxb_ery048
crossref_primary_10_1002_agj2_20039
crossref_primary_10_1016_j_flora_2024_152562
crossref_primary_10_1186_s12284_016_0102_9
crossref_primary_10_1007_s11104_024_06892_4
crossref_primary_10_1111_pce_12451
crossref_primary_10_1590_S0100_204X2016000400005
crossref_primary_10_1111_pce_15161
crossref_primary_10_1093_jxb_eru496
crossref_primary_10_1007_s00122_014_2414_8
crossref_primary_10_1007_s11104_023_06299_7
crossref_primary_10_1007_s11104_012_1483_1
crossref_primary_10_1016_j_plantsci_2017_09_016
crossref_primary_10_3389_fpls_2021_760863
crossref_primary_10_1186_s12870_023_04469_4
crossref_primary_10_3389_fpls_2018_00752
crossref_primary_10_1016_j_tplants_2014_08_005
crossref_primary_10_1093_jxb_erz271
crossref_primary_10_3390_plants12203543
crossref_primary_10_1016_j_chemosphere_2019_05_268
crossref_primary_10_1007_s11738_013_1355_1
crossref_primary_10_1016_j_fcr_2016_11_004
crossref_primary_10_1016_j_rhisph_2022_100644
crossref_primary_10_1111_pbi_12673
crossref_primary_10_1007_s11104_024_07006_w
crossref_primary_10_1016_j_pbi_2011_03_020
crossref_primary_10_1007_s12298_022_01192_6
crossref_primary_10_1111_nph_17474
crossref_primary_10_1002_agg2_20080
crossref_primary_10_1038_s41467_024_55485_3
crossref_primary_10_1007_s10681_019_2472_8
crossref_primary_10_1002_fes3_369
crossref_primary_10_1016_j_cj_2015_04_008
crossref_primary_10_1111_pce_12439
crossref_primary_10_3390_agronomy8110241
crossref_primary_10_1007_s10722_015_0279_6
crossref_primary_10_1038_nplants_2015_118
crossref_primary_10_3389_fpls_2019_00400
crossref_primary_10_1002_csc2_20241
crossref_primary_10_1016_j_fcr_2022_108461
crossref_primary_10_1016_j_plantsci_2022_111340
crossref_primary_10_1111_nph_15738
crossref_primary_10_1007_s10457_024_01092_6
crossref_primary_10_1111_eva_13673
crossref_primary_10_7868_S0002188117070122
crossref_primary_10_1111_pce_13615
crossref_primary_10_1111_pce_12766
crossref_primary_10_3389_fpls_2017_00117
crossref_primary_10_1007_s00425_023_04327_5
crossref_primary_10_1007_s11032_010_9532_z
crossref_primary_10_1111_ppl_13313
crossref_primary_10_1016_j_fcr_2023_109006
crossref_primary_10_1093_jxb_erw472
crossref_primary_10_1111_pce_14270
crossref_primary_10_1093_aob_mcae131
crossref_primary_10_1111_j_1469_8137_2010_03496_x
crossref_primary_10_1007_s11104_021_05186_3
crossref_primary_10_1016_j_sajb_2022_06_039
crossref_primary_10_1111_pce_12778
crossref_primary_10_3390_plants11172256
crossref_primary_10_52547_jcb_12_36_136
crossref_primary_10_1007_s10265_021_01348_7
crossref_primary_10_1111_pce_13197
crossref_primary_10_1111_nph_16524
crossref_primary_10_1038_s41598_019_41922_7
crossref_primary_10_1071_CP17060
crossref_primary_10_1007_s11104_022_05711_y
crossref_primary_10_1080_0972060X_2020_1869105
crossref_primary_10_1007_s00344_022_10807_x
crossref_primary_10_1007_s00122_016_2823_y
crossref_primary_10_2136_vzj2017_05_0107
crossref_primary_10_1093_plcell_koae055
crossref_primary_10_1002_ajb2_1530
crossref_primary_10_1111_1365_2745_13641
crossref_primary_10_1007_s11104_012_1138_2
crossref_primary_10_1111_pce_14256
crossref_primary_10_1111_tpj_14722
crossref_primary_10_3389_fpls_2020_00546
crossref_primary_10_1111_ppl_13332
crossref_primary_10_1093_jxb_eraa165
crossref_primary_10_1093_jxb_erv121
crossref_primary_10_3389_fpls_2021_725915
crossref_primary_10_1093_jxb_erv241
crossref_primary_10_1590_2236_8906_106_2020
crossref_primary_10_36783_18069657rbcs20240079
crossref_primary_10_1093_plphys_kiac550
crossref_primary_10_1073_pnas_2219668120
crossref_primary_10_1093_aob_mcq199
crossref_primary_10_3389_fpls_2017_00900
crossref_primary_10_1093_jxb_erv007
crossref_primary_10_1007_s00468_018_1739_3
crossref_primary_10_3390_ijms24087406
crossref_primary_10_1016_j_fcr_2022_108547
crossref_primary_10_1007_s40502_021_00570_8
crossref_primary_10_1016_j_fcr_2014_03_017
crossref_primary_10_1038_srep03194
crossref_primary_10_3389_fpls_2021_776971
crossref_primary_10_1093_jxb_eru162
crossref_primary_10_1111_ppl_12255
crossref_primary_10_1007_s11104_013_1641_0
crossref_primary_10_1016_j_envexpbot_2014_09_007
crossref_primary_10_1016_j_plantsci_2013_10_016
crossref_primary_10_1071_FP23133
crossref_primary_10_1016_j_biombioe_2023_106805
crossref_primary_10_1093_jxb_erad221
crossref_primary_10_3389_fpls_2023_1133009
crossref_primary_10_1007_s00468_019_01947_x
crossref_primary_10_1155_2014_818797
crossref_primary_10_3390_plants13081075
crossref_primary_10_1007_s11104_021_05010_y
crossref_primary_10_3390_plants10061121
crossref_primary_10_1080_15592324_2016_1268311
crossref_primary_10_1080_10426507_2021_1920588
crossref_primary_10_1007_s11240_019_01654_y
crossref_primary_10_1111_nph_17093
crossref_primary_10_3389_fpls_2020_565339
crossref_primary_10_1007_s11104_018_3792_5
crossref_primary_10_1007_s11104_011_0950_4
crossref_primary_10_1111_jipb_12470
crossref_primary_10_1111_pce_13399
crossref_primary_10_9787_PBB_2019_7_4_326
crossref_primary_10_1093_aob_mct123
crossref_primary_10_1111_jac_12339
crossref_primary_10_1093_aobpla_plac050
crossref_primary_10_1093_jxb_erv074
crossref_primary_10_1007_s11104_012_1453_7
crossref_primary_10_1007_s10681_015_1533_x
crossref_primary_10_1016_j_gene_2022_146692
crossref_primary_10_3389_fpls_2015_00835
crossref_primary_10_1093_jxb_erw243
crossref_primary_10_1071_FP23231
crossref_primary_10_1007_s11104_022_05527_w
crossref_primary_10_1016_j_aquabot_2016_10_002
crossref_primary_10_1093_aob_mct259
crossref_primary_10_1093_jxb_eru508
crossref_primary_10_5433_1679_0359_2020v41n4p1093
crossref_primary_10_3389_fpls_2022_1010165
crossref_primary_10_1111_pbr_12777
crossref_primary_10_1016_j_flora_2015_09_010
crossref_primary_10_1111_ppl_13415
crossref_primary_10_1002_tpg2_20003
crossref_primary_10_1093_plphys_kiad214
crossref_primary_10_1093_plphys_kiae425
crossref_primary_10_1007_s11104_019_04349_7
crossref_primary_10_1093_plphys_kiad213
crossref_primary_10_3389_fpls_2019_00237
crossref_primary_10_1093_jxb_erv289
crossref_primary_10_1007_s10886_017_0904_2
crossref_primary_10_1093_jxb_erz403
crossref_primary_10_3389_fpls_2023_1061503
crossref_primary_10_1016_j_tplants_2021_03_011
crossref_primary_10_1002_jpln_201800560
crossref_primary_10_1016_j_limno_2014_06_002
crossref_primary_10_1111_j_1467_7652_2012_00697_x
crossref_primary_10_1016_j_fcr_2014_10_009
crossref_primary_10_1093_aob_mcs293
crossref_primary_10_1016_j_plaphy_2020_02_037
crossref_primary_10_1007_s11104_016_3150_4
crossref_primary_10_1071_FP16154
crossref_primary_10_1016_j_tplants_2024_10_014
crossref_primary_10_1016_j_jgg_2024_05_001
crossref_primary_10_1007_s11104_013_1643_y
crossref_primary_10_1111_jipb_13222
crossref_primary_10_1007_s00299_023_03133_3
crossref_primary_10_3390_ijms242015167
Cites_doi 10.1007/BF02357889
10.1071/FP03046
10.1007/BF00024010
10.1007/s11104-005-4268-y
10.1111/j.1469-8137.1991.tb00965.x
10.1046/j.1469-8137.2003.00907.x
10.1104/pp.91.1.266
10.1016/j.agwat.2005.07.013
10.1111/j.1399-3054.1980.tb02661.x
10.1201/9780203909423.pt6
10.1016/j.fcr.2007.07.004
10.1093/jexbot/51.342.61
10.1007/s11104-004-1697-y
10.1093/aob/mcl024
10.1126/science.289.5487.2068
10.2135/cropsci2000.402358x
10.1016/S0065-2113(01)74034-5
10.1007/BF00194070
10.2135/cropsci1990.0011183X003000030043x
10.1071/FP04046
10.2134/agronj2001.9351097x
10.2135/cropsci1996.0011183X003600060043x
10.1093/jxb/erh219
10.1111/j.1744-7909.2007.00450.x
10.1071/FP05043
10.1071/BI9620413
10.1126/science.218.4571.443
10.1104/pp.107.107250
10.1007/BF00395973
10.1073/pnas.0707193104
10.1093/jexbot/53.366.13
10.1016/S0038-0717(97)00050-3
10.2135/cropsci2007.04.0001IPBS
10.1016/0378-4290(84)90060-1
10.1016/S0959-3780(99)00017-5
10.1093/jxb/erh276
10.1104/pp.98.1.137
10.1007/BF00384595
10.1111/j.1438-8677.1999.tb00253.x
10.1017/CBO9780511661587.006
10.1007/s00122-006-0260-z
10.1007/s11104-004-1096-4
10.1007/s00122-005-2051-3
10.1071/FP05005
ContentType Journal Article
Copyright 2010 Blackwell Publishing Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2010 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1111/j.1365-3040.2009.02099.x
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Botany
EISSN 1365-3040
EndPage 749
ExternalDocumentID 20519019
22554702
10_1111_j_1365_3040_2009_02099_x
PCE2099
US201301827323
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
186
1OB
1OC
29O
2WC
31~
33P
36B
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
YNT
ZZTAW
~02
~IA
~KM
~WT
24P
AEUQT
AFPWT
ESX
FIJ
IPNFZ
WRC
AAYXX
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c5709-164c585d91c125ce305a5f446d337da74e159a54520cf9fc3a7f8d545d66af6e3
IEDL.DBID DR2
ISSN 0140-7791
1365-3040
IngestDate Thu Jul 10 21:53:02 EDT 2025
Thu Jul 10 21:13:42 EDT 2025
Mon Jul 21 05:39:26 EDT 2025
Mon Jul 21 09:13:56 EDT 2025
Tue Jul 01 04:28:28 EDT 2025
Thu Apr 24 23:06:22 EDT 2025
Wed Jan 22 16:59:45 EST 2025
Mon May 19 05:25:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Monocotyledones
Zea mays
Root
Growth
Soil moisture
Plant ecology
Tolerance
Aerenchyma
root growth
Cereal crop
root respiration
Gramineae
Drought resistance
Angiospermae
yield
soil water content
Spermatophyta
Respiration
Drought
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5709-164c585d91c125ce305a5f446d337da74e159a54520cf9fc3a7f8d545d66af6e3
Notes http://dx.doi.org/10.1111/j.1365-3040.2009.02099.x
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-3040.2009.02099.x
PMID 20519019
PQID 733142767
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_742682576
proquest_miscellaneous_733142767
pubmed_primary_20519019
pascalfrancis_primary_22554702
crossref_citationtrail_10_1111_j_1365_3040_2009_02099_x
crossref_primary_10_1111_j_1365_3040_2009_02099_x
wiley_primary_10_1111_j_1365_3040_2009_02099_x_PCE2099
fao_agris_US201301827323
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2010
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: May 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: United States
PublicationTitle Plant, cell and environment
PublicationTitleAlternate Plant Cell Environ
PublicationYear 2010
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell
References 1979; 147
1980; 49
2007; 104
1990; 30
2001; 93
2007; 145
2006; 97
2002; 53
2010
2005a; 111
2004; 161
1998
2000; 51
1997; 29
1996
1962; 15
2008; 105
1999; 1
2002
1996; 36
1992; 98
1991; 117
2003; 30
1985; 164
2005b; 270
1999; 9
1977
2006; 113
2004; 55
1991; 185
2006; 80
2004; 31
2005c; 32
1982; 218
2000; 289
1984; 8
1989; 91
2005; 269
2000; 40
2005; 32
2006; 281
1996; 20
2001; 74
2007; 47
1989
2007; 49
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
Lambers H. (e_1_2_7_28_1) 1996
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Lynch J.P. (e_1_2_7_31_1) 1998
References_xml – volume: 91
  start-page: 266
  year: 1989
  end-page: 271
  article-title: Decreased ethylene biosynthesis and induction of aerenchyma by nitrogen‐starvation or phosphorus‐starvation in adventitious roots of L
  publication-title: Plant Physiology
– volume: 117
  start-page: 607
  year: 1991
  end-page: 618
  article-title: A reassessment of the influence of NAA on aerenchyma formation in maize roots
  publication-title: New Physiologist
– volume: 270
  start-page: 299
  year: 2005b
  end-page: 310
  article-title: Mapping of QTL controlling root hair length in maize ( ) under phosphorus deficiency
  publication-title: Plant and Soil
– volume: 36
  start-page: 1676
  year: 1996
  end-page: 1683
  article-title: Simple sequence repeat markers developed from maize sequences found in Genbank database: map construction
  publication-title: Crop Science
– volume: 74
  start-page: 193
  year: 2001
  end-page: 246
  article-title: The management of wheat, barley and oat root systems
  publication-title: Advances in Agronomy
– volume: 47
  start-page: S120
  issue: 3
  year: 2007
  end-page: S141
  article-title: Genome‐wide approaches to investigate and improve maize response to drought
  publication-title: Crop Science
– volume: 93
  start-page: 1097
  year: 2001
  end-page: 1104
  article-title: Minirhizotron observations of the spatial distribution of the maize root system
  publication-title: Agronomy Journal
– volume: 97
  start-page: 695
  year: 2006
  end-page: 704
  article-title: Dynamics of aerenchyma distribution in the cortex of sulfate‐deprived adventitious roots of maize
  publication-title: Annals of Botany
– volume: 98
  start-page: 137
  year: 1992
  end-page: 142
  article-title: Enhanced sensitivity to ethylene in nitrogen‐starved or phosphate‐starved roots of L. during aerenchyma formation
  publication-title: Plant Physiology
– volume: 111
  start-page: 688
  year: 2005a
  end-page: 695
  article-title: Mapping of QTL for lateral root branching and length in maize ( ) under differential phosphorus supply
  publication-title: Theoretical and Applied Genetics
– volume: 32
  start-page: 749
  year: 2005c
  end-page: 762
  article-title: Topsoil foraging and phosphorus acquisition efficiency in maize ( )
  publication-title: Functional Plant Biology
– volume: 30
  start-page: 690
  year: 1990
  end-page: 693
  article-title: Relative sensitivity of grain yield and biomass accumulation to drought in field‐grown maize
  publication-title: Crop Science
– volume: 29
  start-page: 1395
  year: 1997
  end-page: 1403
  article-title: Drought affects the fluxes of carbon to roots and soil in 13C pulse‐labelled plants of wheat
  publication-title: Soil Biology and Biochemistry
– volume: 9
  start-page: 31
  year: 1999
  end-page: 49
  article-title: Climate change and global water resources
  publication-title: Global Environmental Change
– start-page: 148
  year: 1998
  end-page: 156
– volume: 30
  start-page: 493
  year: 2003
  end-page: 506
  article-title: Physiological roles for aerenchyma in phosphorus‐stressed roots
  publication-title: Functional Plant Biology
– volume: 1
  start-page: 274
  year: 1999
  end-page: 287
  article-title: Formation of aerenchyma and the process of plant ventilation in relation to soil flooding and submergence
  publication-title: Plant Biology
– volume: 281
  start-page: 269
  year: 2006
  end-page: 279
  article-title: Variation for root aerenchyma formation in flooded an non‐flooded maize and teosinte seedlings
  publication-title: Plant and Soil
– year: 1977
– volume: 40
  start-page: 358
  year: 2000
  end-page: 364
  article-title: Variation among maize inbred lines and detection of quantitative trait loci for growth at low P and responsiveness to arbuscularmycorrhizal fungi
  publication-title: Crop Science
– volume: 164
  start-page: 540
  year: 1985
  end-page: 549
  article-title: Osmotic adjustment and the inhibition of leaf, root, stem, and silk growth at low water potentials in maize
  publication-title: Planta
– volume: 20
  start-page: 135
  year: 1996
  end-page: 148
  article-title: Crop responses to drought and the interpretation of adaptation
  publication-title: Plant Growth Regulation
– year: 2010
– volume: 185
  start-page: 269
  year: 1991
  end-page: 278
  article-title: Sulphate deprivation depresses the transport of nitrogen to the xylem and hydraulic conductivity of barley ( L.) roots
  publication-title: Planta
– volume: 15
  start-page: 413
  year: 1962
  end-page: 428
  article-title: A re‐examination of the relative turgidity technique for estimating water deficit in leaves
  publication-title: Australian Journal of Biological Science
– volume: 8
  start-page: 169
  year: 1984
  end-page: 176
  article-title: Effect of soil surface water content on sorghum root distribution in the soil
  publication-title: Field Crops Research
– volume: 104
  start-page: 16450
  year: 2007
  end-page: 16455
  article-title: Plant nuclear factor Y (NF‐Y) B subunits confer drought tolerance and lead to improved corn yields on water‐limited acres
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 218
  start-page: 443
  year: 1982
  end-page: 448
  article-title: Plant productivity and environment
  publication-title: Science
– volume: 161
  start-page: 35
  year: 2004
  end-page: 49
  article-title: Aerenchyma formation
  publication-title: New Phytologist
– volume: 31
  start-page: 949
  year: 2004
  end-page: 958
  article-title: The contribution of lateral rooting to phosphorus acquisition efficiency in maize ( ) seedlings
  publication-title: Functional Plant Biology
– volume: 55
  start-page: 2385
  year: 2004
  end-page: 2394
  article-title: Grain yields with limited water
  publication-title: Journal of Experimental Botany
– volume: 105
  start-page: 1
  year: 2008
  end-page: 14
  article-title: Drought tolerance improvement in crop plants: an integrated view from breeding to genomics
  publication-title: Field Crops Research
– start-page: 323
  year: 1996
  end-page: 362
– volume: 55
  start-page: 2343
  year: 2004
  end-page: 2351
  article-title: Root growth maintenance during water deficits: physiology to functional genomics
  publication-title: Journal of Experimental Botany
– volume: 147
  start-page: 83
  year: 1979
  end-page: 88
  article-title: Ethylene‐promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding L
  publication-title: Planta
– volume: 269
  start-page: 45
  year: 2005
  end-page: 56
  article-title: Rhizoeconomics: carbon costs of phosphorus acquisition
  publication-title: Plant and Soil
– volume: 49
  start-page: 598
  year: 2007
  end-page: 604
  article-title: Aerenchyma formed under phosphorus deficiency contributes to the reduced root hydraulic conductivity in maize roots
  publication-title: Journal of Integrative Plant Biology
– volume: 80
  start-page: 197
  year: 2006
  end-page: 211
  article-title: Physiological traits used in the breeding of new cultivars for water‐scarce environments
  publication-title: Agricultural Water Management
– start-page: 71
  year: 1989
  end-page: 93
– volume: 289
  start-page: 2068
  year: 2000
  end-page: 2074
  article-title: Climate extremes: observations, modeling, and impacts
  publication-title: Science
– volume: 113
  start-page: 1
  year: 2006
  end-page: 10
  article-title: Detection of quantitative trait loci for seminal root traits in maize ( L.) seedlings grown under differential phosphorus levels
  publication-title: Theoretical and Applied Genetics
– volume: 49
  start-page: 265
  year: 1980
  end-page: 279
  article-title: Formation of aerenchyma in roots of in aerated solutions, and its relation to nutrient supply
  publication-title: Physiologia Plantarum
– volume: 145
  start-page: 1533
  year: 2007
  end-page: 1548
  article-title: Cell wall proteome in the maize primary root elongation zone. II. Region‐specific changes in water soluble and lightly ionically bound proteins under water deficit
  publication-title: Plant Physiology
– volume: 53
  start-page: 13
  year: 2002
  end-page: 25
  article-title: Molecular and physiological approaches to maize improvement for drought tolerance
  publication-title: Journal of Experimental Botany
– volume: 32
  start-page: 737
  year: 2005
  end-page: 748
  article-title: Root architectural tradeoffs for water and phosphorus acquisition
  publication-title: Functional Plant Biology
– volume: 51
  start-page: 61
  year: 2000
  end-page: 70
  article-title: Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress
  publication-title: Journal of Experimental Botany
– start-page: 521
  year: 2002
  end-page: 552
– ident: e_1_2_7_15_1
  doi: 10.1007/BF02357889
– ident: e_1_2_7_18_1
  doi: 10.1071/FP03046
– ident: e_1_2_7_4_1
  doi: 10.1007/BF00024010
– ident: e_1_2_7_33_1
  doi: 10.1007/s11104-005-4268-y
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1469-8137.1991.tb00965.x
– ident: e_1_2_7_16_1
  doi: 10.1046/j.1469-8137.2003.00907.x
– ident: e_1_2_7_12_1
  doi: 10.1104/pp.91.1.266
– ident: e_1_2_7_36_1
  doi: 10.1016/j.agwat.2005.07.013
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1399-3054.1980.tb02661.x
– ident: e_1_2_7_29_1
  doi: 10.1201/9780203909423.pt6
– ident: e_1_2_7_10_1
  doi: 10.1016/j.fcr.2007.07.004
– ident: e_1_2_7_11_1
  doi: 10.1093/jexbot/51.342.61
– ident: e_1_2_7_45_1
  doi: 10.1007/s11104-004-1697-y
– ident: e_1_2_7_6_1
  doi: 10.1093/aob/mcl024
– ident: e_1_2_7_14_1
  doi: 10.1126/science.289.5487.2068
– ident: e_1_2_7_25_1
  doi: 10.2135/cropsci2000.402358x
– ident: e_1_2_7_21_1
  doi: 10.1016/S0065-2113(01)74034-5
– ident: e_1_2_7_26_1
  doi: 10.1007/BF00194070
– ident: e_1_2_7_40_1
  doi: 10.2135/cropsci1990.0011183X003000030043x
– ident: e_1_2_7_43_1
  doi: 10.1071/FP04046
– ident: e_1_2_7_30_1
  doi: 10.2134/agronj2001.9351097x
– ident: e_1_2_7_37_1
  doi: 10.2135/cropsci1996.0011183X003600060043x
– ident: e_1_2_7_8_1
  doi: 10.1093/jxb/erh219
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1744-7909.2007.00450.x
– start-page: 323
  volume-title: Plant Roots, the Hidden Half
  year: 1996
  ident: e_1_2_7_28_1
– ident: e_1_2_7_20_1
  doi: 10.1071/FP05043
– ident: e_1_2_7_3_1
  doi: 10.1071/BI9620413
– ident: e_1_2_7_7_1
  doi: 10.1126/science.218.4571.443
– ident: e_1_2_7_48_1
  doi: 10.1104/pp.107.107250
– ident: e_1_2_7_42_1
  doi: 10.1007/BF00395973
– ident: e_1_2_7_34_1
  doi: 10.1073/pnas.0707193104
– ident: e_1_2_7_9_1
  doi: 10.1093/jexbot/53.366.13
– ident: e_1_2_7_35_1
  doi: 10.1016/S0038-0717(97)00050-3
– ident: e_1_2_7_41_1
  doi: 10.2135/cropsci2007.04.0001IPBS
– ident: e_1_2_7_5_1
  doi: 10.1016/0378-4290(84)90060-1
– ident: e_1_2_7_2_1
  doi: 10.1016/S0959-3780(99)00017-5
– ident: e_1_2_7_39_1
  doi: 10.1093/jxb/erh276
– ident: e_1_2_7_19_1
  doi: 10.1104/pp.98.1.137
– ident: e_1_2_7_13_1
  doi: 10.1007/BF00384595
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1438-8677.1999.tb00253.x
– start-page: 148
  volume-title: Phosphorus in Plant Biology: Regulatory Roles in Ecosystem, Organismic, Cellular, and Molecular Processses
  year: 1998
  ident: e_1_2_7_31_1
– ident: e_1_2_7_38_1
  doi: 10.1017/CBO9780511661587.006
– ident: e_1_2_7_47_1
  doi: 10.1007/s00122-006-0260-z
– ident: e_1_2_7_23_1
– ident: e_1_2_7_32_1
  doi: 10.1007/s11104-004-1096-4
– ident: e_1_2_7_44_1
  doi: 10.1007/s00122-005-2051-3
– ident: e_1_2_7_46_1
  doi: 10.1071/FP05005
SSID ssj0001479
Score 2.4588397
Snippet Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA increases drought...
ABSTRACT Root cortical aerenchyma (RCA) reduces root respiration in maize by converting living cortical tissue to air volume. We hypothesized that RCA...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 740
SubjectTerms aerenchyma
anatomy & histology
Biological and medical sciences
Biomass
corn
drought
drought tolerance
Droughts
drying
flowering
Fundamental and applied biological sciences. Psychology
greenhouses
growth & development
inbred lines
leaves
metabolism
physiology
Plant Roots
Plant Roots - anatomy & histology
Plant Roots - growth & development
Plant Roots - physiology
Plant Shoots
Plant Shoots - growth & development
Plant Transpiration
root growth
root respiration
rooting
soil
soil water content
Water
Water - metabolism
water content
water stress
yield
yields
Zea mays
Zea mays - growth & development
Zea mays - physiology
Title Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.)
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-3040.2009.02099.x
https://www.ncbi.nlm.nih.gov/pubmed/20519019
https://www.proquest.com/docview/733142767
https://www.proquest.com/docview/742682576
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RRKVe-qAPQlvkQw_tIas8nHhzbBEIoYIqYCXUizVx7BYBm6rJSiy_vjNOdmkqVCHEzVFiS57MjL-xx_MBfOBFF5XLwpiUIZRlypeVZRkqsq48IZeYeS6Cg8N8byL3T7PTPv-J78J09SGWG25sGd5fs4Fj2QyNnDO0KByP-rKTfAt0xHiSXzA-OrqpJBXLruweZzMqVcTDpJ5bBxqsVI8c1pw3iQ2JznWcF7eB0iHG9YvU7jM4X0yvy005H83acmSu_6n8-DDzfw5PeywrPnfK9wJW7HQdHnfslvN1WPtSE_Kcv4TDo7puBYW5ft9coL9h-HN-ieLMb2nYRhAMFZVnDGpFW19YnroVtROXeHZtxcfvFqk5b8TX0adXMNndOdneC3seh9BkitkWcmkoKqmK2BCcMpZcDGaO4tAqTVWFSlrCVMhk55FxhTMpKc-4oucqz9HlNn0Nq9N6ajdAuAoTlKYYo5WyLMgMioQgVFQSTDMOVQBq8c-06YucM9fGhf4r2CGxaRYbU3AW2otNXwUQL3v-6gp93KHPBqmFxh_kj_XkOOFTYIrXVJqkAWwNdGU5JvnPTKooCUAslEeTRfMxDU5tPWs0s2jKROXqP58QrhpzqBjAm07vbsZnTE64PYDca8-dJ6O_be9wa_O-Hd_Ck0VqRRS_g9X298y-J8TWllveFv8ABdcqVQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5R2goufVAe6YP60EN7yCoPJ94cKQJt22VVUVZCvViOYwNi2SA2K7H8emac7NIgVKGqt0SKLXkyM_7GnpkP4BNtukrYxA9RGXyex1SszHNfoHWlEbrExHERHAzS3pB_P06OGzogqoWp-0MsDtzIMpy_JgOnA-m2lVOKFsbjQdN3kspAOwgonxLBt4uvDu96SYW8brxH-YxCZGE7refBmVp71ROrSsqcVBMUnq1ZLx6CpW2U67ap_Zcwmi-wzk4570yrvKNv7vV-_E8SeAUvGjjLdmr9ew1LZrwGz2uCy9kaPPtaIvicvYHBYVlWDCNdd3TOlCsyPJ1dKHbmTjXMhCESZYUjDapYVY4Mrd2w0rILdXZj2OffRuHjbML6nS_rMNzfO9rt-Q2Vg68TQYQLKdcYmBRZqBFRaYNeRiUWQ9EijkWhBDcIqxTxnQfaZlbHqD_dAt-LNFU2NfEGLI_LsdkCZgsVKa6zrjKc5xlaQhYhigpyRGraKuGBmP80qZs-50S3MZJ_xDsoNkliIxbOTDqxyWsPwsXIy7rXxyPGbKFeSHWCLlkOf0V0EYwhm4ij2IPtlrIs5kQXmnARRB6wufZINGq6qVFjU04nkog0eSRS8ZdPEFp1KVr0YLNWvLv5CZYjdPcgderz6MXIn7t79PT2Xwd-hJXe0UFf9r8NfryD1XmmRRC-h-Xqamo-IICr8m1nmLe70y5w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fTxQxEJ4IivHFH4iyqNgHH_RhL_uj294-InBBxQtBLyG-NN1uiwS4Jd5e4vHXO9PdO1xCCDG-7SXXJp39ZvpNdzofwDvadLV0WRgjGEJepHRZmRehRO8SCYbEzGsRfB2KvRH_fJQdtfVPdBem6Q-xOHAjz_Dxmhz8onRdJ6cKLUzHo7btJN0C7SGfvM9F1CeE7xxetZKKedN3j8oZpczjblXPjTN1tqolpysqnNQTtJ1rRC9uYqVdkut3qcETOJ2vrylOOe1N66JnLq-1fvw_BngKj1syy7Ya9D2De3a8CiuNvOVsFR58rJB6zp7D8LCqaoZ5rj84Z9pfMfw5O9fsxJ9p2AlDHspKLxlUs7o6s7R0yyrHzvXJpWXvf1iNj7MJ2-99WIPRYPf79l7YCjmEJpMktyC4wbSkzGODfMpYjDE6c5iIlmkqSy25RVKlSe08Mi53JkX09Ev8XQqhnbDpC1geV2O7DsyVOtHc5H1tOS9y9IM8QQ4VFcjTjNMyADl_Z8q0Xc5JbONM_ZXtoNkUmY00OHPlzaZ-BxAvRl40nT7uMGYdYaH0MQZkNfqW0GdgTNhkmqQBbHawspgTA2jGZZQEwObgUejS9J1Gj201nSiS0eSJFPKWvyCx6lOuGMDLBndX8xMpR-IegPDoufNi1MH2Lj1t_OvAt_DwYGeg9j8Nv7yCR_Myiyh-Dcv1r6l9g-ytLja9W_4BCrEtKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+cortical+aerenchyma+improves+the+drought+tolerance+of+maize+%28Zea+mays+L.%29&rft.jtitle=Plant%2C+cell+and+environment&rft.au=ZHU%2C+JINMING&rft.au=BROWN%2C+KATHLEEN+M&rft.au=LYNCH%2C+JONATHAN+P&rft.date=2010-05-01&rft.pub=Oxford%2C+UK+%3A+Blackwell+Publishing+Ltd&rft.issn=0140-7791&rft.volume=33&rft.issue=5&rft.spage=740&rft.epage=749&rft_id=info:doi/10.1111%2Fj.1365-3040.2009.02099.x&rft.externalDocID=US201301827323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon